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Abstract

This work presents a practical solution to the problem of call center agent mal-

practice. A semi-supervised framework comprising of non-linear power trans-

formation, neural feature learning and k-means clustering is outlined. We put

these building blocks together and tune the parameters so that the best per-

formance was obtained. The data used in the experiments is obtained from

our in-house call center. It is made up of recorded agent-customer conversa-

tions which have been annotated using a convolutional neural network based

segmenter. The methods provided a means of tuning the parameters of the

neural network to achieve a desirable result. We show that, using our proposed

framework, it is possible to significantly reduce the malpractice classification

error of a k-means-only clustering model which would serve the same purpose.

Additionally, by presenting the amount of silence per call as a key performance

indicator, we show that the proposed system has enhanced agents performance

at our call center since deployment.

Keywords: Telemarketing, Semi-supervised learning, Clustering, Automatic

malpractice detection, Neural networks, Machine learning
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1. Introduction

The importance of telephony as a communication channel in marketing has

been on the rise since the late 80s (Marshall & Vredenburg, 1988) to such an

extent that today, telemarketing is an integral part of marketing strategy work

flows of most business organizations. In addition to telemarketing, for customer

relationship management, telephony has proven to be the most effective cus-

tomer retention strategy, guaranteeing satisfaction and loyalty (Feinberg et al.,

2000). Even though other channels such as social media platforms have re-

cently attracted the attention of researchers and practitioners (Iankova et al.,

2018), the call center has remained the most effective customer relationship

management channel. Hence, the need to optimize the performance cannot be

over-emphasized.

Customer dissatisfaction arising from call center interactions often stem from

agents’ malpractices which ultimately leads to churn and loss of revenue. From

our experience and observations over the years, we have realized that a major

constituent of call center agent malpractice is the amount or pattern of silence

in a call. It may be for an extended duration or in the form of specific unique

patterns like in fax tones or interactive voice response systems (Ozan & Iheme,

2019). As a result, detecting, quantifying and analyzing silence patterns is key

in detecting malpractices and providing valuable feedback to call center agents.

The fairly recent upsurge in compute capabilities and availability of data has

brought about rapid improvements in supervised learning tasks in the form of

deep learning. Of all the challenges of deep learning, the availability of labelled

data is arguably at the forefront. The acquisition of labelled data often requires

a skilled human however, this can be expensive and given the huge amount of

labelled data required to properly train a deep neural network, labelling might

be infeasible. Besides the cost associated with labelling, there exists the issue

of reliability (Armstrong et al., 1997) wherein expert labels are subjective to an

unknown number of variables.

Through the use of unsupervised learning algorithms, one may discover pat-
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terns in unlabeled data. Unsupervised learning algorithms have been instrumen-

tal in data exploration (Girolami et al., 1998; Steiger et al., 2016), segmentation

(Ng et al., 2006; Chung et al., 2016) and a host of other tasks. While the perfor-

mance of the various algorithms have been impressive, the design of appropriate

performance metrics has remained a somewhat challenging task. In fact, most

available unsupervised learning performance metrics still require knowledge of

the ground truth classes (Hubert & Arabie, 1985; Vinh et al., 2010; Rosenberg

& Hirschberg, 2007). It is however possible to combine the best of both worlds

(supervised learning and unsupervised learning) in the form of semi-supervised

learning.

Semi-supervised learning involves training and validating an unsupervised

model such as k-means, with a large amount of unlabeled data and supervised

learning performance metrics respectively. It is applicable in scenarios where

manually labeling data is not feasible. In our use case for instance, the data

used in the experiments consists of over 180,000 call center records translating

to a total duration of over 540 hours. Labelling the data would involve listening

to every call and classifying it accordingly. Not only will this process be time

consuming but it will also be quite expensive. The unsupervised component

of semi-supervised learning requires some assumptions or domain knowledge of

the data. Assumptions such as the number of classes present in the data or the

underlying distribution of the data need to be enforced.

To improve the performance of machine learning algorithms in general, vari-

ous forms of feature engineering are carried out: feature selection (Yan & Zhang,

2015), scaling and normalization (Stolcke et al., 2008), transformation (Yeo

& Johnson, 2000) and more recently, feature learning with neural networks

(Yu et al., 2013). Typically, in feature learning with neural networks, a non-

classifying neural network is cascaded with a classifier then the parameters of

the network are adjusted by the loss of the classifier. The role of the neural

network is to extract more discriminative features from the raw features. As

shown in (Yu et al., 2013), through speech recognition, a better performance

can be achieved with the extracted features. Although such a set-up increases
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the complexity of the system, it has the advantage of providing tunable hyper-

parameters that affect the performance of the classifier. In a semi-supervised

scenario, where the classifier has no hyper-parameters to be tuned, the neural

network can intrinsically provide that capability while learning the best features

possible.

In essence, using semi-supervised learning, we aim to detect call center agent

malpractices and by applying feature learning, we aim to improve the perfor-

mance of the system. Our proposed solution does not take the human (quality

control personnel) out of the loop. We intend for the system to send notifica-

tions of possible agent malpractices to the quality control manager. As a result,

for the machine learning algorithms, non-malpractices are considered to be the

negative class while malpractices are the positive class. Our system ensures that

true negatives and false positives are checked by the manager. Thus, our prior-

ity is to minimize the false negatives produced by the system. Accordingly, in

this use case, the performance of the model is assessed by its ability to maximize

the recall score (Goutte & Gaussier, 2005).

2. Agent Malpractice

Malpractice, within the scope of agent-customer interaction over the phone

involves practices which do not conform to the organization’s stipulated rules,

these are practices which lead to revenue slippage and customer churn. These

include but are not limited to extensive silence periods in a call, deliberately

placing calls to fax lines as described in (Ozan & Iheme, 2019) or interactive

voice response (IVR) systems and keeping customers on hold unnecessarily for

extended periods.

It is a known fact that humans can easily classify unstructured data (audio

in this case). It however becomes an expensive venture when the amount of

data is large and the time to classify is limited. To give some perspective, at

our call center, 20 agents with one supervisor, generate ∼1000 calls per day (∼

50 calls per agent). Assuming the average duration of a call is 120 seconds,
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it will take over 33 hours to listen to the calls of a single day. Therefore, it

will be impossible for the supervisor to listen to all the calls generated per day.

Accordingly, the aim of this study is to automatically detect malpractices and

notify the supervisor. It is the responsibility of the supervisor to make the final

decision on the detected malpractices and act accordingly.

3. Data

The data used in this work is a sample of 180,000 call center conversations

drawn from a population of over a million call records. Calls are recorded and

saved in a compressed .gsm format with a sampling rate of 8000 Hertz. The

sample calls were selected from a period of time when agent malpractice was

at its peak at the organization. It was found that at least 3% of the calls in

that period constituted some sort of malpractice on the agents’ part. The total

duration of the sample is ∼ 540 hours.

Of the 180,000 calls, 3,885 were listened to and labeled by experts. 716 calls

were labeled malpractice while 3169 were non-malpractice. This makes up our

validation set, while the rest of the data constitutes the training set.

4. Building Blocks

In this section, we outline and explain the individual components which

constitute the proposed framework.

4.1. CNN-based Feature Extraction

From each recorded call, four features are extracted; namely percentage of

speech, percentage of music, percentage of silence and percentage of noise. To

obtain these, a simple automatic energy thresholding algorithm is first used to

segment frames associated with low energy (Doukhan et al., 2018), considered as

silence. This is followed by MFCC feature extraction as specified in (Doukhan

& Carrive, 2017). The MFCC features are fed as input to a CNN architectureto

to segment speech, music and noise. The network, which is a modification of the
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Figure 1: Representative figure of convolutional network used for segmenting speech, music

and noise. Note the diagram is not drawn to scale.

work presented in (Doukhan & Carrive, 2017), consists of eight layers: four con-

volutional layers and four fully connected layers each followed by max-pooling

and drop-out respectively. Rectified linear unit (ReLU) activation functions are

used between layers and at the output, there are three neurons normalized by a

softmax function. A summary of the CNN architecture is represented in Figure

1. The model has a total of 788,803 parameters of which 785,603 of them are

trainable.

The final output of the segmentation tool is the starting time points, ending

time points and the labels of the corresponding homogeneous segments respec-

tively. From the start and stop times, the percentage of each unique segment is

calculated accordingly. Finally, four features are obtained for each record.

4.2. Feature Transformation

Feature transformation is a pre-processing step which aims to improve the

performance of machine learning algorithms. In this study, we experiment with

two feature transformations: the Z-score normalization and power transform.

The goal of both transformations is to, as much as possible ”Gaussianize” the

data since this is a desirable property.

The Z-score normalization, which is a linear transform, as shown in Equation

1, transforms each feature to a standard Gaussian distribution by removing

the mean and scaling the data to unit variance. This puts each feature on
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the same scale and removes possible magnitude biases that might exist. The

major drawback of this transformation is the fundamental assumption that the

distribution is Gaussian.

zi =
xi − x
s

(1)

where x is the sample mean and s is the sample standard deviation.

Power transforms are a family of parametric, monotonic nonlinear functions

that aim to map data from any distribution to as close to a Gaussian distribution

as possible in order to stabilize variance and minimize skewness (Pedregosa et al.,

2011). Specifically, in this work, we employ the Yeo–Johnson (Yeo & Johnson,

2000) transformation which is an extension of the Box–Cox transformation (Box

& Cox, 1964). The Box–Cox transform family of functions is given in Equation

2.

x
(λ)
i =


xλi − 1

λ
if λ 6= 0,

ln (xi) if λ = 0,

(2)

where {λ ∈ R} is known as the power parameter determined through Maximum

Likelihood estimation and {x ∈ R|x > 0}

x
(λ)
i =



[(xi + 1)λ − 1]/λ if λ 6= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0

−[(−xi + 1)2−λ − 1]/(2− λ) if λ 6= 2, xi < 0,

− ln(−xi + 1) if λ = 2, xi < 0

(3)

Unlike the Box–Cox transform where xi must be positive, the Yeo–Johnson

transform, given in Equation 3 holds for {x ∈ R}.

Before classification, the data is transformed feature-wise, i.e. the four fea-

tures (percentages of speech, music, noise and silence) are individually ”Gaus-

sianized” by means of Z-score normalization and the Yeo–Johnson transform.
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Hidden nodes

Visible nodes

Figure 2: A restricted Boltzmann’s machine (RBM) network with 4 visible nodes and two

hidden nodes

4.3. Feature Learning & Model Training

To learn the best possible discriminative features, we employ a restricted

Boltzmann’s machine (RBM) network because of its relative simplicity and re-

ported improved performance in the feature learning domain (Salakhutdinov

et al., 2007). Briefly, a RBM is a neural network that consists of a visible layer

and one hidden layer with the restriction that the nodes must form a bipartite

graph as depicted in Figure 2.

Training RBMs is conventionally done via gradient-based contrastive diver-

gence algorithms (Hinton, 2002) which require practical knowledge about how

to set the values of numerical meta-parameters such as the learning rate, the

momentum, the weight-cost, the sparsity target, the initial values of the weights,

the number of hidden units and the size of each mini-batch. In this study, the

learning rate, number of hidden units and the size of the mini-batch were op-

timized via a grid search. The range of values selected for the grid search was

guided by (Hinton, 2012) and are presented in Table 1

Table 1: RBM hyper-parameter grid values

Parameter Values

No. of hidden nodes [2, 20, 45, 70, 135, 170, 200]

Learning rate logspace(-3, 0, 20)

Batch size [8, 16, 64, 128]
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The RBM is cascaded with a k-means classifier to cluster the output into

2 groups, one for malpractices and the other for non-malpractices. One epoch

of training entails passing the data through the RBM and clustering it then

updating the parameters of the RBM based on the recall score obtained after

clustering. Training stops after all the points on the hyperparameter grid have

been tested and the set of hyperparameters that yield the highest score are

selected.

4.4. Experimental Set-up

Our experiments were set up to systematically improve the performance of

a preceding configuration. Three main experiments were conducted and the

result of each was assessed with the recall score. In addition to the recall score,

we compute the confusion matrix, the F1 score (Equations 4 to 6) as well as the

malpractice miss-classification error for each experiment.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2
Precision ∗Recall
Precision+Recall

(6)

where TP, FP, & FN are true positive, false positive and false negative re-

spectively. A value closer to 1 or 100% is desirable in each case.

The three consecutive experimental set-ups can be summarized as follows:

• k-means: For this experiment, we simply feed the extracted features

as input to a k-means clustering models with two clusters representing

malpractice and non-malpractice as shown in Figure 3.

• Feature transformation and k-means: In this experimental set-up, we

built on top of the previous set-up by including the feature transformation

block. Two sub-experiments are performed, one for Z-score normalized

features and another for the Yeo–Johnson transformed features. The block

diagram of Figure 4 depicts these experiments.
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• Feature transformation, neural feature learning and k-means:

Our final experiments included the feature learning block explained in

Sub-section 4.3. We performed two sub-experiments for the two feature

transformations and the parameters of the RBM were optimized in both

cases. The procedure is summarized in Figure 5.

Segmenter

Silence 
removal

k-meansCNN

Figure 3: The extracted features fed into a k-means clustering model

Feature 
transformer

Segmenter

Silence 
removal OR

Z-score 
normalization

Yeo–Johnson 
tranfsormation

k-meansCNN

Figure 4: The extracted features transformed before clustering using the k-means model

Feature 
transformer

Segmenter

Silence 
removal OR

Z-score 
normalization

Yeo–Johnson 
transformation

k-meansCNN

Figure 5: Experimental set-up for feature extraction and feature learning for k-means clus-

tering
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5. Results

We present the results in three parts corresponding to the three main exper-

iments performed in this study. In each case, the model was trained with the

unlabelled data and validated with the labeled data to assess the performance

and tune the hyper-parameters as the case may be.

5.1. K-means clustering

K-means clustering was performed for two clusters on 176,115 samples. The

rest of the samples (3885) were used as validation data to assess the performance

of the model. Based on domain knowledge as to the distribution of the data,

the cluster with more samples was assumed to be the cluster of non-malpractice

calls while the smaller cluster corresponded to calls which constituted a form of

malpractice. The confusion matrix obtained after k-means clustering are shown

in Figure 6.

5.2. Neural Feature Learning

Neural feature learning involves incorporating an RBM architecture to ex-

tract more discriminative features as seen in Figure 5. The parameters of a RBM

network are tuned to maximize the recall score. In Table 2, the optimal param-

eters of the network as well as the performance scores are presented. Similar to

the experiment carried out in Sub-section 5.3, the performance scores were com-

puted for Z-score normalized data and Yeo–Johnson power transformed data.

The confusion matrices are presented in Figures 9 and 10.

5.3. Feature Transformation & K-means clustering

In Figures 7 and 8, we present the confusion matrices obtained from the fea-

ture transformations and k-means clustering experiments. Specifically, Z-score

normalization and Yeo–Johnson power transformation were performed before

clustering with the k-means algorithm.

The results presented in this section are obtained from the experimental

set-up of Figure 3.
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True negatives 
366

False positives 
163

False negatives 
350

True positives 
3006

Predicted label

Figure 6: The confusion matrix obtained after k-means clustering

Table 2: Recall and F1 scores obtained for the five models as well as the optimal parameters for

training the RBM. ZN=Z-score normalization, PT=power transformation, RBM=restricted

Boltzmann’s machines

Recall F1 Batch size Learning rate Hidden units Model

0.871 0.903 - - - k-means

0.948 0.921 - - - ZN k-means

0.962 0.86 - - - PT k-means

0.971 0.879 64 0.113 20 ZN RBM k-means

0.977 0.825 8 0.004 2 PT RBM k-means

Finally, the recall and F1 scores as well as the optimal parameters of the

RBM networks are presented in Table 2.

6. Discussion

In this section, we interpret the results, provide possible explanations for

them and outline the implications in a real world scenario. All the experiments

yielded good results, above 80% for each measure, yet there was room for im-

provements. For this use case, the aim is to minimize the false negatives and

maximize the recall score.
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True negatives 
399

False positives 
163

False negatives 
350

True positives 
2973

Predicted label

Figure 7: The confusion matrix obtained after Z-score normalization and k-means clustering

For the k-means-only model, a recall score of 0.896 was obtained with an

F1 score of 0.92. While these scores are reflective of a good model, a closer

examination of the confusion matrix reveals that almost 50% of the actual mal-

practices were classified as non-malpractice. This means that these calls will go

unchecked by the quality control personnel. Thus, it was imperative to improve

on this result by trying to minimize the number of wrongly classified malpractice

calls. We call this the Malpractice Classification Error (MCE).

By “Gaussianizing” the data before clustering, we obtained a more desirable

performance. Z-score normalization did not result in any significant change

however, power transformation yielded an improved recall score of 0.962. The

F1 scores on the other hand, decreased. This is as a result of the trade-off

between precision and recall. We also observed a significant improvement in

performance in terms of the MCE for the power transformed data. Specifically,

the MCE reduced from 48% to about 13.5%.

To further improve on the results obtained after the addition of data transfor-

mations, we applied the so called neural feature learning. A significant increase

in the recall scores can be observed in Table 2. While the recall scores for both

Z-score normalization and power transformation combined with neural feature

13
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True negatives 
619

False positives 
707

False negatives 
97

True positives 
2462

Predicted label

Figure 8: The confusion matrix obtained after Yeo–Johnson power transformation and k-

means clustering

learning are higher than the previously discussed results; that of the power

transformation is more significant. Concretely, after hyper-parameter tuning,

we obtained a recall score of 0.977. The MCE was reduced to about 7.5%,

showing significant improvement from the previous results.

Regarding the parameters of the RBM, the optimum values, in this case

affect the speed of training. Where a smaller batch size and learning rate trans-

late to slower training of the RBM when compared to larger values. Conversely,

a large number of hidden units translates to slower overall training since the

k-means classifier will have to work on a higher dimension of clustering data. A

clear trade-off can be observed between performance and training speed.

The decreasing trend of the MCE seen in Figure 11 is desirable as it shows

progressive improvement in the models that we experimented with. Although

a higher F1 score is coveted, it will be difficult to achieve since we maximized

the recall score. Nevertheless, an F1 score of over 0.8 is considered good.

Finally, at the onset of incorporating the automatic malpractice detection

system into our call center, we observed a sharp decrease in the duration of

silence in calls (Figure 12). As the quality control personnel become more

familiar with the system, they have been improving on their feedback and this
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True negatives 
639

False positives 
625

False negatives 
77

True positives 
2544

Predicted label

Figure 9: The confusion matrix obtained after Z-score normalization and incorporation of a

RBM network for feature learning

has seen further decrease in silences in calls.

7. Conclusions and Future Work

In this work, we have shown that by careful feature engineering, it is possible

to improve the performance of a simple k-means algorithm. The system lever-

aged the hyperparameter tuning of a RBM to obtain the best possible model

performance. We applied the method, in a semi-supervised manner, to call cen-

ter agent malpractice detection where we sought to maximize the recall score

and minimize the MCE.

We found that the non-linear, power transformation outperformed the more

widely used Z-score normalization in the considered scenarios. With an F1 score

of 0.825 and a recall score of 0.977, the model is sufficiently good enough to be

deployed in a real world scenario as is the case in our in-house call center. The

corresponding MCE of 7.54% will greatly impact the efficiency of the quality

control personnel since their efforts towards detecting agent malpractices can

be more focused with a small margin of error.

Since the mean amount of silence detected in an agent’s calls over a period
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True negatives 
662

False positives 
904

False negatives 
54

True positives 
2265

Predicted label

Figure 10: The confusion matrix obtained after Yeo–Johnson power transformation and in-

corporation of a RBM network for feature learning

of time may be used as one of the key performance indicators, at our call center,

we monitor it and consequently, we have reported a decrease in this value since

the implementation of the automatic agent malpractice detection system.

Our study is not without limitations. Firstly, the size of the validation data

may be increased so as to have a more robust system. Additionally, rather

than performing a grid search for the optimal hyperparameters of the RBM,

a random search would produce more desirable results. We did not explore

optimizing the number of iterations at training though a significant improvement

in performance is not expected. We use a constant learning rate for training

however, in (Tieleman, 2008), it was noted that in practice, decaying learning

rates often work better.

The future work of this study points in various directions but of particular

interest is distinguishing the types of agent malpractices. This may intuitively

be achieved by defining more clusters for k-means or by employing some of the

methods used to obtain the optimum number of clusters in a data set. Since

the system is made up of modules, it allows for the flexibility of substituting the

various modules while optimizing the performance. Concretely, in the literature,

there are similar transformation algorithms that may be used instead of the
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Figure 11: Malpractice classification error (in red) of the various models trained in this study
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Figure 12: The mean percentage of silence of calls per year at our in-house call center
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Yeo–Johnson power transform. The neural network may be replaced with a

more sophisticated architecture such as autoencoders or networks comprising

of a combination of one-dimensional convolutional layers and fully connected

layers.
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