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Abstract

Cloud-based software has many advantages. When services are divided into many

independent components, they are easier to update. Also, during peak demand, it is

easier to scale cloud services (just hire more CPUs). Hence, many organizations are

partitioning their monolithic enterprise applications into cloud-based microservices.

Recently there has been much work using machine learning to simplify this par-

titioning task. Despite much research, no single partitioning method can be recom-

mended as generally useful. More speci�cally, those prior solutions are “brittle”; i.e.

if they work well for one kind of goal in one dataset, then they can be sub-optimal if

applied to many datasets and multiple goals.

In order to �nd a generally useful partitioning method, we propose DEEPLY . This

new algorithm extends the CO-GCN deep learning partition generator with (a) a novel

loss function and (b) some hyper-parameter optimization. As shown by our experi-

ments, DEEPLY generally outperforms prior work (including CO-GCN, and others)

across multiple datasets and goals. To the best of our knowledge, this is the �rst re-

port in SE of such stable hyper-parameter optimization.

To enable the reuse of this research, DEEPLY is available on-line at https://bit.

ly/2WhfFlB.
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optimization, refactoring

1. Introduction

As more and more enterprises move to the cloud, new tools are needed. For ex-

ample, IBM helps clients with millions of lines of code each year in this refactoring

process. In one such e�ort, IBM worked with a Fortune 100 company to recommend

partitions for a system with over one million lines of code. These partitions were

manually inspected by subject matter experts and veri�ed within weeks (as opposed

to a year of manual e�ort)1. Unfortunately, the tool support needed for this process is

still in its infancy. For example, consider the problem of how to divide up old software

for the cloud (i.e., into microservices). Informally, we need to encourage cohesion and

minimize coupling. However, AI-based tools for doing this require more precise de�-

nitions of cohesion and coupling. In this paper, we show six state-of-the-art tools fo-

cused on that exact problem, which internally have several internal hyper-parameter

choices. The challenge with these tools is to tame that large hyper-parameter space.

Data mining is a powerful tool but, like any other software system (Xu et al. (2015),

analysts are often puzzled by all the options for the control settings. For example, con-

sider the task of converting monolithic enterprise software into cloud microservices.

For the task, it is a common practice to apply some clustering algorithm to decide

how to break up the code into k smaller microservices. A common question asked

by programmers is “what is a good value for k"? More generally, across all the learn-

ers used for microservice partitioning, currently there is little support for selecting

appropriate control settings (Desai et al. (2021); Yedida et al. (2021a).

Tools that can automatically learn settings for data miners are called hyper-parameter

optimizers (HPO). These tools can learn (e.g.) good k values while also optimizing for

other goals including cluster coherence (which should be maximized) and coupling

(which should be minimized). But HPO su�ers from hyper-parameter brittleness. For

example, Tu & Nair (2018) reported that if an optimizer works well for one kind of

1http://tiny.cc/mono2micro
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goal in one data set, they can be sub-optimal if applied to multiple datasets and goals.

In the case of redesigning software monoliths as cloud microservices, Yedida et al.

(2021a) recently reported that di�erent HPO tools perform best for di�erent sets of

goals being explored on di�erent datasets. To say that another way, based on past re-

sults, no speci�c prior partitioning method can be recommended as generally useful.

This we consider this as a signi�cant problem. As designs get more complex, parti-

tioning methods become very slow (Yedida et al. (2021a). For example, at the time of

this writing, we are running our algorithms for an industrial client. That process has

taken 282 CPU hours for 1 application. Hence it is less-than-ideal to ask engineers

to hunt through the output of multiple partitioning algorithms, looking for results

that work best for their particular domain. This especially true when each of those

algorithms runs very slowly. Instead, we should be able to o�er them one partitioning

method that is generally most useful across a wide range of problems.

To �nd a generally useful partitioning methods, this paper seeks HPO tools that

perform best across multiple datasets and goals (and prior work (Kalia et al. (2021);

Jin et al. (2019); Mazlami et al. (2017); Mitchell & Mancoridis (2006); Desai et al. (2021)

tended to explore just one or two partitioning methods). Thus, we propose DEEPLY ,

which is a novel combination of optimization (using Bergstra’s hyperopt tool (Bergstra

et al. (2013)) and a loss function. As shown by ur results, DEEPLY generally works

well across multiple goals and data sets.

To understand the bene�ts of DEEPLY , we investigate �ve research questions.

RQ1: How prevalent is hyper-parameter brittleness in automated microservice par-

titioning? We verify Yedida et al. (2021a)’s results, who showed that hyper-parameter

optimizers are “brittle", i.e., they work well for a few metrics and datasets, but are

not useful across multiple goals and data sets. The veri�cation is crucial to set the

motivation for our contribution.

RQ2: Is hyper-parameter optimization enough to curb the aforementioned optimizer

brittleness? Here we will show that standard hyper-parameter optimization methods

are insu�cient for solving brittleness.

RQ3: Since hyper-parameter optimization methods are not enough, How else

might we �x the aforementioned brittleness problem? To that purpose, we propose
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DEEPLY , a novel combination of hyper-parameter optimizers with a new loss func-

tion.

RQ4: Does DEEPLY generate “dust” (where all functionality is loaded into one parti-

tion) or “boulders” (where all partitions contain only one class each)? Here, we show that

DEEPLY avoids two anti-patterns. Speci�cally, DEEPLY does not create “boulders” or

“dust”.

The rest of this paper is structured as follows. We provide a detailed background

on the problem and the various attempts at solving it in §2. We then formalize the

problem and discuss our method in §3. In §4, we discuss our experimental setup and

evaluation system. We present our results in §5. Next, we show how the crux of our

approach extends beyond this problem in §6. We discuss threats to the validity of our

study in §7. Finally, we conclude in §8.

Before we begin, just to say the obvious, when we say that hyper-parameter opti-

mization is becomes more generally useful method with DEEPLY , we mean “generally

useful across the data sets and metrics explored thus far”. It is an open question,

worthy of future research, to test if our methods apply to other datasets and goals.

2. Designing for the Cloud

To fully exploit the cloud, systems have to be rewritten as “microservices” com-

prising multiple independent, loosely coupled pieces that can scale independently. Mi-

croservice architectures have many advantages (Al-Debagy & Martinek (2018); Wol�

(2016) such as technology heterogeneity, resilience (i.e., if one service fails, it does

not bring down the entire application), and ease of deployment. Therefore, it is of

signi�cant business interest to port applications to the cloud under the microservice

architecture. For example, Net�ix states that the elasticity of the cloud and increased

service availability are two of the primary reasons it switched to a microservice archi-

tecture2. They use the cloud for distributed databases, big data analytics, and business

logic. Further, they mention that moving to the cloud reduced their averaged cost. .

2https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
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Daya et al. (2016) report on the long queue of applications waiting to be ported to

the cloud. Once ported to cloud-based microservices, code under each microservice

can be independently enhanced and scaled, providing agility and improved speed of

delivery. But converting traditional enterprise software to microservices is problem-

atic. Such traditional code is monolithic, i.e., all the components are tightly coupled,

and the system is designed as one large entity. Thus, some application refactoring

process is required to convert the monolithic code into to a set of small code clusters.

When done manually, such refactoring is expensive, time-consuming, and error-

prone. Hence, there is much current interest in automatically refactoring traditional

systems into cloud services.

Some of the authors of this paper are part of the IBM “Mono2Micro” that helps

client redesign their systems for the cloud. Some of that analysis is manual since it

replies on extensive domain knowledge. That said, increasingly, there is automation

applied to this task. For example, given a set of test cases or use cases, it is reason-

able to ask “how does this knowledge of frequently use tests or use cases inform our

microservices design?”. For that purpose, some AI clustering can be used.

But when we try to use AI tools for this task, we often encounter the same problem.

Speci�cally, there are so many algorithms and partitioning goals:

• Table 1 lists the various coupling and cohesion goals used by prior work on par-

tition generation. Note that in column one, any goal marked with “[-]” should

be minimized and all other goals should be maximized.

• See also Table 2 which lists some of the partitioning tools, as well as their control

parameters. In the table, the core idea is to understand what parts of the code

call each other (e.g., by re�ecting on test cases or use cases), then cluster those

parts of the code into separate microservices. These algorithms assess the value

of di�erent partitions using scores generated from the Table 1 metrics.

In such a rich space or options, di�erent state-of-the-art AI approaches may generate

di�erent recommendations. Yedida et al. (2021a) concluded that looking at prior work,

we seem to have a situation where analysts might run several partitioning algorithms

to �nd an algorithm that performs the best based on their business requirements.

For example, analysts might prefer Mono2Micro (Kalia et al. (2020, 2021)) over others
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Table 1: Yedida et al. (2021a) report �ve widely used metrics to assess the quality of microservice partitions.

In this table, [-] denotes metrics where less is better and [+] denotes metrics where more is better. For details

on how these metrics are de�ned, see §4.4.

Metric Name Description Goal

BCS [-] (Kalia et al.

(2020)

Business context sensitivity Mean entropy of

business use cases

per partition

If minimized then

more business cases

handled locally

ICP [-] (Kalia et al.

(2020)

Inter-partition call percentage Percentage of

runtime calls across

partitions

If minimized then

less tra�c between

clusters

SM [+] (Jin et al.

(2019)

Structural modularity A combination (see

§4.4) of cohesion

and coupling

de�ned by Jin et al.

(2019)

If maximized then

more self-contained

clusters with fewer

connections

between them

MQ [+] (Mitchell &

Mancoridis (2006)

Modular quality A ratio involving

cohesion and

coupling, de�ned by

Mitchell &

Mancoridis (2006)

If maximized then

more processing is

local to a cluster

IFN [-] (Mitchell &

Mancoridis (2006)

Interface number Number of

interfaces needed in

the microservice

architecture

If minimized then

fewer calls between

clusters

NED [-] (Kalia et al.

(2020)

Non-extreme distribution Number of

partitions with

non-extreme values

If minimized,

fewer “boulders"

(large monolithic

partitions) or “dust”

(partitions with

only one class)

considering the clean separation of business use cases where as they might prefer

CoGCN (Desai et al. (2021)) and FoSCI (Jin et al. (2019)) for low coupling. As stated in

the introduction, this is hardly ideal since these partitioning algorithms can be slow to

execute. Accordingly, this paper seeks optimization methods that support partitioning

6



Table 2: Hyper-parameter choices studied in this paper. All the methods take runtime traces (or use cases)

as their input. These methods return suggestions on how to build partitions from all the classes seen in the

traces. For further details on these partitioning algorithms, see §3.

Algorithm Hyper-parameter (min, default, max)

Mono2Micro (Kalia et al. (2020, 2021)) Number of clusters (2, 5, 10)

FoSCI (Jin et al. (2019))

Number of clusters (5, 5, 13)

Number of iterations to run

NSGA-II

(1, 3, 6)

Population size for NSGA-II (30, 100, 200)

Parent size to use in NSGA-II (10, 30, 50)

MEM (Mazlami et al. (2017))
Maximum partition size (17, 17, 17)

Number of partitions (2, 5, 13)

Bunch (Mitchell & Mancoridis (2006))

Number of partitions (3, 5, 13)

Initial population size for hill

climbing

(2, 10, 50)

Number of neighbors to consider in

hill-climbing iterations

(2, 5, 10)

CoGCN (Desai et al. (2021))

Number of clusters (2, 5, 13)

Loss function coe�cients

α1, α2, α3

(0, 0.1, 1)

Number of hidden units in each

layer, h1, h2

(4, 32, 64)

Dropout rate (0, 0.2, 1)

for a wide range of data sets and goals.

3. Algorithms for Microservice Partitioning

Informally, partitioning algorithms take domain knowledge and propose parti-

tions containing classes that often connect to each other. For example, given a set of

use cases or traces of test case execution:

• Identity the entities (such as classes) used in parts of the use cases/test cases;

• Aggregate the frequently connecting entities;

• Separate the entities that rarely connect.

7



This can be formalized as follows. Consider classes3 in an application A as CA such

that CA = {cA1 , cA2 , . . . , cAk }, where cAi represents an individual class. With this, we

de�ne a partition as follows:

De�nition 1. A partition PA on CA is a set of subsets

{PA
1 , P

A
2 , . . . , P

A
n } such that

•
n⋃

i=1

PA
i = CA, i.e., all classes are assigned to a partition.

• PA
i 6= φ ∀i = 1, . . . , n, i.e., there are no empty partitions.

• PA
i ∩ PA

j = φ ∀i 6= j, i.e., each partition is unique.

De�nition 2. A partitioning algorithm f is a function that induces a partition PA on

an application with classes CA.

The goal of a microservice candidate identi�cation algorithm is to identify a func-

tion f that jointly maximizes a set of metricsm1,m2, . . . ,mp that quantify the quality

of the partitions, i.e., given an application characterized by its class set CA, we aim to

�nd:

P∗A = arg max
P∈BCA

p∑
i=1

αimi(P; f) (1)

where BCA
denotes the set of all partitions of CA and p is the number of partitions.

The following is structured as follows. We �rst discuss prior approaches, and the

issues with them. These prior approaches come from a recent review of automated

microservice partitioning (Yedida et al. (2021a)), which studied the e�ect of hyper-

parameter optimization on these approaches. Then, we will present the business case

for a new algorithm, and �nally, we will discuss our approach.

3.1. FoSCI

FoSCI (Jin et al. (2019)) uses runtime traces as a data source. They prune traces

that are subsets of others, and use hierarchical clustering with the Jaccard distance

3This de�nition trivially extends to languages without classes; translation units such as functions could

be used instead, for example.
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Table 3: Deep learning: a tutorial. In this work, deep learning is used by both CO-GCN and DEEPLY .

A deep learner is a directed acyclic graph. Nodes are arranged into “layers", which are proper

subsets of the nodes. Each node computes a weighted sum of its inputs, and then applies an

“activation function", yielding its output.

Deep learning (DL) (Goodfellow et al. (2016)) is an extension of prior work on multi-layer

perceptrons, where the adjective “deep” refers to the use of multiple layers in the network.

The weights form the parameters of the model, which are learned via backpropagation

(Rumelhart et al. (1986)) using the rule θ = θ − η∇θL where θ represents the parameters of

the model, η is the learning rate, and L is the loss function (described below).

A deep learner with L layers produces a prediction ŷ, and the network learns parameters

by using gradient descent to minimize the loss function L(y, ŷ). This loss function can be

arbitrarily designed, as done by the authors of CO-GCN (Desai et al. (2021)) to suit the speci�c

needs of the application.

For static learning rates, there has been an increased interest in learning rate schedules, where

η is replaced by a function η(t), where t is the iteration. The proposed schedules have both

theoretical (Seong et al. (2018); Yedida et al. (2021b)) and empirical (Smith & Topin (2017);

Smith (2017)) backing. Generally, however, all the papers agree on the use of non-monotonic

learning rate schedules. Speci�cally, Smith (2017) argues for cyclical learning rates, where

the learning rate oscillates between (ηl, ηu), a preset range for a speci�ed number of cycles.

More recently, Smith & Topin (2019) proposed a “1cycle" learning rate policy, where a single

cycle is used, and showed this to be e�ective, but simple.

Dropout (Srivastava et al. (2014)) is a technique which involves removing some nodes with a

probability p during training, and adjusting the weights of the model during testing. Srivas-

tava et al. (2014) argues that this enforces sparsity in the model weights, which improves the

model performance and makes it more robust to noise.
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to create “functional atoms". These are merged using NSGA-II (Deb et al. (2002)), a

multi-objective optimization algorithm to optimize for the various goals. Since FoSCI

relies on a somewhat older optimization algorithm (from 2002 (Deb et al. (2002))), and

all the goals are given equal priority, this can lead to suboptimal results if the di�erent

goals have, for example, di�erent scales.

3.2. Bunch

Bunch (Mitchell & Mancoridis (2006)) is based on search techniques such as hill-

climbing4 to �nd a partition that maximizes two speci�c metrics. It is well established

that such greedy search algorithms can get stuck in local optima easily (Russell &

Norvig (2002)).

3.3. Mono2Micro

Mono2Micro (Kalia et al. (2020, 2021)) collects runtime traces for di�erent busi-

ness use cases. Then, they use hierarchical clustering with the Jaccard distance to

partition the monolith into a set of microservices. However, as noted by Yedida et al.

(2021a), this approach takes as input the number of partitions, which di�erent archi-

tects may disagree on, or may not know the value of.

3.4. CO-GCN

CO-GCN uses the deep learning technology discussed in Table 3. More speci�-

cally, CO-GCN (Desai et al. (2021)) uses the call graph (built from the code) as input to

a graph convolutional neural network (Kipf & Welling (2016)). They develop a custom

loss function (de�ned in Table 3) that relates to the metrics being optimized for, and

thus, the neural network can be seen as a black-box system that optimizes for Equa-

tion (1). However, while their use of a custom loss function tailored to the goals is

novel, their approach has several hyper-parameters that a non-expert may not know

how to set, and their study did not explore hyper-parameter optimization .

4Their tool o�ers other heuristic-based approaches as well.
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CO-GCN uses an exponential learning rate scheduling policy (see Table 3 for de-

tails), where the learning decays exponentially. In our approach, we instead use the

1cycle (Smith & Topin (2019)) policy, which has more experimental backing.

CO-GCN also uses dropout (Srivastava et al. (2014)), which involves removing

some nodes with a probability p during training, and adjusting the weights of the

model during testing. Srivastava et al. (2014) argues that this enforces sparsity in the

model weights, which improves the model performance and makes it more robust to

noise.

CO-GCN is controlled by the settings of Table 2. Later in this paper, we show

that there are several bene�ts in using hyper-parameter optimization to automati-

cally select good subsets of these hyper-parameters. Note that (a) all our partitioning

methods (CO-GCN and all the others shown above) utilize hyper-parameter opti-

mization; (b) even better results can be obtained via augmenting HPO with a novel

loss function (and that combination of HPO+loss function is what we call DEEPLY ).

3.5. The case for a new algorithm

The discussion so far shows that there are several approaches that perform auto-

matic microservice partitioning, with di�erent goals, i.e., businesses may be able to

choose based on the goals they need, which application to use. However, our industry

partners have stressed that these are not widely adopted for several reasons.

Key among these reasons is that these approaches all have hyper-parameters. In-

dustry practitioners, having worked with their monolithic systems, may not know

how many partitions would be “ideal" for a microservice architecture. Furthermore,

there may be disagreements between di�erent practitioners on the number of mi-

croservices (clusters), for example. Moreover, hiring an expert such as a system ar-

chitect can be expensive, and even then provides no guarantees that just because the

architect recommends, say, 4 microservices, that the system will build the microser-

vices envisioned by the architect.

On top of the above, refactoring a monolithic application into microservices is

expensive. It is a time-consuming process that can take months to complete, with

rigorous testing required to ensure that the outward functionality of the system has
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not been changed. Therefore, it is crucial to large enterprises that if and when such

a change is made, that it is done well. What “well" means can vary from business to

business, or even application to application. For example, while a commercial product

that faces millions of users might have the non-functional requirement that it be fast,

an internal tool may not have such a requirement.

Finally, we bring up the results of the study by Yedida et al. (2021a). Speci�-

cally, they studied microservice partitioning algorithms, and showed that “there is no

best algorithm". That is, each algorithm that they studied (when tuned with hyper-

parameter optimization) was an expert at one of the metrics, but did poorly on the

rest. Of course, this does not inspire much con�dence in businesses who might be

open to adopting these automated systems, and whose requirements may be con-

stantly changing.

3.6. DEEPLY

Summarizing the approaches in prior work, we note that they su�er from the

following limitations:

(a) They have hyper-parameters that practitioners may not understand or know

how to set.

(b) They rely on techniques that can easily get stuck in suboptimal, local minima.

(c) They treat all the metrics as having equal priority, when it may not be the case

(e.g., some feature scaling may be needed, or the business priorities are di�er-

ent).

To address the limitations, we propose an extension to the CO-GCN (Desai et al.

(2021)) deep learner. DEEPLY uses an hyper-parameter optimization technique that

is known to deal with local optima better, and (b) a novel reweighting of the metrics

based on data.

When algorithms produce a highly variable output, then hyper-parameter opti-

mization , described in §3.6.2, can be used to automatically learn the control settings
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that minimize the variance. Speci�cally, we use the fact that a hyper-parameter op-

timization algorithm, in searching for optimal parameters, must test di�erent hyper-

parameter con�gurations, each of which produces a di�erent result. The results are

aggregated together to form a frontier, from which we can pick the “best" sample. To

do so, we notice that simply picking a model based on one metric sacri�ces the per-

formance in others. Moreover, using a sum of all metrics has the disadvantages of (a)

di�erent scales for di�erent metrics (b) learners doing well in the “easy" metrics but

not in the others (c) ignoring correlations among the metrics. Therefore, we design a

custom loss function to choose the best sample.

For further details on all the concepts in the last two paragraphs, see the rest of

this section.

3.6.1. Feature Engineering

DEEPLY uses the deep learning technology discussed in Table 3.

We format our datasets into the form required by a graph convolutional network

(Kipf & Welling (2016)) as suggested in CO-GCN (Desai et al. (2021)). A graph con-

volutional network models a graph as a pair of matrices (A,X), where A is the (bi-

nary) adjacency matrix and X is the feature matrix. Our graph is characterized by

nodes corresponding to classes, and edges corresponding to function calls between

two classes. If a class is not used by any of the APIs published by the software, then

it is removed from the graph. The adjacency matrix is trivially de�ned as Mij = 1 if

an edge exists between the vertices i, j, and 0 otherwise.

For the feature matrix, we follow the approach of suggested in CO-GCN (Desai

et al. (2021)). Speci�cally, we �rst de�ne the entry point matrix E ∈ {0, 1}|V |×|P |

(where V is the set of classes, and P is the set of entry points). Entry points refer

to APIs published by a software, each potentially for di�erent functions. Then, for

each such entry point (i.e., API), we consider the set of classes invoked in its exe-

cution. We consider the entry Eij = 1 if class i is part of the execution trace of

entry point j, and 0 otherwise. Additionally, we consider the co-occurrence matrix

C ∈ {0, 1}|V |×|V | such that Cij = 1 if both classes i, j occur in the same execution

trace, and 0 otherwise. Finally, we de�ne the dependence matrix D ∈ {0, 1}|V |×|V |

13



as Dij = Dji = 1 if class i inherits from class j or vice versa, and 0 otherwise. The

feature matrix X ∈ R|V |×(|P |+2|V |) is the concatenation of E,C,D (in that order),

and is then row-normalized.

CO-GCN also uses dropout (Srivastava et al. (2014)), which involves removing

some nodes with a probability p during training, and adjusting the weights of the

model during testing. Srivastava et al. (2014) argues that this enforces sparsity in the

model weights, which improves the model performance and makes it more robust to

noise.

3.6.2. Hyper-parameter Optimization

Hyper-parameter optimization is the systematic process of �nding an optimal set

of hyper-parameters for a model. In the speci�c case of optimizing CO-GCN, those

parameters are shown in Table 2.

Several approaches for hyper-parameter optimization now exist. Of note is the

work by Bergstra et al. (2011)5 which discusses three di�erent approaches. In this

paper, we use a newer, widely used hyper-parameter optimization algorithm called

Tree of Parzen Estimators (TPE) (Bergstra et al. (2011)). TPE divides data points seen

so far into best and rest, each of which are modeled by a Gaussian distribution. New

candidates are chosen so that they are highly likely to be in the best distribution.

Evaluating these candidates adds to the data points, and the algorithm continues.

This algorithm was open-sourced by its authors in a package called hyperopt (Bergstra

et al. (2013)). Therefore, in this paper, whenever we say “hyperopt", we mean TPE as

implemented by this package.

3.6.3. Loss Function

Table 3 discussed loss functions L that o�ers weights to the feedback seen by the

learner during the inner-loop of the learner process. Numerous researchers report

that augmented loss functions can enhance reasoning:

5As of August 2021, this paper has 2,800 citations.
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Figure 1: Spearman ρ among metrics from 1,000 runs.

• Ryu & Baik (2016) used reweighted Naive Bayes for cross-project defect predic-

tion;

• In a similar approach, a reweighted Naive Bayes was used by Arar & Ayan

(2017) for defect prediction and Yedida & Menzies (2021) explored weighted

loss functions in deep learners for defect prediction.

• In the AI literature, Lin et al. (2017) propose a “focal loss" function that uses an

exponential weighting scheme.

To the best of our knowledge, augmenting the loss function has not been previously

attempted for improving microservice partitions.

One challenge with designing a loss function is how to obtain the required weights.

In DEEPLY , we �rst run the algorithm 1,000 times to generate a set of metrics shown

in Table 1. Then, we check the correlation among the metrics using the Spearman

correlation coe�cients. If any two metrics have strong correlations we prefer to keep

one to remove the redundant metrics for the optimization. Figure 1 indicates the

correlations among the metrics. Clearly, some of the metrics are highly correlated.

Therefore, we use a reduced set of metrics for evaluating our approaches. We set a

threshold of 0.6 to prune the set of metrics. We observe that MQ has higher correla-

tions with other metrics than SM. Since IFN and ICP are highly correlated across all

datasets, we arbitrarily choose ICP. This leads to the �nal set of metrics: BCS, ICP, and

SM. Note that to ensure that we do not generate “dust" (individual classes in a parti-

tion) or “boulders" (monolithic partitions), we also include NED in the �nal metric set

(for which we assigned a static weight of 0.2).

Based on these three metrics, we choose a loss function to pick one model from
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the frontier of best solutions. This loss function is

LH(P ) =
∑
i

wimi(P ) (2)

where wi are weights assigned to each of the metrics mi, and P is the partition.

Additionally, we divide the BCS weight by 10 (for an overall weight of 0.1) to normalize

its value to the same order of magnitude as the other metrics. Finally, we add in a term

for the NED metric, so that we do not generate “dust" or “boulders" (e.g., a monolith

with 20 classes is not partitioned into 19 and 1).

Next, we change the clustering method used in CO-GCN (Desai et al. (2021)).

Rather than using the k-means clustering, which assumes globular clusters, we use

spectral clustering, which can produce more �exible cluster shapes (Yedida & Saha

(2021)). We also change the cluster loss function to

Lclus =
∑
i

min
j
|xi − xj | (3)

where xi and xj are data points.

Next, we update the learning rate scheduling policy to the “1cycle" policy (Smith

(2017); Smith & Topin (2019)), which has been shown to lead to faster convergence

(see Table 3 for details). We update the learning rate every 200 steps.

Finally, we change all the activation functions in the network to ReLU (f(x) =

max(0, x)) (Nair & Hinton (2010)), except the last layer (which we leave unchanged

to f(x) = x). Speci�cally, like Desai et al. (2021), we use an encoder-decoder archi-

tecture with 2 layers per each layer; each layer being a graph convolution as de�ned

by Kipf & Welling (2016). Therefore, for an input feature matrix X , we consider

E ←ReLU(Â(ReLU(ÂXW1))W2) (4)

D ←ReLU(Â(ReLU(ÂEW3))W4) (5)

Algorithm 1 shows the overall approach. In the algorithm the lines in red (19-22,25)

are from the CO-GCN algorithm (and all else is our extension). We �rst collect cor-

relation statistics using a Monte Carlo-style data collection (lines 1-4). Then we set

weights (lines 4-7) and run hyperopt for 100 iterations (lines 10-15), while collecting
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the results of each run. The weighted loss function then picks the “best" candidate

in line 16, and returns the optimal hyper-parameters in line 17. The actual model

training itself is delegated to CO-GCN-modified.

We form the graph Laplacian in lines 18-20, and pretrain (for 1 epoch) the encoder

(see Eq. (4)) and decoder (see Eq. (5)). We initialize the clusters in line 23, but use

spectral clustering instead. Then, we run the actual training for 300 epochs.

In summary, our new method DEEPLY di�ers from CO-GCN in the following ways:

• We use a better learning rate scheduling policy from deep learning literature

(discussed in Table 3).

• We update the activation functions used in the neural network (also see Table 3).

• We run hyper-parameter optimization and choose from the Pareto frontier us-

ing a custom loss function over a reduced space of metrics (discussed in §3.6.2).

• We update the clustering method employed, and the corresponding term in the

deep learner loss function (see §3.6.3).

4. Experimental Design

In this section, we detail our experimental setup for the various parts of our

research. Broadly, we follow the same experimental setup as Yedida et al. (2021a).

However, that paper concluded that di�erent optimizers performed di�erently across

datasets and metrics, and that there was no one winning algorithm. In this paper,

using the method described in §3.6, we show that our approach wins most of the time

across all our datasets and metrics.

4.1. Case studies

We use four open source projects to evaluate our approach against prior work.

These are acmeair6 (an airline booking application), daytrader7 (an online stock trad-

6https://github.com/acmeair/acmeair
7https://github.com/WASdev/sample.daytrader7
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Algorithm 1: DEEPLY . Note CO-GCN-modi�ed is a sub-routine containing

our changes to the original CO-GCN system. The the lines in red (18-21,24)

are from the original CO-GCN algorithm (and all else is our extension).

1 Algorithm DEEPLY

Input : graph dataset D

Output: optimal hyper-parameters θ∗

2 for 1,000 iterations do

3 run CO-GCN-modified(D) with random settings and collect metrics

4 end

5 wSM ← −1/corr(SM,MQ) // initialize weights

6 wICP ← 1/corr(BCS, ICP )

7 wNED ← 0.2, wBCS ← 0.1

8 θ = φ // initialize our history to empty set

9 M = φ // initialize results to empty

10 for i=1..100 do

11 θi ← hyperopt(θ)

12 Mi ← CO-GCN-modified(D; θi) // run the model

13 append θi to θ // log hyper-params

14 append Mi to M // log results

15 end

16 θ∗ = argmin
θ

4∑
j=1

wjMj

17 return θ∗

18 Algorithm CO-GCN-modi�ed
Input : graph dataset D = (A,X)

Output: partitioned microservices

// compute the graph Laplacian

19 Ã← A+ I

20 de�ne diagonal matrix D̃ such that D̃ii =
∑
j

Ãij

21 Â← D̃− 1
2 ÃD̃− 1

2

22 pretrain the encoder and decoder using (4) and (5) respectively

23 initialize the clusters using spectral clustering on embeddings

24 train the network (E,D) for 300 epochs using Alg. 1 lines 5-9 from (Desai et al.

(2021)) and 1cycle (Smith & Topin (2019))

25 get embeddings using (4)

26 cluster the embeddings using spectral clustering

27 return clusters
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Table 4: Statistics about the datasets used in this study.

Application #classes #methods #Runtime

traces

Class

coverage

Method

coverage

acmeair 33 163 11 28 (84%) 108 (66%)

daytrader 109 969 83 73 (66%) 428 (44%)

jpetstore 66 350 44 36 (54%) 236 (67%)

plants 37 463 43 25 (67%) 264 (57%)

ing application), jpetstore8 (a pet store website), and plants9 (an online web store for

plants and pets). These applications are built using Java Enterprise Edition (J2EE),

and common frameworks such as Spring and Spring Boot.

In Table 4, we show statistics about the datasets (number of classes and methods)

and the runtime traces that we used (number of traces, and their class and method

coverage). While the coverage here may seem low, we note that applications tend

to have a signi�cant amount of “dead”, or unreachable code. For example, Brown

et al. (1998) found between 30 to 50% of an industrial software system was dead code.

Eder et al. (2012) found that for an industrial software system written in .NET, 25% of

method genealogies were dead. Therefore, we were not worried about the coverage

seeming low.

4.2. Hyper-parameter Optimization

We use the Tree of Parzen Estimators (TPE) (Bergstra et al. (2011)) algorithm from

the hyperopt (Komer et al. (2014)) package for hyper-parameter optimization . As

discussed in §3.6, we use LH(P ) from (2) to guide hyperopt towards an optimal set of

hyper-parameters. Table 2 lists the hyper-parameters that we tune, along with their

ranges. We run the hyper-parameter optimizer for 100 iterations. We train for 300

epochs using an initial learning rate of 0.01.

8https://github.com/mybatis/jpetstore-6
9https://github.com/WASdev/sample.plantsbywebsphere
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4.3. Baselines

Following our literature review, we use the baselines shown in Table 2. All these

approaches, except Mono2Micro and CO-GCN, were either open-source, or re-implemented

by us. For a fair evaluation, we tune each algorithm with hyperopt for 100 iterations

(which is the same as our approach). We use the same loss function LH(P ) shown

in (2), but set all the weights to either 1 (for metrics we wish to minimize), or -1 (for

metrics we wish to maximize), since the correlation-based weights are a novel idea

for our approach.

4.4. Metrics

For a fair comparison with prior work, we must compare using the same set of

metrics. We choose a total of �ve metrics to evaluate our core hypothesis that hyper-

parameter tuning improves microservice extraction algorithms. These are detailed

below. These metrics have been used in prior studies, although di�erent papers used

di�erent set of metrics in their evaluations. For fairness, we use metrics from all prior

papers. These metrics evaluate di�erent aspects of the utility of an algorithm that

might be more useful to di�erent sets of users (detailed in the RQ1), e.g., BCS evaluates

how well di�erent business use cases are separated across the microservices.

Inter-partition call percentage (ICP) (Kalia et al. (2020)) is the percentage of runtime

calls across di�erent partitions. For lower coupling, lower ICP is better.

Business context sensitivity (BCS) (Kalia et al. (2020)) measures the mean entropy

of business use cases per partition. Speci�cally,

BCS =
1

K

K∑
i=1

BCi∑
j BCj

log2

(
BCi∑
j BCj

)
where K is the number of partitions and BCi is the number of business use cases in

partition i. Because BCS is fundamentally based on entropy, lower values are better.

Structural modularity (SM), as de�ned by Jin et al. (2019), combines cohesion and

coupling, is given by
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SM =
1

K

n∑
i=1

cohi
N2

i

− 1

Ni(Ni − 1)/2

∑
i<j<K

coupi,j

cohi =
2

m(m− 1)

∑
ci,cj∈C

i<j

σ(ci, cj)

coupi,j =

∑
c1∈Ci
c2∈Cj

σ(c1, c2)

|Ci||Cj |

where Ni is the number of classes in partition10 i, K is the number of partitions,

cohi is the cohesion of partition i, and coupi,j is the coupling between partitions i and

j, ci refers to a class in the subset, Ci, Cj are two partitions, σ is a general similarity

function bounded in [0, 1], and the i < j condition imposes a general ordering in the

classes. Higher values of SM are better.

Modular quality (MQ) (Mitchell & Mancoridis (2006)), coined by Mitchell & Man-

coridis (2006), is de�ned on a graph G = (V,E) as

MQ =
2µi

2µi + ε

µi =
∑

(e1,e2)∈E

1(e1 ∈ Ci ∧ e2 ∈ Ci)

ε =
∑

(e1,e2)∈E
i6=j

1(e1 ∈ Ci ∧ e2 ∈ Cj)

where 1 is the indicator function, and Ci, Cj are clusters in the partition. Higher

values of MQ are better.

The interface number (IFN) (Mitchell & Mancoridis (2006)) of a partition is the

number of interfaces needed in the �nal microservice architecture. Here, an interface

is said to be required if, for an edge between two classes in the runtime call graph, the

two classes are in di�erent clusters.

10Note that we use the term “partition" to refer to both the set of all class subsets, as well as an individual

subset, but it is typically unambiguous.

21



Finally, the non-extreme distribution (NED) is the percentage of partitions whose

distributions are not “extreme" (in our case, these bounds were set to min=5, max=20).

However, as shown in Figure 1, some of these metrics are highly correlated with

others. Therefore, to avoid bias in the evaluation and the loss function (i.e., if metrics

M1 and M2 are correlated, and optimizer O performs best on M1, it likely performs

best onM2 as well), we use a subset of these metrics. Speci�cally, we prune the metric

set as discussed in §3.6.3. Note that across all our �gures and tables, a “[-]" following a

metric means lower values are better, and a “[+]" following a metric means that higher

values are better.

4.5. Statistics

For comparing di�erent approaches, we use statistical tests due to the stochastic

nature of the algorithms. According to standard practice (Ghotra et al. (2015)), we

run our algorithms 30 times to get a distribution of results, and run a Scott-Knott

test as used in recent work (Agrawal et al. (2019); Yedida & Menzies (2021)) on them.

The Scott-Knott test is a recursive bi-clustering algorithm that terminates when the

di�erence between the two split groups is insigni�cant. The signi�cance is tested by

the Cli�’s delta using an e�ect size of 0.147 as recommended by Hess & Kromrey

(2004). Scott-Knott searches for split points that maximize the expected value of the

di�erence between the means of the two resulting groups. Speci�cally, if a group l is

split into groups m and n, Scott-Knott searches for the split point that maximizes

E[∆] =
|m|
|l|

(E[m]− E[l])
2

+
|n|
|l|

(E[n]− E[l])
2

where |m| represents the size of the group m.

The result of the Scott-Knott test is ranks assigned to each result set; higher the

rank, better the result. Scott-Knott ranks two results the same if the di�erence be-

tween the distributions is insigni�cant.

5. Results

RQ1:How prevalent is hyper-parameter brittleness in automated microservice partition-

ing?
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Here, we ran the approaches from Table 2, 30 times each, then compared results

from those treatments with the statistical methods of §4.5. The median results are

shown in Table 5a and the statistical analysis is shown in Table 5b.

In those results, we see that across di�erent datasets and metrics, those ranks vary

widely, with little consistency across the space of datasets and metrics. For example:

• For jpetstore, we see that the best algorithms for the three metrics are Mono2Micro,

CO-GCN, and MEM respectively;

• For acmeair, the best algorithms are Mono2Micro, and Bunch;

• For plants, the best algorithms are FoSCI, CO-GCN, and MEM;

• For daytrader, the best are Mono2Micro, CO-GCN, and Bunch.

Hence we say:

For all the data sets and goals studied here, there is widespread performance

brittleness.

As to why this issue has not been reported before in the literature, we note that

much of the prior work was focused on one algorithm exploring one case study. To the

best of our knowledge, this is �rst to perform a comparison across the same datasets

and metrics and also propose a novel approach.

RQ2: Is hyper-parameter optimization enough to curb the aforementioned optimizer

brittleness?

Here we check of brittleness can be solved by tuning the partitioning methods.

Since all the algorithms in our study were tuned by hyperopt, the results of Table

5 show that even post-tuning, there is a large brittleness problem. Accordingly, we

say:

Hyper-parameter optimization does not su�ce to �x performance brittleness.

Since hyper-parameter optimization is not enough to tame brittleness, we ask:

RQ3: How else might we �x the aforementioned brittleness problem?

When we added the novel loss function (discussed above in §3.6.3), we obtained

the results shown in the last line of the two tables of Table 5b. When measured in
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Table 5: Results on all datasets. The top row shows our median performance scores over 30 runs, while the

bottom row shows the Scott-Knott ranks (lower is better). Gray cells indicate the best result according

to the Scott-Knott test. All algorithms were tuned by hyperopt.

(a) Median performance scores over 30 runs

Algorithm
jpetstore acmeair plants daytrader

BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+]

Bunch 2.43 0.48 0.21 1.67 0.55 0.17 2.29 0.56 0.22 1.86 0.57 0.27
Mono2Micro 1.67 0.53 0.05 1.58 0.4 0.06 2.49 0.39 0.07 1.58 0.4 0.07
CO-GCN 2.79 0.27 0.2 1.89 0.47 0.15 2.46 0.35 0.24 2.09 0.05 0.13
FoSCI 1.99 0.66 0.05 2.08 0.54 0.07 1.94 0.45 0.07 2.04 0.48 0.07
MEM 2.74 0.48 0.22 2.13 0.69 0.03 2.04 0.42 0.25 2 0.59 0.09

DEEPLY 2.35 0.06 0.2 1.41 0.18 0.16 1.87 0.02 0.27 1.74 0.03 0.17

(b) Scott-Knott ranks. For all metrics, lower is better.

Algorithm
jpetstore acmeair plants daytrader

BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+] BCS [-] ICP [-] SM [+]

Bunch 4 3 2 2 4 1 4 6 4 3 5 1
Mono2Micro 1 5 5 1 2 4 6 3 5 1 3 6
CO-GCN 6 2 2 3 3 3 5 2 3 6 2 3
FoSCI 2 6 4 4 4 5 2 5 6 5 4 5
MEM 5 4 1 5 5 6 3 4 2 4 6 4

DEEPLY 3 1 3 1 1 2 1 1 1 2 1 2

terms of ranks seen amongst the di�erent populations, the last line of Table 5b is

most insightful. Here we see that in general, DEEPLY performs better compared to all

other optimizers across all our case studies. Hence we say:

Weighted losses together with hyper-parameter optimization �x the brittleness

problem.

RQ4: Do we generate “dust" or “boulders"?

Two anti-patterns of partitioning are “dust” (generating too many partitions) and

“boulders” (generating too few partitions).

To analyze this, Figure 2 shows the distribution of partition sizes seen in 30 random
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Figure 2: Analysis of partitions generated by our approach. Distribution of class size percentages across

datasets (median results).

samples. From that �gure we say that our methods usually generate small number of

partitions. Also, since we are usually dealing with classes ranging from 33 in acmeair

to 109 in daytrader, Figure 2 tells us that we are not generating partitions with only

one item per partition (for example, on plants, the median size is 5.4% × 111 = 6

classes). Hence we say:

Our partitions are neither “boulders” nor “dust”.

6. Discussion

6.1. Lessons Learned

Yedida et al. (2021a) listed four lessons learned from their study. Our results sug-

gest that some of those lessons now need to be revised.

1. We fully concur with Yedida et al. when they said “do not use partitioning methods

o�-the-shelf since these these tend to have subpar results. That said, currently we are

planning to package (in Python) the DEEPLY system. Once that is available then

Algorithm 1 should accomplish much of the adjustments required to commission

DEEPLY for a new domain.

2. Yedida et al. said “the choice of tuning algorithm is not as important as the decision to

tune. The random and hyperopt optimizers performed di�erently on di�erent metrics
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and datasets, but in a broader view, shared the same number of highest statistical

rankings. Therefore, the decision to tune is important, but the choice of algorithm

may not be as important.”. We disagree since, as shown by Table 5b, our methods

demonstrate overall better results (as indicated by the statistical ranks).

3. Yedida et al. said “More research is required on tuning. While our results shows that

tuning is better than non-tuning, we also show that no single approach is a clear

winner across multiple datasets or multiple performance goals.”. We concur but add

that DEEPLY seems to resolve much of their pessimism about the state of the art

in hyper-parameter optimization.

4. Yedida et al. said “There is no best partitioning algorithm... there is no one best

algorithm across all metrics.” We agree, but only partially. The last row of Table 5b

shows that even our preferred method DEEPLY does not always obtain top rank.

That said, DEEPLY often performs as well or better than anything else.

6.2. On the value of dynamic traces

It is notable that one of the prior approaches we choose to compare against is

Bunch and its hill-climbing algorithm. Several years ago, an extensive empirical study

by Garcia et al. (2013) demonstrated that Bunch performs poorly in identifying mean-

ingful abstractions in real-world systems it analyzes. However, we still chose Bunch

as a comparative system, since that study used static attributes as the input to Bunch,

while our inputs come from dynamic, runtime traces, which we believe makes it

meaningfully di�erent. That is, we use the results of Garcia et al. (2013) as an indica-

tion that static traces may not be su�cient for the microservice partitioning problem,

and this study explores dynamic traces instead.

6.3. Business Implications

At a higher level, hyper-parameter tuning is akin to searching for various options

and guessing which one is the best; weighted loss functions directly encode business

goals in this process, making it a more focused e�ort. For example, changing business
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goals can be trivially implemented in our framework, since the weighted loss func-

tion used in the hyper-parameter tuning is based on the metrics (i.e., no additional

mathematical derivations need to be done).

Importantly, business users can (a) make a choice among many from the frontier

of best solutions of a size that they can choose, with the understanding that higher

sizes mean more options but takes slightly longer (b) see the trade-o�s between dif-

ferent architectural design choices directly in terms of metrics (c) easily choose new

metrics if they see �t. That is, our approach provides businesses with �exibility and

transparency into the working of the model. While the deep learner itself is a black

box, end users typically do not care about the internal workings of the model; only in

interpretable ways to do better in their goals (this was studied by Chen et al. (2019)).

For businesses, we o�er the following advantages:

• Stability: Business can be assured that our approach will perform well across

any dataset, no matter the metric used. This stability is important for time-

constrained businesses who need some guarantees of good results before using

a new approach.

• Performance: Our approach achieved state-of-the-art performance across dif-

ferent and uncorrelated metrics on four open-source datasets. This high per-

formance inspires con�dence in our approach for businesses looking to adopt

an automated system for the architectural change.

• Openness: Our code is fully open-source, but also modular. That is, businesses

are not limited to our speci�c approach (which builds upon CO-GCN and uses

hyperopt); rather, they are free to use our techniques to build upon any existing

infrastructure that they may have (e.g., IBM Mono2Micro).

6.4. Research Implications

The ideas of this paper extend to other tasks and domains. In this section, we

elaborate on the speci�c ideas and their broader utility.

Our approach is a general method that can be applied to any dataset, since the

components themselves can be changed. For example, a di�erent hyper-parameter op-
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timizer such as Optuna (Akiba et al. (2019)) can be used instead of hyperopt, and a dif-

ferent weighting mechanism can be chosen instead of our correlation-based weights.

Finally, a di�erent set of preprocessing can be used. Therefore, a generalized version

of our approach is:

(1) Feature extraction. Di�erent features sets can be extracted from code. For

example, one might use code2vec Alon et al. (2019), which transforms code

snippets to �xed-length vectors.

(2) Hyper-parameter optimization. Any hyper-parameter optimization approach

can be plugged in here, such as random sampling, TPE, DODGE, etc.

(3) Loss-based selection. Any loss function can be applied to the frontier of best

solutions to select a con�guration. Moreover, the loss function of the learner

itself can be modi�ed, as done in CO-GCN.

From a research standpoint, we o�er the following:

• Advancing the state-of-the-art: Our approach consistently outperforms all

the prior state-of-the-art approaches we tested against across three di�erent

metrics, on four datasets.

• Modular approach: Our approach can be adapted by changing the base algo-

rithm (CO-GCN) and hyper-parameter optimization algorithm (hyperopt) and

used on any dataset as discussed above.

• Documenting the success of weighted losses: Our paper adds to the body

of literature that documents the success of using weighted losses for di�erent

problems, possibly motivating future work to also use them. More generally,

our idea can be applied to any multi-objective optimization problem, using the

general method from our paper: produce a frontier of best solutions (through

hyper-parameter optimization, swarm optimization, etc.) and use a weighted

loss to choose the best candidate. This idea has been used implicitly in the

deep learning �eld. In particular, Santurkar et al. (2018); Li et al. (2017) show

that a smoother loss function surface is bene�cial for optimization. In the case
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of Santurkar et al. (2018), the adding of “skip-connections" in the deep learner

modify its loss function, making it smoother and therefore easier to optimize

in. This idea has also been used by Chaudhari et al. (2019), who change the loss

function to shape it into a more amenable form.

7. Threats to Validity

Sampling bias: With any data mining paper, it is important to discuss sampling bias.

Our claim is that by evaluating on four di�erent open-source projects across di�erent

metrics, we mitigate this. Nevertheless, it would be important future work to explore

this line of research over more data.

Evaluation bias: While we initially considered comparing across all the metrics we

found in the literature, we noticed large correlations between those metrics. There-

fore, to reduce the e�ect of correlations, we chose a subset of the metrics and eval-

uated all the approaches across those. Moreover, in comparing the approaches, we

tuned all of them using the same hyper-parameter optimization algorithm, for the

same number of iterations.

External validity: We tune the hyper-parameters of the algorithm, removing exter-

nal biases from the approach. Our baselines are also tuned using hyperopt for the

same number of iterations.

Internal validity: All algorithms compared were tuned using hyperopt. Because

our approach involves using weighted losses and other tweaks to CO-GCN, these w

ere not applied to the other algorithms.

8. Conclusion

In this paper, we presented a systematic approach for achieving state-of-the-art

results in microservice partitioning. Our approach consists of hyper-parameter opti-

mization and the use of weighted losses to choose a con�guration from the frontier

of best solutions.

Broadly, the lesson from this work is:
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At least for microservice partitioning, weighted loss functions can work together

with tuning to achieve superior results.

We �rst analyzed the existing state-of-the-art. Through this review, we noticed (a)

highly correlated, and therefore redundant, metrics used in the literature (b) incon-

sistent comparisons being made in prior work (c) prior work showing performance

brittleness across di�erent goals and datasets. We argued that this creates an issue

for businesses looking to use a microservice partitioning tool for internal software.

Through Monte Carlo-style sampling, we chose a reduced, less correlated set of met-

rics, and used those as data for choosing weights for each goal, accounting for their

di�erent scales. We built upon an existing tool, CO-GCN (Desai et al. (2021)), to build

DEEPLY in this paper, which �xes the issues listed above. To the best of our knowl-

edge, ours is the �rst structured attempt at (a) reviewing the literature for a list of

state-of-the-art microservice partitioning approaches (b) comparing all of them on

the same datasets and the same metrics (c) �xing the performance brittleness issue

using weighted losses and tuning. Finally, we discussed the broader impacts of the

approach speci�ed in this paper, generalizing the concept beyond the speci�c case of

microservice partitioning.

Our approach is extensible and modular, consistently outperforms other approaches

across datasets and metrics, and can easily be adapted to any metric that an enterprise

is interested in. Moreover, the two loss functions (for the deep learner and the hyper-

parameter optimization algorithm) can be tweaked to suit business goals.

9. Future Work

Our approach being modular leads to several avenues of future work, which we

discuss in this section.

Because we apply weighted losses at the hyper-parameter optimization level, we

can apply the same approach using a di�erent base algorithm than CO-GCN. Speci�-

cally, we could build a Pareto frontier using a di�erent state-of-the-art algorithm and

then use our weighted loss function to choose a “best" candidate.
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Further, it would be useful to explore our methods on more datasets and metrics.

In particular, it would be bene�cial to test our methods on large enterprise systems. In

addition, businesses might be interested in how much faster our system is compared

to human e�ort.

Finally, our method (using weighted losses to guide exploration of the Pareto fron-

tiers) is a general method that is not speci�c to microservice partitioning. Speci�cally,

since our losses choose from a Pareto frontier generated by a hyper-parameter opti-

mizer, (a) the choice of optimizer is left to the user (b) the application that the optimizer

is applied to can be freely changed. Therefore our methods might o�er much added

value to other areas where hyper-parameter optimization has been applied.
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