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A hybrid dynamic economic environmental dispatch model for balancing operating costs and 
pollutant emissions in renewable energy: A novel improved mayfly algorithm 
 
 
Abstract 
This study proposes a hybrid dynamic economic environmental dispatch model combining 
with thermal power units, wind turbines, photovoltaic and energy storage device to achieve 
the balance between operating cost and pollutant emission under the premise of stabilizing 
the output of renewable energy. Most studies have addressed economic and environmental 
issues to optimize dispatch as more and more renewable energy is connected to the grid, while 
ignoring the stability of renewable energy output. To solve the problem of instability of 
renewable energy output, a wind-photovoltaic stable output strategy is proposed and energy 
storage device is used to reasonably control the dispatch power of renewable energy. The 
fitness function is improved and an improved mayfly (IMA) algorithm using chaotic 
initialization, inertia weight and mutation strategy is proposed to find the optimal solution, 
and the performance of the algorithm is verified on two systems with different configurations. 
In addition, constraints such as the power balance, output of each generating device and 
energy of the energy storage device are considered. The results show that the operating cost 
of the IMA algorithm is 4.12%, 13.21% and 15.14% lower than those of the MA, MFO and PSO 
algorithms, and the proposed model using the IMA algorithm can effectively realize the 
balance of economic and environmental and obtain a stable output of renewable energy. This 
study provides a useful reference for the stable operation of power grid under a variety of 
renewable energy access conditions. 

 
Keywords: Economic-environment dispatch; Wind-solar stable output strategy; Improved 
mayfly algorithm; Multi-renewable energy; Energy storage 
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A hybrid dynamic economic environmental dispatch model for balancing operating costs and 
pollutant emissions in renewable energy: A novel improved mayfly algorithm 
 
1. Introduction 
More countries to reduce the share of fossil fuels in their energy systems and to focus on the 
development and utilization of renewable energy such as wind, photovoltaic and tidal energy 
to address energy shortages and the greenhouse effect (Chen et al., 2020; Sun et al., 2021). 
The problems remain daunting despite the efforts of countries to achieve these goals through 
energy conservation and emission reduction. With significant impacts on industry and 
residential electricity consumption in many countries, the global outbreak of the COVID-19 
epidemic has exacerbated the global energy crisis, reduced production from oil, coal and gas 
in exporting countries and led to a surge in prices(Heffron et al., 2021; Tseng et al., 2021). 
These crises demonstrate the necessity of the transformation from fossil fuel-based structure 
to renewable energy-based energy structure (Li et al., 2021a&b; Sun et al., 2021). At present, 
the global power generation is still dominated by thermal power, and nuclear power cannot 
be widespread due to its own limitations. It is necessary to increase the installed capacity and 
utilization rate of major renewable energy sources from wind power and photovoltaic, and 
further develop less pollutant emission technologies to ensure adequate and reliable 
electricity supply to reach the goal of net zero global energy carbon dioxide emissions and limit 
temperature rise to 1.5 °C by 2050 (IEA, 2021; WMO, 2020). In sum, the dynamic economic 
environmental dispatch (DEED) for energy and renewable energy is a common multi-objectives 
problem in power system dispatch (Evangeline and Rathika, 2021; Sundaram, 2020; Wang et 
al., 2021).  

In recent years, wind turbines and photovoltaic devices have been connected to power 
system on a large scale. However, the increase of wind and photovoltaic generation power 
leads to the increases in dispatch cost of grid due to the uncertainty and uneven spatial and 
temporal distribution of these intermittent renewable energy generation (Hlalele et al., 2020). 
To assurance the stable operation of the power system, more thermal power units are added 
to the grid as spinning reserve for peaking. Energy storage device can effectively inhibit 
intermittent problem of wind and solar, adjust the output of the units with the development 
of energy storage technology, and can play a better role in peak shaving of power grid (Murphy 
et al., 2021; Nemati et al., 2018; Wu et al., 2019). Despite these advantages, electrochemical 
energy storage devices are not available in large quantities for grid dispatch at present due to 
high cost (Mazzoni et al., 2019; Tseng et al., 2021). The problem of grid dispatch is becoming 
more complex as renewable energy installations are increasingly added to grid, and therefore 
the use of energy storage facilities with certain capacity constraints to reasonably optimize the 
hybrid dynamic economic environmental dispatch (HDEED) containing renewable energy 
devices is a key issue for power system operators to be addressed. This study introduces a 
novel method to optimize operating cost and pollutant emission of electricity system 
considering wind, photovoltaic and energy storage devices to ensure the stability of renewable 
energy output while solving economic and environmental problems, and is for the stability of 
power system dispatch. 

In view of these problems, this study combines wind, photovoltaic and thermal power 

units to optimize the HDEED problem and proposes an output strategy to address the 

instability of renewable energy generation, and combines with energy storage devices to 

improve the utilization rate of wind and photovoltaic power and ensure the stability output 

during dispatch cycle. In addition, this study proposes an improved mayfly algorithm (IMA) 
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into the dispatched model for high-dimensional, complex and multiple constraints. The two 

test systems are applied to validate the effectiveness of the modified optimization method. 

The contributions are as follows. (1) An integrated economic environmental dispatch model is 

proposed to deal with the optimization of units under more constraints in facing the multiple 

renewable energy outputs; (2) A Wind-photovoltaic stability output strategy is proposed to 

combine with energy storage devices, to improve the utilization rate of wind-photovoltaic, and 

ensure the stability of wind-photovoltaic power output in a dispatched cycle; (3) The fitness 

function is improved, and the improved function is compared to verify the better optimization 

effect; (4) An MA optimization algorithm is introduced into the model and improved according 

to the characteristics of the algorithm, which can effectively improve the convergence ability 

of the algorithm; and (5) The system combines with MA algorithm and control strategy has 

better effect in operating cost, emission and stability, which can effectively make up for the 

problem that practical stability is not considered when solving HDEED problems. 

The rest of this study is organized as follows. Section 2 is the literature review and section 
3 introduces the overall framework of the system to solve the HDEED problem, including the 
economic environmental dispatch model, the MA algorithm and its improved algorithm, and 
draws a clear system flowchart. Section 4 uses test function and comparison algorithms to 
verify the performance of the improved MA algorithm. Section 5 analyzes the effect of the 
proposed model by using two test systems. Finally, Section 6 summarizes the content of this 
study and future research prospects. 
 
2. Literature review 

The economic environmental dispatch (EED) problem to be solved as the optimization of 
operating costs and pollutant emissions.  For instance, Saenz et al. (2013) built a two-level 
decision-making framework to solve the EED problem, and developed a wavelet transform 
model for load demand forecasting and a particle filter model for generator dispatched. At 
same time, the active and reactive power balance of system are verified during optimized the 
operating costs and emissions; but lacks a penalty mechanisms in the load forecasting stage. 
Chen et al. (2019) analyzed the difference between pollutant emission and carbon dioxide 
emission and used a multi-objective scheduling model to control operating costs, CO2 

emissions and the distribution of multiple pollutants by analyzing the spatial and temporal 
distribution of pollutants, but better results may be achieved if combined with renewable 
energy. Sundaram (2020) studied the EED problem of a thermal power system containing heat 
and power unit and proposed an improved Multi-Verse algorithm to deal with constraint 
between the heat and power of the unit, and obtained the results from 140-bus system. Dong 
and Wang (2020) solved the static EED problem by using the feature that the robust algorithm 
does not need to adjust the hyper-parameters and transformed the nonlinear function into a 
high-dimensional linear function through the kernel trick for solving. The hyperparameter 
feature is needed to be adjusted for solving similar problems. 

These studies that integrated operating cost and pollutant emission do not take 
renewable energy into account (Sun et al., 2021; Tseng et al., 2021). With the gradual 
transformation of energy structure and the maturity of renewable energy technology, the 
installed capacity of renewable energy in the power network is increasing, and many studies 
are taking renewable energy into account to solve the power grid dispatch problem. Studies 
involved renewable energy sources such as wind power and photovoltaics requires additional 
consideration of the volatility of power output. Most studies use Weibull function that 
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describes the probabilistic characteristics of wind speed to analyze the uncertainty of wind 
power ( de Siqueira and Peng 2021; Jin et al., 2018). The combination of day-ahead and real-
time dispatch, the use of energy storage device to adjust the peak-valley difference, and the 
use of forecast error to analyze the risk level, are commonly used in renewable energy dispatch 
problem (Evangeline and Rathika, 2021; Li et al., 2020; Tan et al., 2020; Wu et al., 2019). These 
studies on the EED problem with renewable energy almost all analyze the uncertainty of wind 
and solar output to improve reliability. 

DEED is a fundamental problem that needs to be solved in traditional power system. The 
aim is to find the corresponding power of each unit under minimum system cost, and many 
studies have already achieved better results for DEED problems(Jian et al., 2020). For example, 
Dhiman et al. (2018) used the spotted hyena optimization algorithm to solve the nonlinear 
economic dispatch problem of thermal power units and compared the effects of considering 
or not considering transmission loss, valve point effect and multiple fuel supply on minimizing 
the fuel cost of the units. Faced with the uncertainty of distributed energy output power in 
the economic dispatch model with virtual power plant, Huang et al. (2016) used the probability 
function in interval optimization to transform the model into a deterministic model for a 
reasonable prediction of distributed energy power and load demand for convenient solution, 
which helps to reduce the difficulty of economic dispatch, but the probability of interval is hard 
to determine. Xie et al. (2018) proposed an economic dispatch model based on 
multidisciplinary collaborative optimization with the objective of optimizing the energy cost of 
thermal power units. The study established a model based on the stochastic and fluctuating 
nature of wind power to optimize the grid dispatch problem under wind power integration by 
analyzing the prediction error of decoupled wind power scenarios. While most studies are 
based on day-ahead economic dispatch, there are also scholars who conduct real-time 
dispatched of units. Soroudi et al. (2017) proposed a stochastic real-time dispatched model to 
solve the dynamic economic dispatch  problem by introducing the optimal conditional 
decomposition approach to address the rapidity of real-time dispatched. Reddy and Bijwe 
(2015) introduced dynamic variable cost for real-time dispatch to improve system economy, 
but frequent adjustment based on cost is not conducive to system stability. The single objective 
of economy cannot be considered only, and the environmental issues closely related to 
economy also need to attract the attention with the deepening research on power grid 
optimization. 

The power generation mode has changed from pure thermal power generation to the 
coexistence of multiple generation such as thermal power unit, wind turbine and photovoltaic 
device with the deepening of research, and the research on power system unit dispatch has 
gradually developed from considering a single economic goal to considering economic, 
environmental, operational stability and other multi-objective directions. The technology for 
solving HDEED problems can be divided into mathematical methods and artificial intelligence 
methods. Mathematical methods include Lagrangian relaxation(Mahdi et al., 2019), linear 
programming, etc. Where, Espinosa et al. (2017) used mixed integer linear programming to 
solve the economic dispatch problem. CO2 emissions are used as constraint and Coincplex is 
used to allocate generation power to thermal units within 24 hours. Nemati et al. (2018) used 
mixed integer linear programming through optimizer to deal with the constraints between 
network topologies through optimizers. Mathematical methods can be used to deal with 
simple EED problems, but with the increase of data and constraints, traditional mathematical 
methods are no longer enough to solve complex HDEED problems. Along with the 
development of computer technology, machine learning methods have been well used. Such 
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as particle swarm algorithm (Alshammari et al., 2020), artificial neural networks(Wang et al., 
2021), genetic algorithm(Ganjefar and Tofighi, 2011), differential evolution algorithm(Basu, 
2011), and mothballing algorithm(Hazra and Roy, 2020). In addition, Wang et al. 
(2021)proposed a recurrent neural network algorithm to solve the HDEED problem, which 
reduced randomness by strictly following the corresponding constraints at each time. Ma et 
al. (2018) used an improved global artificial bee colony algorithm to speed up the convergence 
of the algorithm to solve the HDEED problem, but lacked measures to prevent the algorithm 
from falling into local optimum. Chinnadurrai and Victoire (2020) proposed a non-dominated 
sorting crisscross optimization algorithm for global convergence and avoid premature 
convergence to maximize the utilization of wind power while optimizing operating cost and 
pollutant emission, and achieve better results in large, medium and small three-scale systems. 

In addition to considering the wind and photovoltaic with large volatility, many studies 
have conducted more extensive research on HDEED according to the needs of different users 
or load environments. Liang et al. (2019) addressed the issue of economic emission by 
considering electric vehicles, and studied control strategies to achieve peak shaving and valley 
filling by using electric vehicles and showed that additional investment in power plant and 
pollutant emission could be reduced, but the use of electric vehicles for regulation devices 
lacked practicality. Yang et al. (2020) proposed a super-heuristic algorithm that enhance search 
diversity for solving the HDEED problem incorporating wind, photovoltaic and energy storage. 
However, too little research has been done on the energy storage component and it is difficult 
to see the role played by energy storage devices. Song et al. (2021)constructed a two-layer 
economic environment balance model integrating thermal power and natural gas, which 
increased the reliability of power supply while using thermal and natural gas power generation 
to serve different users. Scenario analysis method is used to determine the operation plan and 
power-to-gas plant was used to improve the utilization of wind power. 

 The construction of new microgrid is combined cool, heat and electricity and shows that 
prior studies tend to address the HDEED issue with the objective of improving the economic 
benefits of the electricity operators and reducing pollutant emissions. However, few studies 
use energy storage devices to mitigate the impact of renewable energy prediction errors to 
ensure the stability of power grid operation. 
 
3. System framework for solving HDEED problem by using IMA algorithm 

This section establishes a dispatch model that considers both economic and 
environmental protection. Different from most studies that only consider the minimum 
optimization target, by analyzing the volatility of renewable energy output under actual 
conditions, innovatively proposed a distribution strategy for renewable energy that optimizes 
the economic and environmental goals while ensuring the stable output of renewable energy. 
Secondly, an optimization algorithm with better effect on the model is selected and improved 
in solving the problem of HDEED. Finally, the membership function is introduced to select the 
best solution in the solution set obtained by the optimization algorithm. The following content 
describes these parts. 
3.1. Multi-objective optimization model for electricity system 

This study uses the power generated by thermal power units, wind turbines, photovoltaic 
device and energy storage power station as the grid power. In optimizing dispatch strategy, it 
is necessary to optimize the output of thermal power units and renewable energy respectively 
and consider more constraints. 
3.1.1. Objective functions 
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In order to achieve the optimal balance between economic and environmental, the goal 
of HDEED is to minimize operating cost and pollutant emission. 

Objective 1. Minimize operation cost 
Reducing operation cost is conducive to improving production efficiency and increasing 

the revenue of system operator. The sum cost of system includes the power generation cost of 
thermal power units, wind turbines and photovoltaic device, and the energy storage cost of 
energy storage power station. As the thermal power units with highest power generation, the 
valve point effect should also be considered(Nazari-Heris et al., 2018). Considering the 
nonconvex optimization problem, a sine function is added to the cost function of units, and 
the cost function expression of the thermal power units considering the valve point effect is 
as follows: 

 ( ) ( ) 2 min

1c , , ,

1 1

sin
T N

i i t i i t i i i i t i

t i

f a P b P c g h P P
= =

 = + + + −
   (1) 

Where f1c represents the cost of generating electricity for thermal power units; N is the 

number of thermal power units; ,i tP  represents the generating power of the ith thermal 

power unit at the tth hour; ai, bi, and ci are the fuel cost coefficients of thermal power units; T 
is the total time of a dispatch period; gi and hi are the valve point impact coefficients of units; 

min

iP  represents the minimum power limit of ith units. 

At the same time, considering the higher manufacturing cost and depreciation cost of 
wind turbines, photovoltaic device and energy storage power station, the cost of wind, 
photovoltaic and energy storage devices after conversion is shown in equation (2): 

 
2 , ,

1 1 1

T J K
w pv bat

c w i t pv i t bat t

t i i

f c P c P c P
= = =

 
= + + 

 
    (2) 

Where 
wc  , pvc  , 

batc   are the cost coefficients of wind, photovoltaic and energy storage 

devices; J and K represent the number of wind turbines and photovoltaic devices respectively; 

,

w

i tP , ,

pv

i tP  represent the dispatched power of the ith wind turbine and photovoltaic device at 

time t; and bat

tP  represents the output or input power of the energy storage power station at 

time t. 
Therefore, the total cost of the HDEED system is shown in equation (3): 

 
cos t 1 2min c cF f f= +  (3) 

 
Objective 2. Minimize Pollutant emission 
Thermal power units produce large amounts of carbon dioxide and other polluting gases, 

which are harmful to the environment. Wind and photovoltaic generation as an 
environmentally friendly renewable energy generation method, increase the corresponding 
proportion of power generation can reduce pollutant emission, and pollutant emission from 
wind and photovoltaic installations can be ignored at the same time (Li et al., 2021a). In this 
study, the minimum value of pollutant emission is determined by analyzing the relationship 
between the power of thermal power units. The corresponding emission formula can be 
expressed as equation (4). 

 2

, , ,

1 1

min [ exp( )]
T n

emi i i i t i i t i i i t

t i

F o p P q P P 
= =

= + + +  (4) 

Where 
io  , 

ip  , 
iq  , 

i   and 
i   represent the pollutant emission coefficients of the ith 

Thermal power unit. 
This study uses a weighted approach to transform multi-objective into a single-goal 

optimization solution. Obtains a set of Pareto solution sets by changing the weight coefficient, 
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and finally gets a compromise solution of multiple goals by the subordinate function. The 
objective function is as follows: 
 cos tmin (1 ) emiF F F = + −  (5) 

Where F represents the objective function combined with weight; The value of weight ω 
changes in the range of 0-1. Since the operating cost and pollutant emission of the two 
objectives are contradictory, the value of ω is used to change the optimal proportion of 
operating cost and pollutant emission to determine the compromise solution. 

As weight formula that transforms multiple objectives into a single objective function for 
optimization, some problems of equation (5) need to be improved are found in this study. That 
is, when the value of fitness is calculated in equation (5) by changing the weight coefficient ω 
to obtain a set of Pareto solutions, the change of the weight coefficient ω will not have a better 
effect on the choice of compromise solution of the objective function if operation cost and 
pollutant emission are of different magnitudes. Therefore, the objective function is modified 
to introduce proportional coefficient Q into the fitness function, and the value of Q depends 
on the magnitude difference between the different objectives. The modified objective 
function is as follows: 
 cos tmin (1 ) emiF F Q F = + −  (6) 

3.1.2. System constraints 
The constraints of the entire system and each power generation module need to be 

considered in HDEED model. 
(1) Power balance constrains of HDEED system 

The operation of power transmission network needs to maintain the power balance 
between power generation and load at all times, otherwise it will affect the safety of the 
system and cause damage to the electrical equipment. 

When the dispatched power of energy storage power station is greater than zero, the sum 
of output power of the thermal power units, wind turbines, photovoltaic device and energy 
storage power station should be equal to the total load and transmission loss of the system, 
otherwise the power of the thermal power units, wind turbines and photovoltaic device equal 
to load and transmission loss. 
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1 1 1

, 0
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N J K
w pv load loss bat
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w pv bat load loss bat

i t i t i t t t t t

i i i

P P P P P P

P P P P P P P

= = =

= = =


+ + = + 



 + + + = + 


  

  

 (7) 

Where load

tP  represents the load power at time t; loss

tP  represents the transmission loss at 

time t. The expression of transmission loss is as shown: 

 
, , , ,

1 1 1

N N N
loss

t i t i j j t i t i o

i j i

P P L P P L L
= = =

= + +   (8) 

Where 
,i jL , iL  and oL  represent transmission loss coefficients. 

(2) Power constraints of thermal power units 
The power generated from thermal power units in HDEED system must not exceed the 

power limit in equation (9). 
 min max

i i iP P P   (9) 

Where min

iP  and max

iP  represent the minimum and maximum power of ith unit. 

A rapid increase or decrease in output power will damage the generator, so the output 
power is controlled within a certain range by setting the limits of power change. The 
constraints are illustrated as follows: 
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,
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D
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P P P if P P

− −

− −

 −  


−  
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Where U

iP  and D

iP  are rise and fall boundaries of power change of ith unit. 

(3) Power constraints of wind and photovoltaic generation 
Wind and photovoltaic, as renewable energy sources, are greatly affected by the 

environment during power generation and need to be dispatched within the scope of the 
forecast output. 

 , ,max0 w w

i t tP P   (11) 

 , ,max0 pv pv

i t tP P   (12) 

Where ,max

w

tP  and ,max

pv

tP   respectively represent the maximum output power of wind and 

photovoltaic device at time t. 
(4) Charge-discharge power and energy balance constraints of energy storage power station 
 bat bat bat

D t RP P P−    (13) 

Where bat

RP  is the maximum discharge power of the energy storage power station; bat

DP  is 

the maximum charge power; bat

tP   is the charge or discharge power dispatched by energy 

storage power station at time t; The energy storage power station discharges when bat

tP  is 

greater than zero and charges when it is less than zero. 
As the energy storage power station has a certain capacity, the state of energy storage at 

each moment is limited by the previous state and the phenomenon of excessive charging or 
discharging needs to be prevented (Gaspar et al., 2021). Therefore, an energy constraint is 
added to the energy storage power station, as follows: 

 
1

1

, 0

, 0

bat bat bat

t t t t

bat

batt

t t tbat

E E P P

P
E E P





+

+

 = − 



= − 


 (14) 

 
max0 tE E   (15) 

Where tE  and 1tE +  are the electricity quantity of the energy storage power station at time t 

and the next time respectively; The efficiency of both charging and discharging of the energy 

storage power station are bat ; maxE  represents the maximum capacity of the energy storage 

power station, and the electricity quantity at each time should be within the bounded range. 
To prevent damage to the energy storage system, the storage power station also needs to 

meet the requirement that the charge and discharge quantity are equal in one or more cycles. 
In the study, the charge and discharge quantity of energy storage power station is set to be 
equal in a dispatch cycle, as follows: 

 
1

0
T

bat

t

t

P
=

  (16) 

3.1.3. Wind-photovoltaic stability output strategy 
The dispatch power of wind and photovoltaic generation does not subject to other 

constraints except taking the forecast power of wind and photovoltaic as maximum reference 
power in most studies on the optimal dispatch of multiple energy sources including wind, solar 
and thermal energy. If the time-of-use electricity price is not considered, the energy storage 
device as a peak-shaving and valley-filling tool will makes the output power of wind and 
photovoltaic to the grid is large in optimization due to the high manufacturing and operation 
costs of the energy storage device, which makes the energy storage device does not play a 
better role. 



10 

 

A strategy of regulating the stable output of wind and photovoltaic is introduced, which 
divides the higher and lower periods of wind and photovoltaic output according to the 
predicted wind power and photovoltaic power. Reduce part of the power of wind turbine or 
photovoltaic device access to the grid during the period of large wind and photovoltaic output 
and store the remaining power in the energy storage device. As much as possible to increase 
the power of wind turbine and photovoltaic access to the grid in a small period and discharge 
the energy storage device. If the wind or photovoltaic output suddenly rises at a certain time, 
it will correspondingly reduce the power connected to the grid and store the remaining power 
in the energy storage device even if it belongs to the low power period. On the contrary, the 
actual generation power drops sharply during the period that the forecast power of wind 
turbine or photovoltaic is high, to increase the power connected to the grid and discharge the 
energy storage device(de Siqueira and Peng, 2021). The strategy combines wind turbine, 
photovoltaic device and energy storage device as a whole to improve the stability of renewable 
energy access to grid, and then optimizes the power in combination with algorithms to achieve 
the optimal operating cost and pollutant emission. The control process is shown in Figure 1. 
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Figure 1. Flow chart of control strategy 

 
3.2. Mayfly optimization algorithm and its improvement 

MA optimization algorithm, which refers to the social behavior of the mayfly, is a new 
intelligent optimization algorithm proposed by Konstantinos Zervoudakis in 2020 (Zervoudakis 
and Tsafarakis, 2020). The algorithm is composed of female and male populations of mayfly 
and has better optimization ability by simulates the movement behavior and mating behavior 
of mayfly. 
3.2.1. mayfly optimization algorithm 

In MA optimization algorithm, the position of the female and the male mayfly is 
considered to be the HDEED problem to be solved. The population is updated through 
parental position update and mating to obtain the required optimal solution in the iterative 
process. 
(1) The location and fitness of the mayfly population 

The position matrix of male mayfly is as follows: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

l l l

D

l l l

Dl

l l l

N N N D

x x x

x x x
X

x x x

 
 
 

=  
 
 
 

L

L

M M M

L

 (17) 
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Where lX  represents the male population after the 
thi iteration; ,

l

i jx  is the position of 
thi  

individual in 
thj  dimension after the 

thl  iteration; N is the size of the population, and D is 

the dimension of the problem to be solved. The position matrix of female population is as 
follows: 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

l l l

D

l l l

Dl

l l l

N N N D

y y y

y y y
Y

y y y

 
 
 

=  
 
 
 

L

L

M M M

L

 (18) 

Where lY  represents the female population after the 
thl iteration, both the female and male 

mayfly populations have the same size are set to N. 
The objective function is regarded as the fitness function of the population in the process 

of solving HDEED problem. The fitness matrix of male population can be obtained as follows: 

 1 2, , ,l l l l

mle NFit fit fit fit =  L  (19) 

Where l

Nfit  is the fitness corresponding to the 
thN  male mayfly in the 

thi  iteration. In the 

same way, the fitness matrix corresponding to the female mayfly population can be obtained 
as follows: 

 1 2', ', , 'l l l l

fle NFit fit fit fit =  L  (20) 

Where l

fleFit  is the fitness matrix of female mayfly population; 'l

Nfit  is the fitness 

corresponding to the 
thN  female mayfly in the 

thi  iteration. 

(2) Position update strategy of mayfly 
Male mayflies update their position by jumping near the water surface, that is, adding the 

unit speed of the mayfly at the current position: 

 1 1l l l

i i ix x v+ += +  (21) 

Male mayflies have a group character and does not have a large moving speed. The 
position update formula of male mayflies is described as follows: 

 
2 2

1

1

1 2

* ( ) ( )

( ) ( ) ( ) ( )

l l

i i i best

l l rp l rg l

i i best i best i i best

v v fl e f x f g

v v k e p x k e g x f x f g 

+

+ − −

 = + 


= + − + − 

 (22) 

Where l

iv  is the velocity of 
thi  male mayfly in 

thl  iteration; l

ix  is the position of 
thi  male 

mayfly in the 
thl  iteration; 

1k  and 
2k  are positive attraction coefficients; rp is the distance 

between local optimal position and 
thi male mayfly in the current iteration; rg is the distance 

between global optimal position and 
thi male mayfly; 

bestp  and 
bestg are the local optimal 

position and the global optimal position respectively. 
Unlike male mayflies, female mayfly does not congregate in fixed place, but are attracted 

by male mayfly, and moving towards male mayfly positions. Assuming that the best female 
mayfly will move towards the best male mayfly position, and the formula for the position and 
speed of female mayfly are as shown: 

 1 1l l l

i i iy y v+ += +  (23) 

 
2

1

3

* ( ) ( )

( ) ( ) ( )

l

i i il

i l r l l

i i i i i

v fl e f y f x
v

v k e x y f y f x

+

−

 + 
= 

+ − 

 (24) 

Where 1l

iy +  and 1l

iv +  are the position and speed of the 
thi  female mayfly after the update; 

fl is the random walk coefficient of the female mayfly; e is a random number between -1 and 
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1 that changes with the number of iterations; 
3k is a fixed attraction coefficient of female 

mayflies; and r is the distance between the thi  male mayfly and the female mayfly. 

(3) Mating produces offspring 
Most animals and plants follow the principle of survival of the fittest when mating. 

Assuming that mayflies are attracted to each other for mating according to their fitness. That 
is, the best adapted female and male will mate and produce a female and a male offspring. 
The results are as follows: 

 
1 (1 )

2 (1 )

i i

i i

new q x q y

new q x q y

=  + − 


= −  + 
 (25) 

Where q is a random number from -1 to 1 with the same dimension as x and y; 
1x  and 

1y  

are the 
thi  male and female mayfly sorted by fitness; 1new  and 2new  are offspring of the 

generation. 
3.2.2 Improved mayfly optimization algorithm  
(1) Chaos map initialization population 

To find optimal solution of population faster and maintain the randomness of the initial 
population as much as possible, logistic chaotic mapping is introduced to improve the 
initialization method of MA algorithm, which is expressed as follows: 
 ( )i ix z ub lb lb=  − +  (26) 

Where 
ix  represents the position of the 

thi  male mayfly after chaos initialization; ub and lb 

represent the upper and lower limits of the mayfly position; 
iz  is a chaotic sequence with 

the same dimension as 
ix . Generate other z through the logistic mapping formula and a 

1z  

vector randomly generated between 0-1, as shown: 

 ( )1 11i i iz z z − −=   −  (27) 

Where   is an adjustable parameter, and all values of z can be chaotic when the value of   

is 4. The initial position of the female mayfly is also available: 
 ( )i iy z ub lb lb=  − +  (28) 

(2) Adaptive weight factor 
The introduction of adaptive weight factor in the mayfly speed update can enhance the 

global or local search ability. The larger weight in the early stage is conducive to the global 
search. The search range is determined in the final stage, which can reduce the adaptive factor 
and find the optimal solution within a certain range. The square value of the sine function can 
be used to keep the larger adaptive factor in the initial stage and the smaller adaptive factor 
in the final stage for a long time. The expression of the adaptive factor w is as follows:  

 2

max max min( ) sin( )
2

l l
w w w w

L


= − −   (29) 

Where lw  represents the adaptive factor at the 
thl  iteration; L represents the maximum 

value of iterations. 
maxw  represents the maximum value of the adaptive factor and the value 

is 1; 
minw  represents the minimum value of the adaptive factor and the value is 0.5.  

To show the effect of adaptive weight factor, several common weights are used as 
comparisons. Figure 2 shows the iterative curves of multiple weight factors. 
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Figure 2. Adaptive factor 

 
Where the blue curve is the adaptive weight factor w proposed in this study, and the 
remaining w1, w2 and w3 represent several commonly used weight factors 
respectively(Arasomwan and Adewumi, 2013; Shi and Eberhart, 1998). The result shows that 
the adaptive weight factor used in this study can improve the optimization effect of IMA 
algorithm by combining larger values of w1 in early iterations and smaller values of w3 in late 
iterations. 

The update formula of the male mayfly speed after adding the adaptive weight factor is 
as follows: 

 
2 21

1 2( ) ( )l l l rp l rg l

i i best i best iv w v k e p x k e g x + − −= + − + −  (30) 

The speed update formula for female is as follows: 

 
2

1

3

* ( ) ( )

( ) ( ) ( )

l l

i i il

i l l r l l

i i i i i

w v fl e f y f x
v

w v k e x y f y f x

+

−

 + 
= 

+ − 

 (31) 

(3) Offspring mutation 
Among the offspring of mayfly, the best male and female individual mate to produce 

offspring, this makes it easy for algorithm to fall into local optimization during iteration. 
Mutation operation is added to the offspring of mayfly to improve the global search ability. 
The mutation formula is as follows: 
 mutnew new = +  (32) 

Where mutnew represents the offspring after mutation; new represents the offspring after 
mating; and   is the value of mutation. 

The method of calculating the mutation value is improved to reduce the invalid mutation 
as much as possible and let the offspring mutate within the search range. Increase the 
mutation value in the early stage and mutate as many times as possible in the global scope. 
Correspondingly reduce the mutation value in the later stage to improve the efficiency of the 
mutation. The improved mutation formula is expressed as shown: 

 
=0, =0

( 1,1) (1 0.5 / ) / 2, 1best

if

unifrnd l L g if

 

 




= −  −   =
 (33) 

Where ( 1,1)unifrnd −  represents a random number between -1 and 1;   is the mutation 

factor, which is affected by the probability of mutation.  
(4) Worst position update strategy 

Among the new population generated after crossover and mutation, a certain number of 
mayflies with the worst positions will update their positions refer to the best position mayflies, 
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which is beneficial to improve the local search ability of mayflies. Set the worst mayfly to 
update by reference to the position of three mayflies, as follows: 

 

1 1 2

1 1 2

3

3

l l l

l i i i

N i

l l l

l i i i

N i

x x x
x

y y y
y

+ + +

−

+ + +

−

 + +
=




+ + =
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 (34) 

where 1

1

l

Nx +

− and 1

1

l

Ny +

−  represent the male and female individuals after the worst mayfly 

position is updated. 
 
2.3. Membership function 

After obtaining a set of Pareto solutions of operating cost and pollutant emission under 
different weight coefficients by using equation (6), the membership function is introduced to 
calculate the satisfaction of Pareto solution sets (Li et al., 2021b). The main steps are as follows: 
(1) The satisfaction degree of each dimension of Pareto solution is calculated: 
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 (35) 

Where ,k i  represents the satisfaction of kth dimension in ith solution; max

kf  and min

kf  

represent the upper and lower bounds of the kth dimension. 
(2) The comprehensive satisfaction of each solution is calculated:  
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=

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 (36) 

Where n is the number of dimensions, which represents the objective of cost and emission in 
this study. 
(3) The satisfaction of Pareto solution set is comprehensively analyzed to choose the best 
compromise solution. 
2.4 Flow framework for solving HDEED problem 

Figure3 shows the flow framework for optimizing HDEED problem by using wind-
photovoltaic stability output strategy and IMA algorithm. The model interacts with two 
optimization levels of the wind and photovoltaic power optimization level and the IMA 
optimization level, and ultimately combines the membership function to calculate pareto 
solution set through equation (35) and equation (36) to obtain the compromise solution. 

In practical application, the wind and photovoltaic power optimization level is closely 
integrated with the IMA optimization level. Based on the analysis of the predicted wind and 
photovoltaic power within a cycle, the dispatch power of the wind turbines, photovoltaic 
device and energy storage power station connected to the transmission network is then 
determined and the result of dispatch power is transmitted to the IMA optimization level. The 
IMA optimization level combines the load demand and the power from the wind and 
photovoltaic power optimization level to optimize the power of thermal power units and 
obtains pareto solution set by changing the weight coefficient ω.The specific process of IMA 
optimization level in HDEED model is as follows: 
(1) The parameters and constraints of load, thermal power units, wind turbines, photovoltaic 

device and energy storage power station are received, the weight coefficient ω and 
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proportional coefficient Q are determined, and the IMA algorithm starts to run. 
(2) Initialize the parameters of IMA algorithm and evaluate the fitness value of population to 

select the local and global optimal solutions. 
(3) Update the position and velocity of male and female mayfly, then the fitness value of each 

mayfly is evaluated by the equation (6), and the global and local optimum are updated. 
(4) Crossover and mutation operations are carried out to produce a certain number of 

offspring, and the offspring and parents are sorted according to fitness values to produce 
a new generation of female and male populations with number N. 

(5) Update the adaptive weight factor with equation (29) and other coefficients. 
(6) Judge the termination condition, and output the optimal solution obtained by the IMA 

algorithm if the condition is met. 
(7) The weight coefficient ω of equation (6) is increased by 0.05 from 0 to 1 in order, and the 

IMA algorithm is repeated to obtain the pareto solution set and output. 
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Figure 3. Flow framework of the power system 

 
4. Performance analysis of the proposed IMA algorithm 

Using only one type of benchmark function cannot show the characteristics of the 
algorithm. Therefore, this study introduces four different types of benchmark functions to 
verify the optimization ability of the improved algorithm. In test function, 

1f   and 
2f  

represent the unimodal function, which can be used to test the convergence speed and 
accuracy of the algorithm. 

3f  represents multimodal function that can effectively test the 

algorithm out of the local optimum. 
4f  is a composite test function to verify the convergence 

speed of the algorithm. The four benchmark functions are shown in Table 1. 
The PSO (Mohammadian et al., 2018), MFO (Mirjalili, 2015) and MA algorithms are 
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selected to compare to verify the convergence performance of the improved MA algorithm 
with same amount of iterations. The number of iterations and population size are 1000 and 
30 respectively, and other parameters of each algorithm are shown in Table 2. 

 
Table 1. Benchmark function 

Function Range Dim Theoretical minimum 
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Table 2. Algorithm parameters 

Algorithm parameters 

PSO c1=1, c2=2, w=0.5 
MFO b=1 
MA a1=1, a2=1.5, a3=1.5, fl=0.1 
IMA gmax=1, gmin=0.5, a1=1, a2=1.5, a3=1.5, fl=0.1, d=0.1 

 
In PSO algorithm, c1 and c2 are learning factors and w is inertia weight. b is the spiral 

degree of the MFO algorithm. In MA algorithm, a1, a2 and a3 are positive attraction 
coefficients of the mayfly, and fl is the random flight coefficient. In IMA algorithm, gmax and 
gmin are the maximum and minimum weight coefficients associated with the speed of radon, 
and d is the dance coefficient. Each test function is run 20 times to improve the reliability of 
the results, and the average, standard deviation, optimal value, worst value, and number of 
results above the average are calculated. The test results are shown in Table 3, and the iterative 
curve is obtained when the algorithm gets the optimal value by running it repeatedly, as shown 
in Figure 2. The experiment is run in MATLAB R2016b and based on Windows10 system Intel 
(R) Core (TM) i5-6200U CPU. 

Table 3 illustrates the running results of the benchmark functions 
1f , 

2f , 
3f  and 

4f  on 

the four algorithms. The results show that IMA algorithm has better convergence speed and 
accuracy, with the largest number of solutions running 20 times above average and higher 
stability. Combined with Figure 4, in the unimodal function, the MA algorithm has obvious 
effects compared to PSO and MFO, and the IMA algorithm has better convergence speed and 
accuracy than original MA algorithm. In the multimodal function, the optimization effect of 
IMA algorithm is more prominent, and the optimal solution can reach 0. The IMA algorithm 
converges more quickly in the early stage and finds the largest number of solutions exceed the 
average for composite test functions. 

From the iteration curves, thanks to the chaotic initialization method, the IMA algorithm 
converges fastest and requires the least number of iterations to find the optimal solution even 
though the value of the degree of adaptation is large at the initial moment. The use of 
mutation strategy, weight coefficient and the worst position update strategy enhances the 
optimization ability of IMA algorithm to find better results in terms of Average, Standard 
Deviation, best fitness and number. 
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Konstantinos et al. proposed an improved MA algorithm while proposing the original MA 

algorithm. By running the four test functions ( )1f x  , ( )2f x  , ( )3f x   and ( )4f x   under the 

same conditions, the average values were obtained as 1.1658e-80, 1.4361e-10, 7.1639, 
3.7181e-04 respectively, while the average values obtained by the IMA algorithm were 
3.0022e-105, 6.1588e-25, 4.3778, 3.5327e-04, it is obvious that IMA algorithm has better 
optimization ability than the improved algorithm proposed by Konstantinos and can be used 
for the study of HDEED problem. 

 
Table 3. Statistical results of the benchmark function 

 
Figure 4. Comparison of algorithm iteration curves 

 
5. Case study 

In this section, two Systems are used to verify the effectiveness and practicability of the 
IMA algorithm and wind-photovoltaic output strategy. System 1 includes 5 thermal power 

Function Algorithm Average  Std Best fitness Worst 
fitness 

number 

( )1f x  

PSO 0.1375 0.3129 1.0795e-06 1.4058 16 

MFO 2.2422e-30 6.4137e-30 6.1587e-34 2.8100e-29 17 

MA 5.6138e-75 1.3972e-74 8.0155e-80 5.8431e-74 16 

IMA 3.0022e-
105 

9.5307e-
105 

3.2943e-
114 

3.9959e-
104 

18 

( )2f x  

PSO 20.7209 3.9115 14.2147 28.0578 11 

MFO 34.0013 22.5701 8.1190e-04 70.0000 10 

MA 7.1557e-11 8.3120e-11 3.6144e-12 3.8077e-10 14 

IMA 6.1588e-25 1.2941e-24 1.4322e-26 5.7531e-24 17 

( )3f x  

PSO 117.4759 27.0250 76.8657 188.8145 11 

MFO 151.8229 39.5464 79.5966 221.1638 11 

MA 78.0045 25.6409 34.8235 136.3087 11 

IMA 4.3778 3.9720 0 13.9294 13 

( )4f x  

PSO 7.0514e-04 3.3347e-04 3.0749-04 0.00103 8 

MFO 0.0010 4.7881e-04 5.2226e-04 0.0022 13 

MA 0.0011 0.0025 3.0749e-04 0.0109 17 

IMA 3.5327e-04 2.0475e-04 3.0749e-04 0.0012 19 
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units, 2 wind turbines, 1 photovoltaic device and 1 energy storage device; System 2 includes 
10 thermal power units, 3 wind turbines, 2 photovoltaic devices and 1 energy storage device. 
The established model and algorithm are combined to verify the performance of IMA 
algorithm, and then the IMA algorithm is used to analyze the wind-photovoltaic output 
strategy. The power of wind turbine and photovoltaic device required for the study are 
referenced in Mohy-ud-din (2017) and (Ye et al., 2021). The load power curve used in the two 
Systems is shown in Figure 5 (Liu et al., 2021; Qian et al., 2020). 

 

 
    Figure 5. Load power in two Systems 

 
5.1. System 1 

The first part is the study of the improved algorithm on the HDEED problem, and the 
second part is the study of the introduction of wind-solar stability output strategy. The 
research of System 1 including 5 thermal power units is divided into two parts. The first part is 
the study of HDEED problem combination algorithm. The second part is the study of wind-
photovoltaic stable output strategy. The energy storage devices could not be charged and 
discharged at the same time to facilitate the study. 
5.1.1. Discussion on IMA optimization algorithm in System 1 

In solving the Pareto solution set, it is necessary to determine the value of proportional 
coefficient Q in order to achieve better results in optimization of the algorithm based on the 
fitness function (6). The cost and pollutant emission have the same order of magnitude by 
running IMA algorithm, so the value of Q is taken as 0. Next, the weight coefficient ω in the 
fitness function is increased from 0 to 1 by 0.05 each time, and the Pareto solution set is 
obtained by iterating IMA algorithm 500 times each time. Then the compromise solution is 
calculated to obtain the corresponding weight coefficient ω of 0.5. The Pareto solution set for 
cost and pollutant emission is shown in Figure 6. 
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Figure 6. Pareto solution set in System 1 
 
After combining the HDEED problem of System 1, the IMA algorithm is compared with MA 

algorithm, MFO algorithm and PSO algorithm, and the corresponding cost and pollutant 
emission are obtained as shown in Table 4. The operating cost and pollutant emission obtained 
by IMA algorithm are the smallest. Compared with MA algorithm, pollutant emission is 
reduced by300lb, accounting for 1.68%; cost is reduced by 2023$, accounting for 4.12%. 
Compared with the PSO and MFO algorithms with the high operation cost, the costs are 
reduced by 8387$ and 7516$ respectively, accounting for 15.14% and 13.21%. Pollutant 
emission are reduced by 1155lb and 1142lb respectively, accounting for 6.18% and 6.12%. The 
transmission loss obtained by different algorithms will not be particularly different, but the 
transmission loss corresponding to the thermal power is also small when System has a better 
search for the best result. 

 
Table 4. Operating results of different algorithms for System 1 

Algorithm Cost (104) ($) Emission (104) (lb) Loss (MW) 

IMA 4.7020 1.7522 167.7475 
MA 4.9043 1.7822 167.6299 
MFO 5.4176 1.8664 170.9594 
PSO 5.5407 1.8677 172.7660 

 
Figure 7 shows the comparison of the operating cost and pollutant emission per hour of 

the four algorithms in System 1. The cost curve of IMA algorithm is close to that of MA 
algorithm, and the cost is much lower than that of PSO algorithm and MFO algorithm at most 
times. The operation cost of IMA and MA algorithms is much lower than that of other 
algorithms at the moment of 16.00-19.00 with lower load. While the emission curve obtained 
by different algorithms has different effects at each period. For the emission curve, the 
pollutant emission obtained by IMA algorithm are far lower than those obtained by MA, PSO 
and MFO algorithms at the first high load power, and the pollutant emission are slightly inferior 
to those obtained by MA algorithm at the later time, but the total emission in 24 hours is still 
the lowest. Therefore, IMA algorithm is lower than other algorithms in emission, and has 
achieved obvious results in operating cost. 

 
Figure 7. Objective curves of different algorithms for System 1 

 
5.1.2. Discussion on wind and photovoltaic stability output strategy in System 1 

The optimization ability of IMA algorithm is verified through the algorithm comparison, 
then the following discussion applies IMA algorithm to optimize HDEED problem in System 1 
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with wind-photovoltaic stable output strategy. To verify the effectiveness of the strategy, three 
models are used for comparative analysis. 

Model 1: IMA algorithm with wind-photovoltaic stability output strategy.  
Model 2: IMA algorithm without energy storage and wind-photovoltaic stability output 

strategy.  
Model 3: IMA algorithm without wind-photovoltaic stability output strategy but with 

energy storage. 
Energy storage discharges are also seen as part of renewable energy power due to 

charging surplus wind and photovoltaic power to energy storage power station. Figure 8 shows 
the total dispatched power of wind, photovoltaic and energy storage device of the three 
models in System 1. It shows that the power curve of Model 1 with the wind-photovoltaic 
stable output strategy is more stable in 24 hours. Even if the renewable energy power is small 
during the period of 8.00–10.00 and 17.00–20.00, a relatively stable total power is still 
obtained, indicating that the strong regulatory effect of the energy storage device. The power 
of Model 2 and Model 3 are unstable due to large fluctuation. The total renewable energy 
output for Model 1, Model 2 and Model 3 was calculated to be 956.41MW, 775.39MW and 
934.70MW respectively in a cycle, with Model 1 having the highest renewable energy 
utilization of 956.41MW. 

 

 
Figure 8. Renewable energy output of three models in System 1 

 
Table 5 shows the comparison of various parameters of the three models in System 1, 

including operating cost, pollutant emission, charge and discharge power and final power of 
energy storage device. Model 1 has a maximum operating cost of 4.9591×104$ and a minimum 
pollutant emission of 1.7009×104lb. Model 2 has a reduced operating cost and an increased 
pollutant emission compared to other models as it does not need to consider the conflict 
between the cost of energy storage and the use of renewable energy. The discharge power is 
28.50MW and the charge power is close to 0 in Model 3, even if the energy storage device is 
added, the wind power connected to the grid is not reduced when optimizing the operating 
cost and pollutant emission, which reduces the regulation effect of the energy storage device. 
According to the charge and discharge power in the Table 5, only Model 1 with control strategy 
can make full use of the effect of energy storage device, but it also causes a certain increase in 
cost due to the constant regulation of renewable energy generation by the energy storage 
device. 

Figure 9 shows the comparison of wind and photovoltaic power of three models within 24 
hours. At moments of 0.00–6.00 and 21.00–24.00, Model 1 reduces the wind power connected 



22 

 

to the grid, making the wind power lower than Model 3 without control strategy. In contrast, 
Model 2 greatly reduces the wind dispatched power at more times to reduce the value of 
fitness function, resulting in a large amount of wind abandonment. Due to the lack of control 
strategy, the dispatched power of Model 3 is directly equal to the forecasted output of wind 
and photovoltaic at most times. Although the renewable energy utilization rate of Model 3 in 
24 hours is 934.70MW, it still does not make better use of renewable energy well at 8, 16 and 
17 hours of wind power and photovoltaic. Only Model 1 can obtain the most stable and highest 
utilization of renewable energy dispatch. 

 

 
(a) Comparison of wind power 

 
(b) Comparison of photovoltaic power 

Figure 9. Different types of renewable energy output of three models for System 1 
 

Table 5. Comparison of the results of three models for System 1 

Model 
Cost(104)(
$) 

Emission(104)(l
b) 

Discharge 
power(MW) 

Charge 
power(MW) 

Electricity(MW ‧

h) 

Model 
1 

4.9591 1.7009 123.6059 -140.0956 32.94 

Model 
2 

4.6731 1.7840 0 0 0 

Model 
3 

4.7020 1.7522 28.5000 -1.24e-09 0 
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Table 6 shows the optimal dispatch power per hour for each unit of Model 1 in System 1. 
P1-P5 represent the dispatch power of five thermal power units, PW1-PW2 represent the 
dispatch power of two wind turbines, PV1 represents the dispatch power of photovoltaic 
device, P_bat represents the dispatch power of the energy storage device, and E represents 
the hourly electricity of the energy storage power station. Figure 10 shows the optimal 
electricity and charge and discharge power of energy storage device of Model 1 in System 1. 
For ease of understanding make discharge power a positive value and charge power a negative 
value. The energy storage device uses wind power not connected to the grid to charge during 
the period when the wind power is high at 0.00-5.00 and 21.00-24.00. The power connected 
to the grid is also reduced to charge the energy storage power station during periods of high 
fluctuations in wind power from 11.00 to 16.00. The discharge of energy storage devices 
during the morning and evening peak of load demand is also conducive to reducing the peak 
load power applied to the thermal power units and maintaining the stable operation of the 
power grid. At the same time, the total charge power of energy storage device is 140.0956MW 
and the discharge power is 123.6059MW through reasonable dispatch, makes the charge and 

discharge power are relatively close in a dispatch cycle. The electricity is 30MW ‧h at 0th 

moment and 32.94MW‧h at 24th moment, which is conducive to sustainability of the energy 

storage device dispatch. Combined with Table 5, Model 3 without control strategy has an 
electricity of 0 at 24th moment, which does not meet the requirements for sustainability. 

 

 
Figure 10. Electricity and charge and discharge power of energy storage device for System 1 

 
Table 6. The dispatch output of each power generation device of Model 1 for System 1 

Hour P1 P2 P3 P4 P5 PW1/2 PV1 E P_bat 

1.00  55.52  20.00  112.67  124.91  50.00  24.80  0.00  45.58  -16.40 
2.00  75.00  40.39  112.67  124.91  50.00  17.27 0.00  65.98  -21.47 
3.00  75.00  62.59  127.67  124.91  50.00  19.40  0.00  74.72  -9.21 
4.00  75.00  92.59  112.67  124.91  82.84  23.42  0.00  89.13  -15.16 
5.00  52.70  98.54  112.67  124.91  132.84  20.93  0.00  100.0  -11.44 
6.00  75.00  98.54  140.81  124.91  139.76  17.86  0.00  100.0  0 
7.00  75.00  98.54  112.67  167.90  139.76  18.70  0.00  97.99  1.91 
8.00  75.00  98.54  175.00  209.82  68.85  12.00  2.00  88.58  8.94 
9.00  75.00  98.54  158.35  209.82  118.85  6.00  10.00  71.38  16.34 
10.00  75.00  98.54  156.01  209.82  139.76  4.00  20.33  65.17  5.90 
11.00  66.93  97.52  175.00  208.34  139.57  10.00  21.87  71.20  -6.36 
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12.00  74.98  103.08  175.00  211.01  141.44  12.00  20.67  78.64  -7.82 
13.00  47.32  95.40  175.00  206.76  148.12  8.00  24.36  80.94  -2.42 
14.00  75.00  98.54  141.25  209.82  139.76  6.00  22.62  82.27  -1.40 
15.00  64.26  92.32  111.75  209.12  139.72  13.00  19.39  91.46  -9.67 
16.00  34.26  97.20  112.67  159.12  139.71  15.89  11.33  100.0  -8.99 
17.00  49.18  98.54  112.67  124.91  139.76  10.00  1.00  81.54  17.54 
18.00  27.15 90.82  112.00  200.16  144.98  6.00  0.00  51.71  28.34 
19.00  61.28  98.54  112.67  209.82  139.76  7.00  0.00  24.41  25.94 
20.00  75.00  69.85  175.00  212.14  142.44  10.00  0.00  4.68  18.74 
21.00  75.00  98.54  129.97  209.82  139.76  17.81  0.00  5.98  -1.37 
22.00  42.12  98.54  175.00  209.82  50.00  18.28  0.00  11.16  -5.44 
23.00  21.89  98.54  112.67  209.82  50.00  19.72  0.00  20.61  -9.96 
24.00  37.62  98.54  112.67  124.91  50.00  21.51  0.00  32.94  -12.98 

 
Figure 11 shows the stacked bar chart of thermal power units dispatched power and 

renewable energy power of Model 1 in System 1. The uppermost curve represents the power 
required by the power grid every hour, that is, the sum power of load and network 
transmission loss. The top red part is the sum of wind, photovoltaic and energy storage 
discharge power, and the rest of each color represents the power dispatched by each thermal 
power unit. The output of each thermal power unit is more directly from the stacked bar chart. 
At the same time, according to the power curve of the power grid coincides with the top of 
the histogram, it revealed that the dynamic balance of power grid can be maintained at each 
time, which meets the power balance constraint of System 1. 

 
Figure11. Stacked bar chart of units’ output and power balance constraints of Model 1 for 

System 1 
 
In System 1, it is verified that the IMA algorithm combined with the wind-photovoltaic 

stable output strategy has better optimization effect on 5 units. For small wind and solar 
Systems, it can better maintain the stability of wind and solar power output power under the 
premise of optimizing economy and emission, which is better for small wind-solar System to 
maintain a stable renewable energy output while optimizing operating cost and pollutant 
emission. 

 
5.2. System 2 

System 2 contains 10 thermal power units, 3 wind turbines, 2 photovoltaic devices and 1 
energy storage device, with the forecast power of wind turbines and photovoltaic devices 
remaining the same as in System 1. The load requirements are shown in Figure 5. 
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5.2.1. Discussion on IMA optimization algorithm in System 2 
The operating cost and pollutant emission are of the same order of magnitude in System 

1, so that the value of the proportional coefficient Q in fitness function (6) does not work that 
it is taken as 1. In System 2, the operating cost and pollutant emission are of different orders 
of magnitude so that proportional coefficient Q takes the value of 10. As with System 1, the 
value of the weight coefficient ω is varied and the IMA algorithm is run for 200 iterations per 
time to obtain the set of Pareto solutions and calculate the corresponding compromise 
solution. This is also compared with the fitness function commonly used in the current 
research without the inclusion of the proportional coefficient Q to obtain another set of Pareto 
solution. Two sets of Pareto solutions are shown in Figure 12. The result that the Pareto 
solution set obtained by adding the proportional coefficient Q works better than the Pareto 
solution set without adding Q. For general fitness function, the fitness value of the function is 
still determined by the operating costs and is basically unaffected by the pollutant emission 
when the operating cost is much larger than the pollutant emission even if the weight 
coefficient ω is added. And it is only by imputing the cost and emission to an order of 
magnitude that the points indicating the operating cost and pollutant emission are more linear 
and the resulting target value is smaller. Then the weight coefficient ω corresponding to the 
compromise solution with the highest satisfaction is obtained through membership function 
and takes the value of 0.75. 

 
Figure 12. Pareto solution set for System 2 

 
Table 7 shows the comparison of the results of IMA, MA, MFO and PSO algorithm in 

System 2. The MA algorithm is closer in cost and 1.99% lower in emission compared to MFO 
algorithm, and much better than the PSO algorithm. The results demonstrate the optimization 
effect of MA algorithm. Compared with MA algorithm, the cost of the IMA algorithm is reduced 
by 60895$, accounting for 2.49%; and the pollutant emission is reduced by 1392lb, accounting 
for 0.51%. Compared with MFO algorithm and PSO algorithm, the cost of IMA algorithm is 
reduced by 2.38% and 4.10% respectively, and the pollutant emission is reduced by 2.48% and 
13.59% respectively. As with System 1, the transmission loss of the IMA algorithm is minimum 
in System 2, and effectively verifying with both Systems that the optimal unit operation 
reduces System transmission loss. 

Figure 13 shows a comparison of the operating cost and pollutant emission of four 
algorithms in System 2 within 24 hours. The differences are not obvious in many moments in 
the graph due to the large order of magnitude of costs and emissions in System 2, so some 
moments are selected to mark the actual data. It can still be seen that the IMA algorithm for 
solving HDEED problem achieves a lower value in operating cost and pollutant emission per 
hour, which is better than MA, MFO and PSO algorithms. At the 5th hour, the actual cost 
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obtained by IMA algorithm is 1404$、2512$ and 3792$ lower than that of MA, MFO and PSO 
algorithms respectively, even if the curves of the costs are close. The IMA algorithm is more 
effective in optimizing the cost when the load power drops from peak to valley compared to 
other algorithms. Therefore, the IMA algorithm also has advantages in System 2 for 10 thermal 
power units. 

 

 
Figure 13. Objective curves of different algorithms for System 2 

 
 

Table 7. Operating results of different Algorithms for System 2 

Algorithms Cost (106) ($) Emission (105) (lb) Loss (MW) 

IMA 2.3815 2.7349 1409.8485 
MA 2.4424 2.7488 1439.0598 
MFO 2.4396 2.8045 1452.0845 
PSO 2.4832 3.1651 1521.2283 

 
5.2.2. Discussion on wind and photovoltaic stability output strategy in System 2 

The IMA algorithm is also applied to optimize HDEED model with wind-photovoltaic stable 
output strategy in System 2, and Model 1, Model 2 and Model 3 are used for comparative 
analysis to verify the effectiveness of wind and photovoltaic output strategy. 

Table 8 represents the comparison of parameters of three models in System 2, including 
operating cost, pollutant emission, charge and discharge power and final electricity of energy 
storage device. The operating cost and pollutant emission of Model 1 are 2.3941×106$ and 
2.7594×105lb respectively. Model 2, which is used as a comparison, also had no significant 
advantage in terms of operating cost and pollutant emission. In Model 3, the discharge power 
is 66.5822MW and the charge power is close to 0, which indicates that the energy storage 
device does not play an effective regulatory role. Therefore, if only the operation cost and 
pollutant emission are considered, Model 1 without the wind-photovoltaic stable output 
strategy works better. However, in the actual situation, it is necessary to reduce the cost and 
pollutant emission as much as possible under the premise of assurance the stable operation 
of system, that makes it more important to stabilize the dispatch power of the wind and 
photovoltaic. 

Figure 8 shows the total dispatched power of wind, photovoltaic and energy storage 
device of the three models in System 2. Compared with the renewable energy output data of 
the three models in System 1, the total output of renewable energy obtained by Model 2 and 
Model 3 in System 2 is the same in most of the time except for a few moments, which is more 
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evidence of the stability of the optimization effect of the IMA algorithm. The total dispatch 
power curve of Model 1 with wind-photovoltaic output strategy is more stable than that of 
Model 2 and Model 3. Only Model 1 is able to maintain the stability of the total output of wind, 
photovoltaic and energy storage device when the renewable energy power rises and falls 
rapidly during the period of 15.00–21.00, which is conducive to the secure and stable 
operation of the power grid. 

 
Table 8. Comparison of the results of three models in System 2 

Model Cost(106)($) Emission(105)(lb) 
Discharge 
power(MW) 

Charge 
power(MW) 

Electricity(MW ‧

h) 

Model 
1 

2.3941 2.7594 205.4170 239.2658 
81.07 

Model 
2 

2.3884 2.7624 0 0 
0 

Model 
3 

2.3815 2.7349 66.5822 0.0911 
0 

 
Figure 14. Renewable energy output of the three models in System 2 

 
Figure 15 shows the comparison of wind power and photovoltaic power dispatched by 

three models of System 2 over a 24-hour period. The dispatched photovoltaic power in Model 
1 has not been greatly reduced due to the stability of photovoltaic power generation. For the 
wind power, Model 1 reduces part of the wind power connected to the grid during the period 
of 0.00-5.00 and 21.00-24.00 when wind power is high. At 16th hour when the wind power 
fluctuates greatly, Model 1 will also reduce the dispatched power in order to stabilize the 
output. Compared with the predicted wind power, the dispatched power is reduced by 
36.68MW, accounting for 39.11%, and the dispatched power is reduced little compared to the 
forecast power when wind output is low. The dispatched power of wind and photovoltaic in 
Model 2 and Model 3 are similar at most times. As in the case of System 1, the wind and 
photovoltaic power is fully integrated into the grid for consumption to reduce operating cost 
and pollutant emission even if the energy storage device is added to Model 3, and the energy 
storage device does not play a role in regulating the wind and photovoltaic power. 
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(a) Comparison of wind power 

 
(b) Comparison of photovoltaic power 

Figure 15. Different types of renewable energy output of the three models in System 2 
 
Table 9 shows the optimal dispatch power for units of Model 1 in System 2. Where P1-P10 

represent the power of thermal power units; PW1-PW3 represent the power of three wind 
turbines, and the power dispatched by wind turbines are the same under the same strategy; 
PV1-PV2 represent the power of photovoltaic devices, P_bat represents the dispatched power 
of the energy storage device, and E represents the electricity of energy storage device in each 
hour. Figure 16 shows the optimal hourly electricity and charge and discharge power of the 
energy storage device corresponding to model 1 in System 2. During the morning and evening 
peaks, the discharge power of energy storage device will increase with the load demand. The 
initial electricity of energy storage device is 70MW•h for System2. The electricity of Model 1 
is 81.07MW•h at the 24th hour, and the electricity of Model 3 is close to 0 according to Table 
8. By comparison, only the Model 1 combined with the wind and photovoltaic output strategy 
is relatively close in electricity at the beginning and end moments of the dispatch, which can 
better meet the sustainability for energy storage device dispatch. 
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Figure 16. Electricity and charge and discharge power of energy storage power station in 

System 2 
 
Figure 17 shows the stacked bar chart of thermal power units and renewable energy 

dispatched power of Model 1 in System 2. The uppermost curve represents the power grid, 
which is the total power of load and loss. The remaining parts represent the dispatch power 
of each thermal power units respectively. The change of optimal power of thermal power units 
is more directly by stacked bar chart under the condition of keeping the total dispatch power 
of wind, photovoltaic and energy storage device stable. According to the coincidence of grid 
power line and the top of the histogram, it shows that the power required by the grid is 
consistent with the power of all generation devices and also verifies that proposed model in 
System 2 is able to satisfy the power balance constraints. 

 
Table 9. The dispatch output of each power generation device of Model 1 in System 2 

 Hou
r 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 PW1/2/
3 

PV1/
2 

E P_bat 

 1 150.0
0 

135.0
0 

73.00 67.15  122.8
7  

122.4
5  

129.6
0  

85.31  52.0
6  

43.4
2 

24.80 0.00 93.37  -
24.60   2 150.0

0 
135.0
0 

81.23 117.1
5  

122.9
1  

122.4
6  

129.5
9  

85.31  80.0
0  

43.4
2 

21.51 0.00  111.8
6  

-
19.46   3 150.0

0 
135.0
0 

121.4
5 

120.4
1  

172.7
4  

160.0
0  

129.6
0  

115.3
1 

80.0
0  

43.4
2 

19.40 0.00  124.9
8  

-
13.81   4 150.0

0 
135.0
0 

169.3
1 

149.4
9  

222.6
0  

160.0
0  

129.5
9  

120.0
0 

80.0
0  

55.0
0 

23.42 0.00  146.5
9  

-
22.74   5 150.0

0 
135.0
0  

197.3
0 

187.3
7  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

20.93 0.00  163.8
9  

-
18.21   6 151.4

1 
215.0
0 

234.4
6 

237.3
7  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

17.86 0.00  167.1
2  

-3.41  

 7 200.9
2 

222.1
0 

235.8
8 

241.2
4  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

18.70 0.00  152.2
9  

14.09  

 8 226.6
2 

222.2
7 

285.5
0 

248.7
9  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

12.00 0.00  122.6
4  

28.16  

 9 245.7
5 

302.2
7 

308.7
8 

298.7
9  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

6.00  10.0
0 

99.39  22.09  

 10 305.3
7 

328.8
0 

340.0
0 

300.0
0  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

4.00  20.3
3 

102.2
4  

-3.00  

 11 346.4
2 

363.2
1 

339.0
2 

300.0
0  

243.0
0  

158.6
4  

129.8
2  

120.0
0 

80.0
0  

55.0
0 

10.00 20.7
7 

112.9
7  

-
11.29   12 362.8

7 
391.1
6 

340.0
0 

300.0
0  

242.9
9  

159.9
9  

130.0
0  

120.0
0 

80.0
0  

54.9
2 

12.00 19.4
5 

126.3
4  

-
14.07   13 340.4

3 
335.1
7 

340.0
0 

298.9
3  

243.0
0  

160.0
0  

129.9
5  

120.0
0 

79.1
4  

55.0
0 

8.00  21.4
6 

133.8
3  

-7.89  

 14 263.1
8 

296.2
5 

296.0
3 

300.0
0  

242.5
0  

160.0
0  

130.0
0  

117.2
9 

80.0
0  

55.0
0 

6.00  22.6
2 

135.9
5  

-2.23  

 15 215.9
3 

216.2
5 

247.9
1 

294.3
4  

242.9
9  

160.0
0  

129.6
0  

119.8
9 

80.0
0  

53.7
1 

13.00 19.0
2 

152.2
1  

-
17.11   16 150.0

0 
144.5
3 

197.9
4 

244.3
4  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

54.7
6 

16.44 12.4
9 

187.1
9  

-
36.82   17 150.0

0 
135.0
0 

191.9
1 

194.3
4  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

10.00 1.00  156.3
6  

29.29  

 18 150.0
0 

222.2
7 

219.2
4 

241.2
5  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

6.00  0.00  113.4
5  

40.76  
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 19 226.6
2 

222.2
7 

286.8
0 

256.7
5  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

7.00  0.00  72.76  38.66  

 20 288.6
4 

302.2
7 

315.8
2 

300.0
0  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

10.00 0.00  38.69  32.36  

 21 244.9
7 

309.5
3 

308.5
9 

300.0
0  

243.0
0  

160.0
0  

130.0
0  

120.0
0 

80.0
0  

55.0
0 

17.81 0.00  40.64  -2.06  

 22 164.9
7 

229.5
3 

228.5
9 

250.0
0  

219.5
2  

160.0
0  

129.5
9  

120.0
0 

80.0
0  

43.4
2 

18.28 0.00  48.40  -8.16  

 23 150.0
0 

149.5
3 

148.5
9 

200.0
0  

171.4
1  

122.4
6  

129.6
4  

120.0
0 

70.1
3  

43.4
2 

19.72 0.00  62.58  -
14.93   24 150.0

0 
135.0
0 

73.00 150.0
0  

169.4
7  

122.4
5  

129.5
9  

120.0
0  

52.0
6  

43.4
2 

21.51 0.00  81.07  -
19.46  

 
Figure 17. Units’ output and power balance constrain of model 1 in System 2 

 
The result is verified that the economic environmental dispatch model combined with 

wind-photovoltaic stable output strategy has better flexibility and controllability through two 
test Systems, while the combination of energy storage devices can compensate for the anti-
peak characteristics of wind power to a certain extent and reduce the output of thermal power 
units, which can be used effectively to solve HDEED problems. 

 
6. Concluding Remarks 

The combination of renewable energy with thermal power units to supply power to the 
grid has become a development trend due to its environmental friendliness and less affected 
by the global energy crisis. This study analyzes the optimal configuration of power systems 
considering wind, photovoltaic and energy storage devices, and proposes an optimization 
method composed of wind- photovoltaic stable output strategy and improved MA algorithm 
to solve the problems of economy, environment and renewable energy output stability. The 
practicality of the proposed method is finally verified by using a system of 5 thermal units and 
10 thermal units, and the power distribution of wind, photovoltaic and energy storage under 
the condition of stable output of renewable energy is analyzed in detail. The comprehensive 
analysis leads to the following findings. 
⚫ The MA algorithm with adaptive factor, mutation and chaos initialization method has 

better global search performance, and the excellent optimization ability of the IMA 
algorithm is verified by using unimodal function, multimodal function and composite test 
function. 

⚫ According to the different orders of magnitude between operating cost and pollutant 
emission, the proportional coefficient Q is added to the fitness function to obtain a better 
Pareto solution set. The test System 2 is that the improved fitness function is helpful to 
obtain a set of solutions with more linearity and higher correlation. 

⚫ For the test System 1 optimized by using IMA algorithm, the cost and pollutant emission 
are 4.7020×104$ and 1.7522×104lb respectively, which are 4.12%, 13.21% and 15.14% 
lower in terms of cost and 1.68%, 6.18% and 6.12% lower in terms of emission than the 
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model using MA, MFO and PSO algorithms. 
⚫ The HDEED model combined with the wind and photovoltaic output strategy is verified 

by using two test Systems, which makes full use of the peak-cutting and valley-filling 
function of the energy storage device.  

The innovative contributions are described as follows: An improved IMA algorithm with 
excellent performance is proposed to optimize economic, environmental and stability 
problems; An improved fitness function is introduced to find compromise solution more 
accurately; The uncertainty of renewable energy output is studied and a wind-photovoltaic 
stability output strategy is proposed aiming at improving stability. The influence of different 
predicted and actual values of renewable energy output on the grid can be effectively avoided 
by appropriately reducing the power of renewable energy connected to the grid, so as to 
obtain stable output of renewable energy, which is important for the actual stable operation 
of electricity system. 

This study contributes to improve the ability to receive clean energy while ensuring 
economy and stability of power grid. However, there are also some limitations, which will be 
addressed in future research: The prediction of renewable energy is no longer used to replace 
the actual value for dispatch, but to explore the impact of prediction deviation on grid power 
under different strategies proposed in this study; then time-of-use electricity price should be 
considered in dispatch model to explore the benefits of differential electricity price when 
energy storage is used to adjust renewable energy output. 
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Appendix 
Table A1. Generation device coefficients in System 1 

Unit p a q   h   b c o g PU PD Pmax Pmin 

1 -0.805 0.0080 0.018 0.02846 0.042 0.6550 2.0 25 80 100 30 30 75 10 
2 -0.555 0.0030 0.015 0.02446 0.040 0.5773 1.8 60 50 140 30 30 125 20 
3 -1.355 0.0012 0.0105 0.02270 0.038 0.4968 2.1 100 60 160 40 40 175 30 
4 -0.600 0.0010 0.008 0.01948 0.037 0.4860 2.0 120 45 180 50 50 250 40 
5 -0.555 0.0015 0.012 0.02075 0.035 0.5035 1.8 40 30 200 50 50 300 50 

 
Table A2. Generation device coefficients in System 2 

Unit p   q h a   b o g c PU PD Pmax Pmin 

1 -2.4444 0.0207 0.0312 0.041 0.1524 0.5035 38.5397 103.3908 450 786.7988 80 80 470 150 
2 -2.4444 0.0207 0.0.12 0.036 0.1058 0.5035 46.1591 103.3908 600 451.3251 80 80 470 135 
3 -4.0695 0.0202 0.0509 0.028 0.0280 0.4968 40.3965 300.3910 320 1049.9977 80 80 340 73 
4 -4.0695 0.0202 0.0509 0.052 0.0354 0.4968 38.3055 300.3910 260 1243.5311 50 50 300 60 
5 -3.8132 0.0200 0.0344 0.063 0.0211 0.4972 36.3278 320.0006 280 1658.5696 50 50 243 73 
6 -3.8132 0.0200 0.0344 0.048 0.0179 0.4972 38.3055 320.0006 310 1356.6592 50 50 160 57 
7 -3.9023 0.0214 0.0465 0.086 0.0121 0.5163 36.5104 330.0056 300 1450.7045 30 30 130 20 
8 -3.9023 0.0214 0.0465 0.082 0.0121 0.5163 36.5104 330.0056 240 1450.7045 30 30 120 47 
9 -3.9524 0.0234 0.0465 0.098 0.1090 0.5475 39.5804 350.0056 270 1455.6056 30 30 80 20 
10 -3.9864 0.0234 0.0470 0.094 0.1295 0.5475 40.5407 360.0012 380 1469.4026 30 30 55 10 

 


