
Near-optimal Top-k Pattern Mining

Xin Wanga (xinwang@swpu.edu.cn), Zhuo Lana

(202022000326@stu.swpu.edu.cn), Yu-Ang Hea

(202022000311@stu.swpu.edu.cn), Yang Wanga (wangyang@swpu.edu.cn),
Zhi-Gui Liub (liuzhigui@swust.edu.cn), Wen-Bo Xiea,?

(wenboxie@swpu.edu.cn)

a School of Computer Science, Southwest Petroleum University,
Chengdu 610500, China

b School of Information Engineering, Southwest University of Science and Technology,
Mianyang 621010, China

Abstract. Nowadays, frequent pattern mining (FPM) on large graphs
receives increasing attention, since it is crucial to a variety of applica-
tions, e.g., social analysis. Informally, the FPM problem is defined as
finding all the patterns in a large graph with frequency above a user-
defined threshold. However, this problem is nontrivial due to the unaf-
fordable computational and space costs in the mining process. In light of
this, we propose a cost-effective approach to mining near-optimal top-k
patterns. Our approach applies a “level-wise” strategy to incrementally
detect frequent patterns, hence is able to terminate as soon as top-k
patterns are discovered. Moreover, we develop a technique to compute
the lower bound of support with smart traverse strategy and compact
data structures. Extensive experimental studies on real-life and synthetic
graphs show that our approach performs well, i.e., it outperforms tradi-
tional counterparts in efficiency, memory footprint, recall and scalability.

Keywords: Frequent Pattern Mining, Graph Mining, Social analysis

1 Introduction

Frequent pattern mining is one of the most important problems in knowledge
discovery and graph mining, of which the main task is to find subgraphs with
support above a threshold, from a dataset. There are two main types of settings
considered to detect frequent patterns in previous researches, i.e., transactional-
based and single-graph-based. Recently, the single-graph-based setting has given
rise to a high degree of academic attention, owing to its wide applications in e.g.,
bioinformatics (Xue, Klabjan, & Luo, 2019), cheminformatics (Sabe et al., 2021),
web analysis and social network analysis (Daud, Ab Hamid, Saadoon, Sahran, &
Anuar, 2020). Methods that rely on the single-graph-based setting mostly follow
the combinatorial pattern enumeration paradigm. However, it is costly and un-
necessary to enumerate all the patterns in real-world applications such as social
network analysis (Huan, Wang, Prins, & Yang, 2004; X.-F. Yan & Han, 2003).

? Corresponding author at: School of Computer Science, Southwest Petroleum Uni-
versity, Chengdu 610500, China. E-mail: wenboxie@swpu.edu.cn (Wen-Bo Xie)

ar
X

iv
:2

20
2.

07
84

5v
1

 [
cs

.D
B

]
 1

6
Fe

b
20

22

The minimum-image-based support (MnIS for short) (Bringmann & Nijssen,
2008) is widely used in traditional FPM algorithms due to its simplicity of cal-
culation. Generally, the traditional algorithms maintain all the matches of a
pattern to calculate its MnIS support. This brings big challenges to the mining
evaluation on large graphs, as there may exist (potentially) exponentially many
matches of a pattern in a large graph, which leads to an unsatiable memory cost
and low scalability.

In addition to the scalability, the practicability is also considerable. In most
real-world applications, it is unnecessary to enumerate all the patterns. On one
hand, people prefer to focus on some typical patterns rather than scan the daz-
zling low-value ones (Zhu et al., 2011). On the other hand, given a frequent
pattern, all of its sub-patterns must be frequent as well, thus these sub-patterns
are to some extent considered as “redundant” patterns.

DBA ST

PRG

v4, PM v5, PM v6, PM

v0, BA v1, BA v2, BA

v8, DBA

v9, DBA

v13, ST

v11, ST v12, PRG

v10, PRG

v15, BA v18, BA

...

Q2

Q3

v7, PM

v3, BA

v14, PRG

...

...

v12

v8 v11

STDBA

PRGPM

PM

PRG

DBABA

ST

v4

v12v11

v8v0

v19, DBA v21, DBA

...

v25, PRG v28, PRG

...

v22, ST v24, ST

...

v10

v9 v13

v28

v21 v24

...
v12

v8 v11

v4 v10

v9 v13

v6 v28

v21 v24

v5

v10

v6

v13

v9v2

v5

v28v24

v21v1

Q1 G1-1 G1-2 G1-38

G2-1 G2-2 G2-75

G3-1 G3-2 G3-372

(a) Social Network G (b) Frequent Patterns and their Matches

Fig. 1. A snapshot of a social graph G & three patterns along with their matches

Example 1. A fraction of a social graph G is shown in Fig. 1 (a), where each node
denotes a person with ID and job title (e.g., project manager (PM), database
administrator (DBA), programmer (PRG), business analyst (BA) and software
tester (ST)); and each edge indicates friendship, e.g., (v0, v4) indicates that v0
and v4 are friends. From graph G, one can discover a few typical patterns, e.g.,
Q1, Q2 and Q3 as well as their matches (Fig. 1 (b)). Note that Q1 and Q2 are
both the subgraphs of Q3, if they are considered frequent and returned, then we
will have to face a large set of frequent patterns, which not only includes “redun-
dancy” but also is costly for inspection. Instead, we only need top-k patterns.
Then the cost for inspection and mining can be greatly reduced. For example,
when k = 1, Q3 is considered more interesting than Q1 and Q2 from the per-
spective of closeness (X.-F. Yan & Han, 2003) and hence is more preferred. 2

The example suggests us to investigate top-k pattern mining problem. While
two crucial questions have to be answered:

(1) What metrics for measuring support and interestingness of a pattern shall
we choose?

(2) How to develop an efficient algorithm such that (i) mining computation
can terminate as soon as k patterns are identified and (ii) support evaluation
can be processed less costly in both evaluation time and memory footprint?

2

Contributions. This paper investigates the top-k pattern mining problem, and
provides an effective approach to mining near-optimal top-k patterns. Our con-
tributions are as follows.

(1) We adopt minimum-image-based support and propose a metric for mea-
suring “interestingness” of a pattern. Based on the metrics, we formalize the
top-k pattern mining (TopkPM) problem and show the intractability of the
problem (Section 3).

(2) We investigate the TopkPM problem and develop an approach to identi-
fying near-optimal top-k patterns. The algorithm has following desirable perfor-
mances: (a) it preserves early termination property, hence can terminate as soon
as k preferred patterns are discovered; and (b) the pattern set shows high recall
value, compared with the optimal solution via intensive tests (Section 4.1).

(3) To facilitate support evaluation, we devise a novel technique for fast
estimation. Our technique, which captures the essential feature of MnIS-based
metric, well plugs into our main algorithm that works in a “level-wise” manner,
hence is able to estimate the MnIS support efficiently and accurately, while
consuming much less memory space (Section 4.2).

(4) Using real-life and synthetic graphs, we experimentally verify the perfor-
mances of our algorithm and find the following (Section 5). (a) Our algorithm
shows excellent performance w.r.t. response time and memory cost on various
real-life graphs. In particular, the required response time of our algorithm is
about one order of magnitude faster than its counterparts. (b) Our algorithm,
though incorporates approximation scheme, is able to obtain desired recalls, i.e.,
the set of top-k patterns identified is near-optimal. For example, on two real-life
graphs, our algorithm even achieves 100% recall. (c) Our algorithm scales much
better than its counterparts, w.r.t. response time and memory footprint.

2 Related Work

The FPM problem on single large graphs has been well studied and a host of
techniques have been proposed. We next review them as follows.

Exact mining. A large part of prior works focus on mining exact results. On
static graphs, (Elseidy, Abdelhamid, Skiadopoulos, & Kalnis, 2014) formulated
the FPM as a constrained satisfaction problem, and proposed an efficient algo-
rithm called GraMI. (D. Yan, Qu, Guo, & Wang, 2020) divided the workload by
prefix projection to achieve efficient frequent pattern mining on multicore ma-
chines. A framework (Ur Rehman, Liu, Ali, Nawaz, & Fong, 2021) was proposed
to effectively reduce the duplicate and enormous frequent patterns through the
initiation of a new ranking measurement called FSP-Rank. On weighted graphs,
(Ashraf et al., 2019; N. Le, Vo, Nguyen, Fujita, & Le, 2020) proposed approaches
to detecting frequent patterns with weights. Over evolving graphs, (Abdelhamid
et al., 2017) introduced another dynamic algorithm IncGM+, which divides an
input graph into frequent and infrequent updated subgraphs and prunes the
update area by adjusting the boundary subgraphs named “fringe”. This ap-
proach keeps small memory overhead. To tackle the distributive FPM problem

3

and leverage parallel computation, DISTGRAPH (Talukder & Zaki, 2016) uses
a set of optimizations and efficient collective communication operations to min-
imize the total amount of messages shipped among different sites. ScaleMine
(Abdelhamid, Abdelaziz, Kalnis, Khayyat, & Jamour, 2016) leverages the ap-
proximate and exact phases to achieve better load balance and more efficient
evaluation when mining candidate patterns. (T. Wang, Huang, Lu, Peng, & Du,
2018) adopts a message-passing-free scheme among workers and utilizes a task
scheduler to dynamically balance the workload for frequent subgraph mining on
distributed systems. For the methods with depth-first order, gSpan (X. Yan &
Han, 2002) designs a DFS lexicographic order to support the mining algorithm.
FFSM (Huan, Wang, & Prins, 2003) develops a new graph canonical form and
completely avoids subgraph isomorphism testing by maintaining an embedding
set for each frequent subgraph. Gaston (Nijssen & Kok, 2004) adopts a step-wise
approach that uses combinations of frequent paths, frequent free trees, and cyclic
graphs to discover frequent subgraphs.

Approximate mining. To support practical applications, a host of techniques
were developed for approximate pattern mining, under various settings. In (Elseidy
et al., 2014), an approximate solution called AGRAMI was also proposed to pro-
duce an incomplete set of frequent patterns with no false positives. On graphs
with noise, exact matching is no longer feasible, (Driss, Boulila, Leborgne, &
Gançarski, 2021) introduced an approach, which allows inexact matching, to
mining frequent patterns. Sampling-based algorithms have been proposed for the
issue. (Nasir, Aslay, Morales, & Riondato, 2021) presented TipTap, a collection
of sampling-based approximation algorithms for mining frequent k-vertex pat-
terns in fully-dynamic graphs. (Preti, De Francisci Morales, & Riondato, 2021)
proposed another sampling-based randomized algorithm called MaNIACS, of
which the accuracy can be guaranteed by empirical Vapnik-Chervonenkis (VC)
dimension. (Zheng & Wang, 2021) introduced a graph sampling algorithm RASI
to reduce the unessential structure of a data graph. RASI demonstrates higher
efficiency and greater accuracy than its counterparts for FPM. REAFUM (Li &
Wang, 2015) focuses on finding non-redundant representative frequent patterns
that summarize the frequent patterns using approximate matching in a graph
database. APGM (Jia, Zhang, & Huan, 2011) models the noise distribution
through a probability matrix, and then uses an approximate matching strategy
to mine useful patterns from the noise map database. VEAM (Acosta-Mendoza,
Gago-Alonso, & Medina-Pagola, 2012) mines frequent subgraphs under the se-
mantic of inexact matching. The approach identifies frequent patterns from a
collection of images with slight angular differences between the positions of im-
age segments. On uncertain graphs, (Chen, Zhao, Lin, Wang, & Guo, 2019)
developed an approximation algorithm with accuracy guarantee for the FPM
problem under probabilistic semantic.

Top-k mining. The topic of identifying k best patterns arose much attention
in recent years. (Semertzidis & Pitoura, 2019) proposed an algorithm for mining
top-k durable matches in dynamic graphs, which uses a compact representation
of the graph snapshots and appropriate time indexes to prune the search space.

4

(X. Wang et al., 2021) proposed a metric to measure the quality of a pattern
and developed a parallel algorithm with early termination property to efficiently
discover k best patterns in a distributed large graph. FastPat framework (Zeng,
U, Yan, Han, & Tang, 2021) utilizes the meta index and an upper bound of the
frequency score to prune unqualified candidates. In particular, FastPat efficiently
calculates the support of candidates through a join-based approach. (Prateek,
Khan, Goyal, & Ranu, 2020) uses a holistic best-first exploration strategy along
with a compressed data structure called Replica to identify pairs of subgraph
patterns that frequently co-occur in proximity within a single graph. Resling
(Natarajan & Ranu, 2018) is a framework to mine the top-k representative pat-
terns. It evaluates patterns from the edit map and performs diversified ranking
through two random-walk-based algorithms. (Aslay, Nasir, De Francisci Morales,
& Gionis, 2018) addressed the problem of approximate k-vertex frequent pattern
mining on a dynamic graph with high probability in a given time. To mine the
top-k uncertain frequent patterns from uncertain databases, (T. Le, Vo, Huynh,
Nguyen, & Baik, 2020) introduced an approach that combines the mining and
ranking phases as a whole to improve efficiency and reduce the memory cost.

Our work differs from earlier works in two main aspects: (1) a “level-
wise” strategy is employed in the mining process to ensure the early termination
property; (2) a novel support evaluation technique, that leverages wise traversal
strategy and compact data structures is incorporated in the mining process. As
a result, our method is committed to delivering near-optimal results (the recall
is up to 100%) with low computational and memory costs.

3 Graphs, Patterns and Top-k Pattern Mining

In this section, we first review graphs, patterns, graph pattern matching; we
then formalize the top-k pattern mining problem.

3.1 Graph Pattern Matching

Definition 1. Graph & Subgraph. A data graph (or simple graph) is defined
as G = (V,E,L), where (1) V is a set of nodes; (2) E ⊆ V × V is a set
of undirected edges; and (3) each node v ∈ V carries a tuple L(v) = (A1 =
a1, A2 = a2, · · · , An = an), in which Ai = ai(i ∈ [1, n]) represents that the node
v has a value ai for the attribute Ai, and is denoted as v.Ai = ai.

A graph Gs = (Vs, Es, Ls) is a subgraph of G = (V,E, L), denoted by Gs ⊆
G, if Vs ⊆ V , Es ⊆ E, and moreover, for each v ∈ Vs, Ls(v) = L(v). 2

Definition 2. Pattern & Sub-pattern. A pattern Q is defined as a graph
(Vp, Ep, fv), where Vp and Ep are the set of nodes and edges, respectively; for
each u in Vp, it is associated with a predicate fv(u) defined as a conjunction
of atomic formulas of the form of ‘A = a’ such that A denotes an attribute of
the node u and a is a value of A. Intuitively, fv(u) specifies search conditions
imposed by u, that is, for a node v in G, if for each atomic formula ‘A = a’ in

5

fv(u), there is an attribute A in L(v) with v.A = a, then the node v satisfies
fv(u) (denoted as v ∼ u).

A pattern Q′ = (V ′p , E
′
p, f
′
v) is subsumed by another pattern Q = (Vp, Ep, fv),

denoted by Q′ v Q, if (V ′p , E
′
p) is a subgraph of (Vp, Ep), and function f ′v is a

restriction of fv. Then, Q′ is referred to as a sub-pattern of Q if Q′ v Q. 2

Definition 3. Pattern Matching. We adopt the subgraph isomorphism (Cordella,
Foggia, Sansone, & Vento, 2004) as the matching semantic. A subgraph Gs of
G matches a pattern Q via isomorphism, iff there exists a bijective function ρ:
Vs ⇒ Vp, such that (i) for each v ∈ Vs, v ∼ ρ(v) and (ii) (vi, vj) ∈ Es iff
(ρ(vi), ρ(vj)) ∈ Ep.

In a graph G, if there exists a subgraph Gs that is mapped from Q via ρ,
then Gs is referred to as a match of Q in G, and the match set M(Q,G) includes
all the matches Gs of Q in G. Abusing the notation of match, we denote v in Gs

as a match of u in Q, if ρ(u) = v. Then for each node u in Ep, one can derive a
set {v|v ∈ Gs, Gs ∈ M(Q,G), v ∼ u} from M(Q,G), and denote it by Img(u).
One may verify that Img(u) consists of a set of distinct nodes v in G as matches
of u in Q.

Definition 4. Forward & Backward Expansions. Given a pattern Q, its
DFS tree TQ can be built via a depth-first search on Q from one of its node u.
Then, edges in TQ are referred to as forward edges and the remaining edges in
Q are denoted as backward edges. Thus, the Forward expansion enlarges Q by
including a new edge from an existing node in Q to a newly introduced node; while
the Backward Expansion includes a new edge from two existing nodes of Q. 2

For example, a pattern Qc with edge set {(ST,DBA), (DBA,PRG)} can be
generated via forward expansion from a pattern with edge (ST,DBA); with Qc,
another pattern Q1 (shown in Fig. 1(b)) is generated via backward expansion.

Other Notations. (1) The total size |G| of G (resp. |Q| of Q) is |V |+ |E| (resp.
|Vp| + |Ep|), i.e., the total number of nodes and edges in G (resp. Q). (2) For

a pattern Q, its complete pattern Q̂ is such a pattern that takes the same set
of nodes as Q, and moreover, has an edge for each pair of nodes in Q̂. (3) The
height of a node v in a rooted and directed tree T is the length of the longest
path from v to a leaf node of T . Similarly, the height h of T is the maximum
height among all nodes in T .

A summary of notations are listed in Table 1.

3.2 Top-k Pattern Mining Problem

Below, we first review the frequent pattern mining problem, and then formalize
the top-k pattern mining (TopkPM) problem. We start from the support metric.

Definition 5. Support. The support of a pattern Q in a single graph G, de-
noted by Sup(Q,G), indicates the appearance frequency of Q in G. 2

6

Table 1. A summary of notations

Symbols Notations

G = (V,E, L) a data graph

Q = (Vp, Ep, fv) a pattern

Gs ⊆ G Gs is a subgraph of G

Q′ v Q Q′ is a sub-pattern of Q

M(Q,G) the set of matches of Q in G

Img(u) the set of matches of node u of Q in G, derived from M(Q,G)

|V |+ |E| |G|, the size of G

|Vp|+ |Ep| |Q|, the size of Q

T a rooted and directed tree for maintaining frequent patterns

h the height of tree T
Sup(Q,G) (resp. θ) the support of a pattern Q in G (resp. threshold of support)

Itrs(Q) the interestingness of a pattern Q

Q̂ the complete pattern of Q

D(Q) (resp. Di(Q)) the domain of a pattern Q (resp. a pattern node ui in Q)

ex = (ui, uj) an edge for pattern extension

Analogous to the association rules for itemsets, the support metric for pat-
terns should be anti-monotonic, i.e., for patterns Q and Q′, if Q′ v Q, then
Sup(Q′, G) ≥ Sup(Q,G) for any G, to facilitate search space pruning. Vari-
ous pattern-based anti-monotonic support metrics exist, e.g., Minimum-Image-
based Support (MnIS) (Bringmann & Nijssen, 2008), harmful overlap (Fiedler
& Borgelt, 2007) and maximum independent sets (Gudes, Shimony, & Vanetik,
2006). In this paper, MnIS is chosen as the support metric owing to the merit
of fast evaluation.

Formally, the metric is defined as,

Sup(Q,G) = min {|Img(u)| | u ∈ Vp} , (1)

where Img(u) is the image of a pattern node u in G.

Example 2. Recall graph G, pattern Q1 and its matches in Fig. 1. It is easy
to see that Img(DBA)={v8, v9, v19, v20, v21}, Img(ST)={v11, v13, v22, v23, v24},
Img(PRG)={v10, v12, v25, v26, v27, v28}, which leads to Sup(Q1, G) = 5. 2

Definition 6. Frequent Pattern Mining. Given a graph G and an integer
θ as the support threshold, it is to discover a set S of frequent patterns Q in G
such that Sup(Q,G) ≥ θ for any Q in S. 2

In practice, the task of FPM faces three challenges: (1) the underlying graphs
G are typically very large, and in the meanwhile, the FPM problem is intractable,
it is hence very costly to identify all the frequent patterns on such large graphs;
(2) there may return excessive patterns which bring trouble to users’ inspection

7

and application, moreover people are more interested in those patterns which
are top ranked (X.-F. Yan & Han, 2003); and (3) it is not easy to set a viable
support threshold θ, because a large (resp. small) θ will lead to too few (resp.
many) patterns (X.-F. Yan & Han, 2003). In light of these, it is necessary to
investigate the top-k pattern mining problem. While, to do this, it is crucial to
develop a metric for measuring the interestingness of a pattern.

Existing metrics for measuring patterns’ interestingness can be divided into
two types: subjective metrics and objective metrics. A formalization of subjective
metric was first introduced by (van Leeuwen, Bie, Spyropoulou, & Mesnage,
2016), followed by several similar counterparts. All these metrics, however, are
based on information theory and are computationally expensive. In contrast,
objective metrics (X.-F. Yan & Han, 2003; Huan et al., 2004; Chi, Xia, Yang, &
Muntz, 2005) consider the structural containment relationship among patterns,
on the basis of the “closeness” property, resulting in better efficiency. Inspired by
the objective metrics, in this paper, we evaluate the interestingness of a pattern
Q = (Vp, Ep, fv) as,

Itrs(Q) = |Q| = |Vp|+ |Ep|. (2)

Example 3. Recall patterns Q1, Q2 and Q3 in Fig. 1 (b). One may verify that
Itrs(Q1) = 6, Itrs(Q2) = 8 and Itrs(Q3) = 10. Among three patterns, Q3

is considered more interesting, as it subsumes others; in addition, it is frequent
entails that the others are frequent as well. 2

Indeed, the metric is a simplified closeness-based metric, as it simplifies eval-
uation of pattern containment with pattern size. Moreover, it is cheaper to eval-
uate and can be adapted based on practical requirements, e.g., by integrating to
developing a top-k pattern mining algorithm with early termination property.

Problem formulation. The TopkPM problem is formalized as follows.

– Input: A single large graph G, support threshold θ and integer k.
– Output: A set Sk of patterns Q discovered from G such that |Sk| ≤ k,
Sup(Q,G) ≥ θ for any Q in Sk and arg maxSk⊆S

∑
Q∈Sk Itrs(Q).

Intuitively, the problem is to find a set of k (specified by users) patterns that not
only satisfy support constraint but also take the largest sum of interestingness
values. However, the problem is nontrivial.

Proposition 1: The decision problem of TopkPM is NP-hard. 2

To see Prop. 1, observe that the subgraph isomorphism (ISO) problem is
embedded in TopkPM problem, thus TopkPM problem must be at least as
hard as ISO problem. Since ISO is an NP-complete problem (Cordella et al.,
2004), thus TopkPM problem must be NP-hard.

To tackle the issue, one may develop an algorithm (Naive) that applies a
“find-all-select” strategy to identify top-k patterns. In a nutshell, Naive discov-
ers a complete set S of frequent patterns by using any existing frequent pattern

8

mining algorithm, ranks frequent patterns according to their interestingness val-
ues and picks k best ones. Though straightforward, Naive has to mine all the
frequent patterns, hence is prohibitively expensive and even not doable on large
graphs. To rectify this, one can incorporate both early termination strategy and
approximation scheme. We next illustrate more in Section 4.

4 Mining Near-Optimal Top-k Patterns

In this section, we first outline an algorithm that preserves early termination
property, for identifying near-optimal top-k patterns. We then present a novel
method for estimating MnIS.

4.1 Mining with Early Termination

By Prop. 1, we know that identifying the optimal top-k patterns requires ex-
tremely high computational costs, which is infeasible in practice. Hence, an al-
gorithm that is able to efficiently discover near-optimal top-k patterns is more
desired. Motivated by this, we develop such an algorithm, denoted as AprTopK.

In contrast to traditional methods, AprTopK works in an incremental man-
ner to identify top-k patterns, during the period, compact data structures are
used for estimating pattern supports. These together significantly lower both
computational and space costs while retaining near-optimal recall.

Framework. As shown in the Pseudo-Code in Algorithm 1, AprTopK takes
a single (possibly large) graph G, a support threshold θ, an integer k and a
parameter m as input and returns a set Sk of qualified patterns that are close to
the optimal solution as output. Here, parameter m is used to limit the operation
times of procedure NodeChoose (see Eq. 3), thereby improving efficiency. Dur-
ing mining, AprTopK performs three main tasks, i.e., Initialization (lines 1-2),
Tree patterns identification (lines 3-9), and Top-k patterns mining (line 10). All
the frequent patterns are organized in a directed tree T , which is dynamically
maintained. In particular, the growth of T follows a bottom-up manner, starting
from “seed” patterns (see below for explanations). To simplify discussion, we use
“parent” (resp. “child”) to denote relationship of two patterns which correspond
to parent-child nodes in T .

Initialization. Four parameters are initialized, i.e., a boolean variable flag to
control while loop, an empty set Sk for keeping track of top-k patterns, an
empty set L for maintaining candidate patterns and an empty tree T to record
frequent patterns (line 1). Later on, frequent single-edge patterns (a.k.a. “seed
patterns”) are identified. They are included in a set fEdges and used to update
T (line 2). Note that, after initialization, tree T is consisted of isolated nodes
that correspond to “seed patterns” in fEdges.

Tree patterns identification. In this stage, AprTopK iteratively identifies fre-
quent “tree” patterns, following a level-wise strategy (lines 3-9). In each round

9

Algorithm 1 AprTopK

Input: Graph G, support threshold θ, integers k and m.
Output: A set of no more than k patterns.
1: initialize flag := false; Sk := ∅; L := ∅; T as an empty tree;
2: initialize fEdges; update T ;
3: while flag 6= true do
4: L := FwTreeGen(fEdges, T);
5: for each pattern Qc in L do
6: if FrqChk(G,Qc, D(Qp), θ,m) > θ then
7: update T with Qc;

8: if T was not updated then
9: flag := true;

10: Sk := ETSearch(T , θ, k,m);
11: return Sk;

12: function ETSearch(T , θ, k, m)
13: initialize Terminate := false; Sk := ∅; L := ∅; h as the height of T ;
14: while Terminate 6= true do
15: for each v at level h of T do
16: L := BwTreeGen(Q[v], fEdges);
17: for each pattern Qc in L do
18: if FrqChk(G,Qc, D(Qp), θ,m) ≥ θ then
19: Sk := Sk

⋃
{Qc};

20: if termination condition is satisfied then
21: Terminate := true;
22: update Sk;
23: break;

24: update h;

25: return Sk;

iteration, AprTopK performs as follows. (1) It generates a set L of “tree” pat-
terns as candidates with procedure FwTreeGen (line 4). Note that FwTree-
Gen (not shown) produces candidate patterns by expanding “tree” patterns that
locate at the top level of T with “seed patterns”, following forward expansion
(See Def. 4). (2) For each candidate pattern Qc, AprTopK employs a proce-
dure FrqChk to calculate its support and updates T with Qc if it is frequent
(lines 6-7). The details of FrqChk for support estimation will be given shortly.
(3) After above process, if T remains unchanged, the flag flag is then updated
as true, indicating that no new pattern was generated and the while loop no
longer needs to continue (lines 8-9). By now, T grows into a tree with nodes
corresponding to frequent tree patterns, and will be used for further processing.

Example 4. On graph G of Fig. 1 (a), AprTopK first identifies frequent edges
as seed patterns Q1-Q6 (shown in Fig. 2), as their supports are no less than 3.
Then, AprTopK applies FwTreeGen to generate candidate patterns follow-
ing forward expansion, in a level-by-level manner. For example, using pattern

10

Q5: DBA-PRGQ2: PM-BA

Q6: PRG-STQ3: PM-DBA

Seed Patterns

Q4: DBA-STQ1: PM-PRG

Q6Q1

PM

BA

PRG

Q11

PM

B

PRG

DB

Q111

PM

BA

PR

S

Q112

PM

B

PRG DB

Q113

PM

DBA

BA

Q2

Q21

PRG

ST

DBA

Q5

Q51

PM

DBA

BA

PRG

Q211

PM

DBA

BA

ST

Q212

PRG

PM

DBA

ST

Q3

PRG

PM

DBA

Q31

ST

PM

DBA

Q32

PRG

PM

DBA

ST

Q311 Q312

Q2111

PRGST

DBABA

PM

Q2112

PRGST

DBABA

PM

PM

DBA

PR

Q12

PM

ST

PR

Q13

PM

DBA

PR

Q14

Q4

ST

DBA

PRG

Q41

PRG

ST

DBA

Q42

Q321

S

PM

DB

PRG

Q21112

PRS

DBABA

PM

Q21111

PRGST

DBABA

PM

FWTREEGEN

BWTREEGEN

Infrequent

Q21113

PRST

DBBA

PM

Fig. 2. Growth of T , via forward and backward expansions. Infrequent patterns are
marked in grey.

Q1, AprTopK generates candidate patterns by enlarging Q1 with other fre-
quent “seed” patterns and produces L = {Q11, Q12, Q13, Q14}. As patterns in L
are generated via forward expansion, their forward edges in Fig. 2 are marked in
red. Four levels of “nontrivial” candidate patterns (patterns without duplicate
node labels) are listed in Fig. 2. 2

Top-k patterns mining. Based on frequent tree patterns, the procedure ET-
Search is employed to discover top-k patterns. Specifically, ETSearch first
initializes necessary parameters: a Boolean variable Terminate as a flag for loop
control, an empty set Sk to store k chosen patterns and an integer h as the
height of T (line 13). ETSearch then iteratively generates non-tree patterns
and identifies top-k ones, where the pattern generation process starts from tree-
patterns located at the top level of T , and follows a top-down manner (lines
14-24). In each round iteration, ETSearch selects a node v (corresponding to a
“tree” pattern Q[v]) at level h of T , and generates a set L of candidate patterns
with BwTreeGen (line 16). Note that BwTreeGen (not shown) works along
the same line as FwTreeGen, but only enlarges a pattern Q[v] with “seed pat-
terns” via backward expansion (See Def. 4). For each candidate pattern Qc in L,
ETSearch verifies its support still with FrqChk and enlarges Sk with Qc if it
is a qualified pattern (line 19). ETSearch next verifies whether the termination
condition, specified by Proposition 2, is satisfied (line 20).

Proposition 2: Given parameters θ, k and a tree T , whose nodes correspond
to the set St of frequent “tree” patterns, a k-element set Sk is the top-k pattern
set, if (1) Sup(Q,G) ≥ θ for each Q in Sk, and (2) min{Itrs(Q)|Q ∈ Sk} ≥
max{Itrs(Q̂t)|Qt ∈ St). 2

Here, St is a subset of St and includes those tree patterns that have not been
used for pattern expansion, and Q̂t is a complete pattern of a tree pattern Qt in

11

St. Observe that Itrs(Q̂t) must be larger than interestingness value of any other
pattern that is expanded from Qt, as a result, when the minimum interestingness
value of a pattern Q in Sk is already no less than the maximum interestingness
value of the complete pattern of a tree pattern Qt in St, then

∑
Q∈Sk Itrs(Q) is

already maximized and no further exploration is needed.
Indeed, Prop. 2 enables algorithm AprTopK to terminate earlier. As top-k

patterns mining are performed in a top-down manner, the set St (initially the
same as St) is hence dynamically updated with a seen Qt.

If the termination condition is satisfied, ETSearch sets Terminate as true,
eliminates redundant patterns in Sk if |Sk| > k, breaks the while loop (lines 21-
23) and returns Sk as final result (line 25). Otherwise, ETSearch decreases h by
1 (line 24), indicating that a new round selection will start from level h-1 of T .

Example 5. Recall Example 4. To mine the top-1 pattern on graph G of Fig. 1
(a), a pattern Q21111 is generated via backward expansion (marked in blue line
for backward edges) from its parent Q2111 at level 4. ETSearch then evaluates
its support and enlarges Sk with it. The above process terminates until candi-
dates generated from patterns at level 4 of T (Fig. 2) are all processed, as the
remaining candidates can not have higher Itrs values. 2

4.2 Supports Evaluation

During mining, supports evaluation brings two challenges: (a) high computa-
tional cost, since it involves expensive isomorphism checking, which may even
be performed exponentially many times; and (b) high space cost for recording all
the matches and then calculating MnIS for each pattern. On large graphs, such
high costs are often not affordable. This calls for effective methods to estimate
pattern supports efficiently and accurately.

To this end, we introduce a novel method FrqChk, which incorporates an
approximation scheme for support estimation. The Pseudo-Code of FrqChk is
shown in Algorithm 2. We next introduce its details, starting from the auxiliary
structures it uses.

Auxiliary Structures. To facilitate the calculation of MnI-based support, an aux-
iliary structure, called Domain, is used to keep track of matches of a pattern.

Definition 7. Domain. Given a graph G and a pattern Q with node set Vp,
the Domain of Q, denoted by D(Q), reorganizes all the matches M(Q,G) of Q
in G with a table, whose column head and body correspond to a pattern node ui
(ui ∈ Vp) and its image Img(ui), respectively. 2

Abusing the notation of domain, we use Di(Q) to indicate the i-th domain
of D(Q), which essentially corresponds to Img(ui).

Example 6. As shown in Fig. 3, the match set M(Q1, G) = {(v0, v4, v6), (v0, v4,
v7), (v0, v4, v8), (v1, v4, v6), (v1, v4, v7), (v1, v4, v8), (v2, v4, v6), (v2, v4, v7), (v2, v4,
v8), (v1, v5, v7), (v1, v5, v8), (v1, v5, v9), (v2, v5, v7), (v2, v5, v8), (v2, v5, v9), (v3, v5,

12

u0

Domain D(Q1)

v4 v5

v6 v7 v8 v9

v0 v1 v2 v3

v10 v11

(a) Graph G (b) Patterns and the corresponding Domains

Pattern Q2

Pattern Q1

Domain D(Q2)

v4

v5

v0

v1

v2

v3

v6

v8

v9

Fig. 3. A sample graph, typical patterns and their domains

v7), (v3, v5, v8), (v3, v5, v9)} includes in total 18 distinct matches of Q in G; while
the domain D(Q1) of Q1 in G, shown in Fig. 3(b) is a more compact data
structure, compared with M(Q1, G). 2

Obviously, the domain of a pattern Q in a graph G is of linear size of |G|
and |Q|, which is much smaller than M(Q,G) (potentially in exponential size of
|G|). Apart from compact structure, domains can be used for support estimation
efficiently and accurately.

Support Estimation. The support estimation is fulfilled by the procedure
FrqChk, which leverages a recursive function Traverse to update domains of
candidate patterns. The Pseudo-Code of FrqChk is shown in Algorithm 2. As
can be seen, the input of FrqChk includes a graph G, a candidate pattern Qc,
whose support needs to be verified, a pattern Qp with node set Vpp

along with
its domain D(Qp), a support threshold θ and an integer m. Here Qc is deemed
as the “child” of Qp, as the corresponding node of Qc on T is a child of that of
Qp. Indeed, Qc is extended with an edge ex = (ui, uj) from Qp. If the expan-
sion is a backward expansion, then uj is already in Qc, otherwise, uj is a newly
introduced node. As will be seen, the parameter m is involved for controlling
candidate selection.

First of all, FrqChk initializes an empty domain for Qc, an empty stack Sd

for loop and an integer counter as |D0(Qp)| for fast verification (line 1). As Qc

is extended from its parent Qp with the edge ex = (ui, uj), FrqChk utilizes this
property to conduct a preliminary pruning by referencing ex, D(Qp) and G (line
2). Specifically, FrqChk checks each node vk in Di(Qp) and see whether there
exists an edge (vk, v

′
k) in G, where vk is a match of ui of Qp and v′k ∼ uj . If vk

does not have such a neighbor v′k, then vk can not be a match of ui of Qc and
is marked with a special symbol indicating its invalidity.

Example 7. Taking G, Q1 as well as its domain D(Q1) given in Fig. 3 as input,
FrqChk first checks whether each node in D2(Q1) has a neighbor v such that

13

Algorithm 2 FrqChk

Input: Graph G, a pattern Qc, the domain D(Qp) of Qp, parameters θ and m.
Output: The minimum-image-based support MnIS of pattern Qc.
1: initialize domain D(Qc), a stack Sd := ∅, an integer counter := |D0(Qp)|;
2: update D(Qp);
3: for each node v in D0(Qp) do
4: restore Sd; counter := counter − 1;
5: D(Qc) := Traverse(G,Qc, D(Qc), D(Qp), Sd);
6: if |D0(Qc)|+ counter < θ then
7: break;

8: calculate Sup(Qc) with D(Qc);
9: return Sup(Qc);

10: function Traverse(G,Qc, D(Qc), D(Qp), Sd)
11: Hc := ConsExtr(G,Qc, D(Qp), Sd); c := 0;
12: v := NodeChoose(Hc, D(Qc), Sd, c);
13: while v 6= null do
14: update c;
15: Sd.push(v);
16: if |Sd| == |Vpp | then
17: Expand(G,Qc, D(Qc), Sd);
18: else
19: D(Qc) := Traverse(G,Qc, D(Qc), D(Qp), Sd);

20: Sd.pop();
21: v := NodeChoose(Hc, D(Qc), Sd, c);

22: return D(Qc);

v ∼ u3, as Q2 is expanded with an edge ex = (u2, u3) from Q1. Then, node v7
is identified and marked as invalid, since it has no neighbor labeled as PRG. 2

FrqChk next iteratively updates D(Qc) via guided traversal from each v
in D0(Qp) (lines 3-7). During the iteration, FrqChk restores the stack Sd by
pushing v on top of it after cleaning, in addition, FrqChk also decreases the
counter by 1, indicating that v has been used for verification (line 4). Afterwards,
FrqChk calls Traverse to identify qualified matches of Qc (line 5, details of
Traverse will be elaborated shortly). After the traverse, an updated domain
D(Qc) is returned, FrqChk then verifies the satisfiability of a simple rule, i.e.,
|D0(Qc)| + counter < θ. Intuitively, the rule states that if the total number
of qualified matches of u0 of Qc and unverified matches of u0 of Qp is already
less than θ, then Sup(Qc) must be less than θ (property of MnIS). If the rule
is satisfied, FrqChk breaks the loop immediately, since further verification is
no longer needed (line 7). When all the candidates of u0 are verified, FrqChk
calculates Sup(Qc) by using D(Qc) (line 8) and returns it as final result (line 9).

Procedure Traverse. Recall that the Minimum-Image-based Support only con-
cerns the image of each distinguished node of a candidate pattern Qc rather than
the total number of matches of Qc. Thus, we do not need to enumerate all the

14

matches, but try to obtain a domain of Qc, which is as accurate as possible.
Based on this observation, our procedure applies a wise strategy to guide search
accurately and economically. We next present details of Traverse.

Given a stack Sd that contains match candidates, Traverse works as follows.

Stage(I): Based on current status (determined by Sd), Traverse identifies a
set of nodes Hc for further exploration with a procedure ConsExtr (line 11). To
do this, ConsExtr (not shown) first identifies an unvisited edge eu = (ui, uj)
of Qc for guiding next step exploration. The identification of eu is based on
vi, which locates at Sd and exists in Di(Qc) (the corresponding domain of ui).
ConsExtr next collects those nodes vj in G (resp. Dj(Qp)), that are neighbors
of vi and satisfy vj ∼ uj if eu is a forward (resp. backward) edge. Note that the
nodes in D(Qp) that are marked with invalid symbols will be omitted. For each
seen edge eu, it is then marked as visited to avoid repeated visit. In addition,
Traverse also initializes a parameter c as 0 for controlling node selection.

Stage(II): Traverse picks a node from Hc, with procedure NodeChoose (not
shown) by using below selection criteria (line 12).

v :=

vh ∈ Hc \D(Qc), Hc \D(Qc) 6= ∅ (A)
vh ∈ Hc ∩D(Qc), Hc \D(Qc) = ∅ ∧ Sd 6⊆ D(Qc) ∧ c < m (B)
null, otherwise (C)

(3)

Intuitively, Condition A states that NodeChoose prefers to pick a node v
that is not in D(Qc). The reason for the preference lies in that a node that is not
in D(Qc) is beneficial to enlarge Sup(Qc), since an unvisited node will lead the
traversal to a large part of unvisited area with higher possibility. If Hc is already
contained by D(Qc) (i.e., Hc \D(Qc) = ∅), NodeChoose selects a node from
Hc ∩D(Qc) if Condition B is satisfied. Here, Condition B enforces extra two re-
strictions i.e., Sd 6⊆ D(Qc) and c < m. For the first restriction, it requires that Sd

should contain nodes that are not inD(Qc), since otherwise, current traversal will
not bring any new element to D(Qc). The second restriction imposes a number
constraint, that is Traverse only picks no more than m nodes from Hc∩D(Qc).
The number of selected nodes is recorded by a parameter c, which is updated
when v is used for next round traversal (line 14). By introducing an adjustable
parameter m, the exploration area at current iteration is restricted, thereby re-
ducing the computational costs. When both of two conditions can not be satis-
fied, NodeChoose returns a null value. Indeed, the selection criteria given above
effectively helps Traverse to efficiently obtain a domain of Qc with high quality.

Example 8. Continuing Example 7, FrqChk restores stack Sd by pushing v4
onto it and calls Traverse to update D(Q2) in a depth-first manner. Firstly,
ConsExtr is invoked. It identifies an unseen edge eu = (u0, u1), and obtains a
set Hc = {v0, v1, v2}, as v4 ∈ D0(Q1) and vi ∼ u1 (i ∈ [0, 2]). Afterwards, Tra-
verse calls NodeChoose to pick a node for further exploration, and v0 is chosen
due to Condition A. Traverse next calls itself for traverse at a deeper level. 2

Stage(III): Starting from a valid node v, Traverse proceeds by referencing Sd

(lines 13-21). During the traversal, it first updates c as c+1 if v is picked fromHc∩

15

D(Qc) (line 14). Then, it keeps detecting a discriminant condition |Sd|==|Vpp
|

and invokes Expand to update D(Qc) if the condition is satisfied (lines 16-17).

Procedure Expand (not shown) works as follows. If Qc is generated with
ex = (ui, uj) via forward expansion, Expand searches neighbors v′ of v, where
v ∈ Sd, v ∼ ui and v′ ∼ uj , and puts v′ along with nodes in Sd in corresponding
domain of D(Qc), as these nodes together already form valid matches of Qc. For
backward expansion, Expand verifies whether nodes in Sd already form a match
of Qc by referencing ex and Di(Qc), Dj(Qc). If true, it updates D(Qc) along the
same line as that for forward expansion.

Example 9. Recall Examples 7 and 8. At a deeper level, an unseen edge eu =
(u0, u2) is used to guide traversal. Then Hc = {v6, v7, v8} is obtained as they are
neighbors of v4 that is in Sd. NodeChoose then picks v6 (Condition A) and
pushes it onto Sd. The status of Sd is shown in Fig. 4 (a) (right most stack). At
this moment, Expand is invoked, as the discriminant condition |Sd| == |Vpp | is
satisfied. Expand identifies a node v10 (as the neighbor of v6) such that v10 ∼ u3
of Q2, according to the forward edge (u2, u3). Then, a valid match of Q2 forms.
Expand puts v10 as well as nodes in Sd in corresponding columns of D(Q2).
The upated D(Q2) is depicted in Fig.4(a). 2

Otherwise, Traverse invokes itself for deeper exploration (line 18). After-
wards, Traverse pops the upper-most node of Sd (line 20), and picks a different
node with NodeChoose for next round exploration (line 21).

Example 10. Following previous examples, Traverse pops v6, which is the
upper-most node, out of Sd and picks v8 (Condition A) for next round itera-
tion. Figure 4 (b) shows how Sd is changed, where Sd after popup operation is
colored in blue. As |Sd| equals to |Vpp

| now, Expand found that a new match
can be formed with v11 and updates D(Q2) with the new match. The updated
D(Q2) is also shown in the middle of Fig. 4 (b).

One may refer to Fig. 4 for the entire process of FrqChk, where detailed
changes of stack Sd, domain D(Q2), and traversal paths are provided. Detailed
explanation is omitted due to space constraint. 2

Remarks. (1) The parameter m controls total number of nodes used for explo-
ration. As verified via experimental studies, guided traversal with limited num-
bers substantially improves efficiency of mining process, taking only 11.7% time
and 31.5% memory of its counterpart, while obtaining 100% recall. (2) When
performing support estimation for a candidate pattern Qc, FrqChk leverages
the cached domain of Qp (as the “parent” of Qc and computed in earlier), which
substantially improves efficiency. (3) Note that the decision problem of Top-
kPM is already NP-hard, so no matter how desired, the TopkPM problem can
not be solved in PTIME. Despite high computational cost, AprTopK works
more efficiently than its counterparts, owing to its approximation scheme for
supports estimation and early termination property.

16

u3u2u1u0

v4 v4

v0

v4

v6

v0

v4 v0 v6 v10

Domain D(Q2)

Update

v4

v0

push pop

v4

v8

v0

u3u2u1u0
v4 v0 v6

v8

v10
v11

Update

u0

u2

u1

Stack Sd

u0

u2

u1

v4

v0

v4 v4

v1

v4

v1

v6

u3u2u1u0
v4 v0

v1

v6
v8

v10
v11

Update

u0

u2

u1

v4

v1

u0

u2

u1

v4 v4

v2

v4

v2

v6

u3u2u1u0
v4 v0

v1
v2

v6
v8

v10
v11

Update

v4

v2

u0

u2

u1

v4 v5

v3

v5

v3

v9

u3u2u1u0
v4
v5

v0
v1
v2
v3

v6
v8
v9

v10
v11

Update

v5

（a）

（b）

（c）

（d）

（e）

v0 v1 v2 v3

v4 v5

v6 v7 v8 v9

v10 v11

Traversal Path

v0 v1 v2 v3

v4 v5

v6 v7 v8 v9

v10 v11

v0 v1 v2 v3

v4 v5

v6 v7 v8 v9

v10 v11

v0 v1 v2 v3

v4 v5

v6 v7 v8 v9

v10 v11

v0 v1 v2 v3

v4 v5

v6 v7 v8 v9

v10 v11

u0

u2

u1

u3

u0

u2

u1

u3

u0

u2

u1

u3

u0

u2

u1

u3

u0

u2

u1

u3

Fig. 4. FrqChk Running Process

5 Experimental Study

Using real-life graphs and synthetic data, we conducted comprehensive exper-
imental studies to evaluate: efficiency, memory cost, effectiveness (recall) and
scalability of our algorithm AprTopK, compared with baseline methods.

5.1 Experimental setting

Real-life graphs. We used three real-life graphs: (a) Amazon (Leskovec, Adamic,
& Huberman, 2007), a product co-purchasing network with 0.41 million nodes
and 3.35 million edges. (b) Mico (Elseidy et al., 2014), a dataset models the Mi-
crosoft co-authorship information with 0.1 million nodes and 1.08 million edges.

17

(c) Youtube (Cheng, Dale, & Liu, 2008), a network of videos and their related
videos from Youtube with 0.15 million nodes and 1.05 million edges.

Synthetic graphs. We also designed a generator to produce synthetic graphs
G = (V,E, L), controlled by the numbers of nodes |V | and the number of edges
|E|, where L is taken from an alphabet of 1K labels. We generated synthetic
graphs following the evolution model (Garg, Gupta, Carlsson, & Mahanti, 2009):
an edge was attached to the high degree nodes with higher probability. The size
of G is up to 0.5 million nodes and 5 million edges.

Implementations. We implemented algorithm AprTopK and the following
counterparts, all in Java.

– GRAMI, which identifies frequent patterns with the algorithm in (Elseidy
et al., 2014), ranks patterns based on our interestingness metric and selects
top-k ones.

– AGRAMI, the approximate version of GRAMI. Along the same line as
GRAMI, AGRAMI first discovers frequent patterns with the approximate
version of GRAMI. During this period, it sets the time-out to occur after
f(α) iterations of the search, where f(α) = αn

∏n
1 |Di| + β, α ∈ (0, 1] is

a user-defined parameter, β is a constant, Di is the image Img(ui) of pat-
tern node ui and n is the number of pattern nodes. In this way, AGRAMI
achieves better efficiency, at the cost of missing false negatives. After fre-
quent patterns are discovered, the top-k pattern selection is processed in the
same way as GRAMI.

In our test, the testbed includes a machine with 2.3 GHz CPU and 16 GB
RAM, running JDK v11.0.9 on Windows 10. Each test was run five times and
the average is reported.

Parameters. For AprTopK, we fixed parameter m = 2 (used in procedure
NodeChoose). For AGRAMI, we fixed α as 2 ∗ 10−5, 2 ∗ 10−4, 7 ∗ 10−3 and
10−5 on Amazon, Mico, Youtube and synthetic graphs, respectively.

5.2 Experimental results

Exp-1: Influence of θ. To see the influence of θ, we fixed k as a large number. It
is a fair setting, since a complete (resp. incomplete but still large) set of frequent
patterns need to be mined in GRAMI (resp. AGRAMI) in spite of the increase
of k, while the increase of k weakens AprTopK.

We then varied the support threshold θ from 2K to 4K in 0.5K increments,
2.9K to 3.3K in 0.1K increments and 0.3K to 0.7K in 0.1K increments on
Amazon, Mico and Youtube, respectively.

Efficiency. Figures 5(a)-5(c) report the response time of all the algorithms on
Amazon, Mico and Youtube, respectively, which tell us the following. (1) With
the increase of support threshold θ, all the algorithms take shorter time, because
fewer candidate patterns and their matches have to be verified. (2) AprTopK

18

2000 2500 3000 3500 4000
0

300

600

900

1200

2900 3000 3100 3200 3300
0

100

200

300

300 400 500 600 700
0

300

600

900

1200

2000 2500 3000 3500 4000
99.0%

99.5%

100.0%

2900 3000 3100 3200 3300
99.0%

99.5%

100.0%

300 400 500 600 700
98%

99%

100%

 (a)
Ti

m
e

in
 s

ec
on

ds
 GRAMI

 AGRAMI
 APRTOPK

Amazon MiCo YouTube (b)

 GRAMI
 AGRAMI
 APRTOPK

 (c)

 GRAMI
 AGRAMI
 APRTOPK

2000 2500 3000 3500 40000

20

40

60

80

 (d)

M
em

or
y

re
qu

ire
m

en
ts

 (M
B) GRAMI

 AGRAMI
 APRTOPK

2900 3000 3100 3200 33000

10

20

30

40

 (e)
 GRAMI
 AGRAMI
 APRTOPK

300 400 500 600 7000

30

60

90

 (f)
 GRAMI
 AGRAMI
 APRTOPK

 (g)

 Varying

R
ec

al
l

 AGRAMI
 APRTOPK

Varying

 (h)

 AGRAMI
 APRTOPK

 (i)

Varying

 AGRAMI
 APRTOPK

Fig. 5. Exp-1: Influence of θ

10 20 30 40 50
0

300

600

900

1200

10 20 30 40 50
100

200

300

10 20 30 40 50
0

300

600

900

1200

10 20 30 40 50
99.0%

99.5%

100.0%

10 20 30 40 50
99.0%

99.5%

100.0%

10 20 30 40 50
99.0%

99.5%

100.0%

 (a)

Ti
m

e
in

 s
ec

on
ds

 GRAMI
 AGRAMI
 APRTOPK

 (b)

 GRAMI
 AGRAMI
 APRTOPK

 (c)

 GRAMI
 AGRAMI
 APRTOPK

10 20 30 40 500

30

60

90

 (d)

M
em

or
y

re
qu

ire
m

en
ts

 (M
B) GRAMI

 AGRAMI
 APRTOPK

10 20 30 40 500

10

20

30

40

 (e)
 GRAMI
 AGRAMI
 APRTOPK

10 20 30 40 500

30

60

90

120

 (f)
 GRAMI
 AGRAMI
 APRTOPK

 (g)

R
ec

al
l

Varying k

 AGRAMI
 APRTOPK

Amazon

 (h)

Varying k

 AGRAMI
 APRTOPK

MiCo

 (i)

Varying k

 AGRAMI
 APRTOPK

YouTube

Fig. 6. Exp-2: Influence of k

19

outperforms GRAMI and AGRAMI in all cases and is less sensitive to the in-
crease of θ, since AprTopK is able to dramatically reduce the cost for candidate
patterns verification. On Amazon, Mico and Youtube AprTopK only takes on
average 17.4%, 74.1% and 15.8% time of GRAMI, respectively. In particular,
our algorithm takes only 13.8% time of GRAMI, when θ = 2K, while obtaining
100% recall, on Amazon.

Memory cost. Figures 5(d)-5(f) show the memory footprint of the algorithms
over Amazon, Mico and Youtube, respectively. We find that (1) the memory cost
of all the algorithms drops with the increase of θ, as fewer candidates need to
be verified. (2) AprTopK consumes less memory than GRAMI and AGRAMI
on three graphs, as expected; it incurs 59.6%, 87.4% and 52.3% memory cost of
GRAMI, on average, at Amazon, Mico and Youtube, respectively.

Recall. Figures 5(g)-5(i) show the recall of AprTopK and AGRAMI, i.e., the
ratio of patterns returned by AprTopK and AGRAMI vs. the complete set of
frequent patterns. We find the following: (1) the recall of AprTopK is always
higher than 99% on three graphs. In particular, the recall of AprTopK even
maintains 100% on Amazon. (2) Overall, when θ grows, the recall of both algo-
rithms grows as well (not monotonically increasing). This is because, for a large
θ, the set of frequent patterns becomes smaller, which favors top-k selection. (3)
The recall of AGRAMI is influenced not only by θ, but also by a set of parameters
(e.g., α etc.). We have tested AGRAMI with smaller α and find that its recall and
efficiency are mutually restricted. Due to space constraint, we omit details here.

It is noted that, FrqChk gets less efficiency and memory cost advantages
on Mico. The main reason lies in that the effectiveness of traversal strategy on
Mico is not as good as that on Amazon and Youtube. Indeed, FrqChk prefers to
traverse from nodes that have not been seen since these unseen nodes can con-
tribute the support of a pattern. This underlying feature results in that FrqChk
can achieve better performance to evaluate supports of those patterns whose cor-
responding matches have a large part of overlap (see Example 6). As the graph
structure of Mico does not favor FrqChk very well from the perspective of
match overlap, the performance gains from FrqChk hence become less.

Exp-2: Influence of k. Fixing θ = 2K, 2.9K and 0.3K for Amazon, Mico and
Youtube, respectively, we varied k from 10 to 50 in 10 increments and compared
AprTopK with GRAMI and AGRAMI.

Efficiency. Results shown in Figures 6(a)-6(c) tell us the following. (1) AprTopK
performs much more efficiently than GRAMI, owing to its approximation scheme
employed by support estimation and early termination property. For example,
AprTopK only takes on average 13.8%, 78.6% and 16.4% time of GRAMI at
Amazon, Mico and Youtube, respectively. (2) AprTopK is sensitive to the in-
crease of k since it has to verify more candidate patterns before the termination
condition can be satisfied, while GRAMI and AGRAMI are not influenced by k
w.r.t. efficiency, as both of them apply the “find-all-select” strategy.

Memory cost. Figures 6(d)-6(f) show the memory footprint of all the algorithms.
We find the following. All the algorithms are not sensitive to the varying of k.

20

3.30M 3.85M 4.40M 4.95M 5.50M
0

1000

2000

3000

3.30M 3.85M 4.40M 4.95M 5.50M
90%

95%

100%
 (a)

Ti
m

e
in

 s
ec

on
ds

Varying |G|

 GRAMI
 AGRAMI
 APRTOPK

Synthetic Synthetic Synthetic

3.30M 3.85M 4.40M 4.95M 5.50M
0

40

80

120

 (b)

M
em

or
y

re
qu

ire
m

en
ts

(M
B)

Varying |G|

 GRAMI
 AGRAMI
 APRTOPK

 (c)

Re
ca

ll

Varying |G|

 AGRAMI

 APRTOPK

Fig. 7. Exp-3: Scalability

The reasons are twofold: (1) GRAMI and AGRAMI are almost not influenced
by the change of k, hence the memory requirements remain unchanged for both
of them; and (2) AprTopK stops only when termination condition is satisfied,
however a larger k does not dramatically increase the memory cost, meanwhile we
find that AprTopK consumes, on average, 34.2% (resp. 88.2%, 34.1%) memory
of GRAMI, on Amazon (resp. Mico and Youtube).

Recall. Figures 6(g)-6(i) report the recall of AprTopK and AGRAMI. We find
the following. Both AprTopK and AGRAMI perform very well on all datasets
and the recall of them remains 100% when k increases from 10 to 50.

Exp-3: Scalability. Fixing θ = 1K and k = 50, we varied |G| from (0.3M, 3M)
to (0.5M, 5M) with 0.05M and 0.5M increments on |V | and |E|, respectively,
and compared AprTopK with GRAMI and AGRAMI. As shown in Figures 7(a)-
7(c), (1) all the algorithms take longer time and consume more memory on
larger graphs, as expected; (2) AprTopK is less sensitive to |G| than others,
w.r.t. response time and memory footprint, showing its better scalability; and (3)
AprTopK shows a more steady recall than AGRAMI, with the increase of |G|.

Exp-4: Influence of m. Fixing k = 100 and θ = 1.8K, 2.9K and 0.29K for
Amazon, Mico and Youtube, respectively, we varied m from 1 to 5 in 1 increments
to test its influence w.r.t. efficiency, memory cost and recall for AprTopK. As
shown in Figures 8(a)-8(c), (1) with the increase of m, the time overhead and
memory cost of AprTopK grow up as well; (2) on Amazon and Youtube (resp.
Mico), when m reaches 2 (resp. 3), the improvement on recall becomes insignif-
icant, since recall values already approach 100%. Hence, it is more appropriate
to set m as 2 or 3 on real life graphs.

6 Conclusion

In this paper, we developed an approach to mining near optimal top-k patterns.
We first formalize the TopKPM problem by incorporating viable metrics to
measure support and interestingness of patterns. We then develop an algorithm
AprTopK to identify top-k patterns efficiently and accurately. The algorithm
applies a “level-wise” strategy, which ensures early termination property, to dis-
cover top-ranked patterns that are not only frequent but also interesting. To fa-

21

1 2 3 4 5

200

300

400

500

1 2 3 4 5
0

20

40

60

1 2 3 4 5
95.0%

97.5%

100.0%

 (a)

Ti
m

e
in

 s
ec

on
ds

Varying m

Amazon
MiCo
YouTube

 (b)

M
em

or
y

re
qu

ire
m

en
ts

(M
B)

Varying m

Amazon
MiCo
YouTube

 (c)

Re
ca

ll

Varying m

Amazon
MiCo
YouTube

Fig. 8. Exp-4: Influence of m

cilitate support evaluation, we devised a technique to compute the lower bound
of support with smart traverse strategy and compact data structure. Our exper-
imental study has verified the efficiency, memory footprint, recall and scalability
of our algorithm. We hence contend that our approach yields a promising tool
for big graph analysis.

The study of TopKPM is still in its infancy. One direction concerns prun-
ing technique that may lead to the decrease of costs (computational and space
costs) without sacrificing recall. Metrics for measuring importance of patterns
also need to investigate. Another interesting topic is to identify top-k patterns
with different matching semantics, e.g., graph simulation, inexact matching, etc.
It is also worth extending AprTopK under distributed scenario, to leverage
parallel computation.

CRediT authorship contribution statement

Xin Wang: Conceptualization, Methodology, Formal analysis, Writing – original
draft, Writing – review & editing. Zhuo Lan: Methodology, Software, Writing –
original draft, Visualization. Yu-Ang He: Software, Validation, Writing – orig-
inal draft, Visualization. Yang Wang: Methodology, Supervision. Zhi-Gui Liu:
Methodology, review & editing. Wen-Bo Xie: Conceptualization, Formal analy-
sis, Supervision, Writing – review & editing.

Acknowledgments

This work is supported by National Natural Science Foundation of China [grant
number 62172102], and National Key Research and Development Program of
China [grant number 2017YFA0700800], and Young Scholars Development Fund
of SWPU [grant number 202199010142].

References

Abdelhamid, E., Abdelaziz, I., Kalnis, P., Khayyat, Z., & Jamour, F. (2016).
ScaleMine: Scalable parallel frequent subgraph mining in a single large

22

graph. In Proceedings of the international conference for high performance
computing, networking, storage and analysis (pp. 716–727). New York,
NY, USA: IEEE.

Abdelhamid, E., Canim, M., Sadoghi, M., Bhattacharjee, B., Chang, Y., & Kal-
nis, P. (2017). Incremental frequent subgraph mining on large evolving
graphs. IEEE Transactions on Knowledge and Data Engineering , 29 (12),
2710–2723.

Acosta-Mendoza, N., Gago-Alonso, A., & Medina-Pagola, J. E. (2012). Frequent
approximate subgraphs as features for graph-based image classification.
Knowledge-Based Systems, 27 , 381-392.

Ashraf, N., Haque, R. R., Islam, M. A., Ahmed, C. F., Leung, C. K., Mai, J. J.,
& Wodi, B. H. (2019). WeFreS: weighted frequent subgraph mining in a
single large graph. In Industrial conference on data mining (pp. 201–215).
New York, USA: ibai Publishing.

Aslay, C., Nasir, M. A. U., De Francisci Morales, G., & Gionis, A. (2018). Mining
frequent patterns in evolving graphs. In Acm international conference on
information and knowledge management (pp. 923–932). New York, NY,
USA: ACM.

Bringmann, B., & Nijssen, S. (2008). What is frequent in a single graph? In
Pacific-asia conference on knowledge discovery and data mining (pp. 858–
863). Berlin Heidelberg: Springer.

Chen, Y., Zhao, X., Lin, X., Wang, Y., & Guo, D. (2019). Efficient mining of
frequent patterns on uncertain graphs. IEEE Transactions on Knowledge
and Data Engineering , 31 (2), 287-300.

Cheng, X., Dale, C., & Liu, J. (2008). Statistics and social network of youtube
videos. In 16th interntional workshop on quality of service (pp. 229–238).
Enschede, Netherlands: IEEE.

Chi, Y., Xia, Y., Yang, Y., & Muntz, R. R. (2005). Mining closed and maximal
frequent subtrees from databases of labeled rooted trees. IEEE Transac-
tions on Knowledge and Data Engineering., 17 (2), 190–202.

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2004). A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26 (10), 1367-1372.

Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., & Anuar, N. B. (2020).
Applications of link prediction in social networks: A review. Journal of
Network and Computer Applications, 166 , 102716.

Driss, K., Boulila, W., Leborgne, A., & Gançarski, P. (2021). Mining frequent
approximate patterns in large networks. International Journal of Imaging
Systems and Technology , 31 (3), 1265–1279.

Elseidy, M., Abdelhamid, E., Skiadopoulos, S., & Kalnis, P. (2014). GraMi:
Frequent subgraph and pattern mining in a single large graph. Proceedings
of the VLDB Endowment , 7 (7), 517–528.

Fiedler, M., & Borgelt, C. (2007). Subgraph support in a single large graph. In
IEEE international conference on data mining workshops (pp. 399–404).
IEEE Computer Society.

23

Garg, S., Gupta, T., Carlsson, N., & Mahanti, A. (2009). Evolution of an
online social aggregation network: an empirical study. In ACM SIGCOMM
conference on Internet measurement (pp. 315–321). New York, NY, USA:
ACM.

Gudes, E., Shimony, S., & Vanetik, N. (2006). Discovering frequent graph
patterns using disjoint paths. IEEE Transactions on Knowledge and Data
Engineering , 18 (11), 1441–1456.

Huan, J., Wang, W., & Prins, J. (2003). Efficient mining of frequent subgraphs
in the presence of isomorphism. In IEEE international conference on data
mining (pp. 549–552). New York, USA: IEEE.

Huan, J., Wang, W., Prins, J., & Yang, J. (2004). SPIN: Mining maximal
frequent subgraphs from graph databases. In ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 581–586). New
York, NY, USA: ACM.

Jia, Y., Zhang, J., & Huan, J. (2011). An efficient graph-mining method for
complicated and noisy data with real-world applications. Knowledge and
Information Systems, 28 (2), 423–447.

Le, N., Vo, B., Nguyen, L. B. Q., Fujita, H., & Le, B. (2020). Mining weighted
subgraphs in a single large graph. Information Sciences, 514 , 149–165.

Le, T., Vo, B., Huynh, V., Nguyen, N. T., & Baik, S. W. (2020). Mining top-k
frequent patterns from uncertain databases. Applied Intelligence, 50 (5),
1487–1497.

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral
marketing. ACM Transactions on the Web, 1 (1), 5.

Li, R., & Wang, W. (2015). REAFUM: Representative approximate frequent
subgraph mining. In SIAM international conference on data mining (pp.
757–765). SIAM.

Nasir, M. A. U., Aslay, C., Morales, G. D. F., & Riondato, M. (2021). Tiptap:
Approximate mining of frequent k-subgraph patterns in evolving graphs.
ACM Transactions on Knowledge Discovery from Data, 15 (3), 1–35.

Natarajan, D., & Ranu, S. (2018). Resling: a scalable and generic framework to
mine top-k representative subgraph patterns. Knowledge and Information
Systems, 54 (1), 123-149.

Nijssen, S., & Kok, J. N. (2004). A quickstart in frequent structure mining can
make a difference. In ACM SIGKDD international conference on knowl-
edge discovery and data mining (pp. 647–652). New York, NY, USA: ACM.

Prateek, A., Khan, A., Goyal, A., & Ranu, S. (2020). Mining top-k pairs of corre-
lated subgraphs in a large network. Proceedings of the VLDB Endowment ,
13 (9), 1511–1524.

Preti, G., De Francisci Morales, G., & Riondato, M. (2021). MaNIACS: Ap-
proximate mining of frequent subgraph patterns through sampling. In
ACM SIGKDD conference on knowledge discovery and data mining (pp.
1348–1358). New York, NY, USA: ACM.

Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E., Govender, T., Naicker,
T., & Kruger, H. G. (2021). Current trends in computer aided drug design

24

and a highlight of drugs discovered via computational techniques: A review.
European Journal of Medicinal Chemistry , 224 , 113705.

Semertzidis, K., & Pitoura, E. (2019). Top-k durable graph pattern queries on
temporal graphs. IEEE Transactions on Knowledge and Data Engineering ,
31 (1), 181-194.

Talukder, N., & Zaki, M. J. (2016). A distributed approach for graph mining in
massive networks. Data Mining and Knowledge Discovery , 30 (5), 1024–
1052.

Ur Rehman, S., Liu, K., Ali, T., Nawaz, A., & Fong, S. J. (2021). A graph mining
approach for ranking and discovering the interesting frequent subgraph
patterns. International Journal of Computational Intelligence Systems,
14 (1), 152.

van Leeuwen, M., Bie, T. D., Spyropoulou, E., & Mesnage, C. (2016). Subjective
interestingness of subgraph patterns. Machine Learning , 105 (1), 41–75.

Wang, T., Huang, H., Lu, W., Peng, Z., & Du, X. (2018). Efficient and scalable
mining of frequent subgraphs using distributed graph processing systems.
In Database systems for advanced applications (pp. 891–907). Berlin, Hei-
delber: Springer.

Wang, X., Xiang, M., Zhan, H., Lan, Z., He, Y., He, Y., & Sha, Y. (2021).
Distributed top-k pattern mining. In Web and big data (pp. 203–220).
Cham: Springer.

Xue, Y., Klabjan, D., & Luo, Y. (2019). Predicting ICU readmission using
grouped physiological and medication trends. Artificial Intelligence in
Medicine, 95 , 27-37.

Yan, D., Qu, W., Guo, G., & Wang, X. (2020). PrefixFPM: A parallel frame-
work for general-purpose frequent pattern mining. In IEEE international
conference on data engineering (pp. 1938–1941). New York, NY, USA:
IEEE.

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining. In
IEEE international conference on data mining (pp. 721–724). New York,
NY, USA: IEEE.

Yan, X.-F., & Han, J.-W. (2003). CloseGraph: Mining closed frequent graph pat-
terns. In ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 286–295). New York, NY, USA: ACM.

Zeng, J., U, L. H., Yan, X., Han, M., & Tang, B. (2021). Fast core-based top-
k frequent pattern discovery in knowledge graphs. In IEEE international
conference on data engineering (pp. 936–947). New York, NY, USA: IEEE.

Zheng, T.-Y., & Wang, L. (2021). Large graph sampling algorithm for frequent
subgraph mining. IEEE Access, 9 , 88970-88980.

Zhu, F., Qu, Q., Lo, D., Yan, X., Han, J., & Yu, P. S. (2011). Mining top-k
large structural patterns in a massive network. Proceedings of the VLDB
Endowment , 4 (11), 807–818.

25

