
 

 
Abstract— Decoding of motor imagery (MI) from 

Electroencephalogram (EEG) is an important component of the 
Brain-Computer Interface (BCI) system that helps motor-disabled 
people interact with the outside world via external devices. The 
main issue in developing the EEG based BCI is the informative 
confusion due to the non-stationary characteristics of EEG data. 
In this work, an innovative idea of transforming an EEG signal 
into the weight vector of an unsupervised neural network called 
the autoencoder is proposed for the first time to solve that 
problem. Separate autoencoders are trained for the individual 
EEG data. The weight vectors are then optimized for the 
individual EEG signals. The EEG signals are thus represented in 
a new domain that is in the form of weight vectors of the 
individual autoencoder.  The weight vectors are then used to extract features such as autoregressive coefficients 
(ARs), Shannon entropy (SE), and wavelet leader. A window-based feature extraction technique is implemented to 
capture the local features of the EEG data. Finally, extracted features are classified using a classifier network. The 
proposed approach is tested on two publicly accessible EEG datasets (BCI competition-III and Competition-IV) to 
ensure that it is as successful as and superior to the previously published methods. The proposed technique achieves 
a mean accuracy of 95.33 % for dataset-IIIa from BCI-III and a mean accuracy of 97% for dataset-IIa from BCI-IV for 
four-class EEG-based MI classification. The experimental outcomes show that the proposed approach is a promising 
way to increase BCI performance. 
 

Index Terms— Autoencoder, Brain-Computer Interface, Electroencephalogram, Feature Extraction, EEG-Classification. 
 

 

I. Introduction 

CI is a collaborative setup between the brain and an 
external device, which takes brain signals as input and tries 

to decode into computer commands to direct external activities 
such as cursor control, wheel chair control, silent speech 
recognition, etc. Several techniques are used to capture the 
neuronal activity inside the brain. EEG is one of them and is 
widely used because of its non-invasive nature and high 
resolution in time. It uses electrodes on the scalp to capture the 
electrochemical changes in the brain. The MI classification 
through EEG is one of the widely used BCI applications. The 
cerebral activities of MI can be triggered when a person 
imagines any movement of his body parts. If these cerebral 
activities are properly translated, then the findings can be 
utilized to interact with the external equipments such as BCI-
based wheelchairs for physically challenged people and service 
robots for several motor-neuron diseases (i.e., Poliomyelitis, 
Parkinson disease, etc.) [1]. The detection of EEG patterns is 
thus crucial in BCI applications for MI. 

In the MI-based BCI systems, unique aspects of the EEG 
signals called features are extracted and are then integrated into 
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a feature array. Finally, these arrays are further used to train the 
classifier network.  The most important key factor to achieve 
high performance in BCI systems (higher classification 
accuracy) is the discriminative feature extraction. Good 
classification accuracy will be achieved if proper features are 
extracted for the same. Three major factors such as artifacts, 
non-stationarity, and misrepresentation of training feature sets 
can degrade the accuracy of the BCI systems. Electro-
oculogram (EOG) and myogenic artifacts are unavoidable 
contaminations recorded together with neural activities and 
thereby distort valuable information [2]. Variations in different 
neurophysiological circumstances of subjects while recording 
the EEG can cause immense non-stationarity in the EEG signals 
[3]. The improper imagination of mental tasks and 
inappropriate class labeling results in deviation in the training 
data. Various advancements in feature extraction techniques 
and classification algorithms have been created in the study to 
address these difficulties. The major goal of this work is to 
improve feature extraction approaches in order to improve the 
performance of multi-class MI task classification. 

For decoding MI from EEG data, the common spatial pattern 
(CSP) is commonly employed as a feature extractor [4 - 7]. 
Initially, it was developed for binary data classification and then 
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modified for multi-class classification problems. In 
conventional CSP analysis, the data of two classes are spatially 
filtered to maximize the variance between the classes. EEG data 
are bandpass filtered between a frequency band of 4 to 40 Hz 
before the CSP is used to decode the MI. The frequency band 
chosen for CSP has a significant impact on its performance. It 
is therefore necessary to select a specific frequency  band for 
extracting specific characteristics, but this process is very 
inconvenient. When the frequency band is used inappropriately, 
the BCI system's performance suffers. Several CSP extensions 
have been proposed in the literature to address this issue, 
including filter bank common spatial pattern (FBCSP) [4], 
Separable Common Spatio-spectral Patterns (SCSSP) [5], and 
one-vs-rest FBCSP [6]. However, extended-CSP-based 
methods are mainly suitable for stationary signals, and 
considering it for non-stationary EEG signals is quite difficult 
[8]. Ghosh et al [25] proposed a heuristically optimized CSP for 
classifying the MI tasks from the BCI competition dataset. 

Bhattacharya et al. [9] proposed adaptive autoregressive 
(AAR) model-based feature extractor for multi-class MI task 
classification. However, their methods didn’t achieve higher 
accuracy as AAR based method ignores the temporal features 
of EEG signals. To capture the time-frequency features of EEG 
signals, wavelet transform based features extractors have been 
proposed in the literature [10 - 12]. Rashid et al. [10] proposed 
DWT based feature extraction technique, where, wavelet 
coefficients at various levels were used as features and provided 
to the neural network for classifying multi-class MI tasks from 
EEG signals. Mahamune et al. [11] proposed CWT based 
feature extraction technique. In their approach, 2-D images 
were formed using wavelet coefficients and used as features in 
convolutional neural network (CNN) for four-class MI task 
classifications. Ma et al. [12] extracted power spectral density 
(PSD) from the DWT coefficients of EEG signals and 
converted them into 2-D images. They used 2-D images in CNN 
for classifying four-class MI tasks and achieved higher 
classification accuracy. It is difficult to use wavelet coefficients 
directly as signal features because of their wider length. 
However, challenges that remain in wavelet transform-based 
signal analysis are the selection of appropriate mother wavelet 
and decomposition level. 

Recently, Shi et al. [8] combined feature extraction 
techniques to improve classification accuracy. In their method, 
CSP and AAR features were extracted and tested on various 
classifier networks. Zhang et al. [13] proposed LASSO-based 
feature selection methods to progress the performance of 
decoding MI tasks. The performance was improved through 
selecting significant features from the extracted features: AR, 
band power, and wavelet coefficients.  

From the previous research, it is observed that the CSP and 
wavelet transform were widely used as feature extractors in the 
four-class MI classification. The commonly used CSP 
algorithm, however, recognizes only spatial-based features 
while paying no attention to the spectral properties of EEG 
signals. The performance depends on the spectral filter for 
which the frequency band is usually predetermined and fixed 
manually. In AAR-based approaches, time information is 
ignored. In wavelet transform based techniques, considering 
coefficient vectors at different level as a feature of EEG signal 
increase the computational complexity of the system. However, 

challenges remain in achieving higher classification accuracy to 
improve the performance of real-time MI-based BCI.  

It is quite difficult to decode four-class MI tasks from the 
EEG data because of its non-stationary nature. Hence, the 
derived features may not be entirely discriminative. To address 
the challenge of finding discriminatory features for four-class 
MI classification because of highly random and non-stationary 
EEG signal, an innovative idea of transforming the EEG signal 
in a new domain i.e., weight vector of unsupervised neural 
network has been proposed in this paper for four-class MI 
classification for the first time. An efficient feature extraction 
method is developed rather than improving the classification 
algorithm to enhance the performance of BCI.  

In view of the above challenges, the main features of the 
innovative method proposed in this paper are: 
(a) It is a fully automated, unsupervised, and data-driven 

feature extraction method using individual autoencoders 
for every EEG signal and does not require any prior 
knowledge. 

(b) The proposed novel feature extraction technique can 
adaptively capture the intention of motor movements from 
the EEG data. 

(c) It extracts the discriminative feature sets in a new domain 
in which the classifier can achieve higher classification 
accuracy for four-class MI data. 

A new hypothesis is proposed, tested, and verified in this 
paper. The hypothesis is to represent the EEG signal in terms of 
a weight vector from the input layer to the hidden layer of an 
autoencoder and subsequently use the weight vector for 
classifying the EEG signals. Separate autoencoders are used for 
every EEG signal and weight vectors of the autoencoders are 
optimized according to the individual EEG fed to a 
corresponding autoencoder. It is to be noted that separate 
autoencoders are used for every EEG data. For example, if there 
are 100 EEG signals, then 100 autoencoders are trained for each 
EEG signals. Hence, the individual signal is represented as 
optimized weight vector derived during the process of training 
the corresponding autoencoder. The weight vectors depict a 
compact representation of the EEG signal. The feature values 
can then be extracted from a particular weight vector that 
represents a particular EEG signal in a new domain. 

To test the hypothesis, an autoencoder (a type of neural 
network) is used to find the unique weight vector for each MI 
EEG signal. The autoencoder has been used in this paper as it 
reconstructs the same output as the input. Hence, it is a data-
driven network. As a result, the weight vectors are updated 
according to the individual EEG data. Once the weight vectors 
are computed, features are then extracted through a slid-
windowing method. The windowing-based feature extraction 
technique is implemented to capture the local features of EEG 
data and to reduce the dimension of the feature vector. The 
window size is selected through the proper technique. Then all 
the windowed feature values are concatenated to form a feature 
vector. Finally, these feature vectors along with class labels are 
fed to the SVM network as a classifier. Once the training of the 
classifier network is completed, individual autoencoders are 
created for the test signals. Optimized weight vectors 
representing the individual EEG signals are obtained from the 



 

 

autoencoders. Then, the feature values are extracted and class 
labels are predicted from the pre-trained SVM network. This 
method is fully automatic and unsupervised. The proposed 
system is compared with the conventional MI-based BCI 
systems [11 - 13] and also achieves the highest classification 
accuracy. The proposed system is validated with two publicly 
available datasets. The proposed system neither uses any 
feature selection techniques nor any channel selection method 
for achieving higher accuracy than the conventional methods. 
To the best of our knowledge, this is the first attempt to 
represent EEG signals as the weight vector for the EEG-based 
MI classification. The benefits of the stated model are 
established through the exploratory outcomes as explained in 
this paper. 

The following is a summary of the manuscript: Section I 
introduces the background, literature review, challenges, and 
objectives; Section II depicts the tools and ideas used in this 
methodology; Section III states the proposed methodology; 
Section IV discusses the research findings; and Section V 
concludes the manuscript by discussing future work strategies. 

II. MATERIALS AND TOOLS 

A. Autoencoder  

An autoencoder is a neural network that captures the 
signature within EEG data using an unsupervised machine 
learning technique [14]. It consists mostly of two parts: an 
encoder and decoder. Encoder converts the input signal into a 
code and then the code is again converted back into the original 
input through decoder. Weights between layers are updated 
according to the training algorithm to minimize the 
reconstruction error. As the reconstruction error is small 
enough, the code could be assumed to incorporate most of the 
information of the input vector. The architecture of an 
autoencoder is shown in figure 1. 

 
Figure 1: The architecture of autoencoder. Xi, hi and Zi denote the input node, 
hidden nodes, and output nodes respectively.  

 
Autoencoder translates the input vector x to a hidden layer 

representation y using deterministic mapping, as shown in 
equation (1): 

𝑦 = 𝑓௘௡௖௢ௗ௘௥(𝑊௘
்𝑥 + 𝑏௘)                           (1) 

 

Where, 𝑊௘ and 𝑏௘ is the weight and bias vector respectively 
of the encoder and 𝑓௘௡௖௢ௗ௘௥  is the activation function of the 
neurons in the encoder. The output of the autoencoder z which 
has the same phase as x is then extracted by mapping the hidden 
layer representation or code y using the transformation. The z is 
expressed as equation (2): 
  

𝑧 = 𝑓ௗ௘௖௢ௗ௘௥(𝑊ௗ
்𝑦 + 𝑏ௗ)                             (2) 

The weight vector and bias vector for the decoder are 
denoted by 𝑊ௗ and 𝑏ௗ, respectively. The activation function of 
neurons in the decoder is 𝑓ௗ௘௖௢ௗ௘௥ . Training may be done in an 
autoencoder network by reducing the reconstruction error, 
which is quantified as a squared error. The autoencoder finds 
the appropriate parameters 𝜃 = {𝑊௘  , 𝑊ௗ  , 𝑏௘  , 𝑏ௗ}  through 
minimizing the cost function as shown in equation (3):  
 
             𝐸(𝜃) = 𝐿(𝑥, 𝑧) + 𝜆 ∥ 𝑊 ∥ଶ 

                    = ෍ ∥ 𝑥௜ − 𝑧௜ ∥ଶ+ 𝜆(∥ 𝑊௘ ∥ଶ+∥ 𝑊ௗ ∥ଶ)

௡

௜

       (3) 

 
Where 𝜆 ∥ 𝑊 ∥ଶ  is a regularised parameter that minimizes 

the L2 norm of parameters to avoid over-fitting, and 𝐿(𝑥, 𝑧) is 
the reconstruction error. The weight vector 𝑊 = 𝑊௘(: )  can 
represent the MI signal in new space.  

B. Feature Extraction 

Despite the fact that different feature extraction approaches 
for MI EEG classification have been established, finding an 
appropriate method for greater classification accuracy remains 
a challenging job for successful EEG classification. Finding a 
good feature set for a binary classification task may not be so 
difficult but for a complex multi-task classification, getting a 
discriminative feature set is a challenging task. In the proposed 
work, three features combining time-frequency and spectral 
information are extracted from the weight vector for the 
corresponding EEG data.  

1) Autoregressive Coefficients (AR) 
The AR model is a signal processing representation of a sort 

of random process that is used to characterise time-varying 
processes [15]. In a parametric method, it estimates the PSD of 
an EEG. Therefore, there are no chances of spectral leakage. 
Hence, it yields better frequency resolution. A linear 
combination of p prior values of the same signal can be used to 
describe the signal. Equation (4) can be used to describe the 
signal x[n] at time instant n: 

𝑥[𝑛] = − ෍ 𝑎[𝑖]𝑥[𝑛 − 𝑖] + 𝑒[𝑛]

௣

௜ୀଵ

                     (4) 

 
Where e[n] is a white noise, 𝑎[𝑖] is the 𝑖௧௛coefficient of the 

model with order p. A total of p number of AR coefficients are 
used as feature values in this work. However, the selection of 
the order p is very sensitive because the estimates generally 
improve with an increase in order but requires a higher 
computational cost. 

 Burg’s Method to Estimate the AR Model 
For the estimate of AR models, several techniques have 

been presented. In the field of EEG categorization, Burg's 
technique is frequently utilised. It directly measures the 
reflection coefficients without using the autocorrelation 
function [16]. This approach estimates the data records of PSD 
that exactly resemble the original signal. For a detailed 
description, interested readers may refer to [17]. 

 Determination of AR Model Order 



 

 

It's critical to establish the model's order that best suits the 
data while creating an AR model.It depends on the data 
sampling rate because the AR model estimates the present value 
of data using some past data samples. Sum-squared error (SSE) 
is a widely used tool for determining the order of an AR model. 
The model with the lowest SSE is the one that best matches the 
data [18]. As suggested in [18], for EEG-based mental state 
classification, AR coefficients of order 6 best fit the data. 

2) Wavelet Packet Entropy 
The wavelet transform is widely used in feature extraction 

due to its capability of capturing the time-frequency features of 
an EEG signal. It is difficult to use such coefficients directly as 
features because of their wider length. As a result, certain 
higher-level features can be derived from these coefficients for 
improved classification. Entropy is a technique used in 
information theory and signal processing to quantify the 
uncertainty of a particular system. Shannon entropy (SE) is 
computed directly from the weight vector's wavelet packet 
decomposition (WPD) coefficients in this paper. The main 
distinction between WPD and DWT is that WPD decomposes 
both the approximation and detail coefficients at the same time. 
As a result, the WPD has the same frequency bandwidth in each 
resolution while DWT does not. For an EEG signal x(t), the 
coefficients can be derived as equation (5): 

 

⎩
⎪
⎨

⎪
⎧

𝑑଴,଴(𝑡) = 𝑥(𝑡),

𝑑௜,ଶ௝ିଵ(𝑡) = √2 ෍ ℎ(𝑘)𝑑௜ିଵ,௝(2𝑡 − 𝑘)
௞

,

𝑑௜,ଶ௝(𝑡) = √2 ෍ 𝑔(𝑘)𝑑௜ିଵ,௝(2𝑡 − 𝑘)
௞

                     (5) 

 
Where ℎ(𝑘)and 𝑔(𝑘) denote high pass and low pass filters 

respectively, and 𝑑௜,௝ is the WPD coefficients at the ith level and 
jth node. The energy at ith level and jth node can be derived by 
wavelet-energy, defined as equation (6): 

𝐸௜,௝ = ෍ ∥ 𝑑௜,௝,௞ ∥ଶ

ே

௞ୀଵ

                              (6) 

 
Where N denotes the total number of coefficients in the 

corresponding node. The Shannon entropy (SE) of jth node at ith 
level is calculated based on the probability distribution of 
energy as equation (7): 

𝑆𝐸௜,௝ = − ෍ 𝑃௜,௝,௞ ∗ log൫𝑃௜,௝,௞൯

ே

௞ୀଵ

                  (7) 

Where, 𝑃௜,௝,௞  is the probability of the kth coefficient at its 
corresponding node and is defined as equation (8): 

𝑃௜,௝,௞ =
∥ 𝑑௜,௝,௞ ∥ଶ

𝐸௜,௝

                                       (8) 

 
Finally, the SE feature vector is computed by cascading all the 
SEs from every node of level M as equation (9). 
 

𝑆𝐸 = (𝑆𝐸௜,ଵ, 𝑆𝐸௜,ଶ, … , 𝑆𝐸௜,ଶಾ)௜ୀெ                  (9) 

   
 Selection of Base Wavelet 

The selection of an appropriate base wavelet (mother 
wavelet) may affect the calculation of the SE feature vector in 
the wavelet domain. Hence, a cross-correlation-based approach 
is proposed to check the performance of all the available 
wavelet bases for EEG-based MI signal classification. The 
cross-correlation between the MI signal and the wavelet 
functions is calculated and the function is selected which gives 
the maximum value. The correlation 𝑋௖௢௥௥  between the EEG 
signal of interest X and the mother wavelet function Y is 
calculated as equation (10): 

𝑋௖௢௥௥ =
∑(𝑋 − 𝑋ത)(𝑌 − 𝑌ത)

ඥ∑(𝑋 − 𝑋ത)ଶ(𝑌 − 𝑌ത)ଶ
                  (10) 

 
3) Wavelet Fractal Estimates 

Two fractal parameters from DWT coefficients are 
estimated and used as features. The second cumulant of the 
scaling exponents and the width of the singularity spectrum are 
derived as features. The width of the singularity spectrum 
derives from the multi-fractal nature of the EEG signal. The 
scaling exponents are scale-based exponents that describe the 
signal's power-law behaviour at various resolutions. The second 
cumulant roughly indicates the scaling exponents' deviation 
from linearity [19]. Both the features are calculated from 
wavelet leaders. The wavelet leaders estimate the multifractal 
spectrum based on wavelet transform.  

Let 𝜓 be a wavelet function having various null moments 
and fast decay and dilated by a scale 2௝ and translated to time 
position 2௝𝑘. It can be assumed that, each wavelet coefficient 
𝐶௝௞ corresponding to the wavelet transform of the series {x(i)} 

is localized on the dyadic interval [19], 𝐼௝௞ = ቂ
௞

ଶೕ ,
௞ାଵ

ଶೕ ቃ. Then the 

dilated intervals can be computed as equation (11): 

3𝐼௝௞ = ൤
𝑘 − 1

2௝
,
𝑘 + 2

2௝
൨                              (11) 

 
The wavelet leaders 𝑑௝௞ are computed as equation (12): 
 

𝑑௝௞ = sup൛|𝐶௟௛| ∶  𝐼௟௛ ⊂ 3𝐼௝௞ൟ                        (12) 
 

The most important key factor about the wavelet leader in 
the search for the greatest wavelet coefficients in a narrow time 
neighborhood for a given time and scale [19]. The singularity 
spectrum (SS) determines how many singularities are there. 
However, the SS can be easily computed from the structure-
function (SF). The SF is computed from the wavelet leader as 
equation (13): 

𝑆(𝑞, 2௝) =
1

𝑛௝

෍ |𝑑௝௞|௤

௡ೕ

௞ୀଵ

                            (13) 

 
The SF decays as power laws of the scales if the signal x(i) 
displays some sort of self-similarity. Scaling exponents (SE) are 
the exponents of these power laws, and they are calculated 
using equation (14): 



 

 

𝑆𝐸(𝑞) = lim
௝→଴

𝑖𝑛𝑓 ቌ
logଶ ቀ𝑆(𝑞, 2௝)ቁ

𝑗
ቍ               (14) 

 
Finally, using the Legendre transform (LT), the SS may be 
derived from the SE as follows: 
 

𝐷(ℎ) = (1 + 𝑞ℎ − 𝑆𝐸(ℎ))௤
௜௡௙

                  (15) 
 

The width of the SS is measured as the difference between the 
maximum and minimum value in the D(h) and the second 
cumulant of the SE is used as feature values. 

All the feature values are extracted from the autoencoder 
weight vector using the non-overlapping sliding windowing 
technique.  

C. Multi-class SVM Classifier 

The SVM is the most commonly used classifier based on the 
supervised machine learning method. Using the kernel 
technique, SVM can adequately categorise non-linear data. To 
classify test data, the SVM uses training data to construct an 
optimum hyperplane [20].  The best hyperplane, also known as 
support vectors, is used to create a decision boundary using 
neighbouring samples from various datasets. If the datasets are 
linearly indistinguishable in the original finite-dimensional 
space, the non-linearity can be reduced by re-mapping the data 
onto a suitably higher dimensional space. To address the higher 
dimensionality, the kernel trick is used for better classification 
and less effort. However, SVMs were originally designed for 
binary classification problems. Various extensions of SVM 
have been proposed in the literature for multiclass classification 
problems. These extensions are 1-against-1, 1-against-all, 
DAGSVM etc. [20]. 

D. Dataset 

In this investigation, two datasets were used: one for 
validation and another for comparison with other recently 
reported methods of EEG-based MI Classification. 

1) Dataset IIIa from BCI-III 
Dataset IIIa from BCI competition III [21] has been used to 

validate the proposed system. The data consist of records from 
the three subjects (k3b, k6b, I1b). The subjects performed four 
MI tasks according to a cue. The subjects were imagining the 
movements of the left hand (class-1), right hand (class-2), 
tongue (class-3), and foot (class-4) while relaxing in a chair 
with armrests. The experiments were performed for a few runs 
with 40-trials for each class. At the begining, the 2s were silent 
and an audio stimulus started at t = 2s to indicate the starting of 
each trial, and across “+” was displayed. Then, at t = 3s, a left, 
right, up, or down arrow was presented for 1s and at the same 
time, and the participants were instructed to imagine moving 
their left hand, right hand, tongue, or foot in accordance with 
the arrow until the cross vanished at t = 7s. Each of the four 
cues is shown 10 times in a random order during each run.  

2) Dataset IIa from BCI-IV 
Dataset IIa from BCI competition IV [22] has been adapted 

to illustrate the superiority of the proposed model over other 

recently established techniques. EEG data were collected from 
9 individuals (A01–A09) using a 22-channel EEG amplifier. 
The subjects were imagining the movements of the left hand 
(class 1), right hand (class 2), tongue (class 3), and foot (class 
4) while relaxing in a chair with armrests. The data were 
sampled at 250 Hz. 

III. PROPOSED METHODOLOGY 

This paper proposes a novel method of unsupervised feature 
extraction for EEG-based MI classification. The basic 
architecture of the proposed system is presented in figure 2. At 
first, the MI-related EEG signal is fed to an autoencoder and the 
weight vector which minimizes the reconstruction error in the 
autoencoder is extracted. The individual weight vectors are 
extracted after training the individual autoencoders for each 
EEG signals. The autoencoders are trained with the EEG data 
from individual channels in a trial. In the proposed system, the 
size of the hidden layer is selected as 50 after experimentation 
and is  elaborated in the next section. Thus, the size of the input 
EEG signal is 750 samples for an individual channel, and 
hidden node size is 50. Then, the size of weight matrix is 
750×50. The weight matrix is then transformed into a vector of 
size (1×(750×50=37500)). From, the weight vectors, features 
are extracted as mentioned above. Here, p number of AR 
coefficients, 2ெ number of Shannon entropy and 2 number of 
wavelet fractal estimates are extracted from each window. 
Finally, (p + 2ெ  + 2) * S number of feature values are 
concatenated to form the feature vector, where S is the total 
number of windows to cover the whole weight vector. Finally, 
the feature-label pairs are fed to a multiclass SVM classifier to 
train the model. The proposed method is implemented in 
MATLAB R2019a and evaluated for BCI-III and BCI-IV 
datasets. The proposed work achieves a higher classification 
accuracy as compared to the conventional methods ([11 - 13]) 
reported for EEG-based MI classification. 

 
Figure 2: The basic architecture of the proposed system. 

 
Stages of the proposed model 
 Four class MI data were segmented from the dataset. 



 

 

 Data were partitioned into a training set and test set using 
the CV partition technique with holdout parameter p = 0.3. 
70% of the data were selected randomly for the training 
purpose and 30% of the data were selected randomly for 
the testing purpose. 

 Individual EEG data from the training set are fed to train 
the individual autoencoders. After minimizing the training 
error of the individual networks, the weight vector from 
the input-to-hidden layer is extracted. This weight vector 
represents the corresponding EEG data from each class. 

 The features are extracted from the weight vector 
according to a sliding window methodology and a window 
size of 250 yields the best results. From, the weight 
vectors, features are extracted as mentioned above. Here, 
p number of AR coefficients, 2ெ  number of Shannon 
entropy and 2 number of wavelet fractal estimates are 
extracted from each window. Finally, (p + 2ெ  + 2) * S 
number of feature values are concatenated to form the 
feature vector. Likewise, test feature sets were also 
extracted using the same method. 

 Finally, the training feature-label pairs were fed to a 
multiclass SVM to train the classifier network. 

 To test the trained classifier network, test feature sets are 
used and the performance is evaluated. 

A. Data pre-processing and preparation 

The EEG data is very sensitive to various artifacts such as 
eyeblink, eye movement, etc. These artifacts should be removed 
otherwise result in misclassification. In this paper, the EEG 
artifacts are removed through the method described in [23]. At 
first, the EEG data are decomposed into wavelet coefficients up 
to level 6 using db8 as the mother wavelet. Then, according to 
the wavelet coefficients, the appropriate thresholds are 
calculated through a heuristic algorithm (grey wolf 
optimization) and coefficients are thresholded. Finally, 
thresholded coefficients are used in the inverse operation to get 
back the artifact-free EEG signal. 

After successfully removing the artifacts from the BCI-III 
(data IIIa) dataset, the MI-related EEG data were segmented. 
EEG segments from 4s to 7s in an individual trial were 
extracted as it represents the MI task. Therefore, 32 channel 
EEG data representing an individual MI task within an 
individual trial were extracted from the available dataset.. Then, 
data were randomly partitioned into a train (𝑋௧௥௔௜௡ ) and test 
(𝑋௧௘௦௧ ) dataset using the holdout CV algorithm. In the CV 
partition algorithm, the holdout parameter, p is selected as 0.3 
and as a result, 70% of the total dataset were randomly chosen 
to form a training dataset, and 30% of EEG segments were kept 
as test datasets. Finally, the data were paired with data labels 
and are ready to be applied in the proposed method. 

B. Transforming the EEG signals into Weight Vectors 

Now, the 𝑋௧௥௔௜௡ and 𝑋௧௘௦௧  were fed to train the individual 
autoencoders, and the encoder weight vector for each data 
segment is stored for further investigation. The activation 
function of the encoder network is selected as ‘logsig’ function. 

For the given input, 𝑋௜, the encoder output 𝑦௜  is calculated as 
equation (16):  

 
𝑦௜

்௥௔௜௡ = 𝑙𝑜𝑔𝑠𝑖𝑔(𝑊௜
்௥𝑋௧௥௔௜௡(𝑖) + 𝑏௘)                (16) 

 

And, similarly for the test dataset 𝑋௧௘௦௧: 
  

𝑦௜
்௘௦௧ = 𝑙𝑜𝑔𝑠𝑖𝑔(𝑊௜

்௘𝑋௧௘௦௧(𝑖) + 𝑏௘)                (17) 
 
The ‘logsig’ function is expressed as equation (18):  
 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑧) =
1

1 + 𝑒ି௭
                          (18) 

 
To minimize the error defined in equation (3), the scaled 

conjugate gradient (SCG) algorithm [24] is used as a training 
algorithm in autoencoder. The weight vectors are selected, 
when the autoencoder reconstruction error is minimized. The 
number of hidden nodes in the hidden layer was selected using 
the trial and error method. However, EEG data is not linearly 
separable and it is difficult to estimate how many hidden nodes 
will be required to represent the EEG data efficiently. Hence 
the size of hidden nodes is selected as 30, 50, and 100, and the 
training errors of the autoencoders are compared. It has been 
observed that the error is the minimum with fast convergence 
when the number of hidden nodes is 50. Figure 3 represents the 
training error for an individual EEG on using different hidden 
node sizes.  

Now, the weight vector (𝑊௜ ) for the corresponding EEG 
signal are extracted.  

C. Feature Extraction from the Weight Vectors 

A windowing feature extraction method is proposed in this 
work. The window slides across the weight vector and the 
features are computed. Each window will calculate the p 
number of AR coefficients, 2M number of wavelet packet 
entropy, and two numbers of wavelet fractal estimates as a 
feature value from the EEG segments. Hence, each EEG signal 
will be represented as (𝑆 × 𝑟) number of feature values. Where 
r is the total number of feature values extracted from a window 
and S is the total number of windows to cover the whole weight 
vector. 

𝑟 = (p +  2ெ  +  2)                        (19) 
 
 In computing AR coefficients, the selection of order p is a key 

factor. As the researchers in [19] suggested that, order 6 is 
significant in the AR model for mental task classification. 
Hence, the order of AR model p = 6 is selected in the proposed 
methodology. Also, Burg’s method (described in section II) 
is used to estimate the AR coefficients due to its low 
computational cost. 

 Wavelet packet entropy, is calculated from an individual 
window of the weight vector. One major issue in the 
computation of wavelet-based SE is the selection of proper 
wavelet function. Several wavelet functions are available in 
the wavelet families, and every wavelet function has different 
characteristics. As a result, entropy will be different for 



 

 

different wavelet functions. However, in this work, a proper 
technique for the selection of appropriate wavelet functions is 
adopted. The correlation 𝑋௖௢௥௥  between the EEG signal of 
interest X and the mother, wavelet function Y is calculated 
using equation (10) to match the best suitable wavelet 
function for EEG-based MI analysis. The wavelet function is 
selected which gives the maximum value. In this work, a total 
of 30 wavelet functions (Haar, db2 – db12, Coif1 – Coif5, 
Sym2 – Sym8, fk4 – fk22) are compared with MI-related EEG 
data. For each wavelet function, the average 𝑋௖௢௥௥  is shown 
in table 2. From the table, it is evident that the db4 provides 
the maximum correlation among all the wavelet functions. 
Hence, db4 is selected as a mother wavelet function to 
decompose the windowed EEG data using WPD up to level 
4. Hence M = 4, and from the equation (9), 2M = 16 wavelet 
packet entropy will be computed from a window. Finally, the 
second cumulant of the SE and the width of the SS is 
measured from the equation (14) and (15) respectively from a 
window. 

 In total (6 AR coefficients + 16 wavelet packet entropy + 1 
SE + 1 SS) = 24 features are extracted from a window. Thus, 
the size of weight vector is 37,500 and the size of the sliding 
window is 250. Hence, 37500/250=150 number of windows 
are required to traverse the entire weight vector. Finally, all 
the feature values computed from every window are 
concatenated to form the feature vector, which consists of 
(150 * 24) = 3600 feature values. 

Table 2: Wavelets vs. Average cross correlation.  
Wavelets Xcorr Wavelets Xcorr Wavelets Xcorr 

Haar 0.12 db11 0.02 coif2 0.02 

db2 0.05 db12 0.02 coif3 0.02 

db3 0.04 sym2 0.05 coif4 0.02 

db4 0.04 sym3 0.04 coif5 0.02 

db5 0.03 sym4 0.03 fk4 0.06 

db6 0.04 sym5 0.03 fk6 0.04 

db7 0.02 sym6 0.02 fk8 0.03 

db8 0.02 sym7 0.02 fk14 0.03 

db9 0.01 sym8 0.02 fk18 0.01 

db10 0.02 coif1 0.04 fk22 0.02 

D. Classification 

On the classification stage, a one-against-all SVM classifier 
is used in this work for four-class MI data classification. Then 
the feature-label pairs were fed to the classifier to train the 
network. Additionally, the Gaussian kernel function is used in 
the classifier for better classification. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The dataset IIIa from BCI-III has been used to evaluate the 
proposed methodology in this paper. One trial from each class 
was selected randomly. After successfully partitioning the data 
into the training set and test set, both the datasets were fed to 
the autoencoder. The weight vector of corresponding EEG data 
was extracted. Then features were extracted through a sliding 
window from the weight vector. The selection of the size of the 
window is very sensitive because lower size results in a large 
number of feature values which may be redundant and a higher 
size result in a smaller number of feature values which may 
result in poor classification. The window slides forward across 
the weight vector. So, depending on the size of weight vectors, 
the window size is selected as 125, 250, 375, 500, 750, 1000, 
1250, and 1500 samples. The performance of the window sizes 
is compared in figure 4. It is evident from the figure that, the 
window size of 250 samples has achieved the highest 
classification accuracy. Finally, the feature-label pairs were fed 
to the classifier to train the network. After successfully training 
the classifier, the trained model has been used to predict the test 
dataset. 

 
Table 3: Comparison among several case studies (on dataset 

IIIa BCI-III) 
 
 

Methods Classification Accuracy 
(%) 

Case-1 85 

Case-2 91.87 

Case-3 95.39 

 
(a) Training error plot for N=30                                    (b) Training error plot for N = 50                               (c) Training error plot for N =  100 

 
Figure 3: Performance of the autoencoder with different configuration 



 

 

 
Figure 4: Comparison of different window sizes for feature extraction 

 
Three cases have been studied to check the superiority of 

the proposed model. In the first case, the same feature sets were 
extracted directly from the EEG signal and fed to the classifier 
(case-1). In the second case, features were extracted from the 
EEG signal (case-2) window-wise. In the third case, features 
were extracted using the proposed methodology i.e. from 
weight vectors (case-3) of the autoencoders. For all three cases, 
the performance is presented in table 3. It is evident from the 
table that, the classification accuracy using the proposed model 
(case-3) is higher than the other two cases. The multiclass SVM 
classifier has been adopted through comparison with other 
classifiers. Linear Discriminant Analysis (LDA) network also 
has been used to evaluate the proposed method. Their 
performance is shown in table 4. From the table, it is evident 
that the SVM shows the highest performance in terms of 
precision, sensitivity, specificity, and model accuracy.  

The proposed system is also evaluated on the BCI-IV-2a 
dataset. Table 5 represents the performance of the proposed 
system on dataset IIa from BCI competition IV. Among all the 
9 subjects, subjects: A02, A03, A04, and A08 the prediction is 
100% accurate for four-class MI EEG data. The performance of 
the proposed system is also compared with the other recently 

reported methods ([11 - 13]) and shown in table 6. It is evident 
from the table that, the proposed approach gives better results 
than other methods in terms of classification accuracy.  
Table 5: Subject wise performance comparison on dataset IIa 

from BCI-IV 

Subjects 
Classification 
Accuracy (%) 

Average 
Accuracy (%) 

A01 93 

97 

A02 100 

A03 100 

A04 100 

A05 97 

A06 93 

A07 93 

A08 100 

A09 97 
 

Table 6: Performance comparison of several methods on 
dataset IIa from BCI-IV 

Performance  Mahamune 
et al. [11] 

Zhang 
et al. 
[13] 

Ma et 
al. 
[12] 

Proposed 
method 

Average 
accuracy 
(%) 

71.25 84.96 96.26 97 

V. CONCLUSIONS  

In this paper, a new method of feature extraction is proposed 
for four-class MI EEG classification. The main challenge in the 
classification of EEG signals is their non-stationary 
characteristics. To solve this problem, the EEG signal was 

Table 4: Performance comparison of the proposed system on dataset IIIa from BCI-III 
Sub_1 

Parameters 
(%) 

LDA SVM 
Class-1 Class-2 Class-3 Class-4 Mean Class-1 Class-2 Class-3 Class-4 Mean  

Sensitivity 100 83 62 69 78.5 94 93 94 100 95.25 
Specificity 89 90 95 97 92.75 99 98 100 97 98.5 
Precision 76 73 84 86 79.75 97 93 100 90 95 

   
Model 

accuracy 
78 % 95 % 

Sub_2 

Parameters 
(%) 

LDA SVM 
Class-1 Class-2 Class-3 Class-4 Mean  Class-1 Class-2 Class-3 Class-4 Mean  

Sensitivity 84 66 97 69 79 100 97 100 96 98.25 

Specificity 94 96 85 98 93.25 99 99 100 100 99.5 

Precision 84 83 72 90 82.25 97 97 100 100 98.5 

Model 
accuracy 

80 % 98 % 

Sub_3 

Parameters 
(%) 

LDA SVM 
Class-1 Class-2 Class-3 Class-4 Mean  Class-1 Class-2 Class-3 Class-4 Mean  

Sensitivity 68 93 79 77 79.25 97 90 94 92 93.25 

Specificity 97 82 98 96 93.25 98 97 100 97 98 

Precision 88 63 93 83 81.75 94 90 100 89 93.25 

Model 
accuracy 

79 % 93 % 

 



 

 

transformed into another domain i.e., the weight vector of the 
autoencoder. In the proposed method, the values of three 
features, AR coefficients, wavelet packet entropy, wavelet 
fractal estimates were obtained from a new representation of the 
EEG signals in the form of weight vectors of the autoencoders. 
The weight vectors used to represent the EEG signals were 
obtained at the minimum reconstruction error of the 
autoencoder. A windowing-based feature extraction technique 
was implemented to capture the local features of EEG signals. 
Results reveal that an EEG signal can be represented in the 
weight vector of the autoencoder neural network. The 
performance of the proposed method was compared with the 
existing conventional methods. The proposed method 
successfully predicts the mental task with higher accuracy. It 
can be concluded that the proposed method can be regarded as 
a powerful tool to improve the performance of MI EEG-based 
BCIs. 
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