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Abstract

The significant growth of surveillance camera networks necessitates scalable AI

solutions to efficiently analyze the large amount of video data produced by these

networks. As a typical analysis performed on surveillance footage, video vio-

lence detection has recently received considerable attention. The majority of

research has focused on improving existing methods using supervised methods,

with little, if any, attention to the semi-supervised learning approaches. In this

study, a reinforcement learning model is introduced that can outperform existing

models through a semi-supervised approach. The main novelty of the proposed

method lies in the introduction of a semi-supervised hard attention mechanism.

Using hard attention, the essential regions of videos are identified and separated

from the non-informative parts of the data. A model’s accuracy is improved by

removing redundant data and focusing on useful visual information in a higher

resolution. Implementing hard attention mechanisms using semi-supervised re-

inforcement learning algorithms eliminates the need for attention annotations

in video violence datasets, thus making them readily applicable. The proposed

model utilizes a pre-trained I3D backbone to accelerate and stabilize the train-

ing process. The proposed model achieved state-of-the-art accuracy of 90.4%

and 98.7% on RWF and Hockey datasets, respectively.
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video classification, semi-supervised learning

1. Introduction

A comprehensive and dedicated violence monitoring system is becoming in-

creasingly necessary as social unrest, social violence, and homicide cases in-

crease. A security system’s most significant weakness has always been the re-

liability of its human agents (Gill & Spriggs, 2005; Bugeja et al., 2018). The

number of surveillance cameras installed worldwide is rapidly exceeding the

data-load capacity of legacy human-operated surveillance and monitoring sys-

tems(Gill & Spriggs, 2005; Bugeja et al., 2018). Violence monitoring systems

based on artificial intelligence have significant potential as a reliable and scalable

alternative to human-based surveillance systems. As opposed to human-based

surveillance systems, artificial intelligence and machine learning surveillance sys-

tems offer predictable downtime, reliability, and effortless scaling(Nguyen et al.,

2020; Shidik et al., 2019; Sung & Park, 2021).

The quality of deep learning models depends on the quality of their data. It

is difficult to obtain surveillance footage due to its security and privacy concerns.

Almost all privately collected datasets in this field are covered by non-disclosure

agreements, which prevent the public from accessing them, including artificial

intelligence researchers. In light of this issue, it is valuable for the community to

collect and publish a surveillance-based human violence dataset. The significant

advantage of the RWF dataset (Cheng et al., 2021) over other video violence

datasets (Hockey fights (Nievas et al., 2011) and Movie violence (Gong et al.,

2008)) is collection of a relatively large set of real-world surveillance violence

videos.

In video classification, temporal knowledge is essential (Yao et al., 2016;

Murthy & Goecke, 2014). A single video frame provides little insight into hu-

man violence (Feichtenhofer et al., 2016). Having temporospatial understanding

requires recurrent or 3D architectures in deep neural networks (Feichtenhofer

et al., 2016; Yao et al., 2016; Algamdi et al., 2019; Du et al., 2017). In action and
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violence recognition research, recurrent networks, 3D convolutional layers, and

multi-stream architectures are common themes(Zong et al., 2021; Wang et al.,

2021; Shi et al., 2020). However, recurrent neural networks, such as LSTMs

or GRUs, cannot grasp the complete dependency between consecutive frames

(Zeyer et al., 2019; Ezen-Can, 2020; Wang et al., 2019). While transformers have

state-of-the-art accuracy in video classification and action recognition, they lack

the computational agility and performance required for cost-effective large-scale

video surveillance platforms (Arnab et al., 2021; Girdhar et al., 2019). The 3D

convolutional layers can be used to capture the temporal information in video

using 3D convolutional filters with parameters sharing capabilities (Feichten-

hofer et al., 2016; Yao et al., 2016; Algamdi et al., 2019; Du et al., 2017). As a

result of their effectiveness and efficiency, these layers are ideal for this study.

Video violence recognition accuracy is enhanced by the use of auxiliary fea-

tures (Tu et al., 2018b). Aside from raw RGB video frames, additional fea-

tures such as RGB-differences (Wang et al., 2017), optical flow (Sevilla-Lara

et al., 2018), pose estimation (Luvizon et al., 2018; Pham et al., 2020), and

deep-learning-based features (Li et al., 2016; Khan et al., 2018; Xiao et al.,

2019) are utilized to capture different aspects of the input videos. When the

network itself cannot comprehend temporally spatial patterns, motion estima-

tion features, such as RGB-difference and optical flow characteristics, assist in

capturing the temporal interdependence of video frames (Wang et al., 2018a).

Additionally, pose estimation, and deep-learning-based features are intended to

convey contextual information about each frame. Pose estimation features rep-

resent the position and movement of the human body (Luvizon et al., 2018;

Pham et al., 2020). Deep features (extracted from a computer vision backbone

network trained on tasks, such as image classification or object detection) repre-

sent the environment, background, and objects in a latent vector space suitable

for action understanding and classification (Li et al., 2016; Khan et al., 2018;

Xiao et al., 2019).

As valuable as these features are, their extraction incurs an additional com-

putational cost detrimental to real-world applications. The extraction of ac-
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curate optical flow requires specialized hardware or significant computational

resources (equal to or exceeding the costs of the primary neural network in

some cases) (Sun et al., 2018). As a result, it is advantageous to identify more

cost-effective methods of enhancing video violence identification models without

adding additional features.

The proposed method for improving video violence recognition relies on the

premise that hard attention enhances model accuracy. Surveillance videos con-

tain considerable information redundancy as humans are the only subjects in

a pipeline for violence recognition. Therefore, the background information can

be eliminated without compromising vital details(Sharma et al., 2015). By us-

ing hard attention, the video violence recognition model eliminates redundant

information from the input frames. The reduction of redundancy and increased

focus on the useful information in a video increases the model’s accuracy by

reducing its search space and avoiding overfitting.

Reinforcement learning is an effective method to implement hard attention

(Rao et al., 2017; Driessens, 2019; Shen et al., 2018; Mott et al., 2019). In

reinforcement learning methods, partial signals (rewards) are used to optimize

a global criterion (Sutton & Barto, 2018). A reinforcement learning imple-

mentation of the hard attention method can utilize the video level annotation

information to learn the functionality of a region proposal model. Reinforcement

learning methods can select a region of interest by expressing the region proposal

information in action space. Furthermore, other partial information acquired

from the video could provide additional learning signals for the reinforcement

learning method (Sutton & Barto, 2018). In order to improve the precision of

the reinforcement learning implementation of hard attention, information such

as the region of motion, objects present in the environment, skeleton models,

and similar data can be included in the reward shaping process.

The novelty of this study lies in the use of semi-supervised reinforcement

learning techniques to create a hard attention mechanism to improve the purity

of visual data in order to achieve state-of-the-art accuracy. Unlike the main-

stream state-of-the-art approaches, this method takes a reductive approach to
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model improvement by focusing on removing less helpful information. It is pos-

sible to apply the semi-supervised hard attention approach to the existing video

violence datasets without making any modifications. The region of interest is

learned based on the annotations at the video level.

Accordingly, the remainder of the paper is organized as follows: Section 2

reviews the literature on video violence detection and reinforcement learning.

Section 3 introduces the proposed model, followed by the evaluation results in

Section 4. In Section 5, the pros and cons of the proposed method are thoroughly

discussed. Lastly, Section 6 discusses conclusions and future research.

2. Related Work

The background literature can be divided into two different perspectives. In

the first perspective, research is being conducted to find supervised models to

classify videos based on the presence of specific actions. The second perspective

involves reinforcement learning approaches to improve computer vision tasks

(such as classification, detection, or tracking). The research presented here

combines the perspectives mentioned above.

2.1. Video action classification

In addition to the established image classification methods, video as three-

dimensional data poses additional challenges. The addition of the third dimen-

sion requires the use of specialized features and representation learning tech-

niques(Hara et al., 2017; Wang et al., 2018b; Nazir et al., 2018). The temporal

dimension can be captured using techniques such as recurrent layers (Liu et al.,

2016; Ullah et al., 2017; Majd & Safabakhsh, 2020; Liu et al., 2017), 3D con-

volutional layers (Ji et al., 2012; Yang et al., 2019; Zhou et al., 2018; Hara

et al., 2017), and, more recently, transformers (Plizzari et al., 2021; Li et al.,

2021; Mazzia et al., 2021; Girdhar et al., 2019). Recurrent layers have a rep-

utation for inconsistent training and poor temporal learning (Vaswani et al.,

2017); however, 3D convolutional layers and transformers are highly effective in
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this field. Due to this, most cutting-edge techniques use 3D convolutional net-

works and transformers to map temporal information to latent features. Such

networks provide the backbone for the extraction of features in a video clas-

sification model. The backbone is followed by a simple classifier, i.e., a fully

connected neural network, to form an end-to-end video classification model.

A temporal feature may be as simple as the difference between consecutive

frames or more complex such as optical flow. Using richer forms of temporal data

(e.g., optical flow) will result in more accurate models (Sevilla-Lara et al., 2018;

Sun et al., 2018). Conversely, the trade-off between accuracy and performance

leads to the use of superficial temporal features (such as RBG-difference) in

some applications (Zhang et al., 2016; Hu et al., 2018; Crasto et al., 2019; Wang

et al., 2018c).

The accuracy of action recognition can be improved by including additional

explicit information in addition to RBG frames and motion features. Visual

cues (Tu et al., 2018a; Wang et al., 2016a) and skeleton estimations (Yan et al.,

2018; Plizzari et al., 2021; Shi et al., 2019) are examples of such data. In spite

of the increased accuracy, each additional data type adds two overheads to the

performance of the activity recognition system. Firstly, each feature requires ad-

ditional computation during extraction. As a result of the substantial processing

power required for extracting motion vectors from RGB frames, researchers have

removed, replaced, or estimated this feature (Sun et al., 2018; Wang & Schmid,

2013). Secondly, each additional data stream makes the neural network larger

and more expensive to compute (Simonyan & Zisserman, 2014).

The integration of additional data types beyond the RGB video frames has

created a unique architecture for action recognition models. Two-stream and

multi-stream neural networks utilize neural networks with two or more back-

bones that can accept multiple types of data. Following the extraction of fea-

tures from each backbone, the features are fused and classified. This architec-

ture is common in video action recognition approaches (Simonyan & Zisserman,

2014; Tu et al., 2018b; Shi et al., 2020; Wang et al., 2021).
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2.2. RL-based attention

Videos contain a great deal of redundant information. In most cases, cate-

gorizing a video based on human action does not require understanding what is

taking place in the background. A neural network’s accuracy can be improved

by removing excessive information and purifying the data (Song et al., 2022).

Accordingly, the accuracy of action recognition can be improved through the

use of soft or hard attention in network architectures.

Soft attention can be thought of as a weighted version of the original data.

Weights for each data region are automatically learned during the neural net-

work training process (Sharma et al., 2015; Liu et al., 2017; Song et al., 2017;

Li et al., 2020). A general form of soft attention is represented in Equation 1.

attention output∣∣∣∣∣
ci =

Total number of inputs∣∣∣∣∣
T∑

j=1

softmax(

hidden state
step i-1∣∣∣∣∣
si−1.hj)︸ ︷︷ ︸

attention coefficient

. hj︸︷︷︸
input index j

(1)

A sequence of input vectors is represented by h. At each step of the soft

attention function (ci), the output is the weighted sum of the input matrices.

The weight of each input matrix (hj) represents the attention coefficient calcu-

lated at each step for each input matrix. At the current index, the coefficient

depends on the input matrix at the current index and the hidden state of the

attention layer at the previous index (si).

Hard attention is a binary form of soft attention in which zero-weighted

values are completely omitted from the input. As a result, the output size of

a hard attention function is not continuous and may differ from its input size.

It is possible to implement hard attention using supervised, self-supervised,

and semi-supervised techniques. The implementation of hard attention using

supervised methods is costly since the localization annotations must be manually

entered into the dataset. It is also possible to implement hard attention through

self-supervised methods (Manchin et al., 2019). For example, as most actions

are considered a type of motion, removing motionless parts of a video is a form of
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hard attention (Crasto et al., 2019). Motion attention guarantees the inclusion

of most activities in the attention area (except for activities with no motion, such

as sleeping, sitting, pointing, and so on); however, it creates a lot of redundant

data. Using motion attention methods, it is difficult to distinguish a particular

action occurring in a busy street from other movements in the video.

Spatial transformer networks (STNs) are end-to-end solutions to implement

hard attention in neural networks (Jaderberg et al., 2015). STNs are neural lay-

ers that compute matrix spatial transformations (for example, scaling, rotating,

and cropping). These networks implicitly learn the transformation required for

each input according to the global accuracy of the larger neural network. With a

few minute design changes, convolutional neural networks (CNNs) can be trans-

formed into hard attention CNNs utilizing STNs (Li et al., 2018; Malinowski

et al., 2018). However, since their output is simply a modified version of the

input image, these networks are constrained by the resolution of the input im-

age. In order to gain the maximum benefit from the high-resolution input, it is

necessary to utilize alternative methods.

Classification, localization, and tracking performance are good reward sources

for reinforcement learning algorithms. As a result, the main objective is to as-

sign the reinforcement learning model the task of improving the accuracy of

the underlying model. Reinforcement learning models improve accuracy by fo-

cusing on important information in videos, given their attention ability. This

approach eliminates the need for extra information (e.g., annotations) in the

learning data. The use of neural networks in reinforcement learning models

(or deep reinforcement learning) allows advanced computer vision algorithms

to be applied to reinforcement learning. As a result, state-of-the-art computer

vision neural architectures are paired with reinforcement learning techniques to

improve performance on current tasks. A combination of these approaches is

investigated in computer vision tasks, including object localization (Wang et al.,

2018d; Jie et al., 2016; Caicedo & Lazebnik, 2015; Mathe et al., 2016), and vi-

sual tracking (Luo et al., 2019; Ren et al., 2018; Yun et al., 2018; Zhong et al.,

2019; Cui et al., 2021). For a more innovative example, Rao et al. (2017) used
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reinforcement learning in order to create temporal attention in the face recog-

nition task. Identifying faces that are most likely to be correctly recognized in

a timeline is an ideal task for deep reinforcement learning.

3. Method

A reinforcement learning model and a set of strategies for describing the

observations and actions taken by an agent to detect violence in videos are

presented in this study. Through the addition of hard attention and semi-

supervised learning capabilities, the deep reinforcement learning agent improves

the established deep video classification models. In order to train the semi-

supervised model, the dataset annotations are converted into reward signals

for the agent. The deep reinforcement learning model is improved by reward

shaping and train stabilization.

3.1. Semi-Supervised Hard-Attention

SSHA, short for Semi-Suprevised Hard Attention, is based on two assump-

tions: (i) Given a high-quality dataset, a neural network with a larger size

performs better than a similar neural network with smaller size. (ii) Removing

redundant information from neural network input results in either a smaller

model (fewer parameters) with roughly the same accuracy or a model of the

same size (same number of parameters) the same size but with higher accuracy.

For the purpose of reducing the computational cost, input images are of-

ten shrunk to a smaller size. The information contained in an image is lost

as it becomes smaller because details are removed, and key characteristics are

represented in a smaller vector space (the number of pixels is reduced). Con-

sequently, it is common in the computer vision community to propose a range

of models with different input sizes (thus varying the number of parameters) in

order to address the trade-off between accuracy and computational cost. The

redundancy of information is also a common problem in computer vision appli-

cations. It is critical to note that redundant data increases the dimensionality
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of input data. This fills the input data with information that could have been

used to demonstrate valuable features. In action recognition tasks, data redun-

dancy is evident since the majority of information is redundant in each video

(i.e., environment, background objects, almost everything except the subject of

the action).

The proposed method combines the above assumptions with minimal draw-

backs. Hence, obtaining high accuracy and performance with a smaller model

and fewer redundant inputs. With hard attention, redundant data can be re-

moved from a network’s input, improving accuracy without the need for a larger

network. A greater amount of computational power is available to process the

valuable information once redundant information is removed.

Compared to using the auxiliary features, the hard-attention methodology is

more generalizable and cost-effective. In addition to the computational overhead

of auxiliary features, some features, such as skeleton estimation, are selected

based on the video violence detection application (importance of human body

dynamics). Due to their application-specific nature, such features cannot be

used in a broader range of computer vision applications. The low computational

overhead and application-neutral assumptions of the hard attention mechanism

make it suitable for a wider range of applications in computer vision.

The concept of hard attention in computer vision can be understood as the

process of cropping out redundant information from each frame. As a result,

the hard attention task can be formulated as a method of determining the

coordinates of a crop function. Equation 2 is an interpretation of such an

approach.

attention output∣∣∣∣∣
c =

crop function∣∣∣∣∣
fcrop(argmax

j
(

attention score function
DRL network︷ ︸︸ ︷
fscore(hj∣∣∣∣∣
input at region j

)), h) (2)

Equation 2 is centered on deep reinforcement learning (DRL) attention scor-
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ing model (fscore). The DRL model is a function that scores regions based on

their importance in the detection of violence (hj). The region with the maximum

attention score is then cropped using the crop function (fcrop) and considered to

be the output of hard attention. The crop function is a light image processing

function that returns a region of an input image as its output.

The use of reinforcement learning to create hard attention has the following

main benefits: (i) Removing the need for localization annotations in training

data and using the currently available datasets. (ii) Removing the need for a

separate attention network through the design of a multi-task network based

on reinforcement learning. Annotations regarding action localization are not

standard in action recognition and violence detection datasets. Through the

conversion of video violence detection tasks to reinforcement learning tasks, the

network is able to use a partial signal (classification annotation) within a reward

system to simultaneously learn recognition and localization.

3.2. Design

The hard attention is implemented as a multi-stage process. The reinforce-

ment learning environment utilizes predefined regions called prior boxes, as

shown in Figure 1. Through the use of prior boxes, the model can focus on

different regions of a video within one or more region selection stages. In each

stage, the chosen area replaces the current frame; as a result, the rest of the

inference is carried out using the chosen region. In this manner, the model

may continue to tighten the attention region by selecting the most appropri-

ate area at each subsequent iteration. The purpose of the training is to teach

the model how to select regions that contain individuals who exhibit violent

behavior. Choosing a class (violent or non-violent) for the video concludes the

violence recognition task. This process is depicted in Figure 2.

The implemented hard attention mechanism has only one region of interest

at a given time. Although this may be a limitation, in the case of video violence

detection, multiple regions of interest are not required. To correctly classify a

video, it is sufficient to detect one of many acts of violence occurring within a
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Figure 1: Prior boxes defined on the input frame.

Figure 2: Model interaction with an input video.
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single region. By transforming SSHA into a multi-agent reinforcement learning

problem, SSHA can be extended to a larger number of attention regions. At-

tention agents work in collaboration to cover multiple areas of interest in order

to maximize global precision.

Selection of the region is accomplished by choosing from a set of prior boxes.

Using static regions rather than a free-moving attention bounding box in the

training phase reduces the search space for the deep reinforcement learning

model. As opposed to the limited number of predefined prior bounding boxes, a

free-moving attention bounding box can possess all the possible bounding boxes

on the input image. Due to the limited number of sample videos in the video

violence recognition datasets, reducing the reinforcement learning search space

enhances the convergence and generalization of the learned network weights.

A reward system complements the definition of a search space and an en-

vironment. The rewards are designed to encourage correct video classification

and discourage incorrect classification. The rewards are defined to be +1 for a

correct video class selection and -1 for an incorrect class selection. Furthermore,

a diminishing +0.5 reward is associated with attention action in order to en-

courage the reinforcement learning model to experiment with region selection.

As rewards below 0 act as punishments, the auxiliary reward should be greater

than 0 to encourage the model. Additionally, since the reward for a correct class

selection is +1, the auxiliary reward must not overwhelm the primary reward

by being more than +1. According to empirical analysis, values such as 0.3, 0.4,

0.5, and 0.7 result in reasonably similar results, with 0.5 being the best.

RGB and optical flow frames are used as raw inputs to the SSHA model.

RGB frames are 224*224*3, and 79 RGB frames are sampled and fed to the

model at each step. Optical flow input has similar dimensions, except the frames

represent 2D motion vectors using two channels (instead of three RGB channels).

The optical flow frames are calculated using the TV-L1 algorithm (Carreira

& Zisserman, 2017). TV-L1 is the algorithm of choice for the I3D backbone

(Carreira & Zisserman, 2017) for its highly accurate motion vectors. Equation 3
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displays TV-L1 visual movement calculations.

~v = min
~u


∫

Ω

|∇x|+ |∇y| dt︸ ︷︷ ︸
regularization term

+λ

∫
Ω

|ρ (x, y)| dt︸ ︷︷ ︸
optical flow contraint

 (3)

By finding the smallest displacement vector (~u) in each region of an image,

the motion vector (~v) can be calculated. In the unconstrained form, motion

vectors are calculated as the displacement of a pixel within a short period of time

(
∫
/Omega

∗ |∇x| + |∇y| dt). Where ∇x and ∇y are the displacement amounts

of the pixel. The TVL1 optical-flow equation is constrained as it considers the

weighted (λ) value difference of the tracked pixel. This difference is calculated

as the derivative of the pixel value over a given period of time (|ρ (x, y)| dt).

The use of a pretrained model in this research improves the final accuracy,

stabilizes deep reinforcement learning training, and accelerates model conver-

gence. I3D model (Carreira & Zisserman, 2017) is chosen as the backbone

network. Aside from being one of the best action recognition models on the

leaderboards, this model also has excellent source code and pre-trained weights

that make it suitable for the application. Kinetics dataset (Smaira et al., 2020)

is used to train the model’s pre-trained weights, including RGB and Optical-flow

streams.

To simultaneously use RGB and optical flow features, a two-stream archi-

tecture (Feichtenhofer et al., 2016) with a multiplication fusion layer is imple-

mented. As shown in Figure 5, the two-stream fusion network uses RGB and

Optical-flow I3D backbones. The rest of the network has the same architec-

ture as the single-stream configuration. The 3D feature map generated by the

backbones is used to learn Q values. Feature maps are reduced in size using

3D convolution layers, which reduce the number of parameters and prevent

over-fitting. The reduced feature is fed to the fully-connected layer with linear

activations. Figures 3 to 5 demonstrate an overall view of various SSHA model

architectures.
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Figure 3: SSHA model architecture (RBG only).

Figure 4: SSHA model architecture (Optical-flow only).

Figure 5: SSHA model architecture (Two-stream fusion).

3.3. Training

The SSHA model is trained using Q learning. A value iteration method (such

as Q learning) uncovers the underlying value function of an environment. Com-

paratively, policy iteration approaches immediately identify the most effective

actions for each state. The advantage of knowing the hidden value structure of

the environment is the higher data efficiency (Hamadouche et al., 2021). In this

study, value iteration methods are preferred because the dataset size is limited

(e.g., 1600 training videos in the RWF dataset). The Q-learning equation is

presented in Equation 4.

Q(s, a)︸ ︷︷ ︸
New Q value

= R(s, a)︸ ︷︷ ︸
Reward

+ γ∣∣∣∣∣
Discount factor

Max expected Q value
obtained using the target network︷ ︸︸ ︷

max
a′

Q′(s′, a′) (4)

Q value update given the current state and action (Q(s, a)) is calculated

using Equation 4. The new Q and observed reward (R(s, a)) are functions of
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current state (s) and the applied action (a). While the expected Q value (Q′)

is the function of expected state (s′) and future action (a′).

The network outputs include two distinct groups of nodes that select atten-

tion regions or video classes. The node with the highest Q-value indicates the

network choice at each stage. When a region selection action is selected, the

intended region is cropped and used as input for the next inference step. In con-

trast to region selection actions, class selection actions indicate the classification

decision and complete the violence detection process.

SSHA does not use recurrent or memory layers, so it cannot remember how

many steps it took. In order to compensate for the lack of memory, the number

of steps is fed into the fully connected layer. A one-hot vector encodes the

number of steps. Making the network aware of the number of actions taken

previously prevents the infinite loop scenario of selecting regions indefinitely.

In general, vanilla deep reinforcement learning models are unstable during

training. To stabilize deep models, dueling training (Wang et al., 2016b) is used

along with regularization, small learning rates, and batch-size tuning. Moreover,

an adaptive sampling method maintains the reward sparsity in the /epsilon −

greedy exploration algorithm (Sutton & Barto, 2018). The reward sparsity is

defined as the low probability of receiving positive rewards, while the model

explores the environment in the training phase. The adaptive sampling method

keeps the reward sparsity constant throughout the training phase by calculating

the current reward sparsity and tuning the sampling probability from positive

and negative rewards accordingly. Adaptive sampling is especially beneficial in

the early stages of training as the model is entirely random, and environment

complexity causes the samples to be primarily negative.

The training is further stabilized and accelerated using a reward injection

technique. Based on the known classification label for each video, we can de-

termine the expected reward for correct and incorrect classifications. Since

relevant information is provided without additional observations, the known re-

ward accelerates the training. Since the output activation function is linear

(pass-through) and the randomly initialized model outputs can have a large
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range. This strategy stabilizes the training phase by reducing the search space

size at the start of the training procedure. Large Q values disrupt the main

network’s training stability because of the large learning gradients. The reward

trimming method is also used to maintain training stability. Using this method,

Q values that exceed or fall below a predefined range would be clipped to the

maximum or minimum possible value. Applications and architectures define the

predefined range. Considering the region selection reward, the expected Q value

is between −1 and 1 + (N − 1) ∗ .5, where N is the maximum number of steps

the environment allows. In this study, N is equal to 5 as with more zooming,

the quality of the input video falls below the SSHA model’s input size. SSHA’s

training procedure is thoroughly demonstrated in Algorithm 1 to 3.

Algorithm 1 SSHA training: train loop.

1: for num episodes do

2: exploration()

3: network update()

4: end for

4. Experiments

Using classification metrics reported in the respective studies, the SSHA

model is compared to the previous state-of-the-art models for video violence

detection. Further, information regarding the class-level performance and model

actions is provided for a more detailed assessment of the SSHA model. Based

on the evaluation results, the advantages and limitations of the SSHA model

are discussed in section 5.

4.1. Experiments setup

The primary dataset used in this study is the RWF dataset (Cheng et al.,

2021). The RWF dataset is one of the most comprehensive datasets available for

the detection of video violence. A total of 2000 videos were included in the RWF

dataset, divided into violent and non-violent categories of equal size. Video
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Algorithm 2 SSHA training: ε− greedy exploration.
1: statei−1 = statei

2: action = −1

3: while action == −1 do

4: if random number() < .5 then

5: if random number() < ε then

6: selected action = select random action()

7: else

8: selected action = argmax(main network(statei))

9: end if

10: statei, reward, done = environment.act(action)

11: else

12: statei−1, action, statei, reward, done =

replay buffer.random sample(action)

13: end if

14: prob = random number()

15: if (reward > 0

and prob < positive reward selection prob)

or (reward < 0 and prob >

positive reward selection prob) then

16: action = selected action

17: reward history.append(reward)

18: replay buffer.append(

statei−1, action, statei, reward, done)

19: end if

20: end while
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Algorithm 3 SSHA training: network update.

1: positive reward prob =

calculate positive reward prob(reward history)

2: if positive reward prob > target positive reward prob then

3: decrease positive reward selection prob()

4: else

5: increase positive reward selection prob()

6: end if

7:

8: if done then

9: statei = environment.reset()

10: end if

11:

12: Qtarget = Q learning equation(

statei, reward, target network)

13: Qtarget = inject known Q values(Qtarget)

14: optimize main network(Qtarget)

15: ε = ε− 1
num episodes
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content in RWF is more abundant in quantity and diversity than in previously

published datasets. Because this dataset is scraped from the YouTube 1 video

streaming service, it contains videos with varying resolutions. The videos are

divided into five-second clips, each with a frame rate of 30 frames per second. It

is easier to compare competing models with the help of a predefined list of train

and test videos. Classification accuracy is the reported metric in the baseline

RWF paper is (Cheng et al., 2021).

Hockey and movie fight datasets are used in addition to the RWF for SSHA

model evaluation. Despite containing 1000 and 200 videos, they do not meet the

criteria for a practical dataset for building a video violence detection model in

the real world. In these datasets, violence is only depicted in hockey games and

Hollywood films. A generalizable violence detection model cannot be trained

with the repeating situation of hockey players fighting on an icy hockey field and

the cinematic quality and perspective of the cinematic film. Therefore, despite

the high accuracy of models on the mentioned datasets, they are not useful for

real-world and general applications. Dataset characteristics are presented in

Table 1.

Dataset # videos Video length (seconds) Video size (pixels)

RWF (Cheng et al., 2021) 2000 5 varied

Hockey fights (Nievas et al., 2011) 1000 2 360 x 288

Movie fights (Gong et al., 2008) 200 2 720 x 480

Table 1: Video violence datasets characteristics.

4.2. Results

The SSHA model is trained and tested using the predefined training and

testing videos included in the RWF dataset. Furthermore, the hockey and

movie datasets are divided 80/20 between training (80%) and testing (20%).

SSHA’s accuracy and class-level performance are presented in Table 2 and 3,

1https://youtube.com
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respectively. The class-level results provide insight into the SSHA model’s per-

formance in detecting violent and non-violent videos in isolation. In addition,

Table 4 provides some characteristics of the SSHA model, such as the model

size and the average number of actions per video.

Model/Dataset) RWF (Cheng et al., 2021) Hockey fights (Nievas et al., 2011) Movie fights (Gong et al., 2008)

ConvLSTM (Sudhakaran & Lanz, 2017) 77.0 % 97.1 % 100.0 %

I3D (RGB only) (Carreira & Zisserman, 2017) 85.7 % 98.5 % 100.0 %

I3D (Optical-flow only) (Carreira & Zisserman, 2017) 75.5 % 84.0 % 100.0 %

I3D (Two-stream) (Carreira & Zisserman, 2017) 81.5 % 97.5 % 100.0 %

Cheng et al. (RBG only) (Cheng et al., 2021) 84.5 % - -

Cheng et al. (Optical-flow only) (Cheng et al., 2021) 75.5 % - -

Cheng et al. (C3D) (Cheng et al., 2021) 85.7 % - -

Cheng et al. (P3D) (Cheng et al., 2021) 87.2 % 98.0 % 100.0 %

SSHA model (RBG only no localization) 85.3 % 98.0 % 99.0 %

SSHA model (RGB only) 90.4 % 98.7 % 99.0 %

SSHA model (Optical-flow only) 76.0 % 86.2 % 98.5 %

SSHA model (Two-stream) 86.4 % 97.0 % 99.0 %

Table 2: Models accuracy banchmark.

Class Precision Recall F1-score

Violent 0.88 % 0.92 % 0.9 %

Non violent 0.92 % 0.9 % 0.91 %

Total 0.9 % 0.91 % 0.9 %

Table 3: SSHA Class-level evluation results on RWF dataset.

Property Value

# parameters (total) 13.2 million

# parameters (trained) .9 million

# input frames 79

Input size 224 x 224 pixels

Avg. # actions per video (RWF) 1.8

Table 4: SSHA Class-level evluation results.

5. Discussion

As shown in Table 2 the SSHA model has achieved state-of-the-art accuracy

on RWF and Hockey fights datasets, and fair accuracy on the Movie fights

dataset using the RBG-only architecture. The accuracy of models has reached
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saturation for the Hockey and Movie fights datasets, but state-of-the-art models

continue to produce meaningful results on RWF. As a result, the SSHA model’s

advantages are more evident in the RWF dataset. Furthermore, this study does

not suffer from imbalance learning because the evaluation datasets are perfectly

balanced. As shown in Table 3, the class-level results of the SSHA model on the

RWF dataset present a proper balance between the violence and non-violence

classes.

To assess the effects of hard attention on the accuracy of the SSHA model,

the SSHA model is trained and evaluated with and without hard attention

capability (RGB only and RGB only no localization in Table 2). The attention

mechanism is detached from the SSHA model by removing the region selection

actions from the model and converting it to a single-stage video classification

model. Nonetheless, this model is still trained using reinforcement learning loss.

The superior accuracy of the SSHA model with region selection capabilities

demonstrates the effectiveness of the hard attention method.

Learned from the training phase, 1.8 is the optimized average number of

actions per video learned by the SSHA model (including the classification ac-

tion). When only one step is taken to classify a video, the model has classified

the video without applying region selection. This scenario is reasonable when

the region of interest is large; thus, no further attention is required for accu-

rate classification. Many region selection actions result in a narrow viewpoint

on the input video. A perspective with such a narrow field of view often lacks

the necessary visual details. Consequently, the average number of actions per

video indicates the model’s tendency toward one region selection action before

classification.

The notable conclusion of experimenting with a two-stream fusion neural ar-

chitecture is the drawback of having a larger model trained on a limited dataset.

Even though an I3D network with a two-stream fusion architecture achieves

higher accuracy on the Kinetics dataset (Carreira & Zisserman, 2017), results

on the RWF dataset do not follow the same principle. According to Table 2,

the I3D two-stream fusion has inferior accuracy on the RWF dataset compared
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to the RGB-only type in previous and current research. The bad performance

results from expanding the feature space and, subsequently, the neural network

search space while having a fixed number of training data samples. However,

the positive aspect of this outcome is the performance-wise preferability of an

RGB-only architecture. The I3D backbone has 13 million parameters (Carreira

& Zisserman, 2017). A two-stream architecture utilizes two I3D backbones for

feature extraction from RGB and Optical-flow frames, doubling the number of

parameters relative to the single-stream architecture. Thus, the computational

overhead of extracting Optical-flow frames from RGB frames and a double-sized

neural network adversely affects the two-stream architecture’s performance.

6. Conclusion

This paper presents a semi-supervised hard attention mechanism (SSHA)

based on reinforcement learning. SSHA achieves state-of-the-art accuracy in

video violence detection by analyzing the most critical region of the video in

greater depth. It utilizes video violence datasets that are readily available and

eliminates the need for specialized datasets or annotations. The multi-stage

implementation of SSHA enables the proposed model to utilize high-definition

surveillance footage by selecting attention regions according to the user’s pref-

erences. The RGB-only version of the SSHA model achieved state-of-the-art

90.4 percent accuracy on the RWF dataset and 98.5 and 99.5 percent accuracy

on the Hockey and Movies datasets, respectively.

Even though the proposed SSHA model significantly improved the accuracy

of the existing state-of-the-art models, future research could apply the hard

attention mechanism to action recognition to improve the accuracy of SSHA

methods. Additionally, applying the proposed hard attention mechanism to

multi-attention scenarios using collaborative agents would be an interesting fu-

ture direction for this research. Contributing to the RWF dataset regarding the

number and quality of available videos and annotations will provide the great-

est benefit to state-of-the-art automated video violence detection in the short
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term.
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