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Protein Encoder: An Autoencoder-based Ensemble Feature Selection Scheme to Predict 
Protein Secondary Structure 
 
Uzma, Usama Manzoor, and Zahid Halim* 

 
Abstract ─ Proteins play a vital role in the human body as they perform important metabolic tasks. Experimental identification 
of protein structure is expensive and time consuming. The prediction of protein secondary structure is significant to identify 
the protein tertiary structure and its folds. The feature subset selection from high dimensional protein primary sequence is a 
key to improve the accuracy of Protein Secondary Structure Prediction (PSSP). Therefore, it is essential to select the relevant 
features from high dimensional data to predict the protein secondary structure. This work presents a novel method for the 
PSSP problem based on a two-phase feature selection technique. The first stage utilizes an unsupervised autoencoder for 
feature extractions. Whereas, the second stage is an ensemble of three feature selection methods, namely, generic univariate 
select, recursive feature elimination, and Pearson's correlation. This phase combines multiple feature subsets using mutual 
information to select the optimum feature subset. For classification, different resultant subset features are used. These include 
random forest, decision tree, and multilayer perceptron. Two sets of experiments are performed on five datasets for the 
assessment of proposed work. The proposed solution is compared with three state-of-the-art methods based on Q3 accuracy, 
Q8 accuracy, and segment overlap score. Obtained results show that the proposed framework performs better in the majority 
of the cases than the past contributions. The proposed framework achieves Q8 accuracies of 83%, 81%, 80%, 74% and 84% and 
Q3 accuracies of 89%, 89%, 91%, 78% and 77% on CB6133, CB6133-filtered, CB513, CASP10, and CASP11 datasets, respectively.  

Keywords: Protein secondary structure prediction, ensemble methods, autoencoder, feature extraction, amino acids 

1. Introduction  

A gene is a sequence of nucleotides in deoxyribonucleic acid 
(DNA) or ribonucleic acid (RNA) that acts as its functional 
unit of heredity (Uzma et al., 2020). Some genes contain 
instructions for making the functional molecules called 
proteins. The process from gene to making of a protein inside 
the cell is complex. It is composed of two stages, transcription 
and translation. Ribosome reads the bases of mRNA 
sequences to produce an amino acid chain. The amino acid is 
glued together by transfer tRNA (tRNA) to assemble the 
protein by the addition of one amino acid at a time. Fig. 1 
shows the central dogma molecular biology. In the living 
beings, proteins are a type of macromolecule that play a 
versatile and significant role in all biological processes. 
Function of proteins in the growth and maintenance of tissues 
take part in the chemical reactions that occur in our body such 
as digestion, muscle contraction, blood clotting, and energy 
generation. Some proteins are hormones which transform 
information between cells, organs and tissues like proteins 
and peptides, amines, and steroids. Fibrous proteins such as 
keratin, collagen, and elastin bring structure, strength, and 
elasticity to the human body.  A few proteins act as an energy 
provider, maintain blood fluid between tissues, produce 
antibodies to protect against harmful diseases and carry 
nutrients into cells, within and outside. The long chain of 
amino acid is called polypeptide (Flynn et al., 1983) which 
determines the structure of proteins and the structure dictates 
the biochemical function. Majority of the proteins are formed 

by arrangements of same twenty kinds of amino acids, giving 
rise to the 3D protein conformation and the function of this 
particular protein entirely depends on its globular structure.  

The primary structure of a protein is produced by the linear 
segment of amino acid residues. Whereas, the protein 
secondary structure has folded structures that form a 
polypeptide due to interactions between atoms of the 
backbone. In molecular biology, protein primary structure 
sequence is helpful to predict its tertiary structure. However, 
predicting tertiary structures directly from the primary 
structure sequences is still a challenge. From the protein 
primary structure sequence, the secondary structure sequence 
is predicted and afterwards the secondary structure sequence 
is used to predict the tertiary structure. Protein secondary 
structure sequence consists of either three or eight class 
elements. The three-class secondary structural elements 
(Torrisi et al., 2018) include: alpha(α)–helices(H), beta(β)–
sheets(E), and coil(C). Whereas, the eight class secondary 
structural elements are alpha(α)-helix(H), 310-helix(G), π-
helix(I), β-bridge(B), β-sheet(E), Turn (T), Bend (S), and other 
residues (L). 

There are many experimental techniques, like Nuclear 
Magnetic Resonance (NMR) spectroscopy and Xray 
crystallography (XRC) that provide high-resolution proteins 
structure information. However, these techniques are costly, 
lengthy, and at times unreachable. Moreover, due to the 
continuing growth of protein databases, the number of 
unknown protein sequence-structure pairs are constantly 
increasing. In this situation, cost-effective computational 
techniques are in demand, which can assist the research 
community in protein structure prediction. In the past couple 
of decades, more efforts from computational and 
experimental perspectives have been made in determining the 
structure of a protein. However, due to limited development 
in research, the prediction accuracy is still low (Qian et al., 
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1998; Jones et al., 1999). Previously, many statistical methods 
are proposed for protein secondary structure prediction (Rost 
et al., 1994; Chen et al., 2006). These models have reportedly 
round 60% accuracy because they could not find extract 
features from the primary structure (Kabsch et al., 1983). 
Nowadays, machine learning techniques are used efficiently 
to predict the secondary structure. These techniques have 
been used to predict the secondary structure of a protein 
including classifiers, like Support Vector Machines (SVM), 
Artificial Neural Networks (ANN), Random Forests (RF), 
Convolutional Neural Network (CNN), dynamic Bayesian 
networks, and ensemble methods. A few of the contributions 
have also used distance-base machine learning methods for 
the classification of PSSP, i.e., minimum distance and k-
nearest neighbor (k-NN). These methods' test data is classified 
using training data and does not require pre-training. Deep 
Neural Network (DNN) has recently shown potential in 
various domains, like bioinformatics (Cho et al., 2019;Yu et al., 
2021;Araújo et al., 2021), image processing (Pak et al., 2017), 
speech recognition (Nassif et al., 2019), and signal processing 
(Gripon et al., 2018). The present work therefore opts to 
address the PSSP utilizing the DNN in its core. 

The work in (Qian et al., 1988) use fully connected Multi-Layer 
Perceptron (MLP) for protein secondary structure prediction 
and obtained an accuracy of 64.3%. Jones et al. (1999) use two-
stage neural network for protein secondary structure 
prediction to use PSSM produced by PSI-BLAST and obtain 
the Q3 accuracy of 79%. The proposal by Pollastri et al. 
(Pollastri et al., 2002) use a recurrent neural network and 
profiles eight-class PSSP and obtained Q8 accuracy of 51%. 
Karypis et al. (2006) used cascaded models based on the pair 
of binary SVM model and obtained Q3 accuracy of 79.3% and 
Segment Overlap Score (SOV) of 78.7%. Zhon et al., (2007) use 
parallelize Denoeux Belief Neural Network (DBNN) to 
achieve a speedup of 4-4.9 and obtained Q3 accuracy of 72%. 
Aydin et al. (2007) developed two search algorithms, based on 
N-best score for Hidden Semi Markov Model (HSMM) and 
obtained the Q3 accuracy of 64%. Yao et al. (2008) used 
dynamic Bayesian networks and obtained the Q3 accuracy of 
77.5%. Sonderby et al. (2014) use BRNN with LSTM for protein 
secondary structure prediction and achieved the Q8 accuracy 
of 67%. Li et al. (2016) apply cascaded convolutional neural 
networks and recurrent neural network for PSSP and 
achieved a Q8 accuracy of 69.7%. Wang et al. (2016) utilize 
SVM with PSSM profiles and achieves the accuracy of 76.11%. 
Busia et al. (2017) apply deep convolutional neural networks 
and attain the Q8 accuracy of 71.4%. Guo et al. (2018) use 
recurrent neural network and 2D convolutional neural 
networks to attain Q8 accuracy of 70%. Ma et al. (2018) utilize 
data partition and semi-random subspace method for PSSP 
and achieved the accuracy of 84.5% on CB513 dataset. Guo et 
al. (2019) apply deep asymmetric convolutional long short-
term memory neural models for PSSP and attained the Q8 
accuracy of 75%. Kumar et al. (2020) use deep learning 
framework on hybrid profile-based features and obtained the 
Q8 accuracy of 75.8% and 73.5% on CB513 and CB6133 
datasets. Aydin et al. (2018) use dimension reduction 

techniques for PSSP and opted for two feature selection 
methods. They use support vector machine in second stage for 
the classification and achieved the Q3 accuracy of 83.05% and 
SOV score of 80.32 on CB513 dataset. Kathuria et al. (2018) 
used the RF classifier to predict the unknown proteins. Hu et 
al. (2020) used the RF classifier to predict super-secondary 
structure in proteins. Random forest classifier is used to 
improve the model accuracy with minimum classification 
error. It can effectively avoid the overfitting phenomenon by 
incorporating appropriate randomness and works well on 
most regression and classification problems. An RF algorithm 
has been used in protein-RNA binding sites, enzyme catalyst 
residues, helical domain linker, and oligomer status of coiled 
helical regions. This enables better results (Song et al., 2018; 
Okun et al., 2007; Jia et al., 2011; Richa et al., 2017; Liu et al., 
2010). Yavuz et al. (2018) use MLP classifier for prediction of 
protein secondary structure. Dencelin et al. (2016) use 
multilayer perceptron for the classification of protein 
secondary structure. MLP is a faster machine learning model. 
It uses feed-forward and backpropagation. Selbig et al. (1999) 
use Decision Tree (DT) for the consensus secondary structure 
of protein. Dowe et al. (1993) use DT for graph explanation of 
PSSP. Decision tree is used to improve the accuracy. It requires 
consideration of all possible outcomes of a decision and draws 
conclusions by overcoming the overfitting issue. Amino acids 
residues form a high dimensional data. The large feature 
vector contains redundant, unimportant, and missing values. 
There is some work published in the past to address the 
challenge. For example, Kumar at al. (2020) design a 
framework based on the combination of CNN and BRNN for 
the extraction of local and long-term interconnection between 
amino acids. Li et al. (2016) use the CNN to extract the local 
context and the Bidirectional Gated Recurrent Unit (BGRU) to 
extract the global context. Guo et al. (2018) use the 2-D 
convolutional neural network (2C) for local amino acid 
interaction. They use Bidirectional Recurring Neural 
Networks (BRNNs) to manage the global interaction between 
amino acid residues. These frameworks are complex models 
based on the combination of deep neural network. Therefore, 
we need to design a simple model that accurately predicts a 
protein’s secondary structure. Therefore, the current solution 
is designed on the basis of unsupervised deep learning with 

 

Fig. 1. Central dogma molecular biology. 
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feature selection methods to extract the set of meaningful 
features. The proposed work is a novel deep learning method 
referred to as Protein Encoder. It uses the unsupervised deep 
learning method (autoencoder) with feature selection 
techniques for reducing the dimension of amino acid residues 
and assist in selecting relevant features. The auto encoder has 
the capability of learning the non-linear relationship between 
features. It finds a good representation of input data in low 
dimension by focusing on significant features and ignoring 
redundant and noisy data. The features are extracted by 
converting the high-dimensional amino acid residues to 
small-dimensional. Additionally, to select the most relevant 
features that play an important role in classifying proteins into 
different groups, three feature selection methods are 
combined. The subset of features generated by different 
selection methods is aggregated using the aggregation 
function. An ensemble feature selection method is used, as 
each feature selection method uses different criteria to select 
the features. Therefore, it is inappropriate to use a single 
method for selecting features. As a result, the proposed 
solution aggregates three feature selection method, i.e., if one 
method ignores the important feature the other one selects it. 
The generated feature subset contains important information 
for predicating protein structures. As a result, data based on 
the selected subset of features is provided to the classifiers to 
group the protein structure in order to analyze the protein 
functions. 
 
1.1. Problem Statement 

Protein Data Bank (PDB) is a global repository of data about 
the 3D structures of large proteins and nucleic acids (Burley et 
al., 2017). PDB identifies the expression level of hundreds of 
proteins simultaneously. The huge protein primary structure 
data makes it challenging to process. This data has noise, 
unnecessary and irrelevant items that makes it difficult to 
process. In the literature, models commonly used for reducing 
the dimensions of the data are polypeptide composition, 
Amino Acid Composition (AAC), functional domain 
composition, PSI-BLAST profiles, physicochemical feature, 
and function annotation information. When information 
about protein properties is extracted, it often contains 
significant redundancy, leading to unsatisfactory levels of 
recognition for structural classes of proteins. Protein dataset 
also contain noise. For classification, data is critical for its 
accuracy and efficiency. Too many features can increase 
training time and cause overfitting, which reduces the 
accuracy on unknown data (Uzma et al., 2021). Also, noisy 
features can cause distortion in training. Whereas, a few 
features may not be sufficient for satisfactory training and 
causes under fitting. Therefore, a suitable and adequate 
number of features must be used to train the model. To solve 
the abovementioned problems, dimensionality reduction 
techniques, such as feature selection and feature extraction 
methods can be used (Han et al., 2011). The main difference 
between these two techniques is that when feature selection 
technique is applied, some of the features are selected without 
any change in the data. However, the feature extraction 

reduces the size of the data but creates new feature set. These 
techniques not only reduce the size of large data by selecting 
the important features but also improves the classifiers’ 
performance, consumes less resources and speedups the 
model. 

1.2. Key Contributions and Novelty 
The proposed solution here is a novel three-phase approach to 
protein residue prediction. For the selection of relevant 
features, two-stage techniques are employed. The first phase 
use unsupervised deep learning method called autoencoder 
for extracting features. Protein data is given as an input to an 
autoencoder that is converted to low-dimensional data at the 
code layer. Once the network is trained, the code layer data is 
used as input for the second phase of the proposed approach. 
Afterwards, the three feature selection methods are applied to 
the code layer, then the resulting subset of features is 
aggregated using Mutual Information (MI). Finally, that 
samples are classified based on the selected features subset by 
using various classifiers.  

This work presents a novel approach to predict protein 
secondary structure. The intent of the proposed methodology 
is to select relevant amino acid attributes for protein domain 
classifications. The method selects the optimal subset of 
features from high-dimensional protein residues data. For the 
accurate predication of protein’s domain, the selection of most 
relevant features play an important role. Filter method of 
feature selection is used to reduce the feature dimensions in 
the current framework. Following are the key contributions of 
this work. 

• Autoencoder-based reduction of features  
• Fusion of three feature selection methods for 

optimum feature subset selection  
• Ensemble of multiple classifiers, namely, random 

forest, decision tree, and multi-layer perceptron for 
predicting the protein domain based on the subset of 
the selected optimum features.   

The novelty of the present work is that it uses three stage 
approach for PSSP based on deep learning methods. In the 
first two stages of the proposed model, dimension reduction 
techniques are used. First phase is an unsupervised 
autoencoder module for the dimension reduction and feature 
extraction. The output data of the autoencoder’s code layer is 
divided into training and testing sets. Second stage of the 
present work has an aggregation of three feature selection 
technique. Different features’ subsets are obtained by the three 
feature selection methods and then aggregate of different 
subsets is taken to obtain TopN features’ data. These 
techniques are applied on the training dataset. For 
aggregation, ensemble feature selection using MI (Hoque et 
al., 2018) algorithm is used. It directly selects common features 
that are selected by all feature selection methods, otherwise 
selection of the features is done on the basis of feature-to-
feature MI and feature class MI. After this stage, reduced data 
with optimal features is passed to the classification module. 
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The rest of the paper is organized as follows. Section 2 discuss 
related work. Section 3 lists the biological material. Section 4 
presents the proposed method. Section 5 lists the conducted 
experiments and outcomes. Finally, Section 6 provide 
concluding remarks about the proposed work. 

2. Related Work 
This section covers the past works done using feature 
selection techniques, machine learning, and deep learning 
methods to address classification challenges in the protein 
data. The PDB simultaneously develops structure of 
thousands of proteins. It organizes protein data in a matrix 
form, with rows representing the amino acids and columns 
representing the features. The combination of row and 
columns represent the protein structures profile and each 
entry represent structure of the given protein (Ding et al., 
2014). With the passage of time, the need of protein structures’ 
data is increasing. It is a technique that extracts important 
biological information that assists the domain of medicine and 
biotechnology (Gowthaman et al., 2021). The analysis of many 
datasets of protein structures is challenging. Thus, it is 
necessary to build a tool to obtain and analyze meaningful 
biologically information from enormous protein structure 
datasets. For the analysis of high-dimension data, 
classification is a useful learning technique (Al-Obeidat et al., 
2020). It is challenging to process the protein structure data 
because of large number of proteins. Each protein has several 
states and some of the data is redundant. Furthermore, the 
dataset generated by Protein Data Bank (PDB) is noisy and 
redundant.  

2.1. Statistical Methods 
The earliest methods used for protein secondary structure 
prediction are statistical approaches. These models were 
based on statistical information of single amino acid and 
limited to a few proteins of known structures. Although these 
methods are not advanced, however, they are still used as an 
initial step of protein secondary structure problem. Examples 
of such methods include: Chou-Fasman algorithm (Chou et 
al., 1974) and Garnier-Osguthorpe-Robson algorithm (Garnier 
et al., 1978). The Chou-Fasman algorithm is based on the 
frequencies of amino acid. Frequency of helices, sheets, and 
coils is determined by the X-ray crystallography of known 
protein structures. Based on these frequencies the probability 
parameters are set that derived the appearance of amino acid 
in different secondary structures. Probability parameters 
predict that the given amino acid sequence is helix, stand or 
coil in a protein. The prediction accuracy of this method is 
between 50% to 60% (Kabsch et al., 1983). The Garnier-

Osguthorpe-Robson (GOR) algorithm is a theory-based 
method. It is also based on probability parameters, like Chou-
Fasman algorithm. Probability parameters are determined by 
the X-ray crystallography of known protein structures. GOR 
method not only considers the probability parameters of 
specific secondary structure, but also takes into account the 
conditional probability of immediate neighboring structures 
that already formed the same structure. The prediction 
accuracy of this method is around 57%. 

2.2. Machine Learning Methods 
Multiple machine learning methods have been used to predict 
the secondary structure, including ANN, SVM, dynamic 
Bayesian networks, RF, and ensemble techniques (Halim et al., 
2020). Salamov et al. (1995) work on ANN and k-NN to 
achieve 72.2% Q3 accuracy. Jones et al. (1999), use neural 
networks on PSSM calculated by PSIBLAST algorithm and 
attain 76.5% - 78.3% Q3 accuracy. Yao et al. attain 78.1% Q3 
accuracy by a method of dynamic Bayesian network and 
neural network (2008). The k-NN and minimum distance 
(using the distance formulas, like Minkowski or Euclid 
distances) are used to classify the data of protein structures. 
These algorithms do not need pre-training data. Ghosh et al. 
use k-NN, minimum distance, and fuzzy k-NN algorithm on a 
protein structures dataset and they compared these methods 
with multilayer neural networks. The authors show that these 
methods work better and attain higher accuracy than the 
multilayer neural networks (Fayech  et al., 2013). Hidden 
Markov Model (HMM) is also used to predict protein 
secondary structure. It estimates the future behavior based on 
existing data. It is commonly used as a classifier in many fields 
such as data mining, image processing, bioinformatics and 
pattern recognition, to name a few. Aydin et al. (2006), use 
extended hidden semi-markov model to predict secondary 
structure for single sequence and attained 67.9% Q3 accuracy. 
Another commonly used method to predict the protein 
secondary structure is the SVM. SVM usually utilize linear 
hyperplane for data distribution. Huang et al. (2013), apply 
SVM on a dataset that is generated using PSSM values and 
four physicochemical features and achieve 79.5% Q3 accuracy.  
 
The aim of protein secondary structure prediction is to assign 
secondary structural elements such as alpha helix, beta sheet 
and coil, for each amino acid. Therefore, the number of 
samples in the datasets will be equal to the number of amino 
acids, which can be large. In this case, it is important to speed 
up the learning algorithm. Fully connected neural network is 
used for large dataset. Huang at al. (2006), first propose the 
fully connected neural network. Wang et al. (2008), use 

Table 1  
Summary of Past Works 

Authors Proposed Model Accuracy 
(Sonderby et al., 2014) BRNN with LSTM Q8-67% 
(Li et al., 2016) Cascaded convolutional neural networks and recurrent neural network Q8-84.5% 
(WangIn et al., 2016) Support vector machine (SVM) with PSSM profiles Q8-76.11% 
(Busia et al., 2017) Deep convolutional neural networks Q8-71.4% 
(Guo et al., 2018) RNN and 2D CNN Q8-70% 
(Ma et al., 2018) Utilized  semi-random subspace method and data partition   Q8-84.5% 
(Guo et al., 2019) deep asymmetric convolutional LSTM neural models Q8-75% 
(Kumar et al., 2020) Used deep learning on hybrid profile-based features Q8-75.8% 

. 
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extreme learning machine on protein datasets and achieve 
74.7% Q3 accuracy. At times, the classification algorithms do 
similar errors when compared to each other, in this case it is 
probable to make errors belonging to a specific class. To avoid 
such kinds of errors, ensemble methods are used, which 
utilize mathematical/statistical techniques to combine two or 
more classification algorithms. Bouziane et al. (2015), combine 
ANN and SVM on CB513 dataset. The model achieves 78.50% 
Q3 accuracy. Li et al. (2017), use Principal Component 
Analysis (PCA) on a dataset and attain 86.7% Q3 accuracy 
through SVM. Fayech et al. (2013), apply data mining for 
protein secondary structure prediction and achieve 78.2% Q3 
accuracy. Shuai-yan et al. (2017) propose a radical group 
encoding method for PSSP. The purpose of their encoding 
scheme is to encode the 20 amino acids of protein. All amino 
acids are represented by coding with the information of stable 
structure of those atoms that exist in the amino acids protein. 
Experiments are performed on CB513 and 25PDB datasets 
with variable window length. For classification, SVM and 
Bayes classifiers are used in their model. This method is 
compared with the quadrature encoding and archives 1.2% 
better accuracy. Liu et al. (2017), propose a two dimensional 

deep convolutional neural networks for the large data of 
proteins. It is composed of six convolutional layers and five 
max-pooling layers. They use six benchmark datasets. Wang 
et al. (2019), use ensemble method, where length and width of 
2D data is passed to the time dimension of two different LSTM 
models and a third LSTM model is designed to combine the 
results of first two models. Holley et al. (1989), used the feed-
forward neural network for the predication protein secondary 
structure. The method was evaluated on 64 proteins having 
the first 48 proteins are used for training and the next 14 is 
used for testing, the accuracy is 79%.  
 
2.3. Limitations of the Past Work Addressed 
In the previous literature, most of the techniques are designed 
and applied directly to the proteins datasets without any 
feature selection layer. A few works use feature selection of 
protein datasets which speeds up the computational model (Li 
et al., 2017). Different feature selection methods give different 
feature subsets; therefore, selecting the optimal feature subset 
is a challenging task. The work in (Cho et al., 2019) use 
dimension reduction techniques for protein secondary 
structure production and opts for different feature selection 

.Table 2 
Three and Eight State Secondary Structure 

State Name Single Letter Code 

3-state 
α-Helix H 
Β-Strand E 
Coil C 

8-state 

residue in isolated β-bridge B 
Extended strand E 
3-10 helix G 
α-helix H 
π-helix I 
Hydrogen bonded turn T 
Bend S 
Loop or any other residues L 

 

 
Fig. 2. Overall working of the proposed solution. 
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methods, i.e., chi-square, gain ratio, basic component analysis, 
the minimum redundancy maximum relevance algorithm, 
correlation-based feature selection, and information gain, and 
then apply SVM for the classification of each feature subset. 
 
The work in (Li et al., 2017) use only one method for feature 
selection. Afterwards, the top ranked features are used for 
classification. As a single feature selection method does not 
give an optimal subset of features, so different feature 
selection methods that provide varying feature subsets needs 
to be evaluated. Hence, the present work uses an ensemble of 
three feature selection methods. If important features are 
ignored by one feature selection technique, there is a 
possibility that the other method selects it. In the previous 
work the models take a lot of time and computational 
resources due to large number of data (Kumar et al., 2020). The 
current framework uses dimension reduction and feature 
selection techniques for reduced the size of large data by 
selecting the important features that improves classifiers’ 
performance, consume less resources and speedups the 
model. For this purpose, autoencoder is used that converts 
high dimensional data into low dimensions and extracts 
relevant features. Table 1 lists the summary of past works.  
 
3. Biological Material 
This section explains the required biological material. The 
protein primary structures data contain 20 amino acids, 
denoted by A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 
W, and Y.  “A” denotes Alanine, “C” denotes Cysteine, “D” 
denotes Aspartic Acid, “E” denotes Glutamic acid, and so on. 
“X” is used to denotes unknown amino acid. Tertiary 
structure of protein is predicted by the protein secondary 
structure. Protein profile is a powerful representation of 
primary protein structure rather than representing each 
amino acid separately. These amino acids are used to consider 
evolutionary regions and are utilized to model protein groups 
and domains. They are formed by conversing of multiple 
sequence alignments into Position-Specific Scoring Matrix 
(PSSMs). The frequency of each amino acid at the given 
position is calculated and then according to these frequencies 
the amino acids position in the alignment are scored (Iqbal et 
al., 2021). Different combination of amino acids makes the 
protein’s polypeptide chain. A protein’s polypeptide chain 
normally contains round 200-300 amino acids, but it can 
consist of less or more amino acids. In the used datasets here, 
the average protein’s polypeptide chain consists of 208 amino 
acids. The structural state of amino acid residues in the protein 
is determined by the protein secondary structure. The coiled-
up shape of protein is formed by α-helix, zigzag shape is 
formed by β-stand. The protein secondary structure is 
important because it has many chemical properties of protein 
and is used for predicting the tertiary structure of protein. 
When predicting protein’s secondary structure, one 
differentiates between 3-state secondary structure and 8-state 
secondary structure as shown in Table 2.  
 
Five benchmark datasets (Zhong et al., 2007) are utilized for 
the evaluation of the proposed work. These include: 

CullPdb6133, CullPdb6133-filtered, Cuff, Barton’s 513 
(CB513), CASP10, and CASP 11. These are publicly available 
datasets for PSSP. CullPdb6133, CullPdb6133-filtered and 
Cuff and Barton’s 513 (CB513) are available in numpy format 
with N protein x k features. CASP10 and CASP 11 are available 
in Hierarchical Data Format 5 (HDF5). The CullPdb6133 
dataset contains the 6133 protein sequences with 39900 
features of each protein. These proteins can be reshaped into 
6133 proteins x 700residues x 57 features. Cuff and Barton’s 
513 (CB513) dataset contains 513 protein sequences with 39900 
features of each protein. CASP10 dataset contains 128 protein 
sequences and CASP11 dataset contains 105 protein 
sequences. For data consistency here, 700 x 57 matrix of amino 
acid chains are formed. Where, the digit 700 represent the 
peptide chain of protein and 57 represent the feature set of 
amino acid. No sequence (zero padding) in vector is applied 
when the end of chain is reached. Among the 57 features, 22 
features (i.e., from 0-21) represent the protein primary 
structure (20 amino acid residues, 1 unknown amino acid 
residues, 1 none sequence/padding). Nine features (i.e., 
feature number 22-30) represent the secondary structure 
labels (8 possible states, 1 no sequence or padding). Two 
features (i.e., from 31-32) represent the C- and N- terminals. 
Two features (i.e., feature number 33-34) represent the relative 
and absolute solvent accessibility. Twenty-two features (i.e., 
35-56) represent the protein sequence profile. The protein 
sequence profile is used for protein primary structure 
prediction. The proposed method takes a sequence of amino 
acid as the input. Initially, the amino acid sequence (700 x 22) 
and labels (700 x 9) are extracted from the dataset. Afterward, 
the no sequence/padding is removed from the amino acid 
sequence (700 x 21) and labels (700 x 8).  The sequence feature 
vector is a sparse one-hot vector, i.e., only one of its eight 
elements is none-zero (1), while the sequence vector has a 
dense representation. To avoid inconsistency of feature 
representation, we transform the sparse one-hot vector into 
the dense vector by an embedding operation (Guo et al., 
2018). After that, concatenation of the 6133 amino acid 
sequence matrices is performed that combines them into one 
matrix (4293100 x 21). This matrix is then passed to the 
autoencoder for feature reduction. From the code layer of 
autoencoder, a compressed matrix (4293100 x 18) is obtained. 
Before data passing to the autoencoder, it is divided into the 
training set (70%) and testing set (30%) randomly. The 
sequence of amino acid residue is passed as input to the 
autoencoder. After passing through the input layer, the data 
is passed to the hidden layer and then to the code layer. The 
dimension of hidden layer is 19 and code layer is 17. The 
output data of code layer, i.e., the 17-dimensional feature map, 
is further used in the next step. However, concatenation of the 
training and test data is performed first. In the next step, three 
classifiers are applied on the 17 code layer data. For each data 
and classifier, 10 experiments are performed, using all five 
datasets (i.e., CB6133, CB6133 filtered, CB513, CASP10 and 
CASP11). Before training the data is split into train, validation, 
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and test set. CB6133 dataset consist of 6133 proteins. In this 
dataset 5600 proteins from 0 to 5600 are used for training, 272 
proteins from 5605 to 5877 are used for test and 256 proteins 
from 5877 to 6133 are used for validation. CB513, CASP10 and 
CASP11 data are testing data. There are 25% similarity 
between the CB6133 and CB513 dataset. The filtered version 
of CB6133 is generated by removing the similarity. CB6133-
filtered dataset consists of 5534 proteins (Guo et al., 2018). It is 
used for training and the other three test datasets are used for 
testing. Furthermore, the CB6133-filtered dataset split into 
train, validation, and test set of 5060, 244 and 230 proteins. 
Then CB6133-filtered dataset is used to train and test the 
proposed model. 
  
4. Proposed Solution 
This section presents the proposed solution to the protein 
secondary structure prediction problem. It is characterized 
into three main stages. The challenge here is to analyze protein 
dataset that has very large number of samples. This work 
presents three-stage method for this, which include 
autoencoder-based feature extraction, ensemble filter 
methods for relevant feature selection, and finally 
classification. In the first stage features are extracted using an 
autoencoder. The autoencoder is utilized to find better 
representation of the input data. From the input data, the 
unrelated features are removed through the autoencoder. The 
train data is passed to the next stage.  In the second stage the 
ensemble-based features selection method is used for 
removing the redundant, irrelevant, and noisy data. The 
ensemble method provides an optimal set of features over the 
single feature selection method. Therefore, three methods of 
feature selection, namely, generic univariate select, recursive 
feature elimination, and Pearson correlation coefficient are 
used. From each feature selection technique topN ranked 
attributes (where topN is set to 5, 10, and 15 in the 
experiments) are selected. Next, the feature subset generated 
by these methods are aggregate using MI (Hoque et al., 2018) 
to get an optimum feature subset. Similar features are directly 
selected from the train dataset.  
Afterwards, based on the selected feature subset, protein 
domain is classified by three classifiers, i.e., multi-layer 
perceptron (MLP), random forest, and decision tree. Overall 

working of the proposed framework is shown in Fig. 2. 
Following sections explain the individual components of the 
proposed solution. 
 
4.1. Autoencoder 
Autoencoder is an unsupervised learning technique based on 
the traditional ANN for the task of efficient data 
representation. This work constructs an architecture of the 
ANN such that it imposes a bottleneck in the network which 
enable a compressed knowledge representation of the input 
data (Uzma et al., 2020). Autoencoder mainly consists of three 
parts: an encoder maps, input to the code layer, and the 
decoder part that reconstructs the original input from the 
compressed data. In the model, the reconstruction loss 
measures the difference between the input and output data. If 
the input features are independent to each other, the encoding 
and decoding would be challenging. However, if some sort of  
correlation between the data exists, the encoding and 
decoding would be convenient. Autoencoder is an 
unsupervised deep neural network. The proposed solution 
use an autoencoder for the dimension reduction and feature 
selection. Classification of proteins is an important task for 
identifying the structures/functions of the unknown protein 
sequences. The accurate representation of amino acid residues 
during the extraction of features is one of the main problems 
related to the classification of proteins. In the proposed work, 
the selected dataset is preprocessed prior to applying the 
training and testing phase. Each protein sequence is 
represented by a feature vector (Fv). The data has many 
redundant and irrelevant features providing no information 
about the protein sequences. This influences performance and 
runtime of the classification algorithms. Therefore, the 
proposed solution aims to remove features that do not 
contribute towards the representation of protein sequences. 
The proposed work first alters the original feature 
representation. Next, various feature selection methods are 
used to select the most appropriate subset of features. 
Therefore the present work is based on two phase feature 
selection technique, including: autoencoder-based feature 
extraction and an ensemble of three feature selection methods 
for relevant feature selection. 
 

Input: Data, Features of best set (N), threshold (µ) 
Output: S, denotes the selected feature subset                               

1. FS1, FS2, FS3 are selected subset of features using three different feature selection methods 
2. Initialize S ← φ and a counter i ← 1 
3. while i ≤ S do 
4.      if ({𝑭𝑺𝟏[i]} == {𝑭𝑺𝟐[i]} == {𝑭𝑺𝟑[i]}) then 
5.      S ← S ∪ {𝑭𝑺𝟏[i]} 
6.      else 
7.      Calculate feature-class Mutual Information ({𝑭𝑺𝒏[i]}, C), ∀j ∈ [1, 2, 3] 
8.      end if 
9. Select those feature f that have maximum feature-class Mutual Information 
10.     if (S==NULL) then 
11.     S ← S ∪ {f} 
12.     else 
13.     Calculate feature-to-feature MI (f, fs), for f with all the selected feature fs ∈ S 
14.         if Calculated information is less than µ for all selected features in S then 

  S ← S ∪ {f} 

15.         end if 
16.      end if 
17.          i←i+1 
18.  end while loop 

Algorithm 1.  Ensemble feature selection using mutual information. 
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4.2. Feature Selection  
Feature selection is the method of selecting the relevant 
feature subset. These selected features are then used in 
learning model construction. The aim of feature selection is to 
remove redundant or irrelevant features from the data. There 
are several reasons of using feature selection techniques, like 
generalization of models (James et al., 2013), reduce training 
times, reduce computational resources, and 
reducing overfitting (Bermingham et al., 2015), to name a few. 
This work utilizes three feature selection techniques. Details 
of these are listed in the following.  
 
4.2.1. Generic Univariate Select 
 Univariate feature selection is a filter-based method that 
analyzes each feature independently to determine the 
relationship of the feature with the target variable. Based on 
univariate statistical tests, univariate feature selection 
technique selects the best feature subset. According to certain 
criteria it ranks each feature. Generic univariate select is 
a sklearn feature selection tool that work on scoring function 
and allow to select features from a dataset. It supports 
selecting features in one of a few various configurations; k for 
selecting a specific number of features and percentile for 
select a percentage of the total number of features. 
 
4.2.2. Pearson Correlation  
Pearson correlation is a commonly used measure in machine 
learning. It is a filter method for feature selection and used for 
numerical input and output. It is a popular method of 
determining the relationship between variables of interest 
because it is based on the notion of covariance. It provides 
information regarding magnitude of the relationship, or 
correlation and direction of the association. It evaluates the 
statistical relationship between two data variables. Pearson 
correlation value ranges between -1 and 1. Computation of 
Pearson correlation coefficient is shown in Eq. (1). 

  𝑟 =
∑  ೙

೔సభ (ೣ೔షഥೣ)(೤೔ష೤ഥ)

ට∑  ೙
೔సభ (௫೔ష௫̅)మା∑  ೙

೔సభ (௬೔ష௬ത)మ
                           (1) 

Where, r denotes the correlation coefficient, xi denotes the 
values of the sample x-variable, 𝑥̅ represent the x-variable 
mean, yi denotes the values of the sample x-variable, and 𝑦ത 
represent the y-variable mean.  
A value of 1 or closer to it indicate a positive correlation 
between two variables. It shows that there is a direct relation 
between two variables. A value of -1 or closer indicate 
a negative correlation between two variables. It shows that 
there is an inverse relation between two variables. A value of 
zero (or near to it) indicate no correlation between two 
variables. 
 
4.2.3. Recursive Feature Elimination 
Recursive Feature Elimination (RFE) is a commonly used 
feature selection algorithm. It is helpful for selecting those 
features in a dataset that are more important in predicting the 
target variable. RFE is a wrapper feature selection algorithm 
but internally it also uses filter-based feature selection. 
Different machine learning algorithms are used in the core of 

the method and are wrapped by REF for features selecting. 
RFE searches for a subset of features, starting with all features 
in the training dataset, and manages to remove features until 
the desired number is retained. 
 
4.2.4. Aggregation Function 
The feature subsets generated by the ensemble methods are 
combined using the aggregation function. The proposed 
solution combines the feature subset through MI based 
aggregation function called Ensemble Feature Selection using 
Mutual Information (EFS-MI) (Hoque et al., 2018). The EFS-MI 
method use greedy search approach for combing the subsets 
of features that are selected by different feature selection 
methods. If all feature selectors choose a common feature, 
then that is put into the optimal subset without using greedy 
search method, otherwise the EFS-MI computes the feature-
to-feature mutual information and feature-class mutual 
information and selects a feature that has minimum feature-
to-feature MI and maximum feature-class MI. The biasness 
produced by each feature-selection method is removed by this 
method. Feature-to-feature MI removes the redundancy 
among the selected features and feature–class MI selects 
relevant features. Overall working of the EFS-MI is listed in 
Algorithm 1. 
 
4.3. Classification Model 
Classification is an important part of machine learning. 
Classification model aims to get some decision from the input 
data given for training. It is a supervised technique that use 
the labeled training dataset to identify the class of the new 
observation. Once the model is trained on the train data, it 
then predicts the target class. The present work uses following 
three classifiers. 
 
4.3.1. Multilayer perceptron 
A multilayer perceptron (MLP) is a supervised classification 
method based on artificial neural network. It is created using 
more than one perceptron (neuron). Major part of MLP is an 
input layer, an output layer and one or more hidden layers. 
Input layer receive the data, output layer makes prediction 
about the input data and hidden layers performs 
computation. Any continuous function can approximate with 
MLP of one hidden layer. MLP is feedforward network used 
to forward pass and backward pass the information. In 
forward pass, the data initially pass through the input layer 
and then pass through the hidden layers and finally pass-
through output layer. The result of the output layer is 
compared with the ground truth. Backpropagation is used in 
the backward pass. In backpropagation, the error function 
value is computed with respect to weights of MLP and is 
passed backward to the network. The parameters are adjusted 
to minimize the error. MLP continues the backpropagation 
process until the model converges. 
 
4.3.2. Random Forest (RF) 
Random forest is a supervised classification method. As the 
name indicate, it creates a group of decision trees, mostly 
trained with the bagging method. The common concept of the 
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bagging method is that it randomly creates decision trees and 
combines them together to improve the whole result (Mao et 
al., 2012). Random forest can be used for both regression and 
classification problems. In classification, instead of searching 
for the most important feature random forest search the 
random subset of features. It generates the diversity in RF, as 
a result the model predicts better. Therefore, in RF, only the 
random subset of features is accounted for by the node 
sharing algorithm. One can even create a tree more random 
by using a random threshold for each function rather than 
finding the best threshold (as normal decision trees does). 
 
4.3.3. Decision Tree (DT)  
Decision tree is a supervised learning method in machine 
learning. It is mostly used for classification problems but also 
utilized in regression tasks. As the name indicate, it creates a 
tree, that start with root node, which grows on further internal 
nodes and ends with leaf nodes. Root node has one incoming 
edge and zero or more outgoing edges, internal nodes have 
one or more incoming edges and two or more outgoing edges, 
Leaf nodes have one or more incoming edge and zero 
outgoing edges. Root node and internal nodes are called 
decision nodes because these nodes are used to make any 
decision whereas leaf nodes represent those decisions. A 
decision tree basically asks a question, it further split the tree 
into subtrees based on the answer to the question, which is 
either yes or no (Wu et al., 2008).  
 
Amino acids residues form a huge dimensional data. The 
large feature vector contains redundant, unimportant, and 
missing values. There is some work published in the past to 
address the challenge. For example, Kumar at al. (2020) design 
a framework based on the combination of CNN and BRNN for 
the extraction of local and long-term interconnection between 
amino acids. Li et al. (2016) use the CNN to extract the local 
context and the Bidirectional Gated Recurrent Unit (BGRU) to 
extract the global context. Guo et al. (2018) use the 2-D 
convolutional neural network (2C) for local amino acid 
interaction. They use Bidirectional Recurring Neural 
Networks (BRNNs) to manage the global interaction between 
amino acid residues. These frameworks are complex models 
based on the combination of deep neural network. 
Furthermore, it is necessary to design a simple model that 
addresses the challenges of predicating the secondary 
structure of protein in an efficient manner. Therefore, the 
current solution is designed on the basis of unsupervised deep 
learning with feature selection methods to extract the set of 
meaningful features. The proposed work is a novel deep 
learning method referred to as Protein Encoder. It uses the 
unsupervised deep learning method (autoencoder) with 
feature selection techniques for reducing the dimension of 
amino acid residues and assist in selecting relevant features. 
The auto encoder has the capability of learning the non-linear 
relationship between features. It finds a good representation 
of input data in low dimension by focusing on significant 
features and ignoring redundant and noisy data. The features 
are extracted by converting the high-dimensional amino acid 
residues to small-dimensional. Additionally, to select the most 

relevant features that play an important role in classifying 
proteins into different groups, three feature selection methods 
are combined. The subset of features generated by different 
selection methods is aggregated using the aggregation 
function. An ensemble feature selection method is used, as 
each feature selection method uses different criteria to select 
the features. Therefore, it is inappropriate to use a single 
method for selecting features. As a result, the proposed 
solution aggregates three feature selection method, i.e., if one 
method ignores the important feature the other one selects it. 
The generated feature subset contains important information 
for predicating protein structures. As a result, data based on 
the selected subset of features is provided to the classifiers to 
group the protein structure in order to analyze the protein 
functions. 
 
5. Experiments and Results 
This section presents the experiments preformed to evaluate 
the proposed framework. Five benchmark protein datasets are 
used for this. The proposed solution is compared with three 
closely related state-of-the-art methods, i.e., Yanbu Guo et al. 
(2018), Li et al. (2016), and Kumar et al. (2020). Two types of 
experiments are performed for evaluating the framework: (a) 
evaluation of the TopN selected features using different 
classifiers and (b) evaluation of the extracted features using 
multiple classifiers. For experiment: (a) 10 experiments are 
performed for each of the TopN (i.e., by setting TopN to 5, 10, 
and 15 respectively) subset data with each classifier, and (b) 
10 experiments are performed for the extracted data with each 
classifier. 

5.1. Evaluation Metrics 
Performance of the proposed solution and three competing 
methods is evaluated using six metrics, namely, SOV (1994), 
precision, recall, f1-score, Q3 for 3-class PSSP, and Q8 for 8-
class PSSP. 

5.1.1. Segment Overlap Score 
The SOV is a commonly used metric in the domain of 
bioinformatics. It is used to compare two sequences of letters 
in which a continuous segment is important. The advantage 
of SOV is that it can consider the size of the continuous 
overlapping segments and provide additional tolerance for 
longer continuous overlapping segments, rather than just 
assessing the percentage of individual positions that overlap, 
as Q3 does (Liu et al., 2018). The computation of SOV score is 
shown in Eq. (2). 

𝑆𝑂𝑉 =  
1

𝑁
× ෍ ෍

𝑚𝑖𝑛𝑜𝑣 ൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯ + 𝛿(𝑠ଵ
௜ , 𝑠ଶ

௜ )

𝑚𝑎𝑥𝑜𝑣(𝑠ଵ
௜ , 𝑠ଶ

௜ )
ௌ(௜)௜

× ห𝑠ଵ
௜ ห × 100  (2) 

Where, N is the number of amino acid residues in a protein. In 
the case of 3-class PSSP, i is the element of {H, E, C} and in 8-
class PSSP, i is the element of {B, E, L, G, H, I, S, T}, 𝑆ଵ

௜ denotes 
the actual protein secondary structure and 𝑆ଶ

௜  denotes the 
predicted protein secondary structure. The pair  ൫𝑠ଵ

௜ , 𝑠ଶ
௜ ൯ 

denotes the overlapping between actual protein secondary 
structure and predicted protein secondary structure, 
𝑚𝑖𝑛𝑜𝑣 ൫𝑠ଵ

௜ , 𝑠ଶ
௜ ൯ shows the overlapping length of two segment 
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and 𝑚𝑎𝑥𝑜𝑣(𝑠ଵ
௜ , 𝑠ଶ

௜ ) is total extent of segments 
൫ 𝑠ଵ

௜  𝑎𝑛𝑑  𝑠ଶ
௜ ൯, 𝑚𝑎𝑥𝑜𝑣(𝑠ଵ

௜ , 𝑠ଶ
௜ ) is calculated using Eq. (3) and 

𝛿(𝑠ଵ
௜ , 𝑠ଶ

௜ ) is computed through Eq. (4). 

𝑚𝑎𝑥𝑜𝑣൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯ =  ቀ|𝑠ଵ
௜ ቚ, ห𝑠ଶ

௜ ห − 𝑚𝑖𝑛𝑜𝑣൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯ቁ          (3) 

𝛿൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯ = min ቆ𝑚𝑎𝑥𝑜𝑣൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯

− 𝑚𝑖𝑛𝑜𝑣൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯, 𝑚𝑖𝑛𝑜𝑣൫𝑠ଵ
௜ , 𝑠ଶ

௜ ൯, ቞
|𝑠ଵ

௜ |

2
቟ , ቞

|𝑠ଶ
௜ |

2
቟  ቇ (4) 

5.1.2. Precision 
The ratio between the total correctly predicted positive 
observations to all positive predictions is known as precision. 
It is also known as Positive Predictive Value (PPV). The 
precision is defined in Eq. (5) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇௉

𝑇௉ + 𝐹௉  
                          (5) 

Where, True positive (Tp) show that predicted positive value 
is actually a positive value and False positive (𝐹௉) present that 
the negative value is incorrectly predicted is positive. 
5.1.3. Recall 
The ratio between the correct positive predictions to all 
predicted observations of the definite class is known as recall. 
The computation of recall is shown in Eq. (6). 

      Recall =   
T୔

T୔ + F୒ 
                          (6) 

Where, F୒ is a false negative value, means that the positive 
value is incorrectly predicted is negative.  

5.1.4. F1 Score 
The harmonic mean of precision and recall is known as F1 
score. The F1 score is also called Dice Similarity Coefficient 
(DSC). Its highest possible value is 1, showing ideal recall and 
precision and if the value of either the recall or the precision is 
zero then F1 score is zero. The computation of F1 score is 
shown in Eq. (7). 

    F1 = 2 X  
precision . recall

precision + recall
                          (7) 

5.1.5. Q3 and Q8 accuracies  
Several different measurements can be used to gauge the PSSP 
accuracy, among them Q3, Q8 are the most commonly 
utilized. Q3 accuracy is defined as the percentage of residue 
whose secondary structure is predicted to be correct (Ma et al., 
2018). The computation of Q3 accuracy is shown in Eq. (8). 

  𝑄3 =  
ேಹାேಹାே೎ 

ே
× 100                          (8) 

Where, NH denotes the correctly predicted helix, NE denotes 
the correctly predicted strand and NC denotes the correctly 

Table 3 
 Performance of the Proposed Solution with Random Forest Classifier on 8 class data and 3 class data 

Data Features Datasets 
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Five feature data 
(F5) 

CB6133 0.7993 0.8012 0.8002 0.7881 0.7776 
Cb6133_filtered 0.7945 0.7958 0.7951 0.7553 0.7323 
CB513 0.7993 0.8064 0.8028 0.7776 0.7465 
CAPS10 0.7236 0.7308 0.7272 0.7107 0.7038 
CAPS11 0.7567 0.7566 0.7566 0.7427 0.7268 

Ten feature data 
(F10) 

CB6133 0.8293 0.8313 0.8303 0.8261 0.8116 
Cb6133_filtered 0.8245 0.8265 0.8255 0.8053 0.7873 
CB513 0.8113 0.8163 0.8138 0.8157 0.8012 
CAPS10 0.7304 0.7301 0.7302 0.7405 0.7234 
CAPS11 0.7536 0.7668 0.7601 0.7628 0.7366 

Fifteen feature 
data (F15) 

CB6133 0.8333 0.8283 0.8308 0.8176 0.8012 
Cb6133_filtered 0.8212 0.8261 0.8236 0.8074 0.7805 
CB513 0.8003 0.7966 0.7984 0.7801 0.7643 
CAPS10 0.7464 0.7511 0.7487 0.7295 0.7106 
CAPS11 0.7737 0.7689 0.7713 0.7701 0.7568 

Th
re

e 
cl

as
s 

da
ta

 

Five feature data 
(F5) 

CB6133 0.7321 0.8102 0.7692 0.8256 0.8052 
Cb6133_filtered 0.7544 0.7832 0.7685 0.8265 0.8094 
CB513 0.7873 0.8407 0.8131 0.8211 0.8016 
CAPS10 0.7612 0.7812 0.7711 0.7506 0.7346 
CAPS11 0.7734 0.7663 0.7698 0.7709 0.7507 

Ten feature data 
(F10) 

CB6133 0.8311 0.8133 0.8221 0.8416 0.8222 
Cb6133_filtered 0.8523 0.8654 0.8588 0.8367 0.8197 
CB513 0.8312 0.8003 0.8155 0.8317 0.8112 
CAPS10 0.7413 0.7132 0.7270 0.7519 0.7443 
CAPS11 0.7633 0.7812 0.7721 0.7907 0.7718 

Fifteen feature 
data (F15) 

CB6133 0.8631 0.8861 0.8744 0.8517 0.8323 
Cb6133_filtered 0.8112 0.8122 0.8117 0.8266 0.8094 
CB513 0.8334 0.7696 0.8002 0.8212 0.8147 
CAPS10 0.7645 0.7598 0.7621 0.7715 0.7471 
CAPS11 0.7374 0.7819 0.7590 0.8045 0.8021 
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predicted coil, and N denotes the total number of amino acid 
residues in a protein. To compute the overall model 
performance, the average Q3 accuracy is calculated (Eq. (9)) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄3 =  
∑ 𝑄3(𝑋௜)௡

௜ୀଵ

𝑛
                         (9) 

Where, n denotes the number of protein sequences in test 
dataset, Xi represents a protein sequence, and Q3(Xi) represent 
the Q3 accuracy of Xi. 

Similarly, in the case of Q8 accuracy computation is 
performed using Eq. (10).  

𝑄8 =  
𝑁ா + 𝑁ே + 𝑁ௌ + 𝑁் + 𝑁஻ + 𝑁௅ + 𝑁ீ + 𝑁ூ 

𝑁
× 100      (10) 

The  𝑗 ∈  {𝑁ா + 𝑁ு + 𝑁ௌ + 𝑁் + 𝑁୆ + 𝑁௅ + 𝑁ீ + 𝑁୍} represent 
the correctly predicted residues in 𝑗, the  {𝐸, 𝐻, 𝑆, 𝑇, 𝐵, 𝐿, 𝐼, 𝐺} 
show the 8 class protein structure. However the N denotes the 
total number of amino acid residues in a protein. Where, NL 
denotes the correctly predicted other residues, NB denotes the 
correctly predicted β-bridge, and NE denotes the correctly 
predicted β-sheet, N denotes the total number of amino acid 
residues in a protein. 

To calculate the overall model performance, average Q8 
accuracy is obtained using Eq. (11) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑄8 =  
∑ ொ଼(௑೔)೙

೔సభ

௡
                         (11)                                                            

Where, n denotes the number of protein sequences in test 
dataset, Xi represents a protein sequence, and Q8(Xi) represent 
the Q8 accuracy of Xi. 

5.2. Competing Methods 
The proposed solution is compared with three closely related 
state-of-the-art methods. These include: Guo et al. (2018), Li et 
al. (2016), and Kummar et al. (2020).  

Guo et al. (2018) use 2DCNN with bidirectional recurrent 
neural network or bidirectional Long Short Term Memory 
(BLSTM). This 2C-BRNNs framework contain the four 
models, 2DCov with bidirectional gated recurrent units 
(BGRUs) and BLSTM, 2DCNN with BGRUs and BLSTM. They 
use 2D-CNN for extraction of the local interactions between 
amino acid residues. For long range interactions between 
amino acid residues, they use BGRUs or bidirectional LSTM. 
In their work 2DCov models perform the convolution 
operation while 2DCNN performs both convolution and 
pooling tasks. They extract meaningful features form the 
protein dataset. 

Li et al. (2016) use cascaded convolutional neural network and 
recurrent neural network for the PSSP. Their model consists 
of four parts, feature embedding layer, multiscale CNN layers 
with different kernel size, three layers of packed bidirectional 
gated recurrent unit and at the end two fully connected layers 
are used. Two types of features are given as the input to the 
model that are sequence features and profile features. The 

Table 4 
Performance of the Proposed Solution with Decision Tree Classifier on 8 class  and 3 class data 

Data Features Datasets 

Pr
ec

is
io

n 

Re
ca

ll 

F1
-s

co
re

 

Q
8/

3 
Ac

cu
ra

cy
 

SO
V8

/3
 

Ei
gh

t c
la

ss
 d

at
a 

Five feature data 
(F5) 

CB6133 0.6887 0.7986 0.7396 0.8008 0.7765 
Cb6133_filtered 0.5906 0.6899 0.6364 0.7952 0.7635 
CB513 0.7889 0.7571 0.7727 0.7811 0.7507 
CAPS10 0.5065 0.6005 0.5495 0.7004 0.6708 
CAPS11 0.6888 0.7034 0.696 0.6985 0.6798 

Ten feature data 
(F10) 

CB6133 0.8097 0.8143 0.812 0.8268 0.7888 
Cb6133_filtered 0.8101 0.8009 0.8055 0.8056 0.7755 
CB513 0.7788 0.7951 0.7869 0.7951 0.7604 
CAPS10 0.7069 0.7117 0.7093 0.7411 0.7266 
CAPS11 0.7237 0.7007 0.712 0.7445 0.7223 

Fifteen feature 
data (F15) 

CB6133 0.7957 0.8265 0.8108 0.8242 0.7845 
Cb6133_filtered 0.7007 0.8139 0.7531 0.8033 0.7723 
CB513 0.6876 0.7843 0.7328 0.7901 0.7506 
CAPS10 0.7167 0.7077 0.7122 0.7384 0.6602 
CAPS11 0.6875 0.6978 0.6926 0.7398 0.7187 

Th
re

e 
cl

as
s 

da
ta

 

Five feature data 
(F5) 

CB6133 0.7777 0.7911 0.7843 0.8663 0.8455 
Cb6133_filtered 0.7676 0.7453 0.7563 0.8611 0.8334 
CB513 0.7986 0.7881 0.7933 0.8704 0.8487 
CAPS10 0.7045 0.7213 0.7128 0.7254 0.7013 
CAPS11 0.7104 0.7321 0.7211 0.7344 0.7154 

Ten feature data 
(F10) 

CB6133 0.8315 0.8084 0.8198 0.8903 0.8739 
Cb6133_filtered 0.8011 0.778 0.7894 0.8896 0.8654 
CB513 0.7828 0.7597 0.7711 0.9091 0.8166 
CAPS10 0.7619 0.7388 0.7502 0.7819 0.7445 
CAPS11 0.7312 0.7081 0.7195 0.7655 0.7501 

Fifteen feature 
data (F15) 

CB6133 0.8225 0.8365 0.8294 0.8887 0.8656 
Cb6133_filtered 0.7955 0.8334 0.8140 0.8796 0.8507 
CB513 0.8531 0.8243 0.8384 0.8998 0.8376 
CAPS10 0.7935 0.7771 0.7852 0.7765 0.7555 
CAPS11 0.7786 0.7801 0.7793 0.7575 0.7341 
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function of the embedding layer is to transform the input 
feature vector into the new vector space. Multiscale CNN with 
different size of kernels take profile features and new 
embedded features as the input and extract the multiscale 
local contextual features. This data is passed to the packed 
bidirectional gated recurrent unit that gives the global 
contextual features.  

Kummar et al. (2020) utilize CNN and bidirectional RNN for 
PSSP. Their model consist of four modules: creation of hybrid 
profile features, the layer for the extraction of local interaction 
features, the layer for the extraction of long-range interaction 
features, and the output layer for classification. Position-
Specific Scoring Matrices (PSSM) and Hidden Markova Model 
(HMM) are used for the extraction of discriminating features. 
In their model 2DCov and 2D max pooling is used for the local 
interaction between amino acid residues and bidirectional 
RNN with LSTM and GRUs are used for long range 
interaction between amino acid residues. In literature, most of 
the methods use amino acid sequence and position specific-
score matrix or profile feature. Using the position-specific 
scoring matrix to predict the secondary structure of the 
protein gives better results compared to just utilizing the 
amino acid sequence. However, it is a computationally 
expensive task and it also increases the data dimensions 

                                                 
1 https://keras.io 
2 https://numpy.org/ 

(Beckstette et al., 2016). As a result, the computationally power 
and time increases. The purpose of the proposed method is to 
find more relevant features and achieve better results by using 
these features. To evaluate the proposed models, we compare 
the results with existing methods on four public datasets: 
CB6133, CB513, CASP10 and CASP11. The comparison is 
based on the most recent models of PSSP. In this comparison, 
all the existing methods use standard sequence feature and 
some other features/information in the form of profile 
feature/position specific-score matrix. The proposed method 
uses some (most relevant) standard sequence feature. Still our 
model achieves better Q8 accuracy.  

5.3. Experimental attributes and implementation  

All experiments are performed on a server with two AMD 
Opteron 6234 processors, having 128 GB RAM. For the 
proposed model’s implementation, Keras1 library is used with 
numpy2 and sklearn3 libraries to build and train the proposed 
models. In the first step, autoencoder is used with one input 
layer, one hidden layer in the encoder part, one code layer of 
17 dimensions, one hidden layer in decoder part and one 
output layer. Adadelta optimizer is used to train all layers of 
autoencoder and batch size is set to 64. ReLU activation 

3 https://scikit-learn.org 

Table 5 
Performance of the Proposed Solution with MLP Classifier on 8 class and 3 class data 

Data Features Datasets 

Pr
ec

is
io

n 

Re
ca

ll 

F1
-s

co
re

 

Q
8/

3 
Ac

cu
ra

cy
 

SO
V8

/3
 

Ei
gh

t c
la

ss
 d

at
a 

Five feature data 
(F5) 

CB6133 0.7123 0.7111 0.7117 0.7511 0.7418 
Cb6133_filtered 0.7066 0.7034 0.705 0.7196 0.7038 
CB513 0.5243 0.5201 0.5222 0.5414 0.5076 
CAPS10 0.3743 0.3739 0.3741 0.3956 0.3702 
CAPS11 0.3908 0.3866 0.3887 0.3963 0.3667 

Ten feature data 
(F10) 

CB6133 0.6898 0.6911 0.6904 0.7321 0.7123 
Cb6133_filtered 0.7023 0.7011 0.7017 0.7256 0.6978 
CB513 0.5423 0.5431 0.5427 0.5512 0.5134 
CAPS10 0.4384 0.4298 0.4341 0.4143 0.3914 
CAPS11 0.4076 0.3967 0.4021 0.4159 0.4011 

Fifteen feature 
data (F15) 

CB6133 0.7345 0.7321 0.7333 0.7455 0.7234 
Cb6133_filtered 0.7089 0.6998 0.7043 0.7186 0.7011 
CB513 0.5524 0.5511 0.5517 0.5666 0.5531 
CAPS10 0.4789 0.4689 0.4738 0.4798 0.4567 
CAPS11 0.4321 0.4412 0.4366 0.4555 0.4453 

Th
re

e 
cl

as
s 

da
ta

 

Five feature data 
(F5) 

CB6133 0.7231 0.7342 0.7286 0.7555 0.7321 
Cb6133_filtered 0.7667 0.7342 0.7501 0.7298 0.7101 
CB513 0.5432 0.5533 0.5482 0.5531 0.5317 
CAPS10 0.5644 0.5464 0.5553 0.4032 0.3733 
CAPS11 0.4406 0.4021 0.4205 0.4464 0.4313 

Ten feature data 
(F10) 

CB6133 0.6987 0.6875 0.6931 0.7543 0.7303 
Cb6133_filtered 0.7237 0.7125 0.7181 0.7453 0.7234 
CB513 0.5654 0.5542 0.5597 0.5687 0.5347 
CAPS10 0.4848 0.4736 0.4791 0.4587 0.4421 
CAPS11 0.4761 0.4649 0.4704 0.4321 0.4123 

Fifteen feature 
data (F15) 

CB6133 0.7495 0.7291 0.7392 0.7653 0.7523 
Cb6133_filtered 0.7878 0.7398 0.7630 0.7234 0.7112 
CB513 0.5732 0.5791 0.5761 0.5789 0.5436 
CAPS10 0.4899 0.4859 0.4879 0.5023 0.4867 
CAPS11 0.4287 0.4412 0.4349 0.4634 0.4432 
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function is used in all layers of the encoder and softmax 
activation function is used in decoder layers.  

 In the second step, three feature selection techniques, i.e., 
generic univariate select, REF, and Pearson correlation are 
used. For generic univariate, select score function lambda and 
mode percentile are utilized.  For REF the step size 1, verbose 
value 0 estimator and importance getter auto is used.For 
Pearson’s correlation f_regression as a score function is used. 
Other parameter values are n_samplesint is 100, n_featuresint 
is 100, n_informativeint 10, n_targetsint 1, biasfloat  value 0.0, 
noisefloat is 0.0, and shufflebool true. In the third step 
different classifier are utilized. For MLP, three hidden layers 
of size 100, 75, and 50 are used. Batch size is 64, optimizer is 
adam, initial learning rate is 0.001, and 200 epochs are used. 
To avoid over training and over fitting, dropout and early 
stopping are opted. The hyper parameters of random forest 
classifier are 100 n_estimators, max_depth is set to 
none, minimum samples split is 2, and maximum features are 
set to auto. For decision tree criterion is gini, splitter is best,    
min_samples_split  value is 2, min_samples_leaf value is 1, 
and min_weight_fraction_leaf value is 0.0. 

5.4. Evaluation of the Different Selected Features Using 
Classifiers 

The proposed work uses feature extraction and feature 
selection technique. This experiment has three steps: (1) 
feature extraction using autoencoder, (2) feature selection 
using three feature selection techniques and then applying the 
MI-based aggregation function to take the aggregate of the 
subset of selected features, and (3) applying classifiers and 
computing evaluation metrics. As a first step, features are 
extracted by the autoencoder. As autoencoder is an 
unsupervised learning, therefore data of 21-dimensional 
feature map consisting of 21 features of the amino acid 
residues are passed (without the labels) as the input. 

Before data passing to the autoencoder, it is divided into the 
training set (70%) and testing set (30%) randomly. The 
sequence amino acid residue is passed as input to the 

autoencoder. After input layer, the data is passed to the 
hidden layer and then goes to the code layer. The data here is 
imbalance, therefore in step three, before applying classifier 
up-sampling is done after the data split. 

5.4.1. TopN best features selection 
In the second step, three feature selection methods, i.e., 
generic univariate select, REF, and Pearson correlation are 
applied on the output data of code layer of the autoencoder. 
From these feature selection methods best (i.e., TopN) 15, 10 
and 5 features are selected, respectively. Afterwards, the 
aggregate of subsets features using MI-based aggregation 
function is computed.  

5.4.2. Classification with selected feature subsets   

In step three, the classifiers are applied on the 15 features data, 
10 features data, and 5 features data, separately. For each data 
and classifier 10 experiments are performed, using all the five 
benchmark datasets using three classifiers, i.e., RF, DT, and 
MLP. As the classification algorithm of each classifier are 
different therefore, three classifiers are used in the present 
work. The performance of the proposed framework is 
evaluated on five datasets using Q3 accuracy, Q8 accuracy, 
and SOV score, precision, and recall. The SOV3 denotes the 
sample overlap of 3 class data, and SOV8 denotes the sample 
overlap of 8 class data. The performance of the proposed work 
with RF plugged-in as a classifier is summarized in Table 3.  
The performance of RF on 5 features and eight class data (C8-
F5) shows that the average precision, recall, F1-score, Q8 
accuracy, and SOV8 are   77%,  78%, 78%, 75%, and 73%, 
respectively. However, the average performance of RF on 
eight class data with 10 features (C8-F10) gives 78% precision, 
78% recall, 79% F1-score, 79% Q8 accuracy, and 77% SOV8.  
Using 15 features and eight class data (C8-F15), the 
performance of the proposed work on RF classifier is 79% 
precision, 79% recall, 79% Q8 accuracy, and 76% SOV8. So the 
experiment shows that using RF on Q8 class data with feature 
F5, F10, and F15, the proposed work perform better for 15 
features data. However, for the three-class data, the 
performance of the proposed work on 5 features (C3-F5) on 

    
   Fig. 3. Comparison of the first and second set of experiments.      
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RF classifier gives 76% precision, 79% recall, 77% F1-score, 
79% Q3 accuracy, and 78% SOV3. When using 3 class data 
with 10 features (C3-F10), the performance of the proposed 
work on RF classifier gives 80% precision, 79% recall, 79% F1-
score, 81% Q3 accuracy, and 79% SOV3.  The RF classifier 
gives 80% precision, 80% recall, 80% F1-score, 81% Q3 
accuracy, and 80% SOV3 on three-class data with 15 features 
(C3-F15). Therefore, the first experiment was when using an 
RF classifier on eight and three-class data with various 
features set. It’s concluded that the proposed work perform 
better on eight class data with 10 feature set (C8-F10), and 
three class data with 15 feature set (C3-F15). Table 4 presents 
the second set of experiments using a decision tree is a 
classifier on eight and three class data for various feature sets. 
The performance of the proposed work on eight class data 
with 5 feature set (C8-F5) gives 65% precision, 70% recall, 67% 
F1-score, 75% Q3 accuracy, and 72% SOV8.  When using the 
performance of the proposed work on decision tree classifier 
gives 76% precision, 76% recall, 76% F1-score, and 78% Q8 
accuracy, and 75% SOV8. However, for the 15 feature set (C8-
F15), the performance of the proposed method on the decision 
tree gives 71% precision, 76% recall, 74% F1-score, 77% Q8 
accuracy, and 73% SOV8. Next, the setting feature set is 5 with 
three class data (C3-F5). The performance of the proposed 
work on the decision tree gives 75% precision, 75% recall, 75% 

F1-score, 81% Q3 accuracy, and 78% SOV3. When using the 10 
is the feature set for the three-class data, the classifier gives   
78% precision, 75% recall, 77% F1-score, 84% Q3 accuracy, and 
81% SOV3. The setting of the feature set is 15 for the three-
class data (C3-F15). The proposed work gives 80% precision, 
81 recalls, 80% F1-score, 84% Q3 accuracy, and 80% SOV3. The 
second experiment set shows that the proposed work 
performs better on the decision tree when using eight class 
data with 10 features set (C8-F10) and three class data (C3-F3) 
with 15 features set. The comparisons of the first set of 
experiments with the second set show that the proposed work 
performs better on RF and decision tree classifier on (C8-F10) 
and (C3-F15), respectively, as shown in Fig. 3. Table 5 lists the 
results of the proposed solution with MLP plugged in as a 
classifier on eight class and three class data for various feature 
sets. The average performance of the proposed method on the  
MLP classifier on the eight class datasets with selected 5 
features (C8-F5) is 54% precision, 53% recall, 54%F1-score, 
56% Q8 accuracy, and 53%  SOV3.  When using 10 features for 
eight class data (C8-F10), the average performance of the 
proposed method with MLP classifier on five datasets are 55% 
precision, 55% recall, 55% F1-score, 56% Q8 accuracy, and 54% 
SOV8. But for C8-F15 the MLP classifier shows 58% precision, 
57% recall, 57% F1-score, 59% Q8 accuracy, and 57% SOV8. So 
by using eight class data with various features set, the 

   
   Fig. 4. Comparison of the first and third set of experiments.   

    

Fig. 5. Classifier performance on Q8-F10, Q3-F10, Q8-15, and Q3-F15. 
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proposed work performs better for Q8-F15 on MLP classifier. 
However, when using three-class data with 5 features set, the 
MLP gives 60% precision, 59% recall, 60% F1-score, 57% Q3 
accuracy, and 55% SOV3. When selected 10 features set for 
three class data (C3-F10), the average performance of the 
proposed work is 58% precision, 57 % recall, 58% F1-score, 
59% Q3 accuracy, and 56% SOV3. However, for the C3-F15 the 
MLP classifier gives 60%, 59%, 60%, 60%, and 58% precision, 
recall, F1-score, Q3 accuracy, and SOV3, respectively on the 
proposed method. The experiment of the three-class data 
using 5, 10, and 15 features set presents that the proposed 
work's performance performs better for the C3-F15. The first 
and second set of experiments concludes that the proposed 
work performs better for the random forest classifier. Next, 
the comparisons is done between the first set of experiment 
and the third set of experiment is shown in Fig. 4. It is 
concluded from the comparisons of the experiments that the 
proposed work performs better on RF classifier for (C8-F10) 
and (C3-F15). The three types of experiments show that the 
proposed work performs better on eight class data with 10 
features set for the RF classifier. However, it perform better on 

RF classifier and decision tree classifier for the three class data 
with 15 feature set (C3-F15) as shown in Fig. 5. 

5.4.3. Evaluation of the Extracted Features Using Classifiers 

In this set of experiments, first, the autoencoder is used for 
feature extraction, and then the classification is performed for 
protein secondary structure prediction based on the extracted 
features. The autoencoder is unsupervised learning model, so 
the   21 features of the amino acid residues are passed (without 
the labels) as the input. Results obtained using this experiment 
on 8 class data are listed in Fig. 6.  Decision tree classifier 
achieves the best recall of 80%, 81%, 79% and 66% on CB6133, 
CB6133-filtered, CB513, CASP10 and CASP11 and f1-score of 
79%, 79%, 78%, 71% and 66% on CB6133, CB6133-filtered, 
CB513 and CASP11.Decision tree classifier achieves the best 
Q3 accuracy of 83%, 82% and 81% on CB6133, CB6133-filtered 
and CB513 dataset. The RF achieves the best Q3 accuracy of 
71% and 75% on CASP10 and CASP11 dataset. Decision tree 
classifier achieves the best Q8 accuracy of 80% and 78% on 
CB6133 and CB6133-filtered dataset and RF achieved the best 
Q8 accuracy of 77%, 70% and 72% on CB513, CASP10 and 

  
(a) 

 

(b) 

Fig. 6 Performance of the extracted features using different 

classifiers on 8 class data. (a) RF (b) DT (c) MLP. 
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CASP11 dataset. The best SOV3 score on CB6133 and CB6133-
filtered dataset is 81% and 80%, on CB513 and CASP10 dataset 
it is 80% and 73%. RF shows the best SOV3 score of 75% on 
CASP11 dataset. Decision tree classifier give the best SOV8 
score of 80% and 78% on CB6133 and CB6133-filtered datasets 
and RF give the best SOV8 score of 77%, 70%, and 72% on 
CB513, CASP10 and CASP11 datasets. Two types of 
experiments are conducted on the proposed work by using 
five benchmark datasets namely CB6133, CB6133-filtered, 
CB513, CASP10, and CASP11. These experiments are grouped 
based on the evaluation of different selected features using 
multiple classifiers. Both experiments are evaluated by six 
evaluation metrics. 

The first set of experiments used three phased method. These 
experiments showed that RF give best accuracy of 82%, 76% 
and 78% on CB513 (10F data), CASP10 (15F data) and CASP11 
(15F data). Whereas decision tree classifier achieved better 

accuracy of 84% on both CB6133 and CB6133-filtered (10F 
data) datasets. MLP classifier and 5 feature data showed low 
accuracy on all datasets. The second set of experiments used 
two stage methods, in these experiments decision tree 
classifier performed better than other classifiers. The average 
Q3 accuracy, SOV3, Q8 accuracy and SOV8 on five datasets 
are shown in Fig. 7. The average Q8 accuracy of Kummar et 
al. on all datasets is 73%.  The proposed framework gives an 
average Q3 accuracy, average Q8 accuracy, average SOV3 and 
average SOV8 of 85%, 81%, 78%, and 75%, respectively. 
Individually, on CB6133, CB6133-filtered, CB513, CASP10 and 
CASP11 datasets, its Q3 accuracy is 89%, 89%, 91%, 78%, and 
77% and its Q8 accuracy is 83%, 81%, 80%, 74%, and 74%.   The 
current method is compared with three state-of-the-art 
algorithms. Comparing the competing methods based on Q3 
accuracy, Q8 accuracy, SOV3 and SOV8 score, on two 
datasets, i.e., CB6133, CB6133-filter the proposed work has 
better Q3 accuracy, Q8 accuracy, SOV3 and SOV8 score. 

  

(a) 

 

(b) 

Fig. 7 Performance of the extracted features using different 

classifiers on 3 class data. (a) RF (b) DT (c) MLP. 

 

(C) 

Table 6 
Average Results on Five Datasets for the Four Competing Methods 

Methods Avg. Q3 Accuracy Avg. SOV3 Avg. Q8 Accuracy Avg. SOV8 
(Li et al., 2016) 0.8529 0.81 0.7388 0.7265 
(Guo et al., 2018) 0.7093 0.7047 0.6779 0.6821 
(Kumar et al., 2020) 0.8421 0.8136 0.7335 0.7427 
Protein encoder (Proposed) 0.8472 0.8101 0.7826 0.7547 
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For CB513 the proposed work obtained better Q3 accuracy, Q8 
accuracy, and SOV8 score. For CASP11 the proposed work 
attains better Q3 accuracy and Q8 accuracy. For CASP10 
dataset the proposed work preforms lower than the other 
competing methods. The proposed solution obtains better 
average Q8 accuracy and SOV8 score among all methods. 
However, its average Q3 and average SOV3 score is almost 
similar to the competing methods (see Table 6). On larger 
datasets, the proposed model performs better, this is because 
the proposed framework removes redundant and noisy data. 
Present work used the dimension reduction and feature 
selection techniques and selects the optimal feature set for the 
classification. Fig. 8 lists the comparison of the proposed 
approach with four state-of-the-art methods. The comparisons 
methods use datasets as follow, “CB6133 dataset is used to 
train and test the proposed deep learning framework. The 
CB513, CASP10, CASP11 datasets are only used for testing. 
CB6133 dataset contains 6133 protein primary sequences and 
is divided into groups of [0, 5600) training, [5600, 5877) testing 
and [5877, 6133) validation records for the proposed deep 
learning framework. Rest of the datasets are entirely used for 

the testing purpose”. In the proposed method, we use 
autoencoder in first step for feature extraction. When we pass 
data to autoencoder, the extracted feature of each dataset are 
different. Furthermore, we use the ensemble feature selection 
technique in the second step. When we apply feature selection 
technique on different datasets, they select different features 
from each dataset. This is the reason underlying not training 
our model on one dataset and testing on another. To overcome 
this issue, we split each dataset into test set (30%) and train set 
(70%) and apply the proposed method on each dataset 
separately. 

6. Discussion 
The protein plays vital role in our body. It is challenging to 
analyze the protein dataset, because it is large data containing 
noise and redundancy. For such a complex data, feature 
selection play an important role. The present work used a 
novel approach. The novelty in the proposed work is that it 
uses unsupervised autoencoder of feature extraction and 
dimension reduction, the proposed work also used ensemble 
of three feature selection techniques and used the aggregation 

 
(a) (b) 

 
(c) (d) 

Fig. 8. Comparison of the proposed approach with four state-of-the-art 
methods (a) CAPS10 data (b) CAPS11 data (c) CB513 data (d) CB6133 
data (e) Cb6133_filtered data. 

(e) 
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function to combine different features subset. The protein data 
in the form of matric are passed as an input to the 
autoencoder.  

The reduced extracted features take from the code layer of 
autoencoder and apply three different feature selection 
techniques on it.  The MI-based aggregation function are used 
for taking the aggregate of different features subset and find 
the TopN features. Once the TopN were selected, the three 
different classifier such as random forest, decision tree and 
MLP are used for the PSSP. Five benchmark datasets, i.e., 
CB6133, CB6133-filtered, CB513, CASP10, and CASP11 are 
used for the evaluation of present work. For Q8 accuracy the 
RF perform best for the CB6133-filtered, CB513 and CASP11 
dataset and decision tree classifier perform best on CB6133 
and CASP10 dataset. In second set of experiments decision 
tree classifier performs better on three class data shown in Fig. 
4. The current method is compared with three state-of-the-art 
algorithms. Comparing the computing method based on the 
Q3 accuracy, Q8 accuracy, SOV3 and SOV8 score. For two 
datasets, i.e., CB6133, CB6133-filter the proposed work 
obtained the better Q3 accuracy, Q8 accuracy, SOV3 and SOV8 
score. For CB513 the proposed work obtained the better Q3 
accuracy, Q8 accuracy and SOV8 score. For CASP11 the 
proposed work attains the better Q3 accuracy and Q8 
accuracy. For CASP10 dataset the proposed work preforms 
low then the other comparing methods. The proposed 
solution obtains the better average Q8 accuracy and SOV8 
score among all methods. However, its average Q3 and 
average SOV3 score is almost same as other competing 
methods. In large datasets proposed model perform better, 
the reason is that the proposed framework remove the 
redundant and noisy data. Present work used the dimension 
reduction and feature selection techniques and select the 
optimal feature set for the classification. Among all the 
comparison method the Li et al. (2016) perform well. It shows 
overall best Q3 accuracy, SOV3 and SOV8 score on CASP10 
and CASP11 dataset and achieve best Q8 accuracy on CASP10 
dataset. It performs better in the small datasets. Like the 
proposed work, Li et al. also used the dimension reduction 
and feature extraction technique in their model. They use 
convolution neural network with different kernel size and 
packed bidirectional gated recurrent unit for the extraction of 
local and global contextual features. 
 
Other than the novelty and strength of this work, there are a 
few limitations. The limitation of present work is that it works 
well on the large dataset because it uses dimension reduction 
techniques. However, if the data is already in low dimensions 
then it does not achieve optimum results. Another limitation 
is that it is a bit challenging to find the optimum feature 
subset. Hence, a series of experiments are performed here on 
different features subset to find the optimal feature subset. 

7. Conclusion 
This work presented an efficient model for protein secondary 
structure prediction from the sequences of amino acid residue. 
The proposed model used ensemble of three feature selection 

methods to avoid missing selection of important amino acid 
residues. For protein secondary structure prediction, the 
present work used the unsupervised feature extraction 
technique. For this purpose, autoencoder was used, it is an 
unsupervised deep learning model. The amino acid residues 
were given as an input to the autoencoder and feature 
selection techniques were applied on the output data of the 
autoencoder code layer. The subset data of different feature 
selection methods were aggregated by the mutual 
information-based aggregation function. The proposed model 
was evaluated on four benchmark datasets. For the evolution 
of the proposed work four standard and three domain specific 
evaluation metrics were used. Three classifiers were used for 
classification. The present work obtained Q8 accuracies of 
83%, 81%, 80%, 74% and 84% and Q3 accuracies of 89%, 89%, 
91%, 78% and 77% on CB6133, CB6133-filtered, CB513, 
CASP10, and CASP11 datasets, respectively.  The results of the 
conduced experiment showed that the presented model’s 
accuracy is higher than that of other existing methods and it 
demonstrates an average increase of 4.3% in Q8 accuracy and 
4.7%, 3.5% and 5.5% in Q8 accuracy on CB6133, CB6133-
filtered and CB513 datasets. Experiments also demonstrated 
that the random forest classifier obtained better results on 
standard evaluation metrics and decision tree classifier 
showed better results on domain specific evaluation metrics. 
Moreover, this work was compared with three existing 
methods and the comparison showed that the proposed 
framework performed better in majority of the cases. This 
work can be extended in multiple ways in the future. An 
extension can be to optimize the feature section through the 
utility of an evolutionary algorithm. Furthermore, the 
proposed framework can be used for different other problems, 
for example, it has a utility in solvent accessibility prediction. 
Unsupervised feature extraction approach was used in this 
work, another future direction can be to use supervised 
feature extraction methods. 
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