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Abstract

Asset prices play a significant role in the financial survival and profitability of

ship-owning firms. In a highly volatile shipping market, prices of newbuilding

ships must be predicted to detect security shortfalls as well as opportunities

for temporal arbitration (gaining on high-low pricing). Accordingly, this

paper proposes an improved version of the intelligent model search engine

(IMSE) by asynchronous time lag selection. The parsimonious IMSE algo-

rithm comprises the essential components such as input and training data

size selection by a grid search procedure. In the initial IMSE algorithm, time-

lag (memory size) selection is designed such that a serial cluster of memory

groups is assigned synchronously for all inputs. By relaxation of lag struc-

tures selection, the proposed algorithm estimates unique lead-lag relations for

the input of the intended problem set. An extensive benchmark study with

several baseline models and the persistence forecast (Näıve I) is performed to

observe the out-of-sample accuracy of the proposed approach. The empirical
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results indicate that second-hand ship prices, scrap values, and orderbook

(no. of orders) have predictive features and are selected by the search engine

for two ship sizes. Different lag structures are estimated for each input with

asynchronous time-lag selection improvement.

Keywords:

Forecasting, shipping market, grid search algorithm, machine learning.

1. Introduction

The significant impact of the shipping market on global economies is well

acknowledged by economists Stopford (2008). The global shipping market

is exceptionally volatile for various reasons, such as trade wars, economic

recessions, severe market disequilibrium, and seasonality. As a result, such

volatility poses challenges for shipping companies to survive in a dynamic

environment. The market value of a shipping company largely depends on

its assets and its dynamic decisions to make profits. Although the transac-

tions of newbuilding ships can generate massive potential income, the volatile

and dynamic prices raise business risks Alizadeh and Nomikos (2007). The

volatile fluctuation of the newbuilding price is mainly affected by the sup-

ply and demand of seaborne trades; however, the global economic conditions

and other factors also affect the newbuilding prices. Accurate forecasts of

newbuilding prices serve as an essential reference for shipowners, investors,

and shipyards to make sensible decisions. Moreover, investigating the fac-

tors that contribute to the forecasting accuracy most is prominent, although

many factors indicate the shipping market situation. Therefore, improving

the forecasting accuracy of newbuilding ship prices via machine learning al-
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gorithms that mine the knowledge and interactions among various variables

is crucial.

The dynamics of ship prices have been studied by various studies for theo-

retical investigations Adland et al. (2006); Alizadeh and Nomikos (2007). On

the other hand, most studies do not test the predictive value and accuracy

of proposed theoretical findings. Such a theoretical perspective grounded

on rational postulations about the economic predictors of ship prices is ex-

pected to shed light on the investing decisions by a predictive feature. This

paper aims to extend and complement existing research by (1) introducing

advanced prediction models to improve the accuracy, (2) employing variable

selection techniques to identify the most significant factors affecting future

newbuilding prices, (3) defining the suitable time window of historical data

which contributes most to forecasting the future, and (4) considering parsi-

mony in the selection of time lags (a.k.a. regularization).

Time series forecasting helps investigate the relationships of variables and

temporal evolution by learning a function of past values and has been proven

to succeed in various fields. However, conventional forecasting algorithms

fail to capture the complex relationships among the high-dimensional input

and the temporal patterns. Hence, intelligent algorithms are much superior

and have demonstrated their success in capturing these complex relation-

ships Ahmed et al. (2010); Arora et al. (2021); Bulut et al. (2012b); Bulut

(2014); Cao and Tay (2003); Duru et al. (2021); Gao et al. (2020, 2021b,a);

Liu et al. (2019); Qiu et al. (2017). In the context of the newbuilding market,

ship price is characterized by a volatile trend, and there are many explana-

tory variables that may contribute to the forecasting accuracy, rendering the
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determination of a model’s structure more difficult. In the review of pre-

vious studies, the modelling of newbuilding prices is largely driven by the

expert’s judgment to determine the explanatory variables and model’s struc-

ture. However, inconsistency or lack of knowledge may impair the prediction

performance. The subjective intervention of experts is also likely to introduce

a high level of uncertainty and biases in determining inputs and establishing

model’s structure. As a result, there is an urgent need to implement an inde-

pendent, automatic forecasting model which eliminates experts’ intervention

and subjective design of models, which can, in turn, improve the forecasting

performance and enhance the understanding of newbuilding ship price.

The structure includes the memory size (time lag), the input variables, the

training set size, and the model’s hyper-parameters in a forecasting model.

The model cannot learn long-term information with small memory size, but

a large memory size may cause over-fitting problems. Similarly, redundant

input variables may introduce noise and confuse the model. In addition, an

extensive training set would allow obsolete data to be included for forecast-

ing, which worsens accuracy when the time series are evolving with time.

Therefore, establishing a forecasting model requires optimizing all of these

parameters based on accuracy. To address the above-mentioned issues, the

intelligent model search engine (IMSE) algorithm is proposed, and it can

select the input variables and determines model’s structure in a data-driven

manner Bekiroglu et al. (2018); Duru et al. (2021). However, the IMSE

algorithm only considers optimizing a dense collection of time lags, includ-

ing noisy and redundant lags that deteriorate performance. As a result,

we propose a parsimonious IMSE (PIMSE) which also considers the various
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combinations of time lags and preserves the parsimony of input according

to the performance of out-of-sample data (i.e., the validation set). The par-

simony helps the model focus on specific time lags instead of a long input

vector which may input redundant information. Besides, such parsimony of-

fers insights into the temporal characteristics of the newbuilding market by

selecting a parsimonious collection of discontinuous time lags.

1.1. Innovation and impact

This article contributes to the literature from several perspectives.

1. Implementing a grid search to identify a parsimonious structure of the

forecasting model. Such parsimony cannot only enhance the generaliza-

tion ability, but also reveals the most significant time lags.

2. The grid search algorithm helps select the explanatory variables from a

large set of them based on out-of-sample accuracy. The selection of cor-

responding variables indicates their prominent contribution to the future

of newbuilding market.

3. A comparison with many popular machine learning models demonstrates

the superiority of the proposed algorithm. The linear model with parsi-

monious input outperforms the complex forecasting model on the new-

building ship prices in terms of three metrics.

The rest of this paper is organized as follows. In section 2, a review

of the studies about ship prices and forecasting methods is presented. The

proposed model and benchmark forecasting models are introduced in section
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3. Then, the introduction of data, hyper-parameter optimization and sim-

ulation results are presented in section 4. Finally, conclusion is drawn, and

limitations are described briefly in section 5.

2. Literature Review

Prices forecasting plays a significant role in the daily routine of play-

ers, brokers, commodity traders, and any decision-makers from the global

shipping market. Anticipating the future is essential from the perspective

of the academy and industry. As a result, the researchers from forecasting

and shipping devote themselves to investigating the shipping market’s mech-

anism and propose novel models to boost forecasting accuracy. This section

reviews the related literature from two perspectives: first, the works about

investigating the newbuilding market are summarized, and the second parts

present the literature which utilizes intelligent algorithms for the predictive

analytics of the shipping market.

Many researchers have dedicated themselves to understanding the new-

building market and investigating explanatory variables that significantly

impact newbuilding prices. The shipbuilding market depends on the freight

volumes according to the conclusions drawn in Tinbergen (1931). In Hawdon

(1978), the author estimates the tanker newbuilding prices using steel price

and freight rate. The freight rates and steel prices affect the newbuilding

market positively. However, the influence caused by fleet size is negative.

The authors of Charemza and Gronicki (1981) show that freight and activity

rates affect the ship prices via analyzing the supply and demand in the new-

building and global shipping market. However, the supply and demand model
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is not practical in estimating newbuilding prices because of the longevity of a

ship’s life-cycle Beenstock (1985). Moreover, secondhand prices are found to

have a strong influence on the newbuilding prices, and they evolve similarly

along with time Beenstock and Vergottis (1993). An asset pricing model is

developed to study the interaction between secondhand ship prices and the

newbuilding ship prices Beenstock and Vergottis (1993). Oil prices and sec-

ondhand ship prices show their significant contribution to the newbuilding

demand in Jin (1993). Although much work has been done to explain the

factors which influence the newbuilding market, none is data-driven in an

end-to-end fashion. In this circumstance, our alternative approach aims to

establish the forecasting model and select the input variables according to

the forecasting accuracy using a validation set. Through this approach, se-

lected variables would highlight their distinguished contribution to predicting

newbuilding prices over those that are not selected.

The modern time series forecasting model based on intelligent algorithms

outperform the econometric methods in various studies Basu et al. (2018);

Bekiroglu et al. (2018); Gao et al. (2020, 2021a); Cao and Tay (2003); Deb

et al. (2017). The fundamental process of modern time series forecasting is

to learn a function from the historical data based on the assumption that

all valuable knowledge is included in the data. Inspired by the advanced

development of modern time series forecasting, shipping scholars utilize the

intelligent algorithm to various data from the global shipping market. Al-

though little work has been done to forecast newbuilding ship prices via

machine learning, a considerable number of studies have been conducted to

examine the various aspects of the shipping market. For example, many
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researchers have applied intelligent algorithms to forecast the freight mar-

ket Bulut et al. (2012a); Eslami et al. (2017); Goulielmos and Psifia (2009);

Santos et al. (2014); Yang et al. (2019), sales and purchase market, and

second-hand market Syriopoulos et al. (2021). The multi-layer perceptron

(MLP) and radial basis function network are developed to forecast the pe-

riod charter rates of VLCC tankers Santos et al. (2014). In Lyridis et al.

(2004), the authors find that the explanatory variables can improve MLP’s

forecasting accuracy for VLCC spot freight rates. The authors of Yang and

Mehmed (2019) show that the forward freight agreement information can

boost ANN’s performance of forecasting shipping freight rates. A combina-

tion of ANN and genetic algorithm is applied to forecast the tanker freight

rates with parsimonious variables in Eslami et al. (2017). The support vector

regression is recently implemented to forecast the newbuilding market and is

compared with ARIMA Syriopoulos et al. (2021). The authors of Bekiroglu

et al. (2018) are the pioneers who consider the influence of training sample

size, and the same idea is applied to forecast the dry bulk market in Duru

et al. (2021).

This paper argues that most of the above literature starts with certain

prior assumptions about the explanatory variables, model structure, and

memory size. The arbitrary relaxation may cause the deterioration of fore-

casting performance Bekiroglu et al. (2018); Duru et al. (2021). Although

the IMSE is proposed to find the optimal model’s structure and combina-

tions of explanatory variables, the discontinuous collection of time lags is

not investigated yet. Most forecasting literature feeds a dense collection of

time lags into the model. However, this paper argues that a discontinuous
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and parsimonious collection of lags carries more important information and

less noise than the dense collection. Taking monthly data as an example,

the data at t− 1 and t− 12 carry the most important temporal information

without the redundancy located in the other lags.

3. METHODOLOGY

This section first presents the proposed algorithm and then describes the

benchmark forecasting models briefly.

3.1. Parsimonious IMSE

The power of data offers new lives for various industries based on an-

ticipating the future accurately. Although the implementation of advanced

algorithms is easy with software development, the practitioners still need to

determine the model’s structure and inputs. The birth of the IMSE algorithm

solves such a problem tIt is not necessary to have many prior assumptions

or theoretical knowledge of the explanatory variables from a specific field.

The PIMSE is proposed to solve the complex forecasting problems from the

perspective of forecasting without any user-related judgment.o some extent.

However, its dense collection of time lags may cause an overfitting problem

and degenerate the performance. To enhance the performance further, we

propose the parsimonious IMSE (PIMSE) algorithm, which considers a parsi-

monious collection of time lags. The following innovations are born following

the PIMSE algorithm:

1. It is unnecessary to have many prior assumptions or theoretical knowl-

edge of the explanatory variables from a specific field. The PIMSE is
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proposed to solve the complex forecasting problems from the perspective

of forecasting without any user-related judgment.

2. PIMSE aims at searching for the optimal parsimonious combinations of

explanatory variables and time lags and simultaneously defining the train-

ing sample size according to the out-of-sample accuracy.

3. A shrinking window is defined to fine-tune the starting point based on

the out-of-sample accuracy. The shrinking window eliminates the ancient

data and irregularities and retains the meaningful patterns.

4. The dense collection of time lags is likely to retain noise and degrade the

accuracy. For example, the lag of t − 12 usually reflects the annual sea-

sonality of monthly data. It is widespread to input all values from t − 1

to t− 12 into the model, but the redundant time lags may deteriorate the

accuracy. Instead, the PIMSE focuses on a parsimonious and discontinu-

ous collection of time lags which helps the model focus on the significant

lag and alleviate over-fitting.

The above innovations and contributions offer a unique identifier for the

PIMSE in the literature about the tanker market and time series forecasting.

For the completeness of this paper, the steps of the PIMSE are described

below.

Given d historical explanatory variables to forecast newbuilding tanker

prices, the aim is to learn a function f

yt+1 = f(yt,ut) = βT1 yt +
d∑
i=1

β2,iut,i + β0 + εt, (1)
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where yt+1 ∈ R represents the future values which the model tries to forecast

for time t + 1, yt ∈ Rn and ut,i ∈ Rn are the vectors with a parsimonious

collection of n time lags and ε is the additive noise. Finally, the model’s

coefficients can be learned by minimizing any classical loss function, such as

mean squared error. Different from the IMSE in Bekiroglu et al. (2018); Duru

et al. (2021) where the yt and ut,i consist of the values from a dense collection

of time lags, the PIMSE considers a discontinuous collection of time lags. In

IMSE, when the memory size is fixed, all the values within the memory size

are included as input. However, some redundant values may be included

and worsen the forecasting accuracy. Taking monthly data as an example, a

memory size twelve means all the values from the last year are utilized, but

the most significant time lags maybe t−1 and t−12, which captures the most

recent information and the annual pattern, respectively, and the others may

not boost the accuracy. Therefore, the PIMSE is proposed to handle such

limitations. Unlike the IMSE, the PIMSE considers different combinations

of time lags instead of a dense collection of them. Before presenting the

pseudo-codes of PIMSE, the compact version of our model is given

Y = AX + ε, (2)

where lagmax represents the maximum time lag among the collection of time

lags, Y = [y
lagmax+1

, y
lagmax+2

, ..., y
lagmax+N

] and ε = [ε
lagmax+1

, ε
lagmax+2

, ..., ε
lagmax+N

]

for any realN . The ith row of A ∈ RN−lagmax×(dn+n+1) is [1, yTlagmax+i−1, u
T
lagmax+i−1,1, ...,

uTlagmax+i−1,d] for each i = 1, 2, 3, ..., lagmax . Finally, the coefficients vector

X ∈ Rdn+n+1 is [β0, β1, β2,1, β2,2..., β2,d].
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The PIMSE aims at solving the following problem

min φ(ε)

s.t. ε = Y −AX ,
(3)

where the loss function φ can be specified according to the residuals ε. In

Bekiroglu et al. (2018); Duru et al. (2021), the l2 is chosen and the perfor-

mance is outstanding. Therefore, we utilize the same loss function in this

paper.

To select the best model according to the validation performance, the

mean absolute scaled error (MASE) from the family of scaled errors is utilized

as in Bekiroglu et al. (2018); Duru et al. (2021). The MASE is proposed in

Hyndman and Koehler (2006) and the definition is

MASE = mean(
x̂j − xj

1
T−1

∑T
t=2 |xt − xt−1|

), (4)

where T represents the size of training set. The denominator of MASE is

the mean absolute error of the in-sample naive forecast which offers a stable

measure of the scale of the data. Next, we describe the main steps of PIMSE.

1. The first step refers to the data splitting step. The data for estimation

and validation are split from the whole dataset according to the shrinking

window size ξe and the validation set’s size ξv.

2. Given the data for estimation and validation, the model’s coefficients can

be computed by solving the problem in 3 for all possible combinations of

explanatory variables and time lags.

3. Apply each model from the previous step to forecast the validation set

(ξv) and compute MASE for them.
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4. Select the model whose MASE is the minimum as Mfinal.

5. Update the coefficients of Mfinal by including validation set ξv.

6. Apply the updated Mfinal to forecast the test set (ξt).

3.2. Benchmark forecasting models

In addition to the grid search model, a detailed comparison with bench-

mark forecasting models is conducted based on out-of-sample accuracy. These

famous models are the persistence model, ARIMA, decision tree, MLP, SVR,

Long short-term memory network (LSTM), and ridge regression.

(1) Persistence model : The persistent model is the most common benchmark

for forecasting tasks. It uses the most recent value as its forecast, which is

essentially a no-rule scheme, but a forecasting algorithm must outperform

it. The actual value observed at t − 1 is the forecast for time step t

Makridakis et al. (2008).

(2) ARIMA: ARIMA succeeds in various forecasting tasks because it is an

integration of differencing, autoregressive and moving average model.

The differencing helps stabilize the time series. An ARIMA with order

(p, d, q) is defined as

ψt = s+ a1ψt−1 + ...+ apψt−p + b1ε1 + ...+ bqεq + εt, (5)

where ψt represents the time series after d times differencing, ε is the

residual and s, a1, a2, ..., ap, b1, b2, ..., bq are the coefficients.
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Algorithm 1: Parsimonious IMSE

Input: ξe, ξv,ξt,

the target variable Y = [y1, y2, ..., yN ],

the ith explanatory variable ui = [u1,i, u2,i, ..., uN,i]

Output: modelfinal,

selected combination of time lags,

selected combination of input variables and

forecasts for ξt

Data: Target and explanatory variables

1 foreach ξe do

2 Ye = [yt−ξe , yt−ξe+1, ..., yt] ue,i = [ut−ξe,i, ut−ξe+1,i, ..., ut,i]

3 \\ Estimation Part

4 Yv = [yt, yt+1, ..., yt+ξv ] uv,i = [ut,i, ut+1,i, ..., ut+ξv ,i]

5 \\ Validation Part

6 foreach cth combination of lags do

7 foreach kth combination of variables do

8 Solve Equation 3 and collect the result, Mξe,c,k

9 end

10 Forecast the validation period (ξv)

11 Compute the MASEξe,c,k of each Mξe,c,k

12 end

13 end

14 Find the corresponding Mfinal whose MASEξe,c,k is the minimum.

15 Update the coefficients by including ξv

16 Forecast the text period (ξt) using Mfinal, selected combination of

time lags and input variables.

14



(3) Decision tree:Decision tree is a data-driven model with a tree structure.

Each node in the tree partitions the input space. As a result, a learned

decision tree divides the whole input space into many areas, and then

the regression error is optimized for each area.

(4) MLP : MLP is a stacked neural network with a feed-forward structure.

The hidden layer learns a meaningful representation of its input based

on the task. MLP’s success is due to its strong ability to extract the

features in an end-to-end fashion. Unlike the hand-crafted or unsuper-

vised features, the hidden nodes learn the features suitable for the given

tasks. Each hidden node has its non-linear activation function, which

transforms the input data into a different space. Once the information

propagates from the input layer to the output layer, the loss can be com-

puted. Then the famous backpropagation algorithm can be applied to

optimize the weights of all layers. Besides, many improved versions of

learning algorithms are proposed by existing research.

(5) SVR:The key idea of SVR is to transform the linear data into high-

dimensional space with a suitable non-linear transformation and solve

the problem in that space in a linear fashion. First, the SVR transforms

the input variables γ into high-dimensional space by non-linear function

ϕ(γ). The the SVR tries to minimize the ε−loss function

loss = C

n∑
i=1

(ξi + ξ∗i ) +
1

2
||ω||2 (6)

with the following constraints

ψi − ((ω ∗ ϕ(γi))) ≤ ε+ ξi (7)
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((ω ∗ ϕ(γi)))− ψi ≤ ε+ ξ∗i (8)

where the slack variables, ξi and ξ∗i , are positive and i = 1, 2, 3, ..., N , C

is the regularization parameter, ε denotes the region where no penalty

is counted. By introducing the Lagrange multipliers, this problem is

transformed into:

f (γ, ai, a
∗
i ) =

n∑
i=1

(ai − a∗i )K (γ, γi) + b, (9)

where the kernel function K (γ, γi) = ϕ(γ) ϕ(γi) The Lagrange multi-

pliers ai and a∗i can be calculated via minimizing the following function

1

2

n∑
i=1

n∑
j=1

(ai − a∗i )
(
aj − a∗j

)
K (γi, γj)−

n∑
i=1

φi (ai − a∗i ) + ε
N∑
i=1

(ai + a∗i )

(10)

with the constraints

N∑
i=1

(ai − a∗i ) = 0, 0 ≤ ai, a
∗
i ≤ C, i = 1, 2, . . . , N. (11)

(6) LSTM: The LSTM is the most popular variant of the family of recurrent

neural networks (RNNs). When utilizing RNN in the context of fore-

casting, the historical data are processed one by one sequentially. The

recurrent architecture offers the powerful ability to deal with sequential

data because the valuable information about the history is memorized in

the hidden state h. The functionalities of LSTM cell are summarized in

the following equations,

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (12)

16



ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bi) (13)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (14)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bi) (15)

ht = ottanh(ct), (16)

where σ represents the sigmoid non-linear transformation, and i, f , o and

c are input gate, forget gate, output gate and the cell vectors Hochreiter

and Schmidhuber (1997).

(7) Ridge regression: Ridge regression is the regularized version of the con-

ventional linear regression. By imposing a l2 norm regularization to the

weights, the generalization ability of linear regression is enhanced signif-

icantly.

loss = ||Y −XW ||2 + λ||W ||2 (17)

Wridge = (XTX + λI)−1xTY (18)

where λ is the regularization parameter.

4. Empirical Results

4.1. Data and its nature

The data investigated come from various databases, including Bloomberg

Inc., Lloyd’s List Maritime Intelligence, Tradewinds and Clarkson Shipping

Intelligence. First, we describe the ships briefly. Then, the statistics of the

data are presented.

Aframax ships refer to medium-sized crude oil tankers with a deadweight

tonnage ranging between 80,000-120,000 tons. The tankers of this size have
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a cargo-carrying capacity between 70,000-100,000 metric tons, with an aver-

age cargo-carrying capacity of approximately 750,000 barrels. Due to their

advantageous size, Aframax tankers are ideal for short to medium haul oil

trades and are primarily used in areas that do not have extensive ports to

accommodate bigger crude oil tankers or very large crude oil tankers. Ves-

sels falling within this range are also referred to as the ’workhorses’ of the

world tanker fleet, as they carry a large number of oil products from many

producing regions and can serve most of the ports in the world.

Suezmax ships are the largest marine vessels that can meet the restrictions

of Suez and transit the Suez Canal in a laden condition. Suezmax ships have

a deadweight tonnage ranging between 120,000-200,000 tons. Ships from this

size category are larger than the Aframax ships and they can carry about

800,000 to more than 1,000,000 barrels of crude oil. After the expansion of

the Suez Canal from 18m to 20.1m in the year 2009, a Suezmax ship with

up to 200,000 deadweight tonnage can pass through it.

Very Large Crude Carriers (VLCC) have a size ranging between 180,000-

320,000 deadweight tonnage, and they are capable of passing through the

Suze Canal in Egypt. As a result, VLCC vessels are largely deployed around

the North Sea, Mediterranean, and West Africa. Compared to the other

smaller crude oil tankers, VLCC is the larger vessel that provides better

economies of scale for crude shipment. Specifically, VLCC ships can carry

between 1.9 million and 2.2 million barrels of crude oil and offer good flexi-

bility for operating in ports with some depth limitations.

This paper focuses on PIMSE’s ability to forecast newbuilding ship prices

and the influence of other explanatory variables from January 1999 to De-
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cember 2017. There are 228 data points in total. PIMSE’s performance over

other baseline forecasting models is also compared. The variables investi-

gated are newbuilding prices (NP ), secondhand prices (SP ), scrap values

(SV ), orderbook (OB) expressed in number, CGT and DWT, fleet growth

(FG) of three tankers, and labor interest rates (LIR). detailed statistics of

all data are summarized in Table 1.

Table 1: Descriptive statistics of the datasets.

Kurtosis Max Mean Median Min Skewness Std

V NP -0.27 162.00 97.98 95.50 62.50 0.70 24.50

V SP 0.53 165.00 81.32 74.00 53.00 1.13 26.28

V SV -0.66 28.39 13.87 14.88 3.82 -0.08 5.82

V OBNumber -0.41 257.00 116.66 90.00 55.00 0.93 51.66

V OBCGT -0.40 11443181.30 5196075.29 3995538.41 2467449.96 0.94 2294931.15

V OBDWT -0.42 79755103.00 36083709.54 27669491.50 17337447.00 0.93 16099722.72

V FG -0.06 9.68 3.10 3.39 -6.07 -0.52 3.13

SNP -0.03 100.00 62.35 61.25 42.50 0.70 13.76

SSP 0.09 105.00 56.10 50.00 35.00 0.98 17.40

SSV -0.22 18.80 8.49 9.01 2.76 0.28 3.55

SOBNumber -0.98 174.00 88.01 78.00 34.00 0.52 36.70

SOBCGT -0.98 5311636.61 2692314.98 2391557.82 1025878.66 0.51 1117762.88

SOBDWt -0.96 27462502.00 13844923.34 12309854.00 5176953.00 0.51 5801141.73

SFG -0.79 10.35 4.51 4.86 -4.43 -0.24 3.48

ANP -0.34 82.50 51.12 51.00 33.00 0.44 11.71

ASP -0.43 79.00 42.55 39.50 24.00 0.83 14.14

ASV -0.45 12.35 5.92 6.38 1.96 0.06 2.33

AOBNumber -0.06 306.00 146.28 139.50 31.00 0.68 69.81

AOBCGT -0.06 7825420.80 3754618.85 3613652.23 819496.10 0.69 1775662.27

AOBDWT -0.09 33731052.00 16119785.38 15635385.50 3281778.00 0.66 7737138.89

LIR -0.77 0.07 0.02 0.01 0.00 0.73 0.02

For simplicity, we use V , S and A to represent three ship sizes, VLCC, Suezmax and Aframax, respectively. The abbreviation

for specific variables consist of the abbreviation of ship size and variable’s name. For example, V NP , V SP , V SV , V OB and

V FG represent VLCC tanker’s newbuilding prices, secondhand prices, scrap value, orderbook and fleet growth, respectively.

LIR represents Libor interest rates.
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4.2. Data pre-processing

A suitable and correct data pre-processing approach helps the machine

learning model generate accurate outputs. First, the first differences of all

time series are calculated to remove the linear trend. Computing the first

difference of time series is a common approach in the forecasting literature.

After obtaining all the first differences, they are normalized for the imple-

mentation of machine learning models. The max-min normalization is im-

plemented in this paper. We assume that the maximum and minimum of the

training set are xmax and xmin, respectively. The data are scaled into range

[0,1] using the following equation:

xnormalized =
x− xmin

xmax − xmin
(19)

where xnormalized and x represent the normalized and original time series,

respectively.

4.3. Hyper-parameter optimization

The datasets are split into three sets, the training, validation, and test set,

to adopt the last-block validation technique. The data of 2014 and 2015, 2016

and 2017 are validation and test set, respectively. The hyper-parameters of

all the machine learning models are optimized by cross-validation Bergmeir

and Beńıtez (2012). All variables are used as input for the baseline mod-

els, and the hyper-parameters which achieve the best performance on the

validation set are optimal. Finally, all models are re-trained using the opti-

mal hyper-parameters, including the validation set, and forecast the test set.

The neural network models are simulated using the popular python library

Pytorch. For the baseline models, the data from the previous year are fed
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into the model. For the neural networks, the hidden node varies from 2 to

12 with a step size of 2. For the MLP network, sigmoid activation is used.

The MLP is trained with a learning rate of 0.0001 and 2000 epochs. For the

decision tree model, the ratio of the samples per split and leaf varies from 0.1

to 1 with a step size of 0.1. The shrinking window size of PIMSE and IMSE

varies from 0 to 36 with a step size of 4, which equals one season. There

are eight variables in total, including one target variable and seven explana-

tory variables. The memory size of IMSE starts from one to twelve, which

represents the previous year. It is impossible and super time-consuming to

search for all the combinations of lags from t − 1 to t − 12, because the

number of combinations of explanatory variables is also large. The lag t− 1

is always included because it offers the most recent information, and IMSE

definitely includes it. We relax such search space by only searching for the

combinations whose number of lags is not more than three and from t − 1

to t− 6 and t− 12. In total, 866,140 models are estimated and evaluated on

the validation set.

4.4. Results

The comparison of these ten models has two perspectives. First, the re-

sults reflect the superiority of PIMSE’s forecasting ability on newbuilding

prices. Second, the forecasting accuracy demonstrates the influence of sev-

eral variables on the newbuilding prices. Third, the parsimonious memory,

training sample size and selection of features are presented. Three forecasting

error metrics are utilized to evaluate the accuracy of these models. The first

error metric is the classical root mean square error (RMSE) whose definition

21



is

RMSE =

√√√√ 1

L

L∑
j=1

(x̂j − xj)2, (20)

where L is the size of the test set, xj and x̂j are the raw data and predictions.

Another error metric implemented in the paper is the mean absolute scaled

error (MASE) Hyndman and Koehler (2006). The definition of MASE is

MASE = mean(
x̂j − xj

1
T−1

∑T
t=2 |xt − xt−1|

), (21)

where T represents the size of training set. The denominator of MASE is the

mean absolute error of the in-sample naive forecast. The third error metric

is the Mean Absolute Percentage Error (MAPE) whose definition is

MAPE =
1

L

L∑
j=1

| x̂j − xj
xj

|. (22)

The performance on the test sets is summarized in Table 5. According to

Table 5, we can find that the IMSE and PIMSE are the best two mod-

els. Their predictive performances on Suezmax newbuilding tanker prices

are similar, but the PIMSE outperforms IMSE on the other two kinds of

tankers. Especially, the PIMSE outperforms the other models significantly

on Aframax newbuilding tanker prices. The machine learning models do not

show their superiority necessarily. In addition, the IMSE and PIMSE out-

perform the ridge regression, which introduces l2 regularization to overcome

overfitting. Therefore, we claim that the regularization by grid search offers

more accurate results compared with the classical regularization. The esti-

mation results of PIMSE on V NB, SNB and ANB are shown in Tables 2,

3 and 4. The searching results of PIMSE and IMSE for NP forecasting are
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Table 2: Estimation results of V NB forecasting.

β SE t P

β0 -0.205 0.109 -1.875 0.062

V NBt−12 0.048 0.065 0.736 0.463

V SPt−12 -0.140 0.106 -1.324 0.187

V SVt−12 0.253 0.107 2.362 0.019

V OBt−12 -0.183 1.585 -0.116 0.908

V OB
DWTt−12 0.190 1.608 0.118 0.906

V NBt−1 0.432 0.065 6.672 0.000

V SPt−1 0.382 0.104 3.686 0.000

V SVt−1 0.116 0.103 1.121 0.264

V OBt−1 -0.344 1.684 -0.204 0.838

V OBDWTt−1 0.371 1.713 0.217 0.829

Diagnostics

AIC -372.6 Log-Likelihood 197.280

BIC -337.0 F-statistic 12.040

R-squared: 0.406
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Table 3: Estimation results of SNB forecasting.

β SE t P

β0 0.238 0.079 3.019 0.003

SNBt−3 0.170 0.076 2.224 0.027

SFGt−3 0.020 0.073 0.277 0.782

SNBt−2 -0.059 0.086 -0.682 0.496

SFGt−2 0.089 0.073 1.222 0.223

SNBt−1 0.506 0.076 6.628 0.000

SFGt−1 -0.066 0.073 -0.912 0.363

Diagnostics

AIC -301.6 Log-Likelihood: 157.780

BIC -279.3 F-statistic 12.590

R-squared: 0.305
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Table 4: Estimation results of ANB forecasting.

β SE t P

β0 0.034 0.108 0.320 0.750

ANBt−12 0.039 0.064 0.616 0.539

ASPt−12 -0.174 0.087 -1.992 0.048

ASVt−12 0.150 0.098 1.521 0.130

AOBt−12 0.053 0.055 0.967 0.335

ANBt−1 0.421 0.064 6.609 0.000

ASPt−1 0.394 0.084 4.669 0.000

ASVt−1 0.053 0.096 0.552 0.581

AOBt−1 0.070 0.054 1.301 0.195

Diagnostics

AIC -355.5 F-statistic: 15.300

BIC -326.6 Log-Likelihood: 186.760

R-squared: 0.413
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shown in Table 6. We can find that the variable selection shares some sim-

ilarities. For VLCC tankers, SP , SV ,OB, and OB
CGT

are selected by both

PIMSE and IMSE. For Aframax tankers, SV and OB are selected by both

PIMSE and IMSE. The overlapping selection of the corresponding variables

demonstrates their strong contribution in terms of forecasting. The LIR is

not chosen, which indicates its less contribution to forecasting NB. The re-

sults in Table 6 further demonstrate the superiority of PIMSE is because of

the parsimony of the input. According to Table 5, the PIMSE outperforms

IMSE dramatically on Aframax NP , because there are only two time lags for

PIMSE whereas IMSE has seven time lags as shown in Table 6. The PIMSE

selects the two most significant time lags, t − 1, which measures the short-

term pattern, and t − 12, which captures the annual seasonality. However,

the IMSE selects a dense collection of time lags from t− 1 to t− 7 because

it does not consider a parsimonious combination of time lags. According to

Table 6, the same phenomenon happens for VLCC tankers. The PIMSE and

IMSE select the same set of explanatory variables and training sample size,

but PIMSE only utilizes t− 1 and t− 12 which offer more valuable informa-

tion compared with t − 1, t − 2 and t − 3 selected by IMSE. The time lags

t−1, t−2 and t−3 only capture the short-term temporal patterns, but omits

the annual seasonality carried by t − 12. The combination of discontinuous

lags of PIMSE helps capture fruitful features with fewer lags compared with

the IMSE. The PIMSE can easily capture both the short-term and long-term

temporal information with two lags, t− 1 and t− 12. However, if parsimony

and discontinuity are not considered, it is necessary but redundant to input

all data points from t− 1 to t− 12, which deteriorates the performance.
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Table 5: Performance on test sets of three newbuilding tankers’ prices.

Ship size Metric Naive ARIMA Ridge DT SVR MLP LSTM IMSE PIMSE

VLCC RMSE 0.97895 0.76946 0.89899 1.04714 0.97891 0.83140 0.91487 0.77728 0.70711

MAPE 0.00733 0.00615 0.00794 0.00841 0.00733 0.00721 0.00739 0.00587 0.00583

MASE 0.48798 0.41203 0.52896 0.56003 0.48798 0.47947 0.49164 0.39038 0.39038

Aframax RMSE 0.68084 0.60410 0.63540 0.73161 0.68082 0.70839 0.65201 0.70156 0.54247

MAPE 0.00896 0.00921 0.01039 0.01086 0.00896 0.01042 0.00950 0.01168 0.00657

MASE 0.56202 0.57263 0.64709 0.67854 0.56203 0.65881 0.59686 0.71657 0.40746

Suezmax RMSE 0.72529 0.62670 0.62925 0.77605 0.71722 0.78938 0.77086 0.59730 0.59730

MAPE 0.00880 0.00873 0.00841 0.01013 0.00882 0.01021 0.01017 0.00830 0.00832

MASE 0.59012 0.57901 0.56290 0.67817 0.59103 0.68616 0.68012 0.55323 0.55323

Table 6: Hyper-parameter optimization and variable selection for NP forecasting.

Model Ship size Shrinking window Time lags NP SP SV OB OB
CGT

OB FG LIR

PIMSE VLCC 4 t− 1, t− 12 * * * * *

PIMSE Suezmax 12 t− 1, t− 2, t− 3 * *

PIMSE Aframax 8 t− 1, t− 12 * * * *

Model Ship size Shrinking window Memory size NP SP SV OB OB
CGT

OB FG LIR

IMSE VLCC 4 1 * * * * *

IMSE Suezmax 0 4 * * *

IMSE Aframax 8 7 * * * *
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For the simplicity of visualization, only the comparison among raw data,

IMSE and PIMSE’s forecasts are visualized in Figures 1, 2 and 3. It is

straightforward to find that both PIMSE and IMSE can accurately anticipate

the characteristics of the three newbuilding prices. All these three prices

decrease from the beginning of 2016 and remain relatively stable in the year

2017. The forecasts of PIMSE and IMSE both follow such decreasing trends

and the following stable pattern.

Figure 1: Comparison between raw data and the forecasts of VNP.

5. Conclusion

This paper proposes an improved PIMSE to forecast the newbuilding ship

prices of three tanker types, the Aframax, Suezmax, and VLCC. The PIMSE

accounts for the hyper-parameters of the learning candidate, memory length,

input variables, and training set size. The novelty of our paper is that the

algorithm’s structure is determined objectively (i.e., data-driven) according

to the performance of the validation set. In addition, we compare the PIMSE
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Figure 2: Comparison between raw data and the forecasts of SNP.

Figure 3: Comparison between raw data and the forecasts of ANP.
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with several baseline models, including machine learning models, ARIMA,

and the persistence model. The comparative results confirm the superior-

ity of the PIMSE on this forecasting task. The PIMSE outperforms ridge

regression which further highlights the importance of training set size and

feature selection. This paper also contributes to the literature by providing

insights into the interaction among various variables of the shipping mar-

ket. The success of PIMSE also indicates that a linear model with objective

optimization is sufficient to forecast new shipbuilding prices.

This study has several significant contributions to the literature about

shipping markets. First, this paper proposes the PIMSE to achieve accurate

forecasts of the newbuilding ship prices. The accurate forecasts of newbuild-

ing ship prices are crucial for the shipping companies to survive in the global

shipping market. Second, the PIMSE outperforms the ARIMA, famous ma-

chine learning models, and the persistence model based on the comparative

results. Third, the algorithm generates accurate forecasts and selects signifi-

cant dependent variables, which offers new academic and managerial insights.

The survival of the corresponding variables from competing with other vari-

ables indicates their significance to the newbuilding ship prices. Fourth, the

parsimonious collections of discontinuous time lag enhance the generalization

ability.

Although the forecasting accuracy and interpretability of the results are

high, the PIMSE cannot learn non-linear patterns from the data. However,

the exhaustive optimization of non-linear machine learning models can cause

too much burden on the computation because of the large number of hyper-

parameters. One potential solution is to utilize Bayesian optimization or
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evolutionary optimization, enabling exploration in a more extensive search

space.

References

Adland, R., Jia, H., Strandenes, S., 2006. Asset bubbles in shipping? an

analysis of recent history in the drybulk market. Maritime Economics &

Logistics 8, 223–233.

Ahmed, N.K., Atiya, A.F., Gayar, N.E., El-Shishiny, H., 2010. An empirical

comparison of machine learning models for time series forecasting. Econo-

metric Reviews 29, 594–621.

Alizadeh, A.H., Nomikos, N.K., 2007. Investment timing and trading strate-

gies in the sale and purchase market for ships. Transportation Research

Part B: Methodological 41, 126–143.

Arora, P., Khosravi, A., Panigrahi, B., Suganthan, P., 2021. Remodelling

state-space prediction with deep neural networks for probabilistic load

forecasting. IEEE Transactions on Emerging Topics in Computational

Intelligence .

Basu, S., Roy, S., DasBit, S., 2018. A post-disaster demand forecasting

system using principal component regression analysis and case-based rea-

soning over smartphone-based dtn. IEEE Transactions on Engineering

Management 66, 224–239.

Beenstock, M., 1985. A theory of ship prices. Maritime Policy and Manage-

ment 12, 215–225.

31



Beenstock, M., Vergottis, A., 1993. Econometric modelling of world shipping.

Springer Science & Business Media.

Bekiroglu, K., Duru, O., Gulay, E., Su, R., Lagoa, C., 2018. Predictive

analytics of crude oil prices by utilizing the intelligent model search engine.

Applied Energy 228, 2387–2397.
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