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Abstract

Object-centric processes (a.k.a. Artifact-centric processes) are implementations of a

paradigm where an instance of one process is not executed in isolation but interacts

with other instances of the same or other processes. Interactions take place through

bridging events where instances exchange data. Object-centric processes are recently

gaining popularity in academia and industry, because their nature is observed in many

application scenarios. This poses significant challenges in predictive analytics due to

the complex intricacy of the process instances that relate to each other via many-to-

many associations. Existing research is unable to directly exploit the benefits of these

interactions, thus limiting the prediction quality. This paper proposes an approach to

incorporate the information about the object interactions into the predictive models.

The approach is assessed on real-life object-centric process event data, using differ-

ent KPIs. The results are compared with a naı̈ve approach that overlooks the object

interactions, thus illustrating the benefits of their use on the prediction quality.

Keywords: Predictive Analytics, Object-centric Process, Gradient Boosting,

Artifact-centric Process, Process Mining

1. Introduction

Traditionally, processes are seen as being instantiated in cases that are constituted

by single flows that are executed in isolation. However, inter-organization processes
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are oftentimes more complex: usually, several instances of different processes are be-

ing executed at the same time and they may interact with each other. In fact, the situa-

tion is more similar to choreographies where one instance of a process P1 interacts and

synchronizes with several instances of a second process P2, and the other way around:

one instance of P2 might synchronize with multiple instances of P1. The situation can

be even more complex: instances of P2 may in turn interact with instances of some

P3, and so on. For instance, consider a retail shop in Padua (Italy): several customers

may order products manufactured in a factory in Brisbane (Australia). The factory as-

sociates many customer orders to a single manufacturer order to save money. Also, the

same customer orders can include products from different manufacturers in different

parts of the globe. Customer’s and manufacturer’s orders are managed via instances of

different processes: one instance of customer-order process can be associated to sev-

eral of manufacturer-order process, and the other way round: each manufacturer-order

process instance may be associated to many consumer-order ones.

The paradigm of object-centric processes (a.k.a. artifact-centric processes) is gain-

ing more and more momentum in the recent years to model inter-organizational pro-

cesses more naturally [1, 2, 3]. Any process execution materializes itself as a set of

instances of the same/different processes that represent the life cycles of different ob-

jects (a.k.a. artifacts) that contribute to the process execution (e.g., the order and the

delivery object). These processes for the different objects run independently and syn-

chronize through some bridging events to exchange data needed to progress further.

The importance of object-centric process approaches is particularly evident in the do-

main of Process Mining: the IEEE Task Force has recently reported on the results of

a survey with academics, practitioners, consultants and vendors in Process Mining, ac-

cording to which only 33% of the respondents consider forcing to pick one single case

identifier to be a minor problem [4].

This paper focuses on object-centric process predictive analytics. This is a chal-

lenging problem that cannot be tackled via the current research in process predictive

analytics, since the latter relies on the assumption that the instances refer to a single

process. In a nutshell, the main idea is that a main object type (e.g., Customer Order)

is chosen as viewpoint. The complex object interaction is unfolded in traces around
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the viewpoint: one trace is created per object o of the viewpoint type, and includes

the events related to that object (i.e., process instance), and related to the objects of

the same or different types that synchronize with o, directly or indirectly. When the

complex interaction is unfolded in a multiset of traces, we can specialize the current

state of the art in predictive analytics.

Process stakeholders define the Key Performance Indicators (KPIs) using domain

knowledge: this corresponds to instantiating a function T (σ) that returns the KPI value

for any trace σ. Since the viewpoint determines how events are grouped in traces, the

determination of the appropriate KPI influences which viewpoint to choose. As an

example, if the KPI relates to the duration of an order process, the viewpoint needs to

be the order object.

The proposed approach is assessed through experiments on a real event log ex-

tracted from an object-centric process executed by an utility provider company in Italy.

Experiments were conducted on different KPIs, illustrating that the complex interac-

tions of object-centric processes need to be taken into account when predicting, as this

allows to consistently improve the predictive performances over simpler techniques.

Section 2 introduces the preliminary concepts that are used later on: object-oriented

and single-id event logs, KPIs, and the traditional problem of process predictive an-

alytics. Section 3 illustrates the procedure to create single-id event logs from object-

oriented event logs, also illustrating how aggregation attributes can be additionally used

to better capture the object-to-object synchronization dynamics. Section 4 sketches

some implementation details and extensively reports on the experimental phase, while

related works are discussed in Section 5. Finally, Section 6 concludes the paper, sum-

marizing the paper context and contribution, and delineating some potential avenues of

future work.

2. Preliminaries

2.1. Object-Centric Event Logs

Object-centric processes are carried on with the support of one or more information

systems. It is possible to extract the history of past executions into a transactional data
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set organized in form of object-centric event logs [5]:

Definition 2.1 (Object-Centric Event Log). Let T be the universe of the timestamps.

An object-centric event log is a tupleL = (E,A,AN,AV,AT,OT,O, πtyp, πact, πtime,

πvmap, πomap, πotyp, πovmap, <) such that:

• E is the set of event identifiers,

• A is the set of activity names,

• AN is the set of attributes names,

• AV is the set of attribute values (with the requirement that AN ∩AV = ∅),

• AT is the set of attribute types,

• OT is the set of object types,

• O is the set of object identifiers,

• πtyp : AN ∪ AV → AT is the function associating an attribute name or value

to its corresponding type,

• πact : E → A is the function associating an event identifier to its activity,

• πtime : E → T is the function associating timestamps to event identifiers,

• πvmap : E → (AN 6→ AV ) is the function associating every event identifier e ∈

E to a variable-to-value assignment function val such that, for each attribute

a ∈ AN in the domain of val, val(a) indicates the value assigned to a by e,1

• πomap : E → 2O is the function associating an event identifier to a set of related

object identifiers,

• πotyp : O → OT assigns precisely one object type to each object identifier,

• < ⊆ (E × E) is a partial order of events.2

1The notation 6→ indicates a partial function.
2Typically, the partial order is induced by the timestamp, i.e., e′ < e′′ ⇐⇒ πtime(e

′) < πtime(e
′′).

However, we do not require to make that assumption.
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Table 1: Example of object-centric event log. Each row represents an event. The blank spaces represent

attributes missing values.

id activity timestamp Contract Requisition Order Receipt Invoice user order price order delivery month order purch group rec quantity

e1 Contract Line Creation 2017-07-11 9:00 c1 CO01

e2 Purch Contract Item Material Group Changed 2017-07-14 11:00 c1 CO01

e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456

e4 Purchase Requisition Line Created 2017-07-15 15:00 c1 rq2 A457

e5 Purchase Order Line Creation 2017-07-16 15:00 c1 o1 A458 100 7 100 L50

e6 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 8 100 L51

e7 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 8 100 L52

e8 Goods Line Registered 2017-07-22 15:00 o1 r1 A456 100 7 100 L50 10

e9 Invoice Receipt 2017-07-22 16:00 i1 A125

e10 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456

e11 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 8 100 L51

e12 Goods Line Registered 2017-07-23 15:00 o2 r2 A456 100 8 100 L50 10

e13 Invoice Registered 2017-07-29 11:00 r1,r2 i1 A125 10

e14 Invoice Cleared 2017-07-30 12:00 i1 A125

e15 Goods Line Registered 2017-07-31 15:00 o4 r3 A456 600 8 100 L51 10

e16 Invoice Registered 2017-08-10 11:00 r2,r3 i2 A125 10

e17 Invoice Cleared 2017-08-15 14:00 i2 A125

e18 Goods Line Registered 2017-08-16 15:00 o3 r4 A456 300 8 100 L52 5

e19 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456

e20 Invoice Registered 2017-08-18 11:00 r4 i3 A125 5

e21 Invoice Cleared 2017-08-20 14:00 i3 A125

Example 2.1. Table 1 shows an excerpt of an object-centric event log of an Italian util-

ity provider company. It consists of five object types, each with its own object identifier:

Contract, Requisition, Order, Receipt, Invoice. The first is Contract,

which is the process concerning the stipulation of a contract with a customer, possibly

followed by a Requisition, which is an optional process executed when the order

needs a purchase requisition. The Order process consists of several activities repre-

senting mainly quantity, price, or date modifications of the order, eventually approved

by the Head of the department. The Receipt process is then related to the receiving

of the goods or the services requested, followed by the Invoice process, which in-

cludes everything related to payments. Some events are associated to a single object

identifier, others have multiple (i.e., the so-called bridge events) that enable the syn-

chronization and data exchange between objects. Figure 1 illustrates how objects are

related to each other for synchronization and data exchanges. Note that relationships

can be of many-to-many or many-to-one nature. Events are associated with attributes,

features based on the properties of requisitions, orders (e.g., order price), receipts

(e.g., receipt quantity), and invoices.
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Figure 1: Diagram representing cardinality between the different object types in the considered object-centric

event log. For each object type, the cardinality with the subsequent or the previous object type is represented

as (min cardinality, max cardinality)

2.2. Single-Id Process Predictive Analytics

In this section, we discuss the typical techniques adopted to train a predictive model

starting from an event log with a single identifier.

Definition 2.2 (Single-id Event Log). A single-id event log is a tuple: L = (E, T,A,

AN,AV,AT, πtyp, πact, πtime, πvmap) consisting of a set E of event identifiers, a set

T ⊂ E∗ of traces, i.e. sequences of event identifiers, a setA of activity names, setsAN

andAV of attribute names and values, a function πtyp associating attribute names and

values to types, πact : E → A, πtime : E → T, πvmap : E → (AN 6→ AV )3 as-

sociating each event identifier to event’s activity, timestamp, and attribute assignment,

respectively.

The aim is to predict the value of a key performance indicator (KPI), which depends

on the specific process domain. This corresponds to providing the definition a KPI

function.

Definition 2.3 (KPI Function). Let L = (E, T,A,AN,AV,AT, πtyp, πact, πtime,

πvmap) be a single-id event log. Let WK be the set of possible KPI values. A KPI

3Notation A 6→ B is used to highlight a partial function from some elements of a domain A to elements

of B
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is a function TL : E∗×N 6→ WK such that, given a trace σ ∈ E∗ and an integer index

i ≤ |σ|, TL(σ, i) returns the KPI value of σ after the occurrence of the first i events.4

Note that our KPI definition assumes it to be computed a posteriori, when the execution

is completed and leaves a complete trail as a certain trace σ. In many cases, the KPI

value is updated after each activity execution, which is recorded as next event in trace;

however, other times, this is only known after the completion. In the remainder, when

clear from the context, we often omit the subscript L.

We aim to be generic and account for all relevant domains. Given a trace σ =

〈e1, . . . , en〉 that records a complete process execution, the following are example of

three potential KPI definitions:

Remaining Time. This corresponds to the situation in which, after executing a se-

quence of i events, the KPI measures how long the process execution will still

last to completion: Tremaining(σ, i) = πtime(en) − πtime(ei), namely the dif-

ference between the timestamp of latest future trace event en and that of the last

occurred event ei.

Activity Occurrence. It measures whether a certain activity is going to eventually

occur in the future, such as an activity Open Loan in a loan-application pro-

cess. The corresponding KPI definition for the occurrence of an activity A is

Toccur A(σ, i), which is equal to true if activity A occurs in 〈ei+1, . . . , en〉 and

i < n; otherwise false.

Customer Satisfaction. This is a typical KPI for several service providers. Let us as-

sume, without losing generality, to have a trace σ = 〈e1, . . . , en〉where the satis-

faction is known at the end, e.g. through a questionnaire. Assuming the satisfac-

tion level is recorded with the last event - say en(sat) . Then, Tcust satisf (σ, i) =

en(sat).

We can define the prediction problem on unfolded logs as follows.

4Given a sequence X , |X| indicates the length of X .
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Definition 2.4 (Prediction Problem on Single-id Event Logs). Let L be a single-id

event log that records the execution of a given process, for which a KPI TL is defined.

Let σ = 〈e1, . . . , ek〉 be the trace of a running case, which eventually will complete as

σT = 〈e1, . . . , ek, ek+1 . . . , en〉. The prediction problem can be formulated as fore-

casting the value of TL(σT , i) for all k < i ≤ n.

In the process mining literature, this problem has been faced with different machine

learning models [6, 7, 8, 9, 10, 11].

The training set is composed by pairs (x, y) ∈ X×Y whereX encodes the indepen-

dent variables (also known as features) with their values, and Y is the the dependent

variable with its value (i.e. the value to predict). Process predictive analytics requires

a KPI definition T as input (cf. Definition 2.3). Let WK = img(T ) be the domain

of possible KPI values (i.e. the image/codomain of T : Y = WK . Afterwards, each

prediction technique requires the definition of the domain X and a trace-to-instance

encoding function ρ : E∗ → X , which maps each (prefix of a) trace σ in an element

ρ(σ) ∈ X .

The prediction model is trained off-line via a datasetD that is created from an event

log L as follows. Each prefix σ of each each trace σT ∈ L generates one distinct item

in D consisting of a pair (x, y) ∈ (X ×Y) where x = ρ(σ) and y = T (σT , |σ|). Once

the dataset item of every trace prefix is created, the model is trained. The resulting

prediction model (a.k.a. predictor) can be abstracted as an oracle function ΦD : X →

Y .

This paper does not focus on comparing different machine learning techniques.

Instead, we focus on how it is possible to leverage on methodologies developed for

single-process prediction problems to tackle the object-centric process prediction prob-

lem. In the implementation and experiments, we use the Catboost method [12], a

high-performance open source framework for gradient boosting on decision trees, but

different types of predictive models could be learnt. The choice fell onto Catboost

because experiments show that it outperforms and solves limitations of current state-

of-the-art implementations of gradient boosted decision trees [12]. It is backed by solid

theoretical results that explain how strong predictors can be built by iteratively com-
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bining weaker models (base predictors) in a greedy manner. Catboost, in particular,

at each iteration t of the algorithm performs a random permutation of the features and

a tree is constructed on the basis of it. Moreover, for each split of a tree, CatBoost

combines (concatenates) all categorical features (and their combinations) already used

for previous splits in the current tree with all categorical features in the dataset.

In the domain of Catboost learning, the definition of the trace-to-instance encoding

function requires the intermediate concept of event-to-tuple function

ζL : E → A × AT × (AV )w, which encodes each event of a single-id event log

L = (E, T,A,AN,AV,AT, πtyp, πact, πtime, πvmap), where w = |AN | is the num-

ber of attributes defined in the event log L. The event-to-tuple function is defined as

follows. In particular, indicated the concatenation of two tuples with ⊕, given an event

in L with identifier ei, ζL(e) = [πact(e), πtime(e)]
⊕
v∈AN

πvmap(v).5

In Catboost, the trace-to-instance encoding function also considers the history of

each partial trace σ by considering the number of times that each activity has been

performed in σ. Consequently, we define the function ρaggrL (〈e1, . . . , em〉); here, for

each activity a ∈ A, one dimension exists in ρaggrL (σ) : E∗ → (N)|A| that takes on a

value equal to the number of events eσ that refer to a, i.e. such that πacte. The function

ρL is then defined as: ρL(〈e1, . . . , em〉) = ρaggrL (〈e1, . . . , em〉)
⊕
ζL(em).

2.3. Explanations of Process Predictions

Several prediction models, including Catboost, are black boxes, making it difficult

to explain the predictions, namely to determine the degree with which each feature in-

fluences the predictions. Explaining the predictions is beneficial to build user trust in

the prediction model. The remainder briefly summarizes the basic concepts behind the

framework for prediction explanation that has been introduced in [13]. This framework

has been used during the evaluation to illustrate that several features related to the ob-

ject interaction have a significant impact on the predictions, thus consequently showing

their relevance to improve the prediction accuracy.

5To keep the explanation simple, we assume that the enumerations of all variables v in AN are always

returned consistently, as if there is a total order among the variables (e.g., the alphabetical order).
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The framework in [13] leverages on the Shapley Values [14], which is a game

theory approach to fairly distribute the payout among the players that have collaborated

in a cooperative game. The assumption is that the features from an instance correspond

to the players, and the payout is the difference between the prediction made by the

predictive model and the average prediction (also called base value). Intuitively, given

a predicted instance, the Shapley Value of a feature expresses how much the feature

value contributes to the model prediction [15]:

Definition 2.5 (Shapley Value). Let X = {x1, . . . , xn} be a set of features. The

Shapley value for feature xi is defined as:

ψi =
∑
S⊆{x1,...,xm}\{xi}

|S|!(p−|S|−1)!
p! (val (S ∪ {xi})− val(S))

where val(X ′) is the so-called payout for only using the set of feature values in X ′ ⊂

X in making the prediction.

Intuitively, the formula in Definition 2.5 evaluates the effect of incorporating the fea-

ture value xi into any possible subset of the feature values considered for prediction.

In the equation, variable S runs over all possible subsets of feature values, the term

val (S ∪ {xi})− val(S) corresponds to the marginal value of adding xi in the predic-

tion using only the set of feature values in S, and the term |S|!(p−|S|−1)!
p! corresponds

to all the possible permutations with subset size |S|, to weight different sets differently

in the formula. This way, all possible subsets of attributes are considered, and the

corresponding effect is used to compute the Shapley Value of xi.

The starting point for the explainable framework is the trace-to-instance encoding

function ρ : E∗ → X (cf. Section 2.2), and a single-id event logL = (E, T,A,AN,AV,

AT, πtyp, πact, πtime, πvmap).

Let us recall that given a trace σ = 〈e1, . . . , em〉 ∈ T , ρ(σ) = [x1, . . . , xn], each

feature f i has an associated value xi. As mentioned in Section 2.2, a feature f i can be

of different nature, such as a process attribute, a timestamp, or the number of executions

of an activity in σ. The prediction model is built over the multiset ]σ′∈T ρ(σ′).

When applied for prediction explanations, the Shapley values for a trace σ are

computed over tuple ρ(σ) = [x1, . . . , xn], thus resulting in a tuple of Shapley values
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Ψ = [ψ1, . . . , ψn], with ψi being the Shapley value of feature f i. In accordance with

the Shapley values theory, the explanation of ψi is as follows: since feature f i = xi,

the KPI prediction deviates ψi units from the average KPI value of the event-log traces.

The computation is the Shapley value is repeated for each trace of L. However, if

f i is numerical, several different values can be observed for f i, yielding a large number

of explanations f i = xi1, . . . f
i = xik. Some of these explanations are equivalent from

a domain viewpoint: e.g., amount = 10000, amount = 10050 might be referring

to the same class of amount in a loan application. Therefore, q representative values

wi1, . . . , w
i
q are selected out of values xi1, . . . x

i
k (namely, with q � k) so as to obtain

explanations of type f i < wi1, wi1 ≤ f i < wi2, . . ., f i ≥ wiq . Values wi1, . . . , w
i
q can be

obtained taking the boundaries of the buckets obtained via discretization techniques.

In particular, our implementation operationalizes a discretization of each feature f i on

the basis of decision/regression as follows. The training set consists of tuple with only

two features: f i used as the independent variable, and the KPI as target/dependent

variable. The values observed at the splits of the tree nodes induce the boundaries and,

consequently, the buckets.

While an exact computation of the Shapley values requires to consider all combina-

tions of features, efficient estimations can be obtained through polynomial algorithms

that use greedy approaches [15].

The discussion so far focused on the Shapley values for single (prefixes of) traces.

It is possible to show the distribution over multiple traces via, e.g., boxplots. Examples

will be shown in Section 4 (cf. Figures 2, 3 and 4).

3. Predictive Analytics in Object-Centric Processes

The starting point is an object-centric log L = (E,A,AN,AV,AT,OT,O, πtyp,

πact, πtime, πvmap, πomap, πotyp, πovmap, <). Our object-centric process prediction

requires analysts to decide a so-called viewpoint, which is an object type ot ∈ OT of

the process (e.g., Requisition). This defines how the events in an object-centric event

log are aggregated to form traces of a single-id event log.

A single-id event log L = (E′, T, A′, AN ′, AV ′, AT ′, π′typ, π
′
act, π

′
time, π

′
vmap) is
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created from a chosen viewpoint ot ∈ OT as follows. The trace set T contains one

trace σo for each object o ∈ O such that πotyp(o) = ot. To determine which events to

include in σo, we compute the timestamp of the first event in E that has o as one of the

object identifiers:

to = min
e∈E. o∈πomap(e)

πtime(e) (1)

Trace σo will include every event e ∈ E with timestamp larger than or equal to to such

that it at least contains o as identifier (namely, such that {o} ⊆ πomap(e)) or contains

an identifier of an object o′ in a certain set R+
L (o) of related objects (namely such that

R+
L (o) ∩ πomap(e) 6= ∅). The constraint to exclude events with timestamp smaller

than to is motivated by the fact that, if an event e precedes the first event e1 of σo, e is

unrelated to the behavior in σo: if e had influenced or was influenced by the behavior

in σo, e would have occurred after e1, which is, in fact, intended as the creation event

of the process related to life cycle of o.

The setR+
L (o) is constructed as follows. Let us defineR1

L,ot
(o) as the set of objects

directly related to o of type different than ot:

R1
L,ot(o) = {o′ ∈ O : ∃e ∈ E. {o, o′} ⊆ πomap(e) ∧ πotyp(o′) 6= ot}.

We can also define the set of objects of type different than ot that are indirectly related

o via a “bridge” object o′ of type different than ot:

R2
L,ot(o) =

⋃
o′∈R1

L,ot
(o)

R1
L,ot(o

′) (2)

The definition above can also be extended for any RiL,ot(o) with i > 1 as follows:

RiL,ot(o) =
⋃

o′∈Ri−1
L,ot

(o)

R1
L,ot(o

′) (3)

The set R+
L (o) can thus be defined as the union, for all integer indexes i ≥ 1, of the

sets of the objects of type different than πotyp(o) that are related to o via (i−1) briding

events of type different than πotyp(o):

R+
L (o) =

∞⋃
i=1

RiL,πotyp(o)
(o) (4)
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Table 2: Unfolded event log obtained from the object-centric event log in Table 1 with the proposed object-

centric approach when considering the Requisition viewpoint. The horizontal lines split the different traces.

The blank spaces represent attributes missing values.

id activity timestamp Contract Requisition Order Receipt Invoice user order price order delivery month order purch group rec quantity

e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456

e4 Purchase Requisition Line Created 2017-07-15 15:00 c1 rq2 A457

e5 Purchase Order Line Creation 2017-07-16 15:00 c1 o1 A458 100 7 100 L50

e6 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 8 100 L51

e7 Goods Line Registered 2017-07-22 15:00 o1 r1 A456 100 7 100 L50 10

e9 Invoice Receipt 2017-07-22 16:00 i1 A125

e10 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456

e11 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 8 100 L51

e12 Goods Line Registered 2017-07-23 15:00 o2 r2 A456 200 8 100 L50 10

e13 Invoice Registered 2017-07-29 11:00 r1,r2 i1 A125 10

e14 Invoice Cleared 2017-07-30 12:00 i1 A125

e15 Goods Line Registered 2017-07-31 15:00 o4 r3 A456 600 8 100 L51 10

e16 Invoice Registered 2017-08-10 11:00 r2,r3 i2 A125 10

e17 Invoice Cleared 2017-08-15 14:00 i2 A125

e4 Purchase Requisition Line Created 2017-07-15 15:00 c1 rq2 A457

e7 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 8 100 L52

e18 Goods Line Registered 2017-08-16 15:00 o3 r4 A456 300 8 100 L52 5

e19 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456

e20 Invoice Registered 2017-08-18 11:00 r4 i3 A125 5

e21 Invoice Cleared 2017-08-20 14:00 i3 A125

Table 3: Unfolded event log obtained when considering the Requisition viewpoint from the object-centric

event log in Table 1 with the existing approach, assuming each instance belongs to a single process. The

horizontal lines split the different traces. The blank spaces represent attributes missing values.

id activity timestamp Contract Requisition Order Receipt Invoice user order price order delivery month order purch group rec quantity

e3 Purchase Requisition Line Created 2017-07-15 12:00 c1 rq1 A456

e6 Purchase Order Line Creation 2017-07-17 15:00 rq1 o2 A458 200 8 100 L51

e10 Purchase Requisition Group Changed 2017-07-22 19:00 rq1 A456

e11 Purchase Order Line Creation 2017-07-23 9:00 rq1 o4 A458 600 8 100 L51

e4 Purchase Requisition Line Created 2017-07-15 15:00 c1 rq2 A457

e7 Purchase Order Line Creation 2017-07-18 15:00 rq2 o3 A458 300 8 100 L52

e19 Purchase Requisition Supplier Changed 2017-08-16 17:00 rq2 A456

The application of the aforementioned procedure to each object o of the viewpoint

type creates the set T of traces, which in turn induces the the other elements of the

L tuple as follows. The set E′ = ∪σo∈T ∪ e′ ∈ σoe of event identifier contains the

event identifiers in T . The domain of attribute names, values and types is the same as

in the object-centric log: AN ′ = AN , AV ′ = AV , AT ′ = AT , and π′typ = πtyp.

Functions π′act, π
′
time, π

′
vmap are restricted over domain E′, namely for each e′ ∈ E′

π′act(e) = πact(e), π′time(e) = πtime(e), π′vmap(e) = πvmap(e).

Example 3.1. Let us assume to unfold the object-oriented event log in Table 1, us-

ing Requisition as viewpoint. The result is presented in Table 2. Traces are split

through horizontal lines. There are two traces, as many as the number of requisitions.

In particular, since in the first trace we focused on the requisition with identifier rq1,

13



we first considered the events containing rq1 as identifier (e3, e6, e10, e11); af-

terwards, we considered the events related transitively to rq1, i.e. with at least one

identifier of an object in R+
L (rq1). For instance, we considered event e5 because it

contains the contract identifier c1 that is related to rq1 via event e3, which contains

both rq1 and c1 among the identifiers. Please note that, e.g., in the first trace we do

not consider event e19 because e19 only contains the object identifier rq2, which is

of the same type as rq1, namely the requisition object type. Neither do we consider

such events as e18 because, e.g., e18 is only associated to rq1 via a transitive re-

lation that goes through rq2, which is of the same type as rq1. Event e4 is instead

included in the first trace because it is associated to the contract c1, which is associ-

ated transitively to the requisition rq1. Event e4 is also in the second trace because

it is associated to rq2, since rq2 is within the object identifiers of e4. It is worth

noting that events e1 and e2 are excluded from the first and second trace since their

timestamps are smaller than e3 or e4, which are respectively the first events with rq1

or rq2 as object identifiers.

Conversely, existing techniques would be unable to deal with multiple object types,

namely with multiple interleaving processes; they would only restrict to one single

process, which would likely be the process related to objects of type Requisition.

Therefore, there would again be two traces, one per requisition. Differently from our

approach, the event log would only contain the events that present the first or the second

requisition among the identifiers. The resulting log is in Table 3.

Summarising, the approach starts from an object-centric event log L = (E,A,AN,

AV, AT,OT,O, πtyp, πact, πtime, πvmap, πomap, πotyp, πovmap, <), which is unfolded

to a single-id event log L = (E′, T, A′, AN ′, AV ′, AT ′, π′typ, π
′
act, π

′
time, π

′
vmap)

around a viewpoint, namely an object type ot ∈ OT of the process (e.g., Requisition).

The viewpoint defines how the events in an object-centric event log are aggregated to

form traces of a single-id event log.

These traces can be used to train and test a proper prediction model using the off-

the-shelf techniques discussed in Section 2.2. However, this unfolding to a single-id

event log does not preserve information about the number of objects correlated to the

14



viewpoint object. In fact, it excludes the information about the attributes associated

with correlated objects, and their respective value. For instance, let us assume that we

aim to use the total processing time of requisitions as KPI, and this time is somehow

correlated to the number of orders associated to the requisitions (e.g., a requisition for

more orders takes longer to be processed). The prediction of this KPI could be more

accurate if the number of orders objects associated with the requisition were used to

train and use the prediction model.

To mitigate this information loss, we extend our first approach to a richer one,

where we introduce aggregation attributes that synthesize additional interaction infor-

mation. Given a prefix σ′o, of the trace σo for a viewpoint object o, the following

aggregation attributes are included.

1. A given attribute a that can take different values v1, . . . , vn in a set {o′1, . . . , o′m} ⊆

R+
L (o) of objects related to o. The standard encoding would only retain one value

for a, namely the value observed in the latest event in σo that assigns a value to

a. We define:

• if a is numerical (i.e., πtyp(a) ⊆ R), one feature f is added to the feature

set that contains an aggregated value ψ(v1, . . . , vn) summarizing observed

values. The aggregation function ψ(~v) may be customized depending on

the domain, such as the average value in ~v;

• if a is categorical, a feature is added for each pair (a, vi) with value defined

as the ratio between the number of attribute assignments to the value vi

over the total assignments of a.

2. For each object type o′t ∈ OT , one feature encodes the number of objects of

type o′t associated with events of σ′o, namely |{o′ ∈ O : πotyp(o) = o′t ∧ ∃e ∈

σ′o. o
′ ∈ πomap(e)}|.

3. For each object type o′t ∈ OT and for each activity a ∈ A one feature is added

with value equal to the percentage of objects of type o′t for which activity a has

occurred at least once in trace σ′o.
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Example 3.2. The result of introducing the aggregation attributes to the feature set is

presented in Table 4:

• The first type of aggregation attribute that was introduced is represented by the

column Avg order price, which represents the average order price (in-

dicated by the column order price) considering all the orders associated

to the selected requisition. It can be seen that event e5 is associated to an

Avg order price of 100, since there is only one order with order price

100; conversely, event e6 is associated to an Avg order price of 150,

since there is one order (o1) with order price 100 and one order (o2) with

order price 200.

• The second type of aggregation attribute that was introduced is represented by

the column %order delivery month=7, which indicates the fraction of ob-

jects correlated with objects of type order where attribute order delivery

month takes on value 7: in particular, it indicates the fraction of the orders

that are delivered in July (month 7), compared to the total number of orders. As

an example, the event e5 is associated with a %order delivery month=7

of 1, since there is only one order with delivery in July; conversely, event e6 is

associated with a %order delivery month=7 of 0.5, since there is one or-

der (o1) with delivery in July and one order (o2) with delivery in August (month

8).

• The third type of aggregation attribute introduced is represented by the column

#Orders, which represents the number of objects of type order associated to

the selected requisition. In the event e5 there is only one order (o1) associated

to the selected requisition, while in the event e6 there are two orders (o1 and o2)

associated to the selected requisition.

• Finally, the fourth type of aggregation attribute introduced is represented by

the column Order, %Goods Line Registered, which indicates the per-

centage of orders that have performed the activity Goods Line Registered

at least once; as an example, it has a value of 0.5 for event e8, since among the
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two orders (o1 and 02) there is only one order (o1) that has performed Goods

Line Registered.

4. Implementation and Experiments

Our approach described in Section 3 have been implemented in Python. Prediction

models were built using Catboost (cf. Section 2.2). Experiments were conducted on

an event log that records the real executions of an object-centric process of an utility

provider company in Italy. In particular, we defined five different KPIs of which to

predict the values. Section 4.1 introduces the case study employed for our evaluation,

while Section 4.2 compares and evaluates proposed predictive techniques in Object-

Centric Processes. In particular, we compare our approaches with the naı̈ve adoption of

techniques related to single-id process predictive analytics, where only events directly

associated with one object type are considered.

4.1. Domain Description

The evaluation of our approach was performed on the object-oriented process de-

scribed as working example in Section 2. The process is real and is being executed by

a well-known Italian utility provider company, which is also one of the major energy

companies in Europe. The company focuses on the production/extraction of electric-

ity and gas and on their distribution in different parts of the world. As mentioned in

Section 2, the overall process runs through the intertwining of processes related to five

different object types.

Section 3 mentioned that our techniques require defining a viewpoint: for the KPIs rel-

evant for this case study, we mainly considered the Contract object type as viewpoint,

but we also considered the Order and the Requisition as alternative possible viewpoints.

As discussed, if we consider for example the Contract viewpoint, traditional predictive

analytics based on single-id event logs would only use the events related to Contract

(the naı̈ve approach). Vice versa, our techniques would also use the information of the

objects related to Contract via bridge events, including the interaction itself.
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Before applying the naı̈ve and our approach, we performed a preprocessing. In

particular, we removed attributes whose values were missing in more than 80% of the

cases, or whose values were always the same among all cases. In the pre-processing

phase, we used domain knowledge and removed the attributes that were somehow du-

plicate. For instance, the log contains an attribute that refers to the order plant name,

which is unique, and a second related to plant identifier: one of the two can be re-

moved. Finally, the large dimension of the utility provider company is also reflected in

the cardinality of some categorical attributes. For instance, the codes of the materials

that are shipped all around the world (order material code) are stored in an attribute

that counts up to 4, 179 different values. To reduce the cardinality of the attributes

with thousands of different values, we used the 80-20 rule, a.k.a. Pareto Principle [16].

Specifically, we kept the most frequent attribute’s values that cover the 80% of cases,

labelling the remaining values as ”other”.

We obtained a different event log for each of the illustrated techniques (naı̈ve ap-

proach, approach without aggregated features, approach with aggregated features),

consisting of 12, 537, 99, 065, and 10, 349 cases for the Contract, the Order and the

Requisition viewpoints respectively.

In each experiment, two thirds of the traces were used for training, and the rest as

test set. Splitting was done in a complete random fashion, assuming no concept drift in

the dataset. In training, a hyperparameter optimization was carried out, using 20% of

the training data for the optimization (validation set).

In our evaluation we considered several KPIs, which can be grouped in three cate-

gories. The first is the path time, defined as the elapsed time between a defined source

activity a and the last occurrence of the selected target activity b, while the second

(pay delay) refers to the average number of unforeseen additional days that are needed

to receive the payment of the invoice compared to the expected invoice payment due

date. Finally, the third category refers to whether or not a certain activity or a certain

condition (e.g. a late payment) is eventually going to occur in the future. The first two

KPI categories are defined over a numerical domain while the second one is boolean

with true indicating the occurrence, and false the absence.
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4.2. Results for Predictive Analytics in Object-Centric Processes

For the evaluation we focused on three different viewpoints (Contract, Requisition

and Order) and we considered the two approaches, namely with and without aggre-

gation attributes, which are described in Section 3. Examples 3.1 and 3.2 illustrate

the application of our approaches to this case study, when the chosen viewpoint is the

requisition.

The KPIs that have been considered are reported in Table 5; in particular, Table 5a

illustrates the numerical KPIs, while Table 5b illustrates the categorical KPIs. Each

numerical KPI refers to the elapsed time from the first occurrence of the considered

object to the last occurrence of a different selected activity. The first five KPIs build

on the contract viewpoint; in particular, the first KPI refers to the elapsed time from

the creation of the contract to the last SES Line Registered; this activity indicates that

the service requested by the customer has been provided but, since the customer can

require several services, it is of interest to know when all the services request have been

provided. The second KPI (SES Line Released) indicates that a further step has been

performed, which is the confirmation from the manager that everything was received

correctly. Another interesting KPI to be monitored is the elapsed time from the cre-

ation of the contract to the last Invoice Receipt, activity that indicates that the invoice

has been correctly charged to the customer; conversely, Invoice Cleared indicates that

the invoice has been paid. The fifth KPI refers to the number of days exceeding the

planned payment date (Pay Delay estimation), considered starting from the creation of

the contract to the last occurrence of Invoice Cleared. Finally, the remaining numerical

KPIs refer to the elapsed time from the creation of the order or requisition to the last

occurrence of some selected activity.

Moreover, after selecting the path from the creation of the contract to the last oc-

currence of Invoice Cleared, we also considered three categorical KPIs, which were

related to activities that the company wants to be prevented; in particular, it was in-

teresting to know in advance whether there would be changes to the payment method

(represented by the activity Invoice Pay Method Changed): when this happens, usu-

ally there are delays with payments. Furthermore, the company was also interested in

forecasting whether there will be problems with the order (represented by the activity
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Table 5: Statistics related to the selected KPIs

(a) Numerical KPIs statistics

KPI Viewpoint
Average value

(days)

Standard deviation

value (days)

Elapsed Time from Contract to the last SES Line Registered Contract 291.59 224.17

Elapsed Time from Contract to the last SES Line Released Contract 292.73 224.2

Elapsed Time from Contract to the last Invoice Receipt Contract 257.04 227.41

Elapsed Time from Contract to the last Invoice Cleared Contract 312.3 240.02

Pay Delay estimation from Contract to the last Invoice Cleared Contract 9.71 43.2

Elapsed Time from Order to the last Invoice Receipt Order 24.66 28.08

Elapsed Time from Order to the last Invoice Cleared Order 64.67 43.45

Elapsed Time from Requisition to the last Invoice Receipt Requisition 48.17 42.79

Elapsed Time from Requisition to the last Invoice Cleared Requisition 114 48.56

Elapsed Time from Requisition to the last SES Line Released Requisition 35.71 40.72

Elapsed Time from Requisition to the last SES Line Registered Requisition 34.59 40.71

(b) Categorical KPIs statistics. Column % cases represents the percentage of cases in which the activity or the

attribute was present with that particular value. Ideally it should be the lowest possible

KPI Viewpoint % cases

Occurrence of Activity Pay Method Changed (from Contract to the last Invoice Cleared) Contract 29%

Occurrence of Activity Purchase Order Blocked (from Contract to the last Invoice Cleared) Contract 27%

Occurrence of Attribute Pay Type assuming value Late (from Contract to the last Invoice Cleared) Contract 52%

Purchase Order Blocked), since this situation can bring additional delays caused by the

reworks needed to fix the problem. Finally, it was interesting to know whether there

will be delays with the payments (represented by the attribute Pay Type assuming value

Late).

Since eleven KPIs were numerical and the values were reasonably well balanced,

we adopted the Mean Absolute Error (MAE). The last three KPIs considered were

instead categorical and related to activities that the company wants to be prevented;

therefore, we computed the F1 score. Since the selection of the cases and the overall

duration of the case itself vary depending on the selected KPI, also the observed average

duration and standard deviation of the cases are different; the statistics for the selected

numerical KPIs, shown in Table 5a, are necessary to understand if our predictive model

is achieving a good prediction quality. Conversely, for the last three categorical KPIs,
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Table 6: Prediction performances for the considered KPIs using the proposed techniques, measured in terms

of Mean Absolute Error (MAE) or F1 score. The average predictions performances were obtained consider-

ing two different divisions of the cases in train and test sets. Training times are reported in brackets.

Viewpoint KPI Naı̈ve approach
approach w.out

aggr. features

approach w.

aggr. features

Contract Elapsed Time from Contract to the last Invoice Receipt (MAE) 40.67 (5m) 31.72 (36m) 28.49 (53m)

Contract Elapsed Time from Contract to the last SES Line Released (MAE) 38.63 (7m) 29.96 (25m) 26.71 (15m)

Contract Elapsed Time from Contract to the last Invoice Cleared (MAE) 44.73 (5m) 37 (33m) 33.06 (81m)

Contract Elapsed Time from Contract to the last SES Line Registered (MAE) 39.65 (5m) 30.03 (24m) 28.81 (28m)

Contract Activity Invoice Pay Method Changed occurrence (F1) 0.83 (12m) 0.86 (78m) 0.87 (95m)

Contract Activity Purchase Order Blocked occurrence (F1) 0.69 (12m) 0.71 (76m) 0.74 (94m)

Contract Attribute Pay Type Late occurrence (F1) 0.88 (12m) 0.88 (78m) 0.89 (95m)

Contract Pay Delay estimation from Contract to the last Invoice Cleared (MAE) 15.01 (5m) 14.09 (37m) 13.6 (29m)

Order Elapsed Time from Order to the last Invoice Receipt (MAE) 11.62 (24m) 9.50 (3h 30m) 10.39 (3h)

Order Elapsed Time from Order to the last Invoice Cleared (MAE) 15.62 (19m) 12.03 (11h) 11.51 (10h)

Requisition Elapsed Time from Requisition to the last Invoice Receipt (MAE) 17.65 (7m) 11.43 (31m) 11.7 (33m)

Requisition Elapsed Time from Requisition to the last Invoice Cleared (MAE) 21.09 (6m) 14.53 (38m) 12.33 (44m)

Requisition Elapsed Time from Requisition to the last SES Line Released (MAE) 17.56 (5m) 12.84 (11m) 12.79 (12m)

Requisition Elapsed Time from Requisition to the last SES Line Registered (MAE) 17.35 (5m) 11.3 (14m) 13.08 (14m)

we reported in Table 5b on the distribution of the classes; in particular, the activity

Invoice Pay Method Changed was performed in the 29% of the cases, the activity Pur-

chase Order Blocked was performed in the 27% of cases, while the attribute Pay Type

appeared with value Late in the 52% of cases.

Results of proposed predictive techniques on the selected KPIs are shown in Ta-

ble 6; in particular, they represent the average accuracy obtained considering two dif-

ferent random splits of the cases in train and test sets. Compared to the naı̈ve approach,

it can be seen that the two approaches that consider the object-interaction show im-

proved predictive performances in all the considered KPIs. The additional use of ag-

gregated attributes feeds in additional information that enables a further improvement

of the prediction quality in a vast majority of cases.

Table 6 also reports on the training time needed to train the prediction model of the

naı̈ve and our approaches on each KPI of interest. As it can be seen, our approaches

have the highest training time in all KPIs. Note that this does not pose significant

limitations, since it is just performed once; after the model has been trained, all the

predictions on the test set can be obtained in less than one second for all the considered

KPIs.
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Figure 2: Boxplot representing the impact of some of the most important aggregated features that were added

to the predictive model in order to improve the accuracy for the KPI Elapsed Time from Contract to the last

Invoice Receipt in the approach with aggregated features.

As a further confirmation of the importance of object-interaction and aggregated

features, we computed the Shapley Values in accordance to the framework discussed

in Section 2.3; in particular, explanations were calculated on the test dataset. Figure 2

illustrates the boxplot representing the distribution of the Shapley values over the dif-

ferent trace prefixes for some of the most important features influencing the prediction

of the KPI Elapsed Time from Contract to the last Invoice Receipt for the approach

with the aggregated features. In particular, each boxplot is ordered by the average

Shapley value on the selected KPI considering the absolute value. Each row of the

boxplot is linked to an explanation, which extends towards left or right, depending

whether the observed Shapley values for the explanation were negative or positive. It

can be clearly seen in Figure 2 that many aggregated features are indeed considered

relevant by the predictive model; as an example, the most important explanation is %

ORDER PURCH GROUP=100 L50 > 0.33 and the average associated Shapley value

is -15 days: this means that, when more than the 33% of the orders are related to the

purchase group 100 L50, the estimated Elapsed Time from the signature of the Con-

tract to the last Invoice Receipt reduces on average by 15 days.

A similar reasoning can be applied to Figure 3, which reports on some of the most
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Figure 3: Boxplot representing the impact of some of the most important features that were added to the

predictive model (such as the attributes related to the Invoice object type) in order to improve the accuracy

for the KPI Elapsed Time from Contract to the last Invoice Cleared in the approach without aggregated

features.

Figure 4: Boxplot representing the impact of some of the most important aggregated features that were added

to the predictive model in order to improve the accuracy for the KPI Elapsed Time from Contract to the last

Invoice Cleared in the approach with aggregated features.
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important features influencing the prediction of the KPI Elapsed Time from Contract

to the last Invoice Cleared for the approach without the aggregated features. As it can

be seen, several features were added after considering the object interaction and were

considered useful by the predictive model, such as PAY DUE MONTH ADJ and the

occurrence of the activity Invoice Due Date Changed; these are attributes related to the

Invoice object type, whose values are related to the last opened invoice (or to the last

performed activity).

However, since we do not use aggregated features, we miss several factors signifi-

cantly influencing the prediction. Indeed, when we consider the aggregated features for

the same KPI (Elapsed Time from Contract to the last Invoice Cleared) and compute the

significance of the influence (i.e. the average Shapley value), we obtain the boxplots in

Figure 4. It can be clearly seen that the aggregation attributes are now among the most

important factors significantly influencing the prediction. As an example, the two most

important factors that are contributing to increase the estimated time are represented

by %Order planned delivery month=7 > 0.18 and 318 < #Orders < 966. The former

is associated with an average Shapley value of 20, which means that when more than

18% of the orders are delivered in July (month 7), the estimated time to clear the last

invoice is 20 days larger that the average. The latter, associated with an average Shap-

ley value of 8, indicates that when there are a lot of orders that needs to be managed at

the same time (between 318 and 966), the estimated time to clear the last invoice is 8

days larger that the average. Conversely, one of the most important factors contributing

to decrease the estimated time is ORDER, %Goods Line Registered > 0.97, which is

associated with an average Shapley value of -10; this means that, when the activity

Goods Line Registered (which represents the fact that the goods have been received)

has been performed at least once in more than 97% of the orders, the estimated time

reduces on average by 10 days.

5. Related Works

A body of research exists on object-centric processes. Several research works focus

on modelling object-centric processes (e.g. [17]) and the verification of the correctness
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of these models [18, 19]. In the realm of Process Mining, techniques are proposed to

discover object-centric process models and behavioral dependencies between objects

(i.e. artifacts) [20, 21, 22, 23], and to tackle the problem of the object-centric process

conformance checking [24, 25]. However, none of the existing works consider object-

centric process predictive analytics. A few works consider interactions among different

instances of a process [26, 27, 28], but they still rely on the notion of a single process

flow (i.e., single case identifier). While some of these works provide valuable insights

into inter-case features, their extension to object-centric process is in fact the goal of

the technique proposed in this framework.

The work proposed in this paper is based on the idea to unfold an object-centric

event log into traditional events logs around a viewpoint. Berti et al. [29] have intro-

duced a very similar concept of viewpoint to indeed extract event logs from the data

stored in relational databases: however, the concept of viewpoint is not aimed at pro-

cess predictive analytics. In fact, unfolding typically leads to a duplication of events,

possibly strengthening existing directly-follows relationships or, even, adding new re-

lationships that do not exist in reality. These problems are known as convergence and

divergence [2, 30] and make it impossible to apply process-mining techniques designed

for single-flow processes that heavily rely on the directly-follow relationships, such as

those for model discovery and conformance checking. Conversely, unfolding causes no

problem in our process-prediction approach, because we do not use the direct-follow

relationships.

6. Conclusions

The lion’s share of attention in Business Process Management (BPM) has tradi-

tionally been on designing and analyzing processes that are based on a unique notion

of case identifier, with a single flow of execution from an initial state to one of the po-

tential final states. In practice, organizations execute more complex processes that are

often interacting with each other: one instance of a given process synchronizes with

instances of other processes, possibly exchanging data. In light of above, the object-

centric process paradigm is nowadays attracting more and more attention in academic
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and industry. In this paradigm, the process is seen as the interplay of numerous sub-

processes that constitute life cycles of different objects of various types, where these

life cycles period synchronize with each other.

This paper tackles the problem of predictive analytics over object-centric processes.

The large share of research in predictive analytics cannot be directly applied here, be-

cause it traditionally focuses on the problem of predicting the outcome of cases (i.e.,

process instances) that run in isolation. Also recent techniques that capture the inter-

case dynamics assume instances to be of the same process, namely referring to the

same object type. If the valuable information of the interaction between objects of the

same or different type is not fed into the construction of prediction models, the resulting

model might be of low accuracy.

This paper reports on an approach where object-centric logs are unfolded into tra-

ditional event logs around a viewpoint, namely around a process’ object type. This

enables leveraging on the-state-of-art techniques for process predictions.

We conducted experiments with an event log related to a real object-centric pro-

cess being executed by an utility company in Italy, and measured the accuracy of the

predictions using our approach. The accuracy was subsequently also compared with

that of a naı̈ve approach that only considers the events related to the process of the

viewpoint objects. Experiments have shown that the naı̈ve approach performs rather

poorly, confirming the importance of our approach to consider the object interactions

when predicting.

As future work, we plan to test on other datasets. We also aim to leverage on pre-

diction techniques based on Graph Neural Networks [31, 32], where the relationships

between object types can be explicitly represented as, e.g., a UML or ER diagram (cf.

Figure 1). This would likely provide further information for higher-quality predictions.
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