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c IDEAI. Universitat Politècnica de Catalunya. Barcelona, Spain

Corresponding Author:

Javier Béjar
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Barcelona, Spain

Tel: (34) 93-4137879

Email: bejar@cs.upc.edu



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Large Scale Prediction of Sick Leave Duration with
Nonlinear Survival Analysis Algorithms
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Abstract

The management of sick leaves is a critical task that public and private health

systems carry out. This enables the good care of sick workers and guarantees a

safe return to their jobs. Most health systems enforce regulations that establish

the duration of sick leave according to general rules for groups of diagnoses.

However, these regulations do not account for the particularities of workers.

On the one hand, an early return to work is sometimes possible, but this does

not happen unless the worker pro-actively requests it. On the other hand, the

worker’s health condition could demand for one or more leave extensions, but

the system requires mandatory and sometimes unnecessary follow-ups, adding

nuisance to patients and overhead to health systems. In both cases, the lack and

excess of action by the health system represents extra costs for society. This

paper proposes the analysis of a voluminous historical dataset of sick leaves

(including medical and personal data) to predict the duration of future sick

leaves for patients. The data mining process is performed for a large number

of diagnoses to assess the possibility of using data driven models for broad

decision-making. The nature and characteristics of the data makes it difficult to

obtain models using classical methods, which is why the analysis focuses on non-
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linear machine learning-based survival analysis methods. In sight of the models

performance, we move forward to its practical implementation, proposing a tool

to manage the decision of what patients should be contacted at a given date

using the predictions of the trained models. This tool will manage the whole

cycle, continuously training on new data, performing daily predictions, and

presenting the results to the health-care decision-maker for their assessment.

Keywords: Sick leave prediction, Survival analysis, Machine learning, Decision

support systems, AI in medicine

1. Introduction

Paid sick leave is a worker’s right in many countries. According to the

World Health Organization (WHO) Scheil-Adlung & Sandner (2010), it helps

to reduce the cost of National Public Health systems by preventing workers from

not seeking medical assistance, which could aggravate their diagnoses or spread

disease. Furthermore, it also serves as a social and economic stabilizer in times

of crisis.

Global and national health organizations have defined a set of guidelines

about sick leaves expected duration Scheil-Adlung & Sandner (2010). These

guidelines help physicians to determine when to intervene, while rationalizing

healthcare costs. However, it is now clear that the effects and consequences

of an illness are not the same for all individuals. Factors like age, gender, or

work position may significantly influence the development of diseases. Hence,

the duration of sick leaves is not a one size fits all task. For many years, data

about the duration and development of sick leaves have been collected. It is

now possible to analyse this information at a large scale, so that we may obtain

decision models for more rationalized processes with significant well-being and

economic returns.

There is a vast literature on health policy and epidemiology about the course

and duration of particulars or groups of diagnoses. Some of these studies fo-

cus on the effects of interventions during the leave period that can benefit the
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patient, by defining a more accurate return date and preventing relapses. For

instance, in Edwards et al. (2019) the relation among different sick leave poli-

cies for seasonal influenza and their economic impact is studied using dynamic

systems. It is shown how sooner reincorporation to work or longer leaves may

be beneficial. Previous works have also studied sick leave duration as a timely

event. This means that the model includes not only if the event is going to

occur but also when it is going to happen. In this setting, survival analysis is

the method of choice for modelling this sort of problem. For instance, in Vemer

et al. (2013) survival analysis is performed to study the time needed for work-

ers suffering from depression to return to their jobs. In Spierdijk et al. (2009)

these same methods are used to study the causes of sick leave duration of Dutch

self-employed workers, as well as the effect of different interventions.

The aim of this paper is to model the duration of sick leaves using survival

analysis based on a large dataset of sick leaves from workers in the Public Health

System (Spanish Social Security). Preliminary experiments with the data allow

us to conclude that models trained using classical survival analysis methods

(Kaplan-Meier, Cox Proportional Hazard Kleinbaum & Klein (2010)) are not

completely appropriate due to the possible existence of non-linear relationships

among the data. Moreover, the data presents complex characteristics with a

mixture of continuous, binary and categorical attributes, which are difficult to

deal with for these models. This leads us to use machine learning survival

analysis methods based on random forest and neural networks. Results indicate

that these are indeed better predictive models for the task.

Our contribution is intended to be used in practice. Currently, the data

available for our study is being used by a team of nurses to prioritize every

day which workers should be contacted for an intervention (e.g., regular check-

ups, refer to specialist). Since their capacity is limited, and the number of

candidates for an intervention ranges in the tens of thousands, a prioritization

of the intervention is paramount. Hence, the final goal of this work is to develop

a set of models that will be used as a decision support system to recommend

when an intervention is needed, given the probable duration of the leave.
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Our assumptions for developing this system are two fold. First, that the

historical observations of leave duration allow the prediction of future leave

behavior and that the available socio-economic and labour attributes are a sur-

rogate for more complex medical information. Second, that these characteristics

are enough for obtaining explanations for the leaves duration for each diagnose

and that these can be used by the end users (nurses) as actionable criteria for

prioritizing interventions.

The contributions of the paper are as follows:

• The study of a large dataset of leaves corresponding to many different

diagnoses using non-linear survival analysis methods

• The proposal of a flexible system that implements a decision support sys-

tem based on survival analysis models for improving how sick leaves are

managed at large scale

The outline of the paper is as follows: Section 2 explains the characteristics of

the dataset used in the experiments and the different preprocessing steps applied

to obtain the data before feeding the models. Section 3 gives a brief explanation

of survival analysis and the characteristics of the machine learning methods

used for the modelling. Section 4 explains the methodology employed for the

experimentation, training, and validation for the models. Section 5 outlines

the results and insights obtained from the experiments. Section 6 describes

the current procedure for determining the interventions, the architecture of the

system that implements the decision support system developed for aiding the

decision-making process and how it will be used. Section 7 outlines some future

directions and additional extensions to this work. Section 8 summarizes the

main results of the paper.

2. The Dataset

The Spanish Social Security is in charge of granting sick leaves in the public

health system. In the follow-up of these leaves, a combination of public and
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private actors may intervene, as some leaves are derived to private and public

health companies to reduce the load and cost of the public healthcare system.

Within this ecosystem, Asepeyo is a partner of the Spanish Social Security,

acting as a health provider and insurance manager of the economic benefits

associated to the sick leave. It has 142 owned healthcare centres and 4 hospitals,

with over 3,000 employees and handles health data of roughly 5 million patients-

workers.

This project arises from Asepeyo’s need to properly prioritize patients on sick

leave. To tackle this issue, Asepeyo gathered a dataset composed by roughly

1.8 million sick leaves, taking place during a period of almost six years (January

2014, September 2019). To avoid any ethical issues with the use of the data has

been anonymized. Those sick leaves correspond to more than 12,000 different

diagnoses, but only the 129 most frequent ones are considered in this work, to

maximize intervention relevance and practical impact. The targeted diagnoses

can be categorized into eight general groups: fractures, cervical, lumbar, shoul-

der, knee, osteoarticular, tendinose and psychiatric. These diagnoses account

for over half a million sick leaves in the dataset.

Each sick leave in the dataset contains a large amount of metadata. This in-

cludes information about the leave (diagnosis, start date, final date, last follow-

up date...), personal data (date of birth, gender, marital status...) and labour

data (job classification, job status...). The first preprocessing step targeted the

missing values in the data. Attributes having too many were dropped, and for

the rest, missing values in categorical variables were replaced by a dummy value.

Furthermore, outliers in the length of the leaves were dropped, discarding the

samples with values over the 99 percentile. Some features were added based on

existing attributes (e.g., day of the week, week of the year), as a preliminary

statistical study of the dataset showed its relevance. For instance, the length of

the leaves presents weekly periodicity and a large number of short leaves have as

their more frequent duration 5 or 7 days, indicating probably Monday-Friday or

Monday-Monday leaves (see Figure 1). Other features were also added, such as

counts of recurrent leaves for a worker (with the same or different diagnosis), the
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Figure 1: Distribution of leave duration for Torticollis cases. An increase of

leaves termination is associated with weekly periods and short leaves ends in-

crease after five or seven days.

duration of the last leave (with the same or different diagnosis), and the sum of

the duration of the previous leaves. After preprocessing, a total of 27 variables

were chosen for building the models. Some of them were nominal variables and

were coded using one-hot encoding.

In survival models, the goal is to predict the time until the occurrence of an

event. In our case, the end of a sick leave. However, some data samples may

not have reached the event yet, and not using these for training could result in

an underestimation of the duration. These examples are called right censored

in survival analysis terminology. This means that the data needs an additional

indicator attribute that represents if the event has occurred already or not.

There also exists the concept of left censored data, those examples included

before the beginning of the process. In our data, that does not happen because

there are no leaves that start before the starting date of the dataset.

The final dataset includes a variety of diagnoses grouped in the eight men-

tioned categories. Figure 2 plots the distribution of the number of leaves (in

logarithmic scale) and the maximum duration of the leaves for each category.

One issue to notice is the differences in their distribution, indicating that a
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Figure 2: Distribution of number of leaves (left, in log scale) and their duration

(right) for the eight groups of diagnosis considered.

global model or even a category model is not feasible given these wide differ-

ences among the diagnoses characteristics. Instead, we will train a specific model

for each of the 129 diagnosis.

3. Machine Learning methods for Survival Analysis

Survival analysis Kleinbaum & Klein (2010) is a field of statistics for the

analysis of the expected time until one or more events happen. In the context

of our problem, the event is the end of the sick leave, as the worker is considered

apt for work by a clinician. Survival analysis performs the modelling using

different functions like the survival function, the hazard function or the risk

score. In our case, we use the survival function S(t)

S(t) = P (T > t) (1)

where t is a specific time and T is a random variable denoting the time of

the event. This function represents the probability that the event of interest has

not occurred after some time t has passed. This value is intuitive to interpret

by the final decision maker. For a specific sick leave, this probability indicates

the chance that the worker is still sick at a given time.
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There are different approaches to model the survival function. It can be

estimated parametrically, assuming a specific model for the distribution of time

(e.g., exponential, Weibull, log-normal...), it can be estimated non-parametrically

(e.g., Kaplan-Meier model) or semi-parametrically (e.g., Cox Proportional Haz-

ard, Multi task logistic regression, Survival trees). However, the usual models do

not take into account non-linear interactions among the attributes. Considering

the many relations between variables that can be observed in our data, we focus

on non-linear methods. These methods substitute linear and logistic regression

by non-linear machine learning methods. In this context, we are going to build

models using three different approaches: Conditional Survival Forest, Neural

Multitask Logistic Regression and Non-Linear Cox Proportional Hazard.

3.1. Conditional Survival Forest

The assumption of survival trees is that a unique survival function is not

adequate for modelling the data. Instead, it is better to split the model into

several functions according to their characteristics. Modelling is done using

ensembles based on random forest. There are several implementations available

for this model. We have chosen the Conditional Survival Forest (CSF) Wright

et al. (2017) among them because of its competitive performance.

CSF combines a set of trees built using the original decision trees algorithm.

Each decision evaluates all variables looking for the best split, in this case,

computing a statistical independence test among the regressor variable and the

response variable. From the variables that have a significance higher than a

threshold for the test, the best one is picked to make the decision.

This model has the advantage of being able to compute the relevance of the

attributes of the model, helping to the interpretability of the results.

3.2. Neural Multitask Logistic Regression

The Multi-Task Logistic Regression Yu et al. (2011) model can be seen as

a series of logistic regression models built on different time intervals to esti-

mate the probability that the event of interest happened within each interval.
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As logistic regression is a linear transformation, the Neural Multitask Logistic

Regression (NMTLR) model was proposed in Fotso (2018) substituting it for a

non-linear neural network.

3.3. Non Linear Cox Proportional Hazard

The Cox Proportional Hazard model Cox (1972) assumes that a baseline

survival function can be computed. In this model, the different individuals have

a function that is proportional to the baseline, where the actual proportion can

be computed as a linear combination of its characteristics. The Non-Linear Cox

Proportional Hazard model (NLCPH) Katzman et al. (2018) substitutes the

linear model by a neural network to extend the capabilities of the Cox model.

4. Experiments

To conduct the experiments, samples from each individual diagnosis were

randomly split into training and validation, with a proportion 80%/20%. One

special circumstance in survival analysis is that the data has to take into account

examples where the event has not yet occurred. In our dataset, examples with

ongoing leaves are randomly distributed both in the training and the validation

sets. All the experiments were performed using the pysurvival python library

Fotso et al. (2019) which implements all the methods explained in the previous

section.

During training, a grid search was used for the exploration of the hyper-

parameters. For CSF these include the size of the ensemble, the maximum

number of features for each tree, the minimum number of examples in the leaves,

and the criteria used for the split of a node. For NMTLR and NLCPH they

included the design and training details of the neural network. We considered

one or two layers with different number of neurons, different activation functions

for the neurons, the parameters for the optimizer (Adam in our case), the initial

learning rate, the weight for the L2 regularization and the maximum number

of epochs. Additionally, for the NMTLR we also explored the number of bins
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used to divide the timeline. For each combination of parameters we performed

a 10-fold cross validation to assess the accuracy of the models.

All the experiments were run on Barcelona Supercomputing Centre’s Marenos-

trum 4 supercomputer. To measure the performance in a similar situation as

in the target deployment setting, a limited number of computing nodes were

used, and the training of the neural networks was performed without acceler-

ators (i.e., no GPU). We assumed that, in production, only commodity cloud

computing resources are going to be available for the retraining of the models.

In summary, models for 129 diagnoses were trained, exploring around a hundred

hyper-parameter combinations for each one of the three algorithms. The goal

was to have an estimation of the average performance that could be achieved

for each diagnosis and each algorithm.

The code for performing these experiments is available in https://github.

com/bejar/OmenCode.

5. Results

This section presents the metrics used, the results obtained by the trained

models, as well as a preliminary interpretation of their performance.

5.1. Performance metrics

There are two main performance measures for survival analysis, each cap-

turing a slightly different metric. These are the Concordance Index and the

Integrated Brier Score. The Concordance Index (CI) is a generalization of the

area under the ROC curve (AUC) that takes into account that there are cen-

sored data. It assesses the ability of the model to rank survival times based

on the survival function. The maximum value is 1 (perfect prediction) and

the minimum is 0.5 (random prediction). On the other hand, the Brier Score

evaluates the accuracy of a predicted survival function at a given time t. It rep-

resents the average squared distance between the observed survival status and

the predicted survival probability, and it is always a number between 0 and 1,

10
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Figure 3: Distribution of Concordance index and Integrated Brier Score of the

best model for the 129 diagnosis separated by algorithm. For Concordance,

closer to the right is better. For Brier, closer to the left is better.

with 0 the best possible value. The Integrated Brier Score (IBS) computes the

mean of the score and gives the overall performance of the model. According to

literature Kleinbaum & Klein (2010), a value of 0.7 for the CI indicates a good

model, with 0.8 indicating a strong model. The Brier score should not be over

0.25 for all the time interval for a reasonable model.

5.2. General results

The results obtained for all diagnoses are plotted as a distribution in Figure

3. By looking at the plot on the left, results for the CI metric are mostly above

0.7, with the majority being above 0.8. This indicates that most of the obtained

models are reliable predictors. The algorithm NLCPH is the one with the best

models according to Concordance (its distribution has the higher mean, close

to 0.88), followed by NLMTLR. CSF has a few models that perform poorly

(between 0.6 and 0.8), but has a reasonable performance in general.

For the plot on the right of Figure 3, based on the IBS, we observe the oppo-

site behaviour. The CSF is the closest one to optimal performance (left), while

the NLCPH has a larger error (although it is always below 0.12). Remarkably,

11
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Figure 4: Distribution of Concordance index and Integrated Brier score for

NLCPH models by groups of diagnoses

the vast majority of models achieve performances which can be considered as

strongly reliable.

To understand the disparity between the CI and IBS metrics in terms of

model scoring, let us discuss their interpretation. According to CI, NLCPH is

the best at ranking the sick leaves by their expected duration, providing the most

reliable ordering. On the other hand, according to IBS, CSF predicts better the

overall duration of the leaves, with the least deviation from the predicted date.

NLMTLR can be seen as a compromise between both models.

To analyse the performance of models across diagnosis, in Figure 4 we plot

the results of both scores group-wise for NLCPH. Results indicate a high vari-

ability among and inside groups, with large differences between both scores.

Some groups of diagnosis are more difficult to order, but easier to estimate the

date (e.g., cervical or lumbar), while others are easy to order but harder to

estimate (e.g., shoulder or psychiatric). These differences may be caused by the

duration of the leaves, since shorter leaves may be harder to order, while for long

leaves may be harder to estimate the exact ending date. Another variable that

may be of relevance is the number of cases for each diagnosis. In the following

section, we will analyse the influence of these two factors in the data, to test

their impact on performance variance and to better understand our models.

12
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5.3. Effects of dataset size and leave duration

To assess the impact of sample size and leave duration on the models, in

Figure 5 we plot these two variables together with each of the two scores used.

Results indicate that diagnoses with more samples and longer leaves result in

models with higher CI values (i.e., better ranking of leaves), with a significant

positive effect according to a robust linear regression using Huber loss (see right

plots of Figure 5). On the one hand, this means that, as expected, the larger

the size of the dataset, the better results can be obtained, which provides good

expectations as of how will these models evolve through time as more training

data is made available. On the other, the effect of the maximum length of a

leave could be explained by a better distribution of the duration of the cases,

as well as a larger margin for ordering samples.

The effect on the IBS is weaker (see left plots of Figure 5). A slight positive

effect can be observed with the maximum leave length (performing worse as the

leaves get longer, bottom left plot of Figure 5). Similarly, the magnitude of the

number of samples has a slight negative effect (performing better as more data

is available, top left plot of Figure 5). This later case seems to be driven by

those diagnoses with the least cases (see the left side of the top plot of Figure

5), which reinforces the idea that in a broader sense, the relation is very weak.

5.4. Attribute relevance and interpretability

One of the goals of the decision support system is to obtain some insights

regarding the best criteria in the decision of prioritizing some leaves over others.

For studying this issue, we collected the relevance importance ranking of the

attributes computed by the best CSF models for each diagnosis. This relevance

is computed in the same fashion as for Random Forest as this is the base for

the CSF model.

We explored the patterns in the relevance rankings of the attributes used by

the models. For that, we estimated the distribution of the position of the at-

tributes in these rankings. Figure 6 presents a matrix of the number of times an

13
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Figure 5: Distribution of Concordance index and Integrated Brier score with

respect of the magnitude (log10) of the number of cases (Count) and the maxi-

mum length (Days) of a diagnosis for NLCPH models. For Brier, lower is better.

For Concordance, higher is better.

attribute appears in a position in the relevance rankings. This count is normal-

ized by the maximum for each position in the ranking (column wise). Results

indicate that some attributes are more frequent in a specific position than oth-

ers, presenting on average more relevance for the models (top attributes). It

can also be seen that some attributes are irrelevant, not appearing in most of

the models (bottom attributes).

Except for one of the attributes, there is a large variation on the ranking

14
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Figure 6: Distribution of the positions in the attribute relevance ranking com-

puted by the CSF model.

for each attribute. This means that each diagnosis can usually be explained

by a different combination of attributes. In other words, some attributes can

be highly relevant for some diagnoses and almost irrelevant for others. This

relevance can be used for explaining the global predictions of the models and

presented by the decision support system as additional information about what

attributes are better criterion for prioritizing leaves, so it can be considered by

the user. For instance, for the diagnosis shoulder dislocation the age and the

gender are the second and third most relevant attributes after the time from

the last check up, or for the diagnosis shoulder tendinitis to have any previous

leaves is the second most relevant attribute. Having that information will help

to interpret why some leaves are prioritized over others.

To obtain a more detailed explanation for a particular leave prediction is

more complex given that SCF is based on Random Forest that is a black box

model. Model agnostic methods can be used in this case, like, for instance,
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the LIME method Ribeiro et al. (2016). This method uses a linear model as

surrogate that obtains a linear model that locally explains the prediction. As

in the current application of the decision support system, it is more important

to obtain general criteria for ordering the leaves, this is not a crucial feature at

this time.

5.5. Algorithm selection

Overall, the three models considered provide reliable predictions for most of

the diagnoses. For the first deployment in production we have chosen to use the

models computed by NLCPH and CSF. The NLCPH models are closer to the

ranking among the sick leaves, which is the most relevant functionality according

to the end users of the decision support system. We will also integrate the CSF

models, since this allows us to assess the influence of the different variables in

the predictions. Such information can provide useful insights to the decision

maker to refine their actions, and help to understand the reasons behind the

difference among patients with the same diagnosis.

6. Tool Deployment

Every sick leave has a specific duration determined by a doctor. The doctor

decides this duration based on the severity and the type of illness. Nonetheless,

the time expected for a leave might deviate from the time it actually takes to

heal. Calling each patient at the right time brings about considerable well-being

and economic effects, as it might mean less stress for the patients while leaves

are finished at their appropriate time according to medical standards.

Currently at Asepeyo, a team of experienced nurses skim through the com-

plete list of patients that are on leave every morning. According to a set of

criteria, they sort the list in order to decide which patients to call first. These

criteria combine the team experience with rules that are based on specific fac-

tors such as the type of diagnosis, the total time passed since the last medical

action, the time left before the next action, whether or not a call has already
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been made, the leave history, and so on. Specific details about the complete set

of rules are out of the scope of this paper but, in the general case, the nurses

look for patients with a nearby expected date of recovery, where the meaning

of nearby in this context is heavily influenced by the type of diagnosis.

The distribution of the workload among nurses is not defined by the current

system and it is dynamically adjusted depending on the number of cases and

their characteristics. There is no split of diagnoses among the nurses, considering

they have a similar level of expertise in all cases, although simpler cases can be

assigned to auxiliary nurses. At the beginning of the day, each nurse first solves

the patients pending from the day before. Once all pending cases have been

completed, the filtering of new cases starts. Each case is evaluated sequentially

to decide if the patient is going to be contacted. Once contacted, if the patient is

recovered, they go to the doctor to end the leave. Otherwise, the leave continues

as scheduled by the doctor.

6.1. The decision support system

The models evaluated in the previous section will provide a decision support

system for these nurses, to help them refine and improve their decision-making

process. Models will be deployed for inference (e.g., prediction) and integrated

with the Asepeyo systems so that they can become an additional tool for the

nurses to be used in their day-to-day work along with the interface they are

currently using.

Models will provide a priority list of leaves split by diagnosis. Diagnoses that

are simpler to evaluate can be routed to auxiliary nurses that also have access

to an estimate of the probability of the leave. The rest of the diagnoses can

be scheduled for calls by experienced nurses that can consider the information

the system will provide. Specifically, the order of cases, their probability and

the more relevant attributes considered by the model for the diagnosis. Other

considerations that are already taken into account can also be included in the

decision, such as prioritization according to the gravity of the diagnosis.

Meanwhile, the models will be retrained periodically (e.g. once a week,
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Figure 7: Organization of the Decision Support System with the training and

inference subsystems for generating priority lists of patients

during the weekend...) through the addition of the training data that is pro-

duced and stored every day. Therefore, updated and improved predictions are

constantly made available.

The architecture of the decision support system is based on two subsystems

as depicted on Figure 7:

• The training subsystem will be in charge of generating and updating the

survival analysis models. It will schedule the training of the models from

a historical sick leaves database considering the amount of new examples

included since the last models for each diagnosis was computed. The

schedule will tune the parameters, if needed, when the quality of the new

models varies significantly from the current model. To make the decision,

the historical values for quality measures (IBS, CI) of the models will be
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stored, and a statistical significance test will be used for performing the

decision.

For the parameter tuning, a Sequential Model-based Algorithm Config-

uration (SMAC) (Hutter et al. (2011)) optimization algorithm will be

used. This algorithm estimates the surface corresponding to the quality

measures of the models in the hyper-parameter space allowing a better

exploration. Specifically, regression random forest is used for this estima-

tion. This prediction surface is stored in order to bootstrap future hyper-

parameter searches when the quality of the new model, trained with the

current hyper-parameters, differs from the latest model.

After training the models for both prediction algorithms, the relevance

ranking from the CSF will be stored for the inference subsystem.

• The inference subsystem will be in charge of computing the survival

function for the pending leaves. The leaves for each diagnostic will be

sorted according to their probability at the current date. A probability

threshold will be used to cut the list of leaves to the ones with a higher

chance to be close to their end. For each diagnosis, the ranking of the

attributes’ relevance of the CSF models will be included for the nurse to

interpret.

The prediction of the survival function for the pending sick leaves is not com-

putationally demanding, and thousands of leaves can be predicted in a matter

of seconds using commodity hardware. This prediction can even be parallelized

if needed, given that each diagnosis is independent of the rest. This means that

the ordering for the patients can be ready at the beginning of each day.

The main burden of computational cost corresponds to the training sub-

system. For the two chosen algorithms, the fitting of the models has different

constraints. NLCPH uses neural networks so its training can not be parallelized

when using only the CPU. However, it can be trained using GPUs if needed,

drastically reducing its cost. CSF does not gain performance from using GPUs,

but it can run in parallel, gaining from using several cores during training.
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The current size of the training data varies from diagnosis to diagnosis. The

one with the larger number of examples is back pain with more than 100,000

cases. The next three diagnoses have around 50,000 cases each and, after the

20th diagnosis, this number is lower than 10,000 cases.

Measuring the wall clock time during the experiments for the hyper-parameter

tuning, the training time for NLCPH for the diagnosis with the larger number

of examples using only CPU takes around 2 minutes per configuration includ-

ing a 10-fold cross validation using a single thread on a Intel Xeon 8160 2.1

GHz processor. This time could be reduced, if necessary, at least by an order

of magnitude using a modern GPU. For CSF, the training for that diagnosis

takes around 30 seconds not using multi-core training, and also including 10-

fold cross-validation. These quantities can vary depending on the complexity of

the models but in all cases it will approximate these values.

The computational cost of the solution makes it feasible to schedule and

distribute the training of the survival analysis models for the diagnoses at large

scale and in a flexible way. In most cases, the models will be updated when the

number of instances for a diagnosis increases significantly using the same param-

eters as the last model. When a hyper-parameter tuning has to be performed,

the SMAC optimization algorithm can reduce the number of models that have

to be tested and this exploration can be interleaved with the normal update of

the models. The independence of the training of the diagnoses also allows for

increasing or decreasing the computational resources used. Most of the models

can be trained in-house using commodity computers and cloud services can be

added if necessary.

In order to evaluate the effects of integrating the models predictions into the

current interface used by the nurses, two approaches will be followed. During

the first months, the nurses will have access to the predictions but will not

be encouraged to act upon it. Periodically, these predictions will be compared

to the actual duration of the leaves in order to detect any possible deviations

from the original dataset used for the design and implementation of the models.

This is relevant due to the sensitivity of the data with respect to socio-economic
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variations, e.g. economy crises. In a second phase, there will be a period of A/B

testing in which we compare the results of the calls made by a control group,

formed by nurses that apply the same method they have always followed, and

another group, formed by nurses that factor the models predictions into their

sorting methodology.

7. Future work

There are different extensions that can be performed in this work related

to the extent of the analysis of the leaves data that the system provides and

the type of target users for the system. One obvious extension is to include a

larger number of diagnoses. This is only limited by the amount of historical data

that is available to the system. In the same way the retraining of the models

is performed as the precision changes, new diagnoses could be included as the

performance of the models reach an acceptable level, extending the capacity of

the system for prioritizing new diagnoses incrementally.

For the current system, we are only using limited information about each

leave that does not include medical information for the patients apart from

the diagnosis. We have assumed that the available attributes are an adequate

surrogate for that information when predicting the leave duration and that these

attributes are enough for the interpretation of the predictions for the nurses.

Although, adding information related to the diagnosis, like different tests and

clinical analysis or comorbidites information, would allow generating predictions

that can be used by the clinicians in order to schedule further visits or assessing

the evolution of the diagnosis according to the predictions of the survival model.

To obtain an explanation of the prediction in terms of that information can also

be helpful in order to take clinical decisions. This is an extension that we will

pursue as this information is available for the patients included in the dataset.
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8. Conclusions

In this work we have designed, trained and evaluated reliable AI models

for predicting sick leaves duration using historical data. To this end, we suc-

cessfully apply different methods for survival analysis and obtain models using

three different algorithms that score high on two different metrics. The quality

of the results makes these models apt for deployment as a tool for decision-

making. They can estimate the duration of a particular leave, rank patients by

the likelihood of recovery, and extract the importance of each feature.

These models have been encapsulated within a software tool that can be

deployed easily on site. This tool allows for the periodical retraining of models,

and provides inferences in real time. The cost of the training is limited and it

can be performed on commodity computing infrastructure. Training time could

be improved if necessary using GPUs acceleration or scaling the computational

resources in case of high demand. The cost of the inference is also cheap, so it

can be applied at a large scale for presenting daily information useful for the

decision-making process.

Our study shows that data volume is critical for model performance. Hence,

the models will work better for the more common diagnoses. In our dataset,

there are over 12,500 different diagnoses, and approximately 300 of those have

at least 1,000 cases. This 2.4% of diagnoses contains 72% of all cases. As

more data is collected daily, we can expect the performance on the less frequent

diagnoses to improve.

Another relevant insight of this work is the difficulty of finding good general

estimators. The information associated with each case is also limited, and the

explanations that can be extracted are largely related to socio-economic char-

acteristics and simple computations about the leave history of the worker. To

improve the insightfulness of the models we consider the addition of medical his-

tory data and test records. This would allow the model to consider risk factors,

like the ones caused by comorbidities.

This system is not with limitations that arise from the data that is used for
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building the models and from uncertainty sources that affect the predictions.

Specifically, the amount of leaves for diagnose has an impact on the quality of

the prediction (see Section 5.3). This can be improved as more historical data

is available, but for more rare diagnoses an acceptable amount of data could be

difficult to reach. Also, there are some calendar effects that can be observed

on short duration diagnoses (see Section 2), that introduce uncertainties on the

predictions. This makes more difficult to prioritize leaves for these diagnoses.

Finally, the criteria used for explaining the leaves is tailored to the nurses needs.

A more complete medical information for the leaves would allow to extend the

use to other interested users like for instance practising physicians.
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• Javier Béjar, ORCID: 0000-0001-5281-3888
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