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Abstract 

This study proposes an intelligent green scheduling system for cold chain logistics (IGSS-CCL) to 

support the integration and coordination of resources. Post-COVID-19, the traditional cold product 

market is rapidly converting to retail stores and e-commerce portals owing to social distancing 

restrictions, which creates a requirement and opportunities for the development of cold chain logistics. 

However, urban governance requirements, such as pandemic prevention, traffic restriction, energy 

conservation, and emissions reduction, have added challenges to this development. Therefore, it is 

vital to design a cold chain logistics scheduling system that considers the economic, safety, and 

environmental factors. The proposed system includes three parts: (1) the framework structure of the 

cold chain logistics intelligent scheduling system; (2) a multi-objective scheduling optimization model 

to allow for efficient and dynamic coordination between the distribution, demand, and external 

environment; and (3) a two-stage optimization algorithm based on Dijkstra's algorithm and a non-

dominated sorting genetic algorithm to support intelligent scheduling operations. Numerical 

experiments were conducted to analyze the performance of the proposed system and demonstrate its 

application. The results highlight that multi-objective tactical optimization in the IGSS-CCL is 

conducive to saving resources, protecting the environment, and promoting the sustainable development 

of cold chain logistics, which remains ahead of the traditional single-objective optimization method. 

Managers can use the suggested IGSS-CCL as a decision-support tool to control and supervise the 

scheduling operations of cold chain logistics. 

 

Keywords: intelligent green scheduling system; cold chain logistics; multi-objective; carbon emission; 

two-stage optimization algorithm 
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1. Introduction  

Cold chain logistics is an important link for agricultural products to follow the "farm to fork" 

structure (Esmizadeh et al., 2021a). In 2020, with the global outbreak of COVID-19, cold chain 

logistics provided people with an important guarantee of emergency supplies during a critical period 

(Jiang et al., 2021). Due to the post-COVID-19 market, pandemic prevention measures, such as traffic 

control and home isolation, promoted the active development of the "home-bound economy" such as 

online shopping (Chen et al., 2020; Fei et al., 2020). The traditional cold product market is rapidly 

converting into stores and e-commerce portals (De and Singh, 2021), with orders for online cold 

products having skyrocketed and the demand for cold chain distribution in terminal retail stores, such 

as fresh food convenience stores and supermarkets, is increasing. Retail stores need to meet the product 

supply of both online and offline channels, which is a new development opportunity for cold chain 

logistics. However, COVID-19 has been imported through cold chain logistics many times, which 

highlights the importance of food safety traceability issues to cold chain logistics scheduling (Han and 

Liu, 2021). Simultaneously, pandemic prevention measures such as street blockades and traffic control 

directly affect the state of road traffic (Liu et al., 2020a). According to the actual road conditions, 

arranging scheduling activities to ensure the quality and efficiency of cold chain distribution is a 

problem that must be considered in cold chain logistics scheduling. 

Nowadays, the discussion on carbon emission targets in countries around the world is more 

intense than ever before because emission levels have reached a new record (Nguyen et al., 2021), as 

confirmed in the 26th United Nations Climate Change Conference (COP26) held in Glasgow, UK in 

2021. Prior to this, more than 61 carbon pricing mechanisms were introduced by countries, including 

carbon taxes, total volume control, and trading systems (Hasan et al., 2021; World-Bank, 2020). Cold 

chain logistics is a high-carbon emissions business that contains a large number of road transportation 

tasks (Zhang et al., 2019). Under the constraints of various carbon regulations, it is a momentous 

problem that cannot be ignored for cold chain logistics scheduling in the future to pursue effective 

ways to reduce emissions and comply with restrictions by incorporating carbon emissions into 

operational decisions. Furthermore, in the face of urban development with increasingly serious traffic 

congestion and environmental pollution, London and Singapore have implemented management 

strategies such as traffic congestion charging and urban area traffic restriction (Ros-McDonnell et al., 

2018). Other cities around the world have also explored methods and measures to ease congestion and 

reduce emissions. In this context, reducing the number and frequency of vehicles used, especially the 

frequency of large distribution vehicles, is a key concern for cold chain logistics scheduling. 

To meet the demand for sustainable development, this study aims to develop an intelligent green 

scheduling system for cold chain logistics (IGSS-CCL), which not only integrates the resources of 

distribution, demand, and external environment in cold chain logistics to achieve efficient scheduling, 

but also capture the requirements of urban governance, such as cold product safety traceability, actual 

traffic restrictions, congestion alleviation, and emissions reduction. The main contributions of this 

study are as follows: 

1) The IGSS-CCL system framework is designed based on method application research, which can 

provide integrated scheduling services with safe, green, intelligent and collaborative functions for 

cold chain logistics. 

2) This study constructs a multi-objective scheduling decision model to support the IGSS-CCL. The 
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model disposes of the operation cost, number of vehicles used and carbon emissions as the 

optimization objectives, so that managers can flexibly respond to different management 

requirements. The model also specifically accounts for the multi-route decision affected by road 

traffic conditions and the impact of three-level time windows on system decisions, which is first 

proposed for the IGSS-CCL. 

3) The two-stage optimization algorithm provided in this study, based on Dijkstra’s algorithm and 

the third-generation non-dominated sorting genetic algorithm (NSGA-III), is useful for 

researchers to further examine similar problems. 

The remaining parts of this study are organized as follows. In Section 2, we review the literatures 

relevant for intelligent logistics scheduling and cold chain logistics scheduling. The applied problem 

and system framework is introduced in Section 3. Section 4 presents the constructed mathematical 

optimization model for IGSS-CCL. In Section 5, an optimization algorithm including two stages is 

designed. Section 6 displays the experimental design and results analysis. Finally, Section 7 contains 

concluding remarks. 

2. Literature Review  

This study relates to the literatures on intelligent logistics scheduling and method analysis of cold 

chain logistics scheduling.  

2.1. Intelligent logistics scheduling  

Intelligent logistics refers to improving the intelligence and automation level of logistics services 

using the Internet of Things (IoT), big data, and other intelligent technologies (Fan et al., 2020; Liu et 

al., 2020b). In intelligent logistics systems, the key link has always been logistics scheduling, which 

is also the main link for intelligent technology. 

Advanced hardware equipment, including autonomous vehicles (AVs) and unmanned aerial 

vehicles (UAVs) provide opportunities for the realization of intelligent logistics scheduling (Carlsson 

and Song, 2018; Chowdhury et al., 2021). Since Amazon was a pioneer in successfully applying 

automated robots to fulfilment centers, the use of AVs and UAVs in logistics operations began to 

receive rapid promotion and widespread attention (Bogue, 2016). To investigate the impact of AVs on 

highway congestion, Mirzaeian et al. (2021) developed a queuing model for a multilane highway and 

analyzed the different effects of the designated-lane policy and integrated policy. Boysen et al. (2018) 

and Yu et al. (2020) introduced scheduling procedures for an efficient truck-based AVs delivery. 

Another concept similar to AVs or self-driving vehicles is UAVs (also known as drones). Many studies 

have conducted analyses on the application of UAVs in last-mile logistics scheduling (Agatz et al., 

2018; Perera et al., 2020; Quang Minh et al., 2018). They conducted modeling research on a new 

variant of the traveling salesman problem (TSP), and verified the advantages of using UAVs in logistics 

scheduling, such as their high efficiency and low cost. However, owing to the limitations of endurance, 

capacity, and external distribution environment, it is still impossible to complete large-scale, multi-

batch cold product scheduling tasks in urban logistics using UAVs and AVs. 

In addition to hardware equipment, some advanced methods and technologies have been applied 

to intelligent logistics scheduling. Wang et al. (2020) proposed a dynamically coordinated intelligent 

dispatch system to shorten the waiting time for customers to pick up goods and to improve the 

operating efficiency of the dispatch system. Li et al. (2019a) studied the optimal route problem for 



 

5 

intelligent port logistics based on cloud computing technology. Tsang et al. (2018) presented an IoT-

based route planning system that includes a passive packaging modeling module, route planning 

module, and IoT monitoring module. Attention also need to be given towards research on intelligent 

logistics systems from the perspective of logistics scheduling security and system supervision (Li et 

al., 2019b; Su and Fan, 2020). 

Different from hardware applications, this study mainly focuses on how to improve the 

operational efficiency of cold chain logistics scheduling from the method application. As mentioned 

above, few studies have discussed the real-time interaction and dynamic coordination among various 

elements in logistics scheduling from a system perspective, especially how to identify external 

disturbance factors through the intelligent scheduling system to output economic, safe, and 

environmentally friendly scheduling plans. This study analyzes the logistics scheduling problem from 

a systematic perspective based on method application, and an IGSS-CCL is designed in this study. 

2.2. Cold chain logistics scheduling  

The vehicle scheduling problem for cold chain logistics operations and its related variants has 

become one of the most important and interesting issues for researchers in this field (Awad et al., 2021). 

This section provides a brief review on the main features of existing cold chain logistics scheduling 

models and the methods used from three aspects: optimization objective, problem characteristics, and 

solution approach to multi-objective problems, with special attention paid to papers that considered 

location and route problems individually or as a whole. 

Optimization objective 

Optimizing the operating cost of a cold chain scheduling plan is a general setting in traditional 

single-objective formulations. For example, Zheng et al. (2020) developed a mixed-integer linear 

programming (MILP) model to minimize the total cost, which solved the docking truck scheduling 

problem involving refrigerated and frozen products in cold chain logistics. Al Theeb et al. (2020) 

addressed the integrated scheduling problem including inventory allocation and vehicle routing and 

constructed a MILP model to optimize transportation and inventory costs. Given that the operation 

process of cold chain logistics should be maintained at a specific temperature, it is considered energy-

intensive and has a significant emission footprint (Awad et al., 2021). Therefore, reducing the impact 

of carbon emissions on cold chain logistics has become a hot topic in current research. Many studies 

have considered the cost of carbon emissions in the cost function (Babagolzadeh et al., 2020; Hsiao et 

al., 2017; Leng et al., 2020a; Leng et al., 2020b; Li et al., 2020b; Li et al., 2019c; Wang et al., 2018; 

Zhang et al., 2019), which did not individually optimize the carbon emissions of the systems. 

In addition to the economic effects, scholars have begun to explore the multi-objective 

optimization problem in cold chain logistics scheduling, considering the perishability of cold products 

and the complexity of the distribution environment. Stellingwerf et al. (2021) proposed a quality-

driven vehicle routing problem for fresh food logistics and minimized product decay, carbon emissions, 

cost, and maximum decay as the objective function. Wang et al. (2021c) worked on reducing the total 

cost and the number of refrigerated trucks in fresh product logistics networks. Bortolini et al. (2016) 

solved the optimization problem of fresh food distribution networks by considering the cost, delivery 

time and carbon footprint as objectives. Esmizadeh et al. (2021b) and Golestani et al. (2021) studied 

the hub location problem for optimizing the total cost and product quality based on Bortolini et al. 

(2016). For the low-carbon location-routing problem for cold chain logistics, Leng et al. (2020b) 
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considered minimizing the total cost and total quality decay, and Leng et al. (2020a) considered 

minimizing the total cost and waiting time. As an extension, Qiu et al. (2020) considered minimizing 

the total cost, greenhouse gas emissions, average waiting time and total quality decay. Liu et al. (2021) 

proposed an integrated model for the location-inventory-routing problem of perishable products to 

optimize the cost, carbon emissions, and product freshness. Similarly, Li and Zhou (2021) , Zhao et al. 

(2020) optimized the logistics cost, carbon emissions and customer satisfaction in the cold chain 

logistics scheduling problem. El Mokrini and Aouam (2022) jointly optimized network design and 

logistics outsourcing in healthcare by minimizing the total supply chain cost and perceived risk. 

The operating cost in the existing cold chain logistics scheduling research is a concern for both 

enterprises and scholars. And carbon emission is an essential factor in cold chain logistics scheduling 

optimization because of the environmental impact in cold supply chain. Furthermore, given the special 

nature of cold products, optimizing product freshness or quality decay has received considerable 

attention in many studies. However, the use of vehicles has a clear impact on both cost and carbon 

emissions, and existing research with multi-objective optimization has rarely analyzed the number of 

vehicles used. Especially in the post-COVID-19 era, it is of great practical significance to reduce the 

contact of vehicles, personnel, and products in the cold chain logistics scheduling process, whether 

from the perspective of pandemic prevention or congestion alleviation and emission reduction. Hence, 

this study proposes a multi-objective mathematical model that includes the number of vehicles used, 

operating cost, and carbon emissions as optimization objectives to support the IGSS-CCL in flexibly 

outputting scheduling schemes under different optimization objectives. 

Problem characteristics 

The scheduling plan is one of the main activities of cold chain management. In addition to related 

studies focusing on separately solving vehicle routing problems (Wang et al., 2021c; Zhao et al., 2020) 

and facility location or hub location problems (Esmizadeh et al., 2021b; Golestani et al., 2021; Li and 

Zhou, 2021), the location routing problem (LRP) of cold chain logistics has gradually become a 

research hotspot (Leng et al., 2020a; Leng et al., 2020b; Qiu et al., 2020; Wang et al., 2018). Some 

studies have even considered inventory plans in cold chain scheduling optimization (Al Theeb et al., 

2020; Ghomi and Asgarian, 2019; Li et al., 2020a; Liu et al., 2021). However, in the aforementioned 

studies, the straight-line distance between nodes was used as the basic data for scheduling optimization 

problems. Few studies have considered actual roads, and no research has focused on the possible 

multiple alternative routes between two nodes. Liu et al. (2021), Esmizadeh et al. (2021b) constructed 

optimization models for different traffic scenarios, however, none of these studies considered actual 

road conditions. Management measures, such as street blockades and traffic control, affect the state of 

road traffic. Arranging scheduling activities according to actual road conditions to ensure the quality 

and efficiency of distribution is a problem that must be considered in cold chain logistics scheduling. 

Therefore, this study specifically consider multi-route decisions influenced by road traffic conditions 

in the proposed open LRP model.  

Product perishability plays an important role in cold chain applications. Quality loss of cold 

products is a key issue that has been discussed in detail.Wang et al. (2021c) calculated the quality loss 

cost in the cost function. Stellingwerf et al. (2021), Leng et al. (2020b) analyzed the quality decay that 

occurs during the transportation process and nodes. Bortolini et al. (2016), Golestani et al. (2021) 

quantified the correlation between quality level and transportation time. Liu et al. (2021), Esmizadeh 
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et al. (2021b), Li and Zhou (2021) described the product freshness (or customer satisfaction) metric as 

a monotonic continuous decreasing function over time. In the case of quality variation, existing studies 

have focused on modeling quality decay over time. They calculated the quality loss based on the time 

at which the vehicle left the distribution center. However, the quality loss that occurs within a 

predefined time window for cold products is accepted by customers (Liu et al., 2021; Zhao et al., 2020). 

In addition, the quality decay of some cold products changes in a "0-1" relationship, and cold products 

can no longer be used once the expiration date is exceeded. Therefore, the time starting point for the 

quality loss calculation should be the first time that the maximum time acceptance is exceeded. This 

study introduces a three-level time window to quantify the penalty cost (including sales loss or quality 

loss). This is a more general method than the one that calculates the quality loss of one or one type of 

cold product. 

Compared to ambient transport, cold chain logistics requires stricter temperature control to 

maintain the quality of cold products, in addition to investing in refrigerated fleets Hsu et al. (2007). 

Hsiao et al. (2017),Wang et al. (2017), Li et al. (2019c), Leng et al. (2020b) calculated the cost of fuel 

consumption for transportation in the total cost. Stellingwerf et al. (2018), Stellingwerf et al. (2021) 

combined the analysis of fuel consumption for motive power and temperature control. However, they 

ignored the effect of the time window on the fuel consumption. Based on the limitation of the time 

window, this study considers the part that increases against the time window in the proposed fuel 

consumption index, which is mainly used for temperature control. 

Solution approach for multi-objective problem 

Currently, there are two types of numerical approaches for dealing with multi-objective problem 

(MOP): classical numerical methods and intelligent optimization algorithms (Karimi et al., 2022). In 

classical methods, a MOP is transformed into a single-objective problem (SOP), and then an exact or 

optimization algorithm is used to solve the problem. For example, Stellingwerf et al. (2021) solved 

models with different single objectives using an exact method, optimizing one objective with the other 

objectives as constraints. Esmizadeh et al. (2021b) solved the SOP using a genetic algorithm after a 

weighting treatment. Golestani et al. (2021) used the ε-Constraint method to solve the proposed bi-

objective model and transform the problem into a solvable SOP. El Mokrini and Aouam (2022) 

modeled the objective function as a weighted sum of the normalized total cost and perceived risk and 

solved it using exact coding. The drawback of applying this approach is the need to determine the 

importance of each objective in advance by using a priori method (Cui et al., 2017). 

To maintain the individual characteristics of multiple objectives, an increasing number of studies 

have used intelligent optimization algorithms to obtain a trade-off solution for the MOP. Based on the 

work of Srinivas and Deb (1994) on obtaining Pareto frontiers for multi-objective problems using the 

non-dominated ranking genetic algorithm (NSGA), research on intelligent optimization algorithms 

with Pareto-dominated methods has proliferated. Leng et al. (2020b) proposed a multi-objective hyper 

heuristic to obtain Pareto solutions. Leng et al. (2020a), Qiu et al. (2020) designed an optimization 

framework by combining multiple multi-objective evolutionary algorithms. Zhao et al. (2020) 

introduced an ant colony algorithm with a multi-objective heuristic function to solve the MOP. Li and 

Zhou (2021) adopted the NSGA-II proposed in Deb et al. (2000) and designed the program using 

double-layer composite coding. Wang et al. (2021c) developed a hybrid heuristic algorithm combining 

k-means clustering, tabu search and NSGA-II to efficiently solve the proposed cold chain logistics 
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scheduling problem. Deb and Jain (2014); Jain and Deb (2014) proposed a reference point-based 

NSGA-II for MOP (called NSGA-III). Wang et al. (2021a), Wu et al. (2020) used NSGA-III to solve 

multi-objective optimization problems in logistics networks. As an extension of NSGA-II, NSGA-III 

has a significant advantage in addressing MOPs with more than two objectives (Gu and Wang, 2020). 

Based on the above analysis, a multi-objective open LRP model with multiple features is 

constructed for the IGSS-CCL to more closely match the actual scheduling environment of cold chain 

logistics, which innovatively considers the scenarios of three-level time windows and multi-route 

selection under actual road traffic conditions. The comprehensive impact of multi-level time windows 

on the scheduling system, including scheduling efficiency, quality loss and fuel consumption, is 

analyzed in this study. A hybrid heuristic algorithm combining Dijkstra's algorithm and NSGA-III is 

designed for the proposed complex model. The exact method is introduced to reduce the computational 

complexity in large-scale logistics networks and improve the initial solution quality of the intelligent 

optimization algorithm (Wang et al., 2020). The intelligent optimization algorithm is used to obtain 

Pareto solutions of the MOP and provide managers with a trade-off analysis between different 

objectives to support decision-making at the strategic or tactical level. 

3. Framework Design  

A schematic diagram of the framework for the IGSS-CCL presented in this study is shown in Fig. 

1. The IGSS-CCL can be divided into two parts: the digital system and operation process. The data 

center plays a key role in the digital system. Its main function is to collect data and information from 

the business support departments and operation departments in cold chain logistics to complete 

calculation and analysis, then outputting a "tactical plan", that is, a cold product scheduling plan, which 

provides guidance for the actual operation of cold chain logistics.  

As shown in Fig.1, there are two channels of information related to the business support 

departments. On the one hand, there is information about management services from the internal 

system of the enterprise. It is necessary to understand road traffic conditions, weather, and other third-

party information to obtain a scheme that meets actual scheduling requirements. These factors directly 

affect the efficiency of cold product scheduling. The information on the operation departments comes 

from retail stores (RSs) and distribution centers (DCs), including information about orders, cargo, 

vehicles, and DC operations. Delivery vehicles carrying cargo and drivers realize information 

interaction between the RSs and DCs through IoT technology, mobile communication devices (such 

as mobile phones), and positioning systems (such as BDS and GPS) to achieve the association and 

intercommunication between staff, vehicles, cargo and depots, which is an effective measure to launch 

intelligent scheduling and real-time monitoring. The digital system plays a decision-making and 

supporting role in the operational process. The operational process can share and provide feedback 

information to the digital system, which will help find problems and better arrange the next scheduling 

task. 

Compared with the traditional manual operation method, IGSS-CCL has some special functions, 

as shown below: 

The first is safe and efficient. The data center provides early warning and identifies possible 

disturbing factors, such as traffic congestion, traffic control, and street blockades. According to the 

actual road traffic conditions, the data center outputs a reasonable scheduling plan to avoid the risk of 
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cold chain interruption caused by the above factors, so as to guarantee product quality and delivery 

efficiency. In addition, the full traceability of cold product is a new requirement in cold chain logistics 

scheduling for pandemic prevention. Through information sharing and feedback between the 

operational process and the digital system in IGSS-CCL, the scheduling progress can be grasped in 

real time, thus meeting the requirement of traceability of cold product transportation. For example, 

visualization technology is introduced to display the scheduling progress in real time, and scheduling 

plans can be changed or even suspended in time to deal with unexpected emergencies such as cold 

products carrying viruses (Han and Liu, 2021). IGSS-CCL can also provide support for virus 

traceability in pandemic prevention work, and reduce the transmission risk of COVID-19 among DCs, 

RSs and consumers. 

The second is intelligence and collaboration. In the post-COVID-19 era, the traditional offline 

consumer market has changed (De and Singh, 2021). In the face of massive data related to delivery 

orders, the data center in IGSS-CCL obtains an intelligent scheduling plan for collaborative operation 

by integrating various elements in the system (staff, vehicles, cargo, DCs, RSs and roads) to guarantee 

the smooth flow of people, logistics and information between DCs and RSs. For example, the data 

center and the vehicles are connected through the IoT technology to realize the function of real-time 

monitoring and regulation of the temperature inside the refrigerated vehicle. 

In actual applications, the digital system in IGSS-CCL should provide decisions and support for 

the specific operational process. The data from the business support and operation departments are 

collected in the data center, which requires a mathematical model to process the data and then output 

a scheduling plan. The scheduling plan should be able to meet the operational requirements of 

delivering cold products in DCs to the RSs. Two key issues must be addressed. First, DCs should be 

selected to participate in the scheduling work, and which RSs should be served by the selected DCs. 

Second, how to make vehicle dispatch plans in DCs and how to choose the actual travel route of the 

vehicle to each RS. Therefore, it is indispensable to construct an optimization model to support the 

scheduling decision of IGSS-CCL. 



 

10 

In
fo

rm
at

io
n
 

tr
an

sm
is

si
o
n

In
fo

rm
at

io
n
 

tr
an

sm
is

si
o
n

In
fo

rm
at

io
n
 

tr
an

sm
is

si
o
n

5th-Generation, BDS/GPS

In
fo

rm
at

io
n
 

tr
an

sm
is

si
o
n

D
ec

is
io

n
 a

n
d

 S
u

p
p

o
rt

DC1

Order1

• Data Center

• Information integration

DC3

DC4
DC2

DC6

DC5

Order2

Order6

Order12

Order13

Order11

Order7

Order10

Order9

Order3

Order8

Order5

Order4

Information about 

cargos, demand 

(quantity, time, etc.)

Information about 

orders, cargos, 

vehicles, distribution 

center operations (such 

as equipment, labor, 

power consumption, 

etc.)

             Information about distance, 

             time, speed, energy,         

             temperature, cargo and path

Third-party 

information such as 

road traffic conditions 

and weather

Information transmission

Information about 

business support and 

internal management 

services

Read information

S
h

a
ri

n
g

 a
n

d
 F

ee
d

b
a

ck

Satellite Signal tower

 

Fig.1. A schematic diagram of the framework for the IGSS-CCL 

4. Modeling Approach 

The main purpose of this section is to present an optimization model for the open multi-objective 

LRP with multi-route decision and time windows (MOLRP-MRDTW) in IGSS-CCL. The model aims 

to capture the trade-off between operating cost, the number of vehicles used, and carbon emissions. 

4.1 Model description 

The MOLRP-MRDTW optimization model seeks to determine the optimal configuration of the 

system to deliver cold products to RSs on time. The data center in IGSS-CCL formulates a scheduling 

plan after the information of orders, time windows, cargo inventory, vehicles, roads and other 

information are collected. Let ( ), ,
m

G L A K=  be a directed graph. Where =L D R  represents the set 
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of network nodes.  1,2,...,D m=  is the set of m  DCs, and  1,2,...,R n=  is the set of n  RSs. The 

arc set A is defined as ( ) , : , ,A i j i j L i j=   . Each arc ( ),i j A corresponds to a travel distance and 

traffic state (unblocked, congested, prohibited or restricted).  1,2,...,
m

K k= represents a set of vehicles 

in a DC m D . For a scheduling activity, there are h  DCs in set D  will be selected to serve n  

RSs. In addition, what needs to be determined are the RSs served by each DC, the vehicle dispatch 

plans, and the vehicle routes. Since the m  DCs are all operating normally, the vehicles can return to 

the nearest DC after completing the delivery task. The final scheduling plan is shown in Fig.2. 
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Fig.2. Schematic diagram of scheduling plan 

4.2 Model formulation 

Cold products generate additional energy consumption during storage and transportation 

compared to normal-temperature product transportation. In our modeling, we comprehensively 
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consider the cost and carbon emissions caused by energy consumption in the cold chain operational 

process, as well as cost, number of vehicles used, and carbon emissions are taken as model 

optimization objectives to aid in the realization of congestion alleviation, carbon emissions reduction, 

and green development. In particular, considering the impact of road traffic status (unblocked, 

congested, prohibited, or restricted) on delivery time, constraints on multi-route selection are 

constructed instead of considering only the Euclidean distance or one route. Moreover, the time 

windows of the RSs affect the deployment of system resources. Therefore, the impact of the three-

level time window constraint on the scheduling plan is analyzed in the model. It was assumed that the 

demand of each RS is non-negative and less than the maximum loading capacity of the vehicle and 

maximum inventory of the DC. Split delivery is not allowed for each order. Each vehicle is sent out 

only once in each period. The notations used to develop the mathematical model are summarized in 

Appendix A. 

4.2.1. Analysis of the number of vehicles used  

There are several reasons for taking the number of vehicles used as the optimization function. 

First, the purpose is to increase the vehicle loading rate, which is conducive to reduce the number of 

vehicles used in each period of operation in the short term, and it will help enterprises to cut down the 

number of their own vehicles in the long term, so as to the vehicle fixed costs and labor costs can be 

decreased, especially in the context of COVID-19 restricting staffs' mobility and leading to financial 

pressure on the supply chain (Aday and Aday, 2020). Second, what an important way to coordinate the 

relationship between urban logistics and congestion alleviation, emission reduction, and safety is to 

effectively controlling the flow of vehicles in central urban areas (Ambrosini and Routhier, 2004). 

Optimizing the number of vehicles used in cold chain distribution will play a positive role in urban 

traffic, carbon emissions and travel safety of urban residents. Third, cold chain logistics may become 

a potential route of COVID-19 transmission (Pang et al., 2020). It is necessary to minimize the number 

of vehicles used for distribution to help control the spread of the virus and cold chain tracking. 

The number of vehicles used 
KN  in each period is the sum of vehicles sent out by each DC, it 

can be expressed as: 

m

K m mk

m D k K

N o u
 

=   
(1) 

4.2.2. Analysis of cost  

The cost function of the MOLRP-MRDTW model proposed in this paper includes operating costs 

of DCs, transportation costs, and penalty costs for violating the time windows.  

Operating costs of DCs  

The operating costs of DCs include fixed costs such as equipment maintenance, depreciation 

expenses, and employee salaries, as well as inventory holding costs, electricity costs, and pandemic 

prevention costs related to demand, which can be presented as follows: 

( )
m

mk

D m mf mk i i mh me ms m mp

m D k K i R

C o C u q y C C E Q C
  

 
= + + + 

 
    (2) 

Transportation costs  

The main consideration about transportation are fuel costs. Note that fuel is used both for driving 
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and for keeping the temperature of the refrigerated vehicle at the right level to maintain cold product 

quality. Based on the “Greenhouse gas emission accounting method for land transport enterprises” 

issued by the National Development and Reform Commission of People’s Republic of China (China, 

2015), the fuel consumption and travel distance of vehicles are positively correlated. The fuel 

consumption of the vehicle on the arc ( ),i j  can be approximated calculated as follows: 

510ij e ijFC OC D d −=     (3) 

The temperature inside the refrigerated vehicle affects the cold product quality during the 

scheduling process. According to the analysis of Stellingwerf et al. (2018) and Zhang et al. (2018), the 

heat 
WH  entering through the vehicle wall when the vehicle is driving and the heat 

DH  entering 

through the door when the vehicle is opened affect the temperature inside the vehicle, and the cooling 

system that controls the temperature inside the vehicle consumes fuel. The total amount of fuel used 

to control the temperature is directly proportional to the heat entering the vehicle, which can be 

expressed as follows: 

( ) ( )61000 3.6 10tc W D e dFC H H COP EC= +     (4) 

Where 
WH  is calculated as  ( )max ,0mk

W mk mk ij j jH h S T t ET t=  + − ,  max ,0mk

j jET t−  shows the 

waiting time when the vehicle arrives at the RS before the earliest service time. The cooling system 

works normally to maintain the interior temperature while the vehicle is waiting. Similarly, the heat 

DH  can be calculated as 
i

D mk a mkH V HC T=  . 

The total fuel consumption in cold chain transportation is formulated as the sum of fuel 

consumption for vehicle travel, temperature control while the vehicle is driving, and temperature 

control when the doors are opened: 

( )

 ( ) ( )

( )

5

6

10

max ,0 1000

3.6 10

m

m

m

mk

m mk ij ij tc

m D k K i L j L

e ij
mk

m mk ij mk
m D k K i L j L mk mk ij j j e d

mk j

m mk ij mk a mk e d

m D k K i L j R

FC o u x FC FC

OC D d
o u x

h S T t ET t COP EC

o u x V HC T COP EC





   

−

   

   

= +

   
 =
 +  + −   
 

+     

  

  

  

 (5) 

In addition, there are vehicle maintenance, depreciation costs, and the salary of drivers, which is 

related to the mileage driven by the vehicle. The total transportation costs are presented as follows: 

m

mk

T f m mk ij kf ij

m D k K i L j R

C C FC o u x C d
   

= +   
(6) 

Penalty costs 

When the goods cannot be delivered within the time windows of the RSs, additional costs will be 

incurred. Quality loss occurring before the latest tolerable service time 
iLT    for cold products is 

acceptable to the customer (Zhao et al., 2020). Therefore, if the vehicle arrives at RS i before 
iLT  , 
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waiting costs are incurred only when mk

i i
t ET  and mk

i i iLT t LT   . If the time to reach RS i exceeds 

the maximum time acceptance, that is, mk

i it LT  , there are a certain percentage of lost sales costs or 

quality loss costs (considering different cold products) in addition to the waiting costs. In urban 

distribution of cold products such as vegetables and fruits, if mk

i it LT   , the normal sale is affected, 

then the lost sales costs are calculated. The loss ratio is determined by the delayed arrival time and the 

saleable time in each period. For fresh milk, and even for medical supplies such as blood and vaccines, 

there is a "0-1" relationship between the product quality. There is no consideration of a portion of the 

quality loss, and once the expiration date is exceeded, the cold products are no longer usable. If 

mk

i it LT  , the retail store will reject the products, which is then directly calculated as the quality loss 

costs, where mk

w i it t LT = − . We regard the additional costs of violating the time windows as the penalty 

costs, which are calculated by adding the waiting costs and the lost sales costs (or quality loss costs). 

( )

( )

( ) ( )( )

1

2

2

,

0 ,

,

,

mk mk

w i i i i

i R

mk

i i i

mk mkP
w i i i i i

i R

mk mk

w i i l i i i w i i

i R i R

C ET t t ET

ET t LT

C
C t LT LT t LT

C LT LT C q t LT t t LT





 

 − 



 
=  −  


   − + − 






 

 (7) 

 In summary, the total costs are expressed as the sum of the sub-costs: 

D T PC C C C= + +  (8) 

4.2.3. Analysis of carbon emissions 

Carbon dioxide emission reduction has become an urgent global issue for the development of a 

low-carbon economy (Lu et al., 2017). What’s more, transportation and storage are the main driving 

forces of environmental issues in logistics (Fichtinger et al., 2015). Compared with normal-

temperature products, more energy has been consumed in the operation of cold chain logistics to 

maintain the low-temperature storage and transportation of cold products, which results in more carbon 

emissions. Hence, in addition to the carbon emissions generated by transportation, the MOLRP-

MRDTW model covers the carbon emissions caused by the fuel consumption used to control the 

temperature inside the vehicle. Especially in special scenarios where time windows are considered, the 

additional waiting time leads to increase of fuel consumption for temperature control. And the portion 

of carbon emissions generated by using electricity in the DCs are also calculated in the model. 

In summary, the carbon emissions of the MOLRP-MRDTW model comprehensively includes two 

aspects. One is carbon emissions from fuel consumption (including transportation and temperature 

control), and the other is the carbon emissions implied by the use of electricity in the DCs. Carbon 

emissions from fuel consumption are modelled as follows (China, 2015). 

44 12fE NCV FC CC OF=      (9) 

The carbon emissions implied by the use of electricity are modelled as follows: 



 

15 

m

mk

e e mk i i e ms m

k K i R

E AD EF u q y EF E Q
 

=  =   (10) 

The total carbon emissions of the cold chain logistics scheduling system in a unit period are 

formulated as follows: 

( )

 ( ) ( )

( )

2

5

6

44 12

10

max ,0 1000

3.6 10

m

m

mk

CO m mk ij f m e

m D k K i L j L m D

e ij
mk

m mk ij mk
m D k K i L j L mk mk ij j j e d

mk j

m mk ij mk a mk e d

k K i L j R

E o u x E o E

NCV CC OF

OC D d
o u x

h S T t ET t COP EC

o u x V HC T COP EC





    

−

   

  

= +

=   

   
 
 +  + −     

+     

   

  



           +

m

m

m D

mk

e m mk i i ms m

m D k K i R

EF o u q y E Q



  

 
 
 
 
 
 
 



 

  

 (11) 

4.2.4. MOLRP-MRDTW Model Setting 

For the MOLRP-MRDTW model of cold chain logistics scheduling system, this study considers 

the three objective functions of minimizing the number of vehicles used, cost, and carbon emissions, 

which have been defined in function (1), (8) and (11) respectively in terms of the model parameters 

and variables. 

min kN  (12)

 minC  (13)

 

2
min COE  (14)

 Constraints and their explanation are discussed as follows: 

. .s t   

0 , ,mk

ij m m

j R

x o i D m D k K


−       
(15)

 
0 , ,=

m

mk

ij

k K

x i D j D m D


    
(16)

 

m

mk

m mk i i m

k K i R

o u q y Q m D
 

    (17) 

Constraints (15)-(17) associate with the services provided by the DCs. Constraint (15) specifies 

that the vehicles cannot be sent out from the unopened DCs. Constraint (16) forbids routes between 

the DCs. Constraint (17) indicates that the total demand of RSs allocated to the DC is not greater than 

the maximum storage capacity of the DC. 

1 , ,mk

ij m

j R

x k K m D i D


     
(18) 

,= ,mk mk

in nj m

i L j L

x x n R k K m D
 

     
(19)

 
,mk mk

mi jn m

i R n D j R

x x k K m D
  

=     
(20)
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,mk

ij j k m

i L j R

x q Q k K m D
 

    
(21) 

Constraints (18)-(21) are restrictions on vehicle service. Constraint (18) forces the model to use 

a new vehicle when a new route from the DC is started. Constraint (19) ensures that if a node is served 

by a vehicle, it should leave from the same node to ensure the continuity of the route. Constraint (20) 

denotes that the vehicle departs from a DC and returns to any DC in the system after completing the 

delivery task. Constraint (21) limits the maximum total demand of nodes in each route, which cannot 

exceed the maximum load capacity of the refrigerated vehicle. 

1
ij

m

mk

m D k K i L

x j R
  

     
(22)

 

m m

jn j

m D k K i L m D k K n L

mk mk

ij q j Rq q
     

− =       
(23)

 
0 ,ij m

i R i R L

mk mk

mi

j

M k K m Dx x
  

−      
(24) 

 ( )max ,0 , ,mk mk mk mk

i ni n n u ni n n m

n L

t x t q t t ET t m D k K i R


+ = + + −     (25) 

Constraints (22)-(25) are proposed to guarantee the demands of RSs. Constraint (22) enforces that 

there is only one vehicle serves for each RS and each RS is assigned to only one DC. Constraint (23) 

confirms that the demand of each RS will be met, which also means the products' flow on a route will 

be decreased after visiting a RS by its demand. Constraint (24) ensures that the RS is accessed by the 

vehicle which departs from the DC. Constraint (25) states that the time to arrive at the RS is affected 

by waiting time, unloading time and driving time. 

( ) ( )1 1 1min ,..., min ,n n n

ij ij ij ij ij ij ijt t t d v t d v t i L j L
 

= = + +   , . . . ,

  

 (26)

 

( )
( )

is unique ,

min there are multiple ,

n n

ij ij ij

ij n n

ij ij ij

t t v t i L j L
d

t t v t i L j L

 

 

 −   
=  −    

，

，
 (27) 

Route 1

Route 2

Route 3

( )1 1, 0ij ijd d v +

( )2 2 2,ij ij ijd d v t


+

( )3 3,ij ijd d v M+

Road congestion Unblocked route

Retail store No thoroughfareLegend：

 

Fig.3. A schematic diagram of route selection 

Constraints (26) and (27) relate to route selection. Different from the existing researches, there 

may be multiple routes to choose between the two nodes in our research. As shown in Fig. 3, there are 

different travel distance and time on different routes. At the same time, road traffic status (unblocked, 

congested, prohibited or restricted) may bring about additional time, thereby increasing the travel time 
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of the route. Since the routes with prohibited or restricted sections are disconnected, we assume that 

the additional time brought by prohibited or restricted sections is M. Considering the timeliness of cold 

products distribution, the principle of route selection is to preferentially select routes with less travel 

time. If there are multiple routes with the same travel time, the route with the shorter travel distance 

gets the priority. 

( ), , , 0mk mk n

ij i ij ij ij ijq t t d t t


− ，  (28) 

 , , 0,1 , , ,mk

m mk ij mo u x m D k K i L j L=    

  

 (29)

 

 0,1 , ,mk

i my m D k K i R=    (30) 

Constraints (28)-(30) limit the values of variables. 

5. Algorithm Design 

To solve the proposed MOLRP-MRDTW model in an efficient computational time, a hybrid 

heuristic algorithm is proposed to obtain a high-quality scheduling plan for IGSS-CCL. We introduce 

a two-stage optimization algorithm (TSOA) based on Dijkstra's algorithm and the NSGA-III. The 

calculation process of the TSOA designed in this study is shown in Fig. 4.  
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Fig.4. The two-stage optimization algorithm 

5.1 The first stage: the improved Dijkstra’s algorithm 

The improved Dijkstra's algorithm is designed to find the optimal routes between nodes in the 

network, and then form the optimal route network. Dijkstra's algorithm is a classic algorithm used to 

solve the shortest path problem in the network (Wang et al., 2020). The basic principle of Dijkstra’s 

algorithm to solve the shortest path problem is to start from one node and gradually explore the shortest 

path to other nodes through labelling (Dijkstra, 1959). However, the nodes are not connected to each 

other in the shortest path network calculated by Dijkstra’s algorithm, that is, it is only the shortest path 

from the starting node to all nodes in the network. Such a result cannot be used as the initial network 

in our second-stage optimization. For this study, what is more important to get the optimal route 

between each node in a complex multi-route network. Moreover, additional travel time may result 

from road traffic conditions. When selecting the optimal path, we should consider the travel distance 

and put the travel time in the first place. Given that the complexity of path selection in this study, the 
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improved Dijkstra's algorithm is designed using the optimal strategy and algorithmic logic of Dijkstra's 

algorithm. The algorithm traverses all routes from the starting node to the remaining nodes every time 

to find the optimal routes based on the optimization principle until it is extended to all nodes. The basic 

principle of the algorithm is shown in Fig. 5. 
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Fig.5. The basic principle of the improved Dijkstra’s algorithm 

The basic steps of finding the optimal route network in a complex network by the improved 

Dijkstra’s algorithm are presented as follows: 

Step 1: All nodes on the network, including DCs and RSs, are numbered sequentially and regarded 

as a set L  . Set S   and set S    are constructed, where S S L =  . In addition, all routes on the 

network are part of the set P , and each route has two attribute values ( ),i i

ij ijd t , which represent the 

travel distance and travel time of the route respectively, where i i n

ij ij ijt d v t


= + . If there is no connected 

route between two nodes, the virtual attribute values ( ),M M  are set, where M  is an infinite number. 

Set U  and set U   are constructed, where U U P = . In the initial state, S L = ,U P = , set S  and 

set U  are empty. 

Step 2: Pick any node i  in the set L  and add it to the set S . By default, the point with the 

smallest number is selected in turn. As the network shown in Fig.5 a, where  1,2,...,8L = , node 1 is 

selected to enter the set  1S = , and  2,3,...,8S  = . And then, the optimal route between the node 1 

and all nodes in the set S   are searched. The optimization principle is the basis of the whole algorithm, 

which is described in detail as Eq. (31). The shortest travel time between nodes should be calculated 

at first. If there are multiple routes with the same travel time, the shortest travel distance will be further 

calculated. 
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( )
( )

1 2 1 2

1 2

min , ,..., , ...

min , ,..., , there are multiple minimum  values

1,..., 1 

m m

ij ij ij ij ij ij

m n

ij ij ij ij ij

t t t t t t

R d d d t

j i i m

   


= 
 = + + −


 (31) 

Step 3: According to the optimization principle, the obtained optimal route between node i  and 

node j  is labeled as ( ),n n

ij ij ijR d t= , where j S . And the route with ( ),n n

ij ijd t  is moved from set P  

to set U  in turn, that is ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 1 1 2 2 1 1
, , , ,..., ,n n n n n n

i i i i i i i i i i m i i m
U d t d t d t

+ + + + + − + −
= . For example, there are two 

routes ( )1 1

12 12,d t , ( )2 2

12 12,d t between node 1 and node 2, where 1 2

12 12t t . So the optimal route between 

node 1 and node 2 is ( )2 2

12 12 12,R d t= . 
12R  is moved to the set U . Searching the optimal routes from 

node 1 to other nodes in turn can obtain ( ) ( ) ( ) ( ) ( ) 2 2 1 1 1 1 1 1 2 2

12 12 13 13 14 14 15 15 16 16, , , , , , , , ,U d t d t d t d t d t=  , where 

( )17 18 ,R R M M= = are the virtual attribute value. 

Step 4: Continue to take node 1i +  from the set L  and add them to the set S . As shown in 

Fig.5 b, node 2 is selected after node 1 to enter the set  1,2S = , and  3,4,...,8S  = . The optimal 

routes between node 2 and all nodes in the set S   are searched sequentially, where ( )1 1

23 23 23,R d t= ,

( )1 1

25 25 25,R d t= . Repeat steps 2 and 3 until S L= , that is, the optimal routes between all nodes on the 

network are calculated. Finally, the optimal route set U  of the network is obtained, which will be 

used as the initial state of the next stage operation. 

5.2 The second stage: the improved NSGA-III 

There is an optimal route network after the running of the first stage algorithm. We presented the 

second stage algorithm, the improved NSGA-III, to further find the specific scheduling plan for the 

IGSS-CCL. The MOLRP-MRDTW model is a variant of the vehicle routing problem, so it is also an 

NP-hard problem (Schiffer et al., 2019). When solving MOPs with three or more objectives, the 

NSGA-III based on the non-dominated sorting and reference point methods is effective to ensure the 

convergence and diversity of the algorithm (Deb and Jain, 2014). The improved NSGA-III uses a 

double-layer structure real coding. Different from the simulated binary crossover and polynomial 

mutation strategies used in the standard NSGA-III, the improved NSGA-III selects both arithmetic 

crossover operator and Gaussian mutation operator for genetic operations to improve the local search 

performance for the focal region. In addition, the NSGA-III with a fixed mutation rate does not always 

find a final solution to the optimization problem (Yi et al., 2018). The adaptive strategy in the improved 

NSGA-III enhances its performance by adjusting the mutation rate. 

The basic steps of searching the optimal scheduling plan by the improved NSGA-III are presented 

as follows: 

Step 1: Chromosomes coding and decoding. In the algorithm, the chromosome is divided into two 

gene segments, and the double-layer structure real coding is introduced to encode the gene segments. 

The first level gene segment 1G  is an array with a length of m , where m  is the number of DCs 

participating in the scheduling task. And the second level gene segment 2G  is an array with a length 

of 1n k+ −  , where n  is the number of RSs, and k  is the number of available vehicles owned by 

all DCs participating in the scheduling task. Both arrays are composed of real numbers between 0.0 

and 1.0. For instance, there are 4 candidate DCs, 2 of which are involved in the scheduling task, and 
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each DC has 2 vehicles. There are 6 RSs waiting for service. A decoding sequence is formed after 

roulette decoding for 1G  and random key decoding for 2G . An example of chromosome coding and 

decoding is shown in Fig. 6. 
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Fig.6. An example of the chromosome structure 

Step 2: Initialize the parent population t
P   with N individuals. The quality of the parent 

population directly affects the execution efficiency of the algorithm iteration, so the generation and 

population size of the parent population work on the quality of the Pareto solution set to a certain 

extent. The parent population in the standard NSGA-III is randomly generated, and no other screening 

restrictions are imposed. Therefore, we add screening conditions based on randomly generating the 

parent population. The individuals that cannot meet the conditions are eliminated before iteration by 

restricting the overall satisfaction level of the parent population and the loading capacity of delivery 

vehicles, which contributes to maintain the diversity and quality of the parent population. 

Step 3: Design genetic operators. Genetic operators act on the generation process of offspring 

chromosomes. In standard NSGA-III, simulated binary crossover and polynomial mutation operators 

with fixed crossover and mutation rates are used to generate new individuals. We adopt arithmetic 

crossover (Ali and Tawhid, 2017) and Gaussian mutation (Sun and Gao, 2019) to perform on the 

individuals of the parent population, so that the offspring population 
tQ   is more adaptable to the 

environment. Actually, the NSGA-III with fixed mutation rate may lead to unsatisfactory results for 

some complex problems (Yi et al., 2018). As a result, we introduce an adaptive mutation strategy in 

the NSGA-III to improve algorithm's performance. The update rule of mutation probability 
m

p  is 

shown in Eq. (32). 

( ) ( ) ( )1 1 1
m m

p r g r g= + −  − −  (32) 

Where g   and 
m

g   are the current generation and maximum generation, respectively. And

50r I=  is the fixed real number, I  is the dimension of the problem, 3I =  in this study. 

Step 4: Non-dominant sorting. The parent population 
t

P   and the offspring population 
tQ  

generated by genetic operation are combined to get a new population 
tR . The size of 

tR  is 2N . 
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According to the rule of non-dominated sorting, the individuals in 
tR   are divided into several 

different non-dominated layers ( 1 2, ,..., nF F F ). 

Step 5: Perform the individual selection mechanism to construct a new population 
1tP+
 for the 

next iteration. Research on related algorithms shows that the elite preservation strategy and reference 

points introduced in NSGA-III as the selection instrument can effectively increase population diversity 

and local search ability when solving problems with more than two objectives (Chen et al., 2017; 

Tavana et al., 2016). Therefore, TSOA follows the selection mechanism based on the elite preservation 

strategy and reference points in NSGA-III. Algorithm 1 describes a simplified calculation procedure 

including selection, normalizing the objectives, associating reference points, and niche-preserving 

operation. For detailed calculation procedure, please refer to the original paper (Deb and Jain, 2014). 

Algorithm 1 The Individual Selection of NSGA-III 

1 Input. H processed reference points rZ , ( ) ( )1 2, ,..., n tF nF F Non domi ated so Rrt−=  

2 for 1t =  to MaxIt  do 

3 , 1tS i= =  

4 repeat 

5 t t iS S F=   and 1i i= +  

6 until tS N  

7 Last front to be included: l iF F=
  

 

8 If tS N=  then    

9 1t tP S+ = , break    

10 else                

11 1

1 1

l

t jj
P F

−

+ =
=U  

12 Points to be chosen from l
F : 1tK N P+= − , K  is the number of members selected. 

13 Normalize objectives nF  and create reference set rZ : ( ), ,n r

tNormalize F S Z  

14 Associate each member s  of tS  with a reference point: ( ) ( ) ( ), , r

tπ s d s Associate S Z=    

Where ( )π s  is the closest reference point of s , ( )d s  is the distance between s   

and ( )π s . 

15 Compute niche count jρ  of reference point rj Z   

16 Choose K  members from lF  to construct 1t
P

+ : ( )1, , , , , ,r

j l tNiching K ρ π d Z F P+
 

17 end if 

18 end 

6. Experimental Design and Result Analysis  

To ensure the fairness of the numerical analysis and algorithm solving environment, MATLAB 

R2018a is used to complete all the experiments. The running environment is Intel® Core™ i7-8550U 

CPU@ 1.80GHz 1.99 GHz. 

6.1. Algorithm experiment 

This section evaluates the performance of the designed TSOA through experiments on instances 

with different sizes. Since MOLRP-MRDTW model is defined for IGSS-CCL for the first time, there 
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are no calculation examples that can be directly called. Therefore, this study generated four test data 

sets with reference to Wang et al. (2018) and Al Theeb et al. (2020) , including 2 tiny, 2 small, 2 

medium, and 2 large instances. The instance sizes are shown in Table 1. The TSOA and standard 

NSGA-III were used to solve four groups of test instances in the same experimental environment. 

Because the function of multi-route selection cannot be realized in the standard NSGA-III, the results 

of the first stage in TSOA were called at running. The parameters set in the calculation were as follows: 

the initial population was 80, and the maximum number of iterations was 500 (Leng et al., 2020b). The 

performance of the two algorithms is summarized in Table 2. 

Table 1 The data of instances used in experiments. 

Instance T S M L 

Number of candidate DCs 3 5 8 10 

Number of RSs 20 50 100 200 

Vehicles available in each DC 5 5 10 10 

Load capacity of vehicles (kg) 2000 2000 2000 2000 

We mainly compare the performance of the algorithms from two aspects: the base metrics and the 

comprehensive performance metrics. Where the base metrics includes the number of solutions ( solN ), 

the running time ( RT  ) and the optimization values of the objective functions. The hypervolume 

( HV )(Ishibuchi et al., 2017; Tian et al., 2017; Zitzler and Thiele, 1999) and coverage of two sets (  ) 

(Zitzler and Thiele, 1999) are introduced as comprehensive performance metrics.  

Table 2 Summary results of the TSOA and standard NSGA-III on different sized instances. 

Instance 
TSOA  NSGA-III 

solN  RT  (s) HV   solN  RT  (s) HV  

T 14 185.67 4.88E-01  11 135.02 3.65E-01 

S 42 198.21 4.60E-01  36 145.44 2.83E-01 

M 49 207.58 4.14E-01  46 155.87 1.92E-01 

L 65 231.98 4.09E-01  58 179.77 1.46E-01 

Average 42.5 205.86 0.44275  37.75 154.03 0.24 

t-test - - -  4.61 115.08 6.53 

p-value - - -  1.92E-02 1.45E-06 7.31E-03 

 

Table 2 displays the number of solutions, running time, and HV  values of the two algorithms 

for solving different sized instances. Two-sample t-test was performed to compare the mean values of 

two groups (TSOA vs. NSGA-III) (Shi et al., 2022; Wang et al., 2021b). The p-values were all less 

than 0.05 according to the statistical analysis of the two sets of results, which confirms that the results 

are significantly irrelevant. Therefore, the relative effectiveness of the proposed algorithm can be 

validated by comparing the solution results of the data sets. First, in terms of solutions acquisition, it 

is apparent that TSOA was able to obtain more solutions than NSGA-III for each instance. Second, 

comparing the running time of the two algorithms objectively, TSOA took longer to search for results, 

but the average time difference between the two algorithms was less than 60s. The reason is that the 

standard NSGA-III directly invoked the results of the first stage in the TSOA. And an adaptive 
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mutation strategy was used in the TSOA, which increases the running time of the algorithm. Third, the 

HV  values of TSOA were greater than that of NSGA-III (the maximum difference reaches 2.63E-01), 

indicating that TSOA has a better convergence and distribution of an approximate Pareto front than 

standard NSGA-III. In conclusion, when there is no significant difference in running time, this study 

focuses on the contribution of the TSOA to the optimal Pareto solutions. In addition, a Pareto solution 

that has the largest HV  value in each group of experiments and is superior to other solutions in at 

least two dimensions was selected to compare the optimization effects of the algorithms. The 

corresponding comparison results are shown in Table 3. 

Table 3 The comparison of optimization values of TSOA and NSGA-III. 

Instance TSOA NSGA-III Optimization value 

 
mina C  min ka N  

2
min COa E  minb C  min kb N  

2
min COb E  C  kN  

2COE  

T 8417.83 4 230.93 8747.17 4 300.56 329.34 0 69.63 

S 24877.74 9 612.38 25590.61 10 672.93 712.87 1 60.55 

M 49630.63 22 1247.81 51130.24 23 1322.28 1499.61 1 74.47 

L 119750 34 2738.06 141229.2 35 2925.68 21479.2 1 187.61 

Average - 6005.26 1 98.07 

Since the optimization functions of the MOLRP-MRDTW model are to minimize cost, the 

number of vehicles used and carbon emissions, small objective function values are expected. In Table 

3, the optimization value refers to the difference between the results of TSOA and NSGA-III ( C :cost, 

kN :the number of vehicle used, 
2COE : carbon emission). The results show that the TSOA has more 

advantages than the standard NSGA-III, which is mainly reflected in two aspects. The first is that the 

objective functions values obtained by the TSOA( mina C , min ka N , 
2

min COa E ) were better than the 

standard NSGA-III( minb C , min kb N , 
2

min COb E ), that is, the optimization values of C , kN  and 
2COE  

were all greater than or equal to zero. The second is that the optimization values of C , kN  and 
2COE  

all gradually increased with the expansion of instances size by comparing the optimization values of 

the four groups of instances, where C   increased from CNY 329.34 to CNY 21479.2, and 
2COE  

increased from 60.55kg to 187.61kg. The larger the instance size, the more obvious the optimization 

effect of the TSOA. 

Fig. 7 depicts the direct comparison of   values on different sized instances to illustrate the 

dominance of the outcomes of one algorithm over the outcomes of another. As shown in Fig. 7, 

( )1
,TSOA NSGA IIIX X −   was significantly larger than ( )2

,NSGA III TSOAX X−   in the different instances (where 
TSOAX  and NSGA IIIX − represent the sets of solutions obtained by TSOA and NSGA-III, respectively). The 

mean values of ( )1
,TSOA NSGA IIIX X −  were 0.7788, 0.7923, 0.7796, and 0.8080, respectively. And the mean 

values of ( )2
,NSGA III TSOAX X−  were 0.0931, 0.0589, 0.0361, and 0.0272, respectively. The results show 

that the optimal solutions found by TSOA largely dominates the optimal solutions found by NSGA-

III. 
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a-   values for instance T b-   values for instance S 

  

c-   values for instance M d-   values for instance L 

Fig.7. ( )1
,TSOA NSGA IIIX X −  vs. ( )2

,NSGA III TSOAX X−  for different size instances. 

In a word, from the analysis of the base metrics and comprehensive performance metrics, the 

overall performance of the TSOA is better than that of the standard NSGA-III when solving the 

MOLRP-MRDTW model for IGSS-CCL proposed in this study. 

6.2. Case study 

6.2.1 Description of the case study 

The proposed IGSS-CCL was applied to a real-world case study for the scheduling operation of 

cold chain logistics in Company S from Chongqing (a provincial administrative region in China). With 

the development of the online shopping mode, the demand for the cold chain distribution of Company 

S shows a rapid upward trend. However, in the scheduling process, the scheduling plans were 

formulated based on the work experience of the managers, and they arranged as many vehicles as 

possible to meet the time windows requirement of stores. New operational requirements, such as 

pandemic prevention, energy conservation, and emission reduction, make it more difficult to perform 

scheduling work using traditional methods. Facing a real-time and dynamic distribution environment 

and demand, Company S is unable to quickly output an intelligent green scheduling plan that balances 

the relationship among costs, vehicle frequency, energy conservation and emission reduction. 

The purpose of the case study using Company S is to prove that the proposed method has a more 

general value, not just for Company S. There are five distribution centers belonging to Company S 

around the urban area of Chongqing, China. Vehicles depart from the DCs at 22:00-00:00 to deliver 
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goods to the RSs. The demand points in the urban area include 71 retail stores. The distribution of the 

logistics network points composed of the locations of the DCs and RSs is presented in Fig. 8. 

 

Fig.8. The logistics network points for the case study. 

The model constructed for IGSS-CCL in this study is a general model that is not limited to any 

special statistical distribution. Hence, in accordance with (Berk and Gurler, 2008; Yin et al., 2016), the 

daily demand data of RSs for cold products were generated using a Poisson distribution. Here, the 

vehicle speed was considered as a fixed parameter of 40 km/h, which conforms to the majority of road 

speed standards in the case study. Other parameters used to calculate fuel consumption and carbon 

emissions were taken from previous studies (China, 2015; Reddy et al., 2021; Stellingwerf et al., 2018; 

Tassou et al., 2009; Tso et al., 2002). 

6.2.2 Results of the case study 

Based on the aforementioned values, Fig. 9 depicts the distribution of the solutions for the case 

study in Company S within the X-vehicle used, Y-cost, and Z-carbon emission Cartesian space. The 

result is a Pareto solution set composed of 42 solutions, that is, 42 different scheduling schemes are 

provided for Company S through IGSS-CCL. 
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Fig.9. The general view of optimal solutions 

The Pareto solution set includes all non-dominated solutions of the MOLRP-MRDTW. As the 

solutions in the Pareto solution set are all feasible, the final scheduling plan must be selected within 

this set using an arbitrary method (Bortolini et al., 2016; Lu et al., 2012). For this purpose, a rule that 

can be expressed as Eq. (33) is introduced to converge to such a final solution. 

( ) ( ) ( )min n n n nG C C N N E E  =    (33) 

where n is the index of the n-th solution on the Pareto frontier, and , ,C N E  
are the single-

objective optimal solutions for the cost, number of vehicles used and carbon emissions, respectively. 

The solution with a minimum nG  value is the scheduling plan selected for IGSS-CCL. To verify the 

superiority of the MOLRP-MRDTW model for IGSS-CCL, which has three objective functions, the 

solution was compared with the results obtained by single-objective optimization. When one objective 

function is used, other objective functions become indicators rather than objectives. The tri-objective, 

optimal cost, vehicles used, and carbon emissions scenarios were investigated and the corresponding 

optimization results are shown in Table 4, highlighting the values and optimization ratio of the 

objective functions. 

Table 4 Optimization results of tri-objective and single-objective. 

Item 

Objective functions and optimization ratio 

Tri-objective 

(cost, vehicle 

and carbon 

emissions) 

Single-

objective 

(cost) 

∆vs.  

Tri-objective 

Single-

objective 

(vehicle) 

∆vs.  

Tri-objective 

Single-

objective 

(carbon 

emissions) 

∆vs.  

Tri-objective 

Cost(¥) 40044.46 26400.1 -34.07% 261182.70 552.23% 126681.82 216.35% 

vehicles used 9 19 111.11% 8 -11.11% 11 22.22% 

Carbon 

emissions(kg) 
901.69 1046.4 16.05% 1160.88 28.74% 830.80 -7.86% 
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The results in Table 4 highlights a specific scheduling plan that best balances costs, vehicles used, 

and carbon emissions by using the three objective functions for optimization in IGSS-CCL. Optimizing 

only one of the objective functions leads to a significant deterioration of the other two. The main 

conclusions are as follows. 

1) The cost optimization determines a relative increase in the number of vehicles used and carbon 

emissions; namely, the number of vehicles used globally worsens by approximately 111.11%, 

whereas carbon emissions increase by 16.05%. The cost of the tri-objective solution is 34.07% 

higher than that of the single-objective optimal solution. The reason is that the system will arrange 

as many vehicles as possible to meet distribution requirements on account of the limitation of time 

windows when optimizing only by cost, to reduce the penalty costs and eventually achieve the 

goal of optimizing costs. 

2) The number of vehicles used for the tri-objective is similar to that of the single-objective optimal 

solution, with only an increase of 11.11% (from 8 to 9 vehicles). In contrast, the costs of the single-

objective (vehicle) optimization increase by 552.23% compared to its optimal value in the tri-

objective optimization, and the carbon emissions increase by 28.74% compared to its optimal 

value in the tri-objective optimization. The system will choose to violate the time windows to 

reduce the use of vehicles when optimizing only the number of vehicles used, which results in a 

sharp increase in costs. The waiting time caused by violating the time windows also leads to an 

increase in carbon emissions. 

3) The carbon emissions of the optimal solution of the single-objective (carbon emissions) 

optimization are only 7.86% better than those of the tri-objective solution. However, the costs and 

number of vehicles used increased by 216.35% and 22.22%, respectively, compared to the tri-

objective optimization. Fuel is used to maintain the normal operation of vehicles and the 

temperature in vehicles, and fuel consumption is the main source of carbon emissions. 

Consequently, the optimization of carbon emissions is conducive to reducing the number of 

vehicles used in system scheduling to a certain extent (compared with the single objective(cost) 

optimization). The costs are also reduced, which refers to the part caused by violating the time 

windows (compared with the single objective(vehicle) optimization). 

This section provides a method to select the final scheduling plan for Company S, as shown in 

Eq. (33). However, the optimal solutions in the Pareto solution set are all feasible, and there is no 

dominant relationship among the solutions. The choice of a specific scheduling plan depends on the 

decision maker's preference for the objective functions. 

6.3 Sensitivity analysis  

To illustrate the stability, economy and greenness of the IGSS-CCL proposed in this study, this 

section attempts to analyze the impact of different parameter changes on key performance indicators 

(costs, vehicles used, and carbon emissions). Sensitivity analyses were conducted with changes in 

vehicle speed, unit penalty cost, and controllable cost of the DC. The solutions of the tri-objective 

optimization are selected from the Pareto solution sets according to Eq. (33). 

6.3.1 Impact of changes in vehicle speed 

This section examines the effects of an increase in vehicle speed on the costs, number of vehicles 

used and carbon emissions of the solutions. 

Fig.10 reveals a comparison of the trends of tri-objective and single-objective optimization results 



 

29 

at different vehicle speeds. As the vehicle speed changed, the comparative change trends of the costs, 

vehicles used, and carbon emissions under different objective functions were consistent. For instance, 

from the optimization results of costs (Fig. 10 a), the single-objective (vehicle) has the largest value, 

followed by the single-objective (carbon emission), and the cost of the tri-objective are only higher 

than that of the single-objective (cost). The shapes of the five curves with different speeds are similar, 

which proves that the comparison trend of costs between the tri-objective and single-objective (cost), 

single-objective (vehicle), and single-objective (carbon emission) does not change even if the vehicle 

speed changes. The same behavior occurs considering the comparison results of the number of vehicles 

used (Fig. 10 b) and carbon emissions (Fig. 10 c); the five curves with different vehicle speeds have 

the same change trend, and the increase in vehicle speed does not transform the advantages of vehicles 

used and carbon emissions in the tri-objective optimization compared with the single-objective results. 

In short, the experimental results indicate that the superiority of the tri-objective optimization for 

IGSS-CCL has no other trends owing to changes in vehicle speed, which illustrates that the results are 

stable and reliable. 

 

a-Cost                                        b-Vehicle used 

 

                               c- Carbon emission 

Fig.10. Results comparison of tri-objective and single-objective optimization at different vehicle speeds. 

As for the results of the tri-objective optimization, the trend of the objective functions with an 

increase in vehicle speed is shown in Fig. 11. Fig. 11 a demonstrates that there are no stable increasing 

or decreasing trends in the curves of costs and vehicles used, which means that the increase in vehicle 

speed has an insignificant impact on the costs and number of vehicles used. However, it is obvious that 

the change curves of the total costs and penalty costs have the same shape, and they change in the 

opposite direction from the vehicle used curve. For example, as the vehicle speed changed from 30 

km/h to 40 km/h, the penalty costs increased by 103.06% and the total costs increased by 24.58%. 
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Conversely, the number of vehicles used at this speed decreased by 30.77%. The calculation results 

indicate that the main factor affecting the number of vehicles used is not the vehicle speed but the time 

windows when considering the time windows in the model. It is also explained that the smaller the 

number of vehicles used, the higher the penalty costs, which in turn causes the increase of the total 

costs. However, as shown in Fig. 11 b, the fuel used and carbon emissions in the scheduling process 

have the same changing trend; that is, they increase with increasing vehicle speed. When the vehicle 

speed increased from 20 km/h to 60 km/h, the fuel consumption increased by 7.3% and carbon 

emissions increased by 4.8%. This is not surprising because fuel consumption is the major source of 

carbon emissions in cold chain scheduling, as shown in Eq. (9). 

 

a-The impact on costs and vehicles used               b- The impact on carbon emissions 

Fig.11. The impact of vehicle speed on the objective functions 

The analysis results manifest that the method of increasing vehicle speed cannot be used to 

achieve the purpose of reducing the number of vehicles used. A higher vehicle speed means more 

carbon emissions, and the number of vehicles used does not change significantly under the constraints 

of the time windows. Moreover, high vehicle speeds are in inconformity to regulations of urban traffic 

management, which poses potential safety risks. At a speed that meets the transportation regulations, 

the IGSS-CCL is capable of generating a scheduling plan that optimally balances the requirements of 

economy, safety, and greenness. 

6.3.2 Impact of changes in unit penalty cost 

This section analyzes the impact of changes in penalty costs on the costs, vehicles used, and 

carbon emissions. The unit penalty cost ranged from 0 to 300% in increments of 50%. 

Fig. 12 depicts the comparison trends of the costs (a), vehicle used (b), and carbon emissions (c) 

of the tri-objective, single-objective (cost), single-objective (vehicle), and single-objective (carbon 

emission) when the unit penalty cost is set to different values. There are similarly shaped costs, vehicle 

used and carbon emissions curves even if the unit penalty cost changes, and these results correspond 

to the results in Fig. 10, where the values are different, but the trend is the same. The results reveal 

that the change in the unit penalty cost does not convert the relative position of the tri-objective and 

single-objective optimization results; that is, the superiority of the tri-objective optimization for the 

IGSS-CCL is still prominent. Therefore, the stability and reliability of the results were verified. 
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a- Cost                                         b- Vehicle used 

 
c- Carbon emission 

Fig.12. Results comparison of tri-objective and single objective optimization at different unit penalty cost. 

Fig. 13 displays the detailed trend of the three-objective optimization results as the unit penalty 

cost increases. Fig. 13 a indicates that when the increase ratio of the unit penalty cost is 0–200%, the 

total costs show a steady increasing trend. However, when the ratio exceeded 200%, the total costs 

decreased significantly because the number of vehicles used at this ratio increased remarkably (an 

increase of 30%). To balance the impact of the penalty costs on the total costs, as the unit penalty cost 

increases, the number of vehicles used increases from 7 to 13, which is an increase of 85.71%. It is 

worth noting that the system obtains a scheduling scheme with low costs and fewer vehicles when the 

unit penalty cost is 0. However, the average travel time of each path in the scheme at this time is as 

long as 24.19 hours, which is completely contrary to the requirements of cold product distribution. In 

addition, carbon emissions are related to fuel consumption, so there is the same increasing trend 

between carbon emissions and the number of vehicles used with the increase in unit penalty cost, with 

an increase of 18.16%, as shown in Fig. 13 b. 

 
a-The impact on costs and vehicles used           b- The impact on carbon emissions and vehicles used 

Fig.13. The impact of unit penalty cost on the objective functions 
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In general, the data results clarify that as the unit penalty cost increases, the system catches the 

requirements of time windows by increasing the number of vehicles used, thereby controlling the total 

costs. An increase in the number of vehicles used leads to more carbon emissions. Considering the 

costs, vehicles used, carbon emissions, and average travel time of the route comprehensively, there 

will be a better effect if the ratio of the unit penalty cost is set to 50%–150%. If managers want to 

violate the time windows less, they can set the unit penalty cost ratio to 250%–300%, but at the costs 

of using more vehicles and increasing carbon emissions. 

6.3.3 Impact of changes in controllable cost of DC 

This section illustrates the effect of a change in the controllable cost of DC ( ccDC ) on the results, 

as shown in Fig. 14. As shown in Fig. 14 a, the larger the value of ccDC , the fewer DCs and vehicles 

are used. However, the number of DCs and vehicles used did not continue to decrease during 

1200ccDC   . The benefits of reducing the number of DCs and vehicles cannot compensate for the 

penalties caused by violating time windows. As fewer vehicles are used, the change in penalty costs 

for violating time windows drive the change in total costs. Fig.14 b indicates that the total costs 

increased by 48% as the ccDC  increased from 200 to 1800. In addition, the carbon emissions of the 

system tended to decrease by 15% when the ccDC  increased. The reason is that changes in the vehicles 

used affect the fuel consumption, which in turn leads to changes in carbon emissions. 

  

a-The impact on the use of DCs and vehicles         b- The impact on cost and carbon emission 

Fig.14. The impact of controllable cost of DC on the objective functions 

7. Conclusions and Managerial Insights 

The scheduling activity of cold chain logistics is a complex system engineering, which is energy-

intensive and has operational requirements of safety, efficiency, intelligence, and cooperation. 

Ensuring the supply of cold products, on the premise of matching the sustainable development 

requirements of urban governance, such as pandemic prevention, congestion alleviation and emissions 

reduction, is an important issue for both enterprises and governments. 

This study developed the system framework of IGSS-CCL and then focused on the mathematical 

model and algorithms that provide scheduling decisions for the actual implementation of IGSS-CCL. 

A MOLRP-MRDTW optimization model was constructed, and the optimization objectives included 

cost, number of vehicles used and carbon emissions. To make the scheduling system more flexible, 

this study innovatively considers the scenario of a multi-route decision and three-level time windows. 

Moreover, this study designed a two-stage optimization algorithm that combines the advantages of 
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Dijkstra’s algorithm and NSGA-III to solve the proposed problem in efficient computational time. Test 

instances of various sizes were used to analyze the solution performance of the TSOA. The results 

indicated that the TSOA had better convergence and distribution than the standard NSGA-III.  

Finally, the proposed framework was implemented in a real-world case to analyze the green, 

safety, economic and collaborative utility of IGSS-CCL. Computational experiments demonstrated 

that if only one objective is optimized, the values of the other two will increase sharply. Compared 

with the corresponding single-objective configurations, multi-objective tactical network planning was 

more conducive to cost saving, vehicle control and environmental protection. The potential benefits of 

multi-objective optimization for IGSS-CCL have been reported many times in experimental results. 

The changes in the key parameters did not affect the superiority of the multi-objective optimization, 

which can be manifested in the results of the sensitivity analysis.  

Based on sensitivity analysis, the following insights were gained: 

1) Setting multi-level time window constraints can effectively quantify the delivery time demands of 

retail stores and the time requirements of cold product quality, thus enhancing the economic and 

environmental benefits of cold product scheduling. The allocation of sufficient DCs and vehicles 

can adequately meet the time window requirements of retail stores, but this leads to idle or wasted 

resources. The use of fewer DCs and vehicles increases the probability of violating time windows, 

which results in a loss of quality and sales. When facing the above decision challenges, reasonably 

satisfying the time window constraints is the essence of the decision. This is where information 

sharing among cold chain members is particularly critical. If the cold chain logistics enterprises 

can fully understand the delivery time demands of the downstream cold chain members before the 

delivery task is started, the multi-level time windows are set to constrain delivery time according 

to the attributes of the delivered products and match different penalty coefficients for different 

levels of time window violations. They can scientifically quantify the penalty costs caused by 

delivery delays. 

2) Reducing controllable costs in the system, such as DC fixed costs, not only downgrades the total 

operating costs, but also promotes the overall optimization effect of scheduling plans. The problem 

faced by the cold chain members is how to dominate the controllable costs in the system. Cold 

chain logistics enterprises should actively introduce emerging technologies to upgrade cold chain 

logistics transportation equipment, continuously optimize the existing intelligent technology and 

infrastructure layout, to avoid the difficulties caused by information asymmetry between various 

elements in the scheduling system, and effectively control unnecessary resource idleness or waste. 

Intelligent and green transformation and upgrading of cold chain facilities are the main trends in 

the future development of cold chain logistics (China, 2021a). The development and application 

of technologies, such as IoT, big data, and artificial intelligence, have provided opportunities to 

overcome the obstacles involved. 

In addition, this study identified that increasing vehicle speed to achieve the purpose of reducing 

the probability of time window violation, reducing penalty costs, or improving delivery efficiency is 

not a sensible approach. The IGSS-CCL can output the optimal balance of economic, safe, and green 

scheduling at a speed that complies with traffic regulations. In cold chain logistics operations, the 

proposed IGSS-CCL can be introduced as a decision support tool for managers to control and supervise 

the cold product scheduling process. Cold chain members can set different objective function weight 
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values according to their actual needs to select a satisfactory scheduling solution among the set of 

solutions with the Pareto nature. 

1) Under urban governance requirements, such as pandemic prevention, congestion alleviation, and 

emission reduction, cold chain members with large batch and multi-frequency distribution tasks 

may face disturbing factors, such as restrictions on the number of delivery staff and traffic. 

Managers using IGSS-CCL can choose a scheduling plan that uses fewer vehicles to address 

possible congestion charges or disturbances from traffic restrictions. Furthermore, with the 

reduction in delivery vehicles, the number of delivery staff will also decrease. This result is also 

in conformity with the principles for pandemic prevention and control, which contribute to 

limiting the spread of viruses. 

2) In the management of energy-intensive industries with carbon emission control, cold chain 

members with carbon quota restrictions may face constraints of limited carbon emissions or high 

emission costs. Managers using IGSS-CCL can select a green scheduling plan with lower carbon 

emissions by carefully setting appropriate carbon emission weights with economic and 

environmental benefits in mind. The Chinese government has clearly stated that carbon emissions 

will reach their peak by 2030 and carbon neutrality will be achieved by 2060 (China, 2021b). If a 

carbon trading or carbon tax system is applied to the cold chain logistics industry in the future, the 

IGSS-CCL proposed in this study can assist cold chain members in forming scientific industry 

development proposals, which can contribute to the achievement of national environmental goals 

without significantly harming the economic benefits of each cold chain member. 

There remain numerous challenges in the process of realizing intelligent green scheduling. In the 

future, this study could be extended in several ways. Revising the scheduling scheme when the vehicle 

breaks down or other disturbance factors occur after the scheduling plan has been implemented would 

be an interesting area for future research. This study considers the uncertainties in supply and demand 

affected by the external environment or internal factors as a natural extension. Intelligent scheduling 

decisions under disturbances could be a future research direction. 
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Appendix A. Model parameter 

The notations used in the paper to develop the mathematical model are summarized in Table A.1, 

including sets, parameters and variables. Parameters value related to vehicle is shown in Table A.2. 
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Table A.1 Summary of the notations. 

Symbol Definition Unit 

Sets   

D  Set of candidate DCs,  1,2,...,D m=  - 

R  Set of retail stores (orders),  1,2,...,R n=  - 

L  Set of all notes, =L D R  - 

m
K  Set of vehicles in the DC m ,  1,2,...,

m
K k=  - 

Parameters   

, ,
i i i

ET LT LT    
The service time window of retail stores i , 

i
ET  is the earliest service time, 

i
LT  

is the latest service time, and 
i

LT  is the latest tolerable service time 
h 

mfC  Unit fixed cost of the DC m  in each period (day) ¥/day 

mhC  Unit inventory holding cost in the DC m  ¥/kg 

meC  Unit electricity cost of the DC m  ¥/ kWh 

mpC  Unit pandemic prevention cost of cargo in the DC m  ¥/kg 

fC  Unit cost of fuel ¥/L 

kfC  Unit distance cost of vehicle k  ¥/km 

1wC  
Unit waiting cost of driver when the vehicle arrives at store before the earliest service 

time 
¥/h 

2wC  
Unit waiting cost of consignee when the vehicle arrives at store after the latest service 

time 
¥/h 

lC  
Unit lost cost of cargo when the vehicle arrives at store after the latest tolerable 

service time 
¥/kg 

msE  Net electricity purchased by the DC m  in each period kWh/day 

mQ  Inventory of cargoes in the DC m  in each period kg 

kQ  Maximum load capacity of the vehicle kg 

n

ijd  Travel distance of the road n  between retail stores i  and j  km 

n

ijt  Travel time of the road n  between retail stores i  and j  h 

v  Speed of the vehicles km/h 

n

ijt

 

The additional time brought by the road traffic status between the retail store i  and 

j . If the road is clear, 0n

ijt

= . If the road is prohibited, 

n

ijt M

=  

h 

M  An infinite number - 

e  Energy conversion efficiency for chemical to refrigeration - 

COP  Coefficient of performance - 

dEC  Energy content of the fuel kWh/L 

TV  Speed of the air temperature increase K/s 

iq  Demand of retail store i  kg 

ut  Unit time required to unload cargoes h/kg 

wt  Saleable time of the cargoes in each period h 

0T  Optimal temperature in the refrigerated vehicles K 
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mkh  Heat transfer coefficient of the vehicle k  - 

mk
S  

Surface area of vehicle k ,
out

S ,
in

S is the outer and the inner surface area of vehicle, 

respectively， mk out in
S S S=  

m2 

T  Difference in average air temperature between inside and outside vehicle K 

mkV  Volume of the vehicle k  m3 

aHC  Volumetric heat capacity of air at constant pressure J /m3·K 

i

mkT  

the difference between the temperature inside vehicle k   and the optimal 

temperature when the service at node i   ends, TV   is the speed of the air 

temperature increase (K/s)， i

mk T i uT V q t =  

K 

NCV  Average low calorific value of the fuel GJ/t 

CC  Unit calorific value carbon content of the fuel tC/GJ 

FC  Fuel consumption t 

OF  Carbon oxidation rate of the fuel - 

OC  Fuel volume of the vehicle in per 100 kilometers L/100km 

eD  Density of the fuel t/m3 

eEF  Average carbon emission factor of power supply tCO2/MWh 

Intermediate variables 

mk

ijq  Load carried by the vehicle k  sent from the DC m  on arc ( ),i j  kg 

mk

it  Time when vehicle k  arrives at customer i  h 

ijd  Actual travel distance between retail stores i  and j  km 

ijt  Actual travel time between retail stores i  and j  h 

Decision variables 

mk

ij
x  1 if arc ( ),i j  is crossed with vehicle k  in the DC m  , 0 otherwise - 

m
o  1 if the DC is selected to open, 0 otherwise - 

mk
u  1 if the vehicle k  in the DC m  is used, 0 otherwise - 

mk

i
y  1 if the vehicle k serves retail store i , 0 otherwise - 

Table A.2 Parameters value related to vehicle. 

Notation Value Notation Value 

out
S  36.9 m2 e  30% 

in
S  31 m2 COP  1 

mkV  10.47 m3 dEC  8.8 kWh/L 

kQ  1485kg TV  0.0027 K/s 

mkh  0.7 W/m2·K OC  20.2 L/100km 

aHC  1400 J /m3·K eD  0.84 t/m3 

NCV  43.33 GJ/t OF  98% 

CC  20.2x10-3 tC/GJ eEF  0.61 tCO2/MWh 
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