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Abstract

Gaussian conditional random fields (GCRF) are a well-known used structured model for con-
tinuous outputs that uses multiple unstructured predictors to form its features and at the same
time exploits dependence structure among outputs, which is provided by a similarity measure.
In this paper, a Gaussian conditional random fields model for structured binary classification
(GCRFBC) is proposed. The model is applicable to classification problems with undirected
graphs, intractable for standard classification CRFs. The model representation of GCRFBC
is extended by latent variables which yield some appealing properties. Thanks to the GCRF
latent structure, the model becomes tractable, efficient and open to improvements previously
applied to GCRF regression models. In addition, the model allows for reduction of noise, that
might appear if structures were defined directly between discrete outputs. Additionally, two
different forms of the algorithm are presented: GCRFBCb (GCRGBC - Bayesian) and GCRF-
BCnb (GCRFBC - non Bayesian). The extended method of local variational approximation of
sigmoid function is used for solving empirical Bayes in Bayesian GCRFBCb variant, whereas
MAP value of latent variables is the basis for learning and inference in the GCRFBCnb variant.
The inference in GCRFBCb is solved by Newton-Cotes formulas for one-dimensional integra-
tion. Both models are evaluated on synthetic data. It was shown that both models achieve
better prediction performance than unstructured predictors. Furthermore, computational and
memory complexity is evaluated. Advantages and disadvantages of the proposed GCRFBCb
and GCRFBCnb are discussed in detail.

Keywords: Structured classification, Gaussian conditional random fields, Empirical Bayes,
Local variational approximation

∗ Corresponding author: email: aapetrovic@mas.bg.ac.rs, tel.: +381 62 295 278

1

ar
X

iv
:1

90
2.

00
04

5v
1 

 [
cs

.L
G

] 
 3

1 
Ja

n 
20

19



1 Introduction

Increased quantity and variety of sources of data with correlated outputs, so called structured
data, created an opportunity for exploiting additional information between dependent outputs
to achieve better prediction performance. An extensive review on topic of binary and multi-label
classification with structured output is provided in [Su, 2015]. The structured classifiers were
compared in terms of accuracy and speed.

One of the most successful probabilistic models for structured output classification problems
are conditional random fields (CRF) [Sutton and McCallum, 2006]. CRFs were successfully ap-
plied on a variety of different structured tasks, such as: low-resource named entity recognition
[Cotterell and Duh, 2017], image segmentation [Zhang et al., 2015], chord recognition [Masada
and Bunescu, 2017] and word segmentation [Zia et al., 2018]. The main advantages of CRFs
lies in their discriminatory nature, resulting in the relaxation of independence assumptions and
the label bias problem that are present in many graphical models. Additionally, availability of
exact gradient evaluation and probability information made CRFs widely used in different ap-
plications. Aside of many advantages, CRFs have also many drawbacks. Gradient computation
and partition function evaluation can be computationally costly, especially for large number of
feature functions. That is the reason why CRFs can be very computationally expensive during
inference and learning, and consequently slow. Moreover, the CRFs with complex structure
usually do not support decode-based learning [Sun and Ma, 2018]. Sometimes even the gra-
dient computation is impossible or exact inference is intractable due to complicated partition
function.

In order to solve these problems, a wide range of different algorithms have been developed and
adapted for various task. The mixtures of CRFs capable to model data that come from multiple
different sources or domains is presented in [Kim, 2017]. The method is related to the well known
hidden-unit CRF (HUCRF) [Maaten et al., 2011]. The conditional likelihood and expectation
minimization (EM) procedure for learning have been derived there. The mixtures of CRF
models were implemented on several real-world applications resulting in prediction improvement.
Recently, the model based on unification of deep learning and CRF was developed by [Chen
et al., 2016]. The deep CRF model showed better performance compared to either shallow
CRFs or deep learning methods on their own. Similarly, the combination of CRFs and deep
convolutional neural networks was evaluated on an example of environmental microorganisms
labeling [Kosov et al., 2018]. The spatial relations among outputs were taken in consideration
and experimental results have shown satisfactory results.

Structured models for regression based on CRFs have recently been a focus of many re-
searchers. One of the popular methods for structured regression – Gausian conditional random
fields (GCRF) – has the form of multivariate Gaussian distribution. The main assumption of the
model is that the relations between outputs are presented in quadratic form. The multivariate
Gaussian distribution representation of a CRF has many advantages, like convex loss function
and, consequently, efficient inference and learning.

The GCRF model was first implemented for the task of low-level computer vision [Tappen
et al., 2007]. Since than, various different adaptations and approximations of GCRF were
proposed [Radosavljevic et al., 2014]. The parameter space for the GCRF model is extended to
facilitate joint modelling of positive and negative influences [Glass et al., 2016]. In addition, the
model is extended by bias term into link weight and solved as a part of convex optimization.
Semi-supervised model marginalized Gaussian conditional random fields (MGCRF) for dealing
with missing variables were proposed by [Stojanovic et al., 2015]. The benefits of the model were
proved on partially observed data and showed better prediction performance then alternative
semi-supervised structured models.

In this paper, a new model of Gaussian conditional random fields for binary classification is

2



proposed (GCRFBC). The model assumes that discrete outputs yi are conditionally independent
for given continuous latent variables zi which follow a distribution modeled by a GCRF. That
way, relations between discrete outputs are not expressed directly. Two different inference and
learning approaches are proposed in this paper. The first one is based on evaluating empirical
Bayes by marginalizing latent variables (GCRFBCb), whereas MAP value of latent variables is
the basis for learning and inference in the second model (GCRFBCnb). The presented models
are tested on synthetic data. This is a discrete output problem, so it is not possible to use
standard GCRFs for regression.

In section 2 the related work is reviewed and the GCRF model is briefly presented. The
details of the proposed models along with the inference and learning are described in section 3.
Experimental results on synthetic data and real-world applications are shown in section 4. Final
conclusions are given in section 5.

2 Related Work and Background Material

GCRF is a discriminative graph-based regression model [Radosavljevic et al., 2010] . Nodes of
the graph are variables y =

(
y1, y2, . . . , yN

)
, which need to be predicted given a set of features

x. The attributes x = (x1, x2, . . . , xN) interact with each node yi independently of one another,
while the relations between outputs are expressed by pairwise interaction function. In order to
learn parameters of the model, a training set of vectors of attributes x and real-valued response
variables y are provided. The generalized form of the conditional distribution P

(
y|x, α, β

)
is:

P
(
y|x, α, β

)
=

1
Z (x, α, β)

exp

 N

∑
i=1

A(α, yi, xi) + ∑
i 6=j

I(β, yi, yj)

 (1)

Two different feature functions are used: association potential A(α, yi, x) to model relations
between outputs yi and corresponding input vector xi and interaction potential I(β, yi, yj) to
model pairwise relations between nodes. Vectors α and β are parameters of the association
potential A and the interaction potential I, whereas Z is partition function. The association
potential is defined as:

A(α, yi, xi) = −
K

∑
k=1

αk
(
yi − Rk (xi)

)2 (2)

where Rk(xi) represents unstructured predictor of yi for each node in the graph. This unstruc-
tured predictor can be any regression model that gives prediction of output yi for given attributes
xi. K is the total number of unstructured predictors. The interaction potential functions are
defined as:

I(β, yi, yj) = −
L

∑
l=1

K

∑
k=1

βlSl
ij(yi − yj)

2 (3)

where Sl
ij is value that express similarity between nodes i and j in graph l. L is the total numbers

of graphs (similarity functions). Graphs can express any kind of relations between nodes e.g.,
spatial and temporal correlations between outputs. One of the main advantages of GCRF is
the ability to express different relations between outputs by variety of graphs. Moreover, the
GCRF is able to learn which graph is significant for outputs prediction.

The quadratic form of interaction and association potential enables conditional distribution
P(y|x, α, β) to be expressed as multivariate Gaussian distribution. The canonical form of GCRF
is [Radosavljevic et al., 2010]:

P(y|x, α, β) =
1

(2π)
N
2 |Σ| 12

exp
(
−1

2
(y− µ)TΣ−1(y− µ)

)
(4)

3



where |·| denotes determinant. Precision matrix Σ−1 = 2Q and distribution mean µ = Σb is
defined as, respectively:

Q =

∑K
k=1 αk + ∑N

h=1 ∑L
l=1 βlSl

ih, if i = j
−∑L

l=1 βlSl
ij, if i 6= j

(5)

bi = 2

(
K

∑
k=1

αkRk(xi)

)
(6)

Due to concavity of multivariate Gaussian distribution the inference task argmax
y

P(y|x, α, β)

is straightforward. The maximum posterior estimate of y is the distribution expectation µ.
The objective of the learning task is to optimize parameters α and β by maximizing condi-
tional log likelihood argmax

α,β
∑y logP(y|x, α, β). One way to ensure positive definiteness of the

covariance matrix of GCRF is to require diagonal dominance [Strang et al., 1993]. This can be
ensured by imposing constraints that all elements of α and β be greater than 0 [Radosavljevic
et al., 2010].

Large number of different studies connected with graph based methods for regression can be
found in the literature [Fox, 2015]. A comprehensive review of continuous conditional random
fields (CCRF) was provided in [Radosavljevic et al., 2010]. The sparse conditional random fields
obtained by l1 regularization are first proposed and evaluated by [Wytock and Kolter, 2013].
Additionaly, [Frot et al., 2018] presented GCRF with the latent variable decomposition and
derived convergence bounds for the estimator that is well behaved in high dimensional regime.

One of the adapatations of GCRF on discrete output was briefly discussed in [Radosavljevic,
2011], as a part of future work directions that should be considered. Namely, the model should
assume existence of latent continuous variables that follows distribution modeled by GCRF,
whereas the distribution of discrete outputs y is in multivariate normal distribution form with
diagonal covariance matrix. The parameters of the models are obtained by EM algorithm.
Moreover, since y and z are unknown, the inference is performed by first calculating marginal
expectation for z. Discrete values of outputs are found as average values of z over positive
and negative examples. The models developed in this paper are motivated by the preceding
discussion.

3 Methodology

One way of adapting GCRF to classification problem is by approximating discrete outputs by
suitably defining continuous outputs. Namely, GCRF can provide dependence structure over
continuous variables which can be passed through sigmoid function. That way relationship
between regression GCRF and classification GCRF is similar to the relationship between lin-
ear and logistic regression, but with dependent variables. Aside from allowing us to define a
classification variant of GCRF, this may result in additional appealing properties:

• The model is applicable to classification problems with undirected graphs, intractable for
standard classification CRFs. Thanks to the GCRF latent structure, the model becomes
tractable, efficient and open to improvements previously applied to GCRF regression
models.

• Defining correlations directly between discrete outputs may introduce unnecessary noise to
the model [Tan et al., 2010]. This problem can be solved by defining structured relations
on a latent continuous variable space.
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• In case that unstructured predictors are unreliable, which is signaled by their large variance
(diagonal elements in the covariance matrix), it is simple to marginalize over latent variable
space and obtain better results.

It is assumed that yi are discrete binary outputs and zi are continuous latent variables
assigned to each yi. In addition, each output yi is conditionally independent of the others given
zi. The illustration of dependencies expressed by GCRFBC model is presented in Fig. 1.

Figure 1: Graphical representation of dependencies expressed by GCRFBC model

The conditional probability distribution P(yi|zi) is defined as Bernoulli distribution:

P(yi|zi) = Ber(yi|σ(zi)) = σ(zi)
yi(1− σ(zi))

1−yi (7)

where σ(·) is sigmoid function. Due to conditional independence assumption, the joint distri-
bution of outputs yi can be expressed as:

P(y1, y2, . . . , yN |z) =
N

∏
i=1

σ(zi)
yi(1− σ(zi))

1−yi (8)

Furthermore, the conditional distribution P(z|x) is the same as in the classical GCRF model
and has canonical form defined by multivariate Gaussian distribution. Hence, joint distribution
of continuous latent variables z and outputs y is:

P(y, z|x, θ) =
N

∏
i=1

σ(zi)
yi(1− σ(zi))

1−yi · 1

(2π)N/2
∣∣Σ(x)

∣∣1/2

· exp
(
−1

2
(z− µ(x))TΣ(x)−1(z− µ(x))

) (9)

where θ = (α1, . . . , αK, β1, . . . , βL).
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Equation 9 presents the general form of mathematical model representation that will be
further discussed in this paper.

We consider two ways of inference and learning in GCRFBC model:

• GCRFBCb - with conditional probability distribution P(y|x, θ), in which variables z are
marginalized over, and

• GCRFBCnb - with conditional probability distribution P
(
y|x, θ, µz

)
, in which variables

z are substituted by their expectations.

3.1 Inference

3.1.1 Inference in GCRFBCb Model

Prediction of discrete outputs y for given features x and parameters θ is analytically intractable
due to integration of the joint distribution P(y, z|x, θ) with respect to latent variables. However,
due to conditional independence between nodes, it is possible to obtain P(yi = 1|x, θ).

P(yi|x, θ) =
∫

z
P(yi|z)P(z|x, θ)dz (10)

P(yi = 1|x, θ) =
∫

z
σ(zi)P(z|x, θ)dz (11)

As a result of independence properties of the distribution, it holds P(yi = 1|z) =
P(yi = 1|zi), and it is possible to marginalize P(z|x, θ) with respect to latent variables
z′ = (z1, . . . , zi−1, zi+1, . . . , zN):

P(yi = 1|x, θ) =
∫

zi

σ(zi)

(∫
z′

P(z′, zi|x, θ)dz′
)

dzi (12)

where
∫

z′ P(z
′, zi|x, θ)dz′ is normal distribution with mean µ = µi and variance σ2

i = Σii.
Therefore, it holds:

P(yi = 1|x, θ) =
∫ +∞

−∞
σ(zi)N (zi|µi, σ2

i )dzi (13)

The evaluation of P(yi = 0|x, θ) is straightforward and is expressed as:

P(yi = 0|x, θ) = 1− P(yi = 1|x, θ) (14)

The one-dimensional integral is still analytically intractable, but can be effectively evaluated
by one-dimensional numerical integration. Additionally, the surface of the function expressed by
the product of the univariate normal distribution and sigmoid function is mostly concentrated
closely around the mean, except in cases in which variance of normal distribution is high. The
plot of function σ(z)N(zi|µii, σ2) with respect to the variance of normal distribution is illustrated
by Fig. 2. Therefore, the limits of the integral (−∞,+∞) can be reasonably approximated by
the interval (µ− 10σi, µ + 10σi). This approximation improves integration precision, especially
in case that Newton-Cotes formulas are used for numerical integration [Davis and Rabinowitz,
2007]. The proposed inference approach can be effectively used in case of huge number of nodes,
due to low computational cost of one-dimensional numerical integration.
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Figure 2: Shapes of function σ(z)N(zi|µii, σ2) for three different choices of variance of the
normal distribution.

3.1.2 Inference in GCRFBCnb Model

The inference procedure in GCRFBCnb is much simpler, because marginalization with respect to
latent variables is not performed. To predict y, it is necessary to evaluate posterior maximum
of latent variable zmax = argmax

z
P(z|x, θ), which is straightforward due to normal form of

GCRF. Therefore, it holds zmax = µz,i. The conditional distribution P(yi = 1|x, µz,i, θ) can be
expressed as:

P(yi = 1|x, µz, θ) = σ(µz,i) =
1

1 + exp(−µz,i)
(15)

where µz,i is expectation of latent variable zi.

3.2 Learning

3.2.1 Learning in GCRFBCb Model

In comparison with inference, learning procedure is more complicated. Evaluation of the con-
ditional log likelihood is intractable, since latent variables cannot be analytically marginalized.
The conditional log likelihood is expressed as:

L
(
Y |X, θ

)
= log

(∫
Z

P(Y , Z|θ, X)dZ
)
=

M

∑
j=1

log

(∫
zj

P(yj, zj|θ, x)dzj

)

=
M

∑
j=1
Lj(yj|x, θ)

(16)

Lj(yj|x, θ) = log
∫

zj

N

∏
i=1

σ(zji)
yji(1− σ(zji))

1−yji
exp(− 1

2 (zj − µj)
TΣ−1

j (zj − µj))

(2π)N/2
∣∣∣Σj

∣∣∣1/2 dzj (17)

where Y ∈ RM×N is complete dataset of outputs, X ∈ RM×N×A is complete dataset of features,
M is the total number of instances and A is the total number of features. Please note that
each instance is structured, so while different instances are independent of each other, variables
within one instance are dependent.
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One way to approximate integral in conditional log likelihood is by local variational approx-
imation. [Jaakkola and Jordan, 2000] derived lower bound for sigmoid function, which can be
expressed as:

σ(x) > σ(ξ) exp{(x− ξ)/2− λ(ξ)(x2 − ξ2)} (18)

where λ(ξ) = − 1
2ξ ·

[
σ(ξ)− 1

2

]
and ξ is a variational parameter. The Eq. 18 is called ξ

transformation of sigmoid function and it yields maximum value when ξ = x. The sigmoid
function with lower bound is shown in Fig. 3.

Figure 3: The sigmoid function with its lower bound

This approximation can be applied to the model defined by Eq. 17, but the variational
approximation has to be further extended because of the product of sigmoid functions, such
that:

P(yj, zj|θ, x) = P(yj|zj)P(zj|x, θ) ≥ P(yj, zj|θ, x, ξ j) (19)

P(yj, zj|θ, x, ξ j) =
N

∏
i=1

σ(ξ ji) exp

(
zjiyji −

zji + ξ ji

2
− λ(ξ ji)(z2

ji − ξ2
ji)

)
·

1

(2π)N/2
∣∣∣Σj

∣∣∣1/2 exp
(
−1

2
(zj − µj)

TΣ−1
j (zj − µj)

) (20)

The Eq. 20 can be arranged in the form suitable for integration. The lower bound of
conditional log likelihood L(yj|θ, x, ξ j) is defined as:

Lj(yj|xj, θ, ξ j) = log P(yj|xj, θ, ξ j) =
N

∑
i=1

(
log σ(ξ ji)−

ξ ji

2
+ λ(ξ ji)ξ

2
ji

)
−

1
2

µT
j Σ−1

j µj +
1
2

mT
j S−1

j mj +
1
2

log |Sj|
(21)

where:
S−1

j = Σ−1
j + 2Λj (22)
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mj = Σj

(
(yj −

1
2

I) + Σ−1
j µj

)
(23)

Λj =


λ(ξ j1) 0 0 . . . 0

0 λ(ξ j2) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ(ξ jN)

 (24)

GCRFBCb uses the derivative of conditional log likelihood in order to find the optimal
values for parameters α, β and matrix of variational parameters ξ ∈ RM×N by gradient ascent
method. In order to ensure positive definiteness of normal distribution involved, it is sufficient
to constrain parameteres α > 0 and β > 0. The partial derivative of conditional log likelihood
∂Lj(yj|x,θ,ξ j)

∂αk
is computed as:

∂Lj(yj|x, θ, ξ j)

∂αk
=− 1

2
Tr

Sj
∂S−1

j

∂αk

+
∂mT

j

∂αk
S−1

j mj +
1
2

mT
j

∂S−1
j

∂αk
mj

−
µT

j

∂αk
Σ−1

j µj −
1
2

µT
j

∂Σ−1
j

∂αk
+

1
2
Tr

Σj
∂Σ−1

j

∂αk

 (25)

where:
∂S−1

j

∂αk
=

∂Σ−1
j

∂αk
=

{
2, if i = j
0, if i 6= j

(26)

∂mT
j

∂αk
= −

(
yj −

1
2

I + µT
j Σ−1

j

)
Sj

∂S−1
j

∂αk
Sj +

∂µT
j

∂αk
Σ−1

j Sj + µT
j

∂Σ−1
j

αk
Sj (27)

∂µT
j

∂αk
=

2αkRk(x)−
∂Σ−1

j

∂αk
µj

T

ΣT
j (28)

Similarly partial derivatives with respect to β can be defined as:

∂Lj(yj|x, θ, ξ j)

∂βl
=− 1

2
Tr

Sj
∂S−1

j

∂βl

+
∂mT

j

∂βl
S−1

j mj +
1
2

mT
j

∂S−1
j

∂βl
mj

−
µT

j

∂βl
Σ−1

j µj −
1
2

µT
j

∂Σ−1
j

∂βl
+

1
2
Tr

Σj
∂Σ−1

j

∂βl

 (29)

where:
∂S−1

j

∂βl
=

∂Σ−1
j

∂βl
=

∑N
n=1 el

inSl
in(x), if i = j

−el
ijS

l
ij(x), if i 6= j

(30)

∂mT
j

∂βl
= −

(
yj −

1
2

I + µT
j Σ−1

j

)
Sj

∂S−1
j

∂βl
Sj +

∂µT
j

∂βl
Σ−1

j Sj + µT
j

∂Σ−1
j

βl
Sj (31)

∂µT
j

∂βl
=

−∂Σ−1
j

∂βl
µj

T

ΣT
j (32)

9



In the same manner partial derivatives of conditional log likelihood with respect to ξ ji are:

∂Lj(yj|x, θ, ξ j)

∂ξ ji
= −1

2
Tr

(
2Sj

∂Λj

∂ξ ji

)
−
[

2
(

yj −
1
2

I
)

Sj
∂Λj

∂ξ ji
Sj

]
S−1

j mj

+ mT
j

∂Λj

∂ξ ji
mj +

N

∑
i=1

( 1
σ(ξ ji)

+
1
2

ξ ji

)
∂σ(ξ ji)

∂ξ ji
+

1
2

(
σ(ξ ji)−

3
4

) (33)

where:

∂Λj

∂ξ ji
=



0 0 0 . . . 0
...

. . .
...

. . .
...

0 0 ∂λ(ξ ji)
∂ξ ji

. . . 0
...

...
...

. . .
...

0 0 0 . . . 0


(34)

∂σ(ξ ji)

∂ξij
= σ(ξ ji)(1− σ(ξ ji)) (35)

∂λ(ξ ji)

∂ξ ji
=

1
2ξ ji

∂σ(ξ ji)

∂ξ ji
− 1

2

(
σ(ξ ji)−

1
2

)
1
ξ2

ji
(36)

Gradient ascent algorithm cannot be directly applied to constrained optimization problems.
There are several procedures that can be applied in constrained problem optimization. The
first one involves log transformation and it was presented in [Radosavljevic et al., 2010]. The
procedure can be further extended by some of the adaptive learning parameter methods. How-
ever, in this paper due to large number of parameters, the truncated Newton algorithm for
constrained optimization (TNC) was used. More details about TNC can be found in [Nocedal
and Wright, 2006] and [Facchinei et al., 2002]. It is necessary to emphasize that the conditional
log likelihood is not convex function of parameters α, β and ξ. Because of this, finding a global
optimum cannot be guaranteed.

3.2.2 Learning in GCRFBCnb Model

Learning in GCRFBCnb model is simpler compared to the GCRFBCb algorithm, because in-
stead of marginalization, the mode of posterior distribution of continuous latent variable z is
evaluated directly so there is no need for approximation technique. The conditional log likeli-
hood can be expressed as:

L
(
Y |X, θ, µ

)
= log P(Y |X, θ, µ) =

M

∑
j=1

N

∑
i=1

log P(yji|x, θ, µji) =
M

∑
j=1

N

∑
i=1
Lji(yji|x, θ, µji) (37)

Lji(yji|x, θ, µji) = yji log σ(µji) + (1− yji) log
(

1− σ(µji)
)

(38)

The derivatives of the conditional log likelihood with respect to α and β are defined as,
respectively:

∂Lji(yji|x, θ, µji)

∂αk
=
(

yji − σ(µji)
) ∂µji

∂αk
(39)

∂Lji(yji|x, θ, µji)

∂αl
=
(

yji − σ(µji)
) ∂µji

∂βl
(40)
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where ∂µji
∂αk

and ∂µji
∂βl

are elements of the vectors ∂µj
∂αk

and ∂µj
∂βl

and can be obtained by Eqs. 28
and 32, respectively.

In a similar manner TNC or log transformation gradient ascent algorithms can be used. Ad-
ditionally, an iterative sequential quadratic programming for constrained nonlinear optimization
can be used, as a result of small number of optimization parameters [Boggs and Tolle, 1995].

4 Experimental Evaluation

Both proposed models were tested and compared on synthetic data. All methods are imple-
mented in Python and experiments were run on Ubuntu server with 128 GB of memory and
Intel Xeon 2.9 GHz CPU. All used codes are publicly available.1

To calculate classification performance of all presented classifiers, the area under ROC curve
(AUC) score was used. The AUC score assumes that the classifier outputs a real value for each
instance and estimates a probability that for two randomly chosen instances from two different
clases the instance from the positive class will have higher value than the instance from the
negative class [Mohri et al., 2018]. A score of 1 indicates perfect classification, whereas score of
0.5 indicates random prediction performance. Aside of AUC score, the lower bound (in case of
GCRFBCb) of conditional log likelihood L

(
Y |X, θ, µ

)
and actual value (in case of GCRFBCnb)

of conditional log likelihood L
(
Y |X, θ

)
of obtained values on synthetic test dataset were also

reported.

4.1 Synthetic Dataset

The main goal of experiments on synthetic datasets was to examine models under various
controlled conditions and show advantages and disadvantages of each. In all experiments on
synthetic datasets two different graphs were used (hence β ∈ R2) and two unstructured pre-
dictors (hence α ∈ R2). In order to generate and label nodes in graph, edge weights S and
unstructured predictor values R were randomly generated from uniform distribution. Besides,
it was necessary to choose values of parameters α and β. Greater values of α indicate that model
is more confident about performance of unstructured predictors, whereas for the larger value of
β model is putting more emphasis on the dependence structure of output variables.

For generated S, R, and given parameters α and β, probabilities of outputs are obtained and
labeling is performed according to the threshold of 0.5. The complete dataset with unstructured
predictors, dependence structure and labeled nodes is used for optimizing parameters α and β.
Additionally, 20% of all data was used for testing and 80% for training procedure.

4.1.1 Prediction Performance Evaluation

The main goal of this experiment is to evaluate how the selection of parameters α and β in data
generating process affects prediction performance of GCRFBCb and GCRFBCnb. Six different
values of parameters α and β were used. The values of parameters were separated in three
distinct group:

1. The first group, in which α and β have similar values. Hence, unstructured predictors and
dependence structure between outputs have similar importance.

2. The second group, in which α has higher values compared to β, which means that model is
putting more emphasis on unstructured predictors in comparison with dependence struc-
ture.

1https://github.com/andrijaster
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Table 1: Comparison of GCRFBCb and GCRFBCnb prediction performance for different
values of α and β, as measured by AUC, log likelihood, and norm of diagonal elements of the

covariance matrix

No. Parameters GCRFBCb GCRFBCnb
AUC L

(
Y |X, θ

)
‖σ‖2 AUC L

(
Y |X, θ

)
1 α = [5, 4]

β = [5, 22]
0.812 -71.150 0.000 0.812 -71.151

2 α = [1, 18]
β = [1, 18]

0.903 -75.033 0.001 0.902 -75.033

3 α = [22, 21]
β = [5, 22]

0.988 -83.957 0.000 0.988 -83.957

4 α = [22, 21]
β = [0.1, 0.67]

0.866 -83.724 0.000 0.886 -83.466

5 α = [0.8, 0.5]
β = [5, 22]

0.860 -83.353 34.827 0.817 -84.009

6 α = [0.2, 0.4]
β = [1, 18]

0.931 -70.692 35.754 0.821 -70.391

3. The third group, in which β has higher values compared to α, thus model is putting more
emphasis on dependence structure and less on unstructured predictors.

Along with the AUC and conditional log likelihood, norm of the variances of latent variables
(diagonal elements in the covariance matrix) is evaluated and presented in Table 1. It can be
noticed, in cases where norm of the variances of latent variables is insignificant, both models
have equal performance considering AUC and conditional log likelihood L

(
Y |X, θ

)
. This is the

case when values of parameters α used in data generating process are greater or equal than
values of parameters β. Therefore, condtional distribution P(y, z|x, θ) is highly concentrated
around mean value and MAP estimate is a satisfactory approximation. However, when data were
generated from distribution with significantly higher values of β, compared to α the GCRFBCb
performs significantly better than GCRFBCnb. For the larger values of variance norm this
difference is also large. It can be concluded that GCRFBCb has at least equal prediction
performance as GCRFBCnb. Also, it can be argued that the models were generally able to
utilize most of the information (from both features and the structure between outputs), which
can be seen through AUC values.

4.1.2 Runtime Evaluation

The computational and memory complexity of GCRFBCnb during learning and inference is
same as time complexity of standard GCRF [Radosavljevic et al., 2014]. If the training lasts T
iterations, overall complexity of GCRF is O(TN3). However, this is the worst case performance
and in case of sparse precision matrix, this can be reduced to O(TN2). The additional memory
complexity of GCRF is negligible, which holds for GCRFBCnb, too.

However, in the case of GCRFBCb memory complexity during training is O(M) due to
dependency of variational parameters on the number of instances. Computational complexity
is also higher – O(TMN3), which can also be reduced to O(TMN2) in case of sparse precision
matrix.

The following speed tests of GCRFBCb and GCRFBCnb were conducted on synthetically
generated data with varying numbers of parameters and nodes. In Figs. 4(a) and 4(b) the
computation time of both models with respect to number of instances is presented. The number
of nodes in both models is 4. The larger number of instances have significant impact on increase
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of computation time. Figs. 4(c) and 4(d) present computation time with respect to number
of nodes, while holding constant value of product of number of instances and nodes (i.e. total
number of values of y). It can be seen that while holding constant value of products of number
of instances and nodes, that computational time increases faster with larger number of instances
compared to larger number of nodes.

Figure 4: The computational time of GCRFBCb and GCRFBCnb with respect to number of
instances and nodes

5 Conclusion

In this paper, a new model, called Gaussian conditional random fields for binary classification
(GCRFBC) is presented. The model is based on latent GCRF structure, which means that
intractable structured classification problem can become tractable and efficiently solved. More-
over, improvements previously applied to regression GCRF can be easily extended to GCRFBC.
Two different variants of GCRFBC were derived: GCRFBCb and GCRFBCnb. Empirical Bayes
(marginalization of latent variables) by local variational methods is used in optimization proce-
dure of GCFRBCb, whereas MAP estimate of latent variables is applied in GCRFBCnb. Based
on presented methodology and obtained experimental results on synthetic datasets, several key
finding can be summarized:

• Both models GCRFBCb and GCRFBCnb have better prediction performance compared
to the unstructured predictors
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• GCRFBCb has better performance considering AUC score and lower bound of conditional
log likelihood L

(
Y |X, θ

)
compared to GCRFBCnb, in cases where norm of the variances

of latent variables is high. However, in cases where norm of the variances is close to zero,
both models have equal prediction performance.

• Due to high memory and computational complexity of GCRFBCb compared to GCRF-
BCnb, in cases where norm of the variances is close to zero, it is reasonable to use GCRF-
BCnb. Additionally, the trade off between complexity and accuracy can be made in
situation where norm of the variances is high.

Further studies should address extending GCRFBC to structured multi-label classification
problems, and lower computational complexity of GCRFBCb by considering efficient approxi-
mations.
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