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Abstract: Structural health diagnosis of expansive soil slopes requires timely analysis 10 

of deformation monitoring data. A method for spatiotemporal clustering of monitoring 11 

data for health diagnosis is proposed. First, the deformation time series is upgraded to 12 

a panel time series, which includes spatial positions and temporal variations, and 13 

similarity characteristics of spatiotemporal deformation are discussed. Second, a 14 

similarity distance indicator is defined using three deformation variables: weighted 15 

absolute distance, weighted increment distance, and weighted growth rate distance. 16 

Third, a spatiotemporal clustering model of the deformation of expansive soil slope 17 

based on a spectral clustering algorithm is developed, together with a scoring algorithm 18 

for determining optimal clusters. The method analyses and diagnoses the deformation 19 

behaviour of the expansive soil slope structure of China's South-to-North Water 20 

Diversion Project central line. The advantage of the proposed method is demonstrated 21 

by comparing its results with results obtained by the commonly used temporal 22 

clustering method. It is further shown how the new method can be used to identify 23 

abnormal regions of expansive soil slope deformation. 24 

Keywords: expansive soil slope; deformation; spatiotemporal clustering; weighed 25 

clustering indicators; weighted comprehensive distance; anomaly identification 26 

Introduction  27 

Expansive soil is a geological body formed in natural geological processes. It can 28 

undergo significant expansion, contraction, and fissure development. These processes 29 

are susceptible to environmental changes, especially in humidity and temperature: the 30 
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soils expand when absorbing water and contract when water evaporates. Geological 1 

surveys on slope destruction in expansive soils (Hou et al., 2013; Lu et al., 2020; Xie 2 

et al., 2020; T. Li et al., 2021) indicate that irrespective of the slope formation – a natural 3 

slope, an excavated slope with undisturbed expansive soil, or a filled slope constructed 4 

with compacted expansive soil – it is easy to scour and peel off from the local slope, 5 

i.e., the soil can suffer overall collapse, landslide or other instabilities under the action 6 

of various geological stresses and environmental conditions. This behaviour often 7 

causes problems in engineering construction. According to statistics, expansive soil has 8 

been found in more than 40 countries worldwide, covering six continents. The most 9 

prominent countries that reported expansive soil engineering accidents include the 10 

USA, Australia, South Africa, India, Canada, Israel, and China. Examples include the 11 

Pittsburgh earth dam landslide and the collapse of the St. Francis arch dam (De 12 

Wrachien, 2009). Expansive soil channels of many irrigation areas and water transfer 13 

projects in China encountered landslide problems during the operation period, e.g., 55 14 

landslides in the slope treatment of the expansive soil canal in Hubei's Ebei Gangdi, 15 

195 landslides in the main canals in the 30 years before the operation of the Huaishihang 16 

Irrigation District, over 70 landslides in the expansive soil slope during the seven years 17 

operation of the South-to-North Water Diversion Project (Xiao et al., 2019). The 18 

uncertainty in the safe operating period affects the exploitation of the channel and may 19 

cause severe social, economic, and environmental impacts and even threaten life and 20 

safety. Currently, China is in the process of large-scale construction of irrigation areas 21 

and water diversion projects. Ensuring the long-term security and stability of the 22 

channels in the expansive soil area is critical for this ambitious program. Therefore, it 23 

is essential to analyse the deformation characteristics of expansive soil slopes and 24 

identify deformation anomalies. 25 

Methods for expansive soil slope stability analysis can be categorized into four 26 

types. The first type is the traditional limit equilibrium calculation method (Zhu et al., 27 

2003). It provides a convenient quantitative assessment of a slope stability safety factor 28 

but involves assumptions and restrictions, including judgment based on experience, 29 

which is highly subjective. The second type includes numerical calculation methods, 30 

such as the strength reduction method (Qi and Vanapalli, 2016). These involve 31 

convenient calculations but require many material parameters whose experimental 32 

determination is often challenging, and the accuracy of the judgment also depends on 33 

engineering experience. The third type includes methods for predicting deformation 34 
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trends by artificial intelligence algorithms (Alimohammadlou et al., 2014; Y. Chen et 1 

al., 2022; Li et al., 2018; Li et al., 2019; Miao et al., 2017). These are limited to 2 

analysing the time scale of the deformation monitoring data. Due to the particular 3 

property of expansive soil, it has been challenging to obtain reliable predictions, and 4 

such methods are rarely used for expansive soil slopes. The fourth type is based on 5 

engineering analogy, such as fuzzy comprehensive evaluation, grey cluster, reliability, 6 

and neural network evaluation methods (Li et al., 2017; Zhang et al., 2018, 2022). Their 7 

advantage is that they can capture the uncertainties affecting the stability of the slope. 8 

However, the current development of these methods, with few exceptions, is still 9 

limited to cluster analysis on the time scale, and the effect of space dimension is 10 

ignored. Some researchers (B. Chen et al., 2022; Chen et al., 2019; Salazar et al., 2017; 11 

Zhang et al., 2023b, 2023a) have studied the spatiotemporal clustering of arch dams but 12 

have only considered radial displacements and have not captured the collective effect 13 

of multiple deformation indicators from the monitoring system. Currently, the main 14 

issues in data clustering analysis for monitoring are twofold. Firstly, the weight of the 15 

indicators is not considered, meaning that there is no distinction between the importance 16 

of individual indicators when determining the distance during sample clustering. This 17 

leads to an inadequate reflection of the significance of different monitoring data indices 18 

in differentiating categories. Secondly, the weight of time is not taken into account, 19 

despite some researchers examining its impact on clustering. As a result, they are unable 20 

to develop a distance function that accurately captures the effect of different time points 21 

on category differentiation. Given that the failure of expansive soil canal slopes is 22 

repetitive, seasonal, and spatially unbalanced, and could cause significant harm to 23 

people and property in case of a landslide, a comprehensive spatiotemporal clustering 24 

method utilizing various monitoring data can be suggested to reflect the importance of 25 

different indicators and time points on clustering. Such a method can identify abnormal 26 

deformation of expansive soil canal slopes, laying a strong foundation for their safe and 27 

long-term operation. 28 

This work presents an analysis of slope deformation development based on long-29 

term monitoring data of expansive soil slopes. The analysis uses clustering methods 30 

from spatiotemporal data mining and extracts the similarity characteristics of 31 

deformation sequences. Considering the effects of different deformation monitoring 32 

data, such as internal horizontal displacement, horizontal surface displacement, and 33 

vertical displacement, three similarity indicators of "weighted absolute distance," 34 
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"weighted incremental distance," and "weighted growth rate distance" for different 1 

observation point deformation sequences of expansive soil slope are proposed. Based 2 

on the entropy weight method, the corresponding "weighted comprehensive distance " 3 

index is obtained to quantitatively analyse the similarity of the expansive soil slope 4 

from the time section and the spatial section. Based on the spectral clustering algorithm, 5 

a scoring algorithm is proposed to determine the number of clusters and divide the 6 

deformation period and its response deformation area of the expansive soil slope. 7 

Finally, a spatiotemporal clustering analysis model of the expansive soil slope based on 8 

various deformation data is developed to identify the abnormal deformation area and to 9 

issue an early warning of the anomalous region. The proposed method is applied to the 10 

expansive soil slope of the Taocha section of the central line of the South-to-North 11 

Water Diversion Project. The deformation behaviour of the expansive soil slope in 12 

different stages is analysed and diagnosed. The advantage of the proposed method is 13 

demonstrated by the comparative analysis of the diagnostic results obtained by the 14 

common and spatiotemporal clustering. 15 

1 Spatiotemporal evolution characteristics of deformation and failure of 16 

expansive soil slope 17 

Expansive soils are clay-rich materials with expansion, contraction, fissuring, and 18 

super-consolidation characteristics requiring special failure law. The shallow surface 19 

region of expansive soil is subjected to climatic stress. It forms a swelling-shrinking 20 

zone or a weathering-affected zone of a certain depth. A weak surface is formed 21 

between the swelling-shrinking region and the underlying expansive soil. The depth of 22 

this soft surface is within 6m. An expansive soil slope can therefore experience repeated 23 

landslides, potentially easily along the soft surface (shallow sliding) and possibly along 24 

surfaces at more considerable depths. These can be either gradual and multiple sliding 25 

at different locations or repeated at one location. The latter refers to the case of 26 

expansive soil slopes that have undergone initial sliding and have formed a relatively 27 

stable slope, which is reactivated by changes in the local shape of the landform and 28 

meteorological and hydrological conditions. This mechanism can continue to produce 29 

new landslides in many subsequent years. For example, most canal slope landslides 30 

occur in the rainy season, especially in the first rainy season after a long-term drought, 31 

with clear seasonal and intermittent patterns. 32 

Landslide failure of expansive soil slopes has temporal and spatial characteristics. 33 
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The slope can change its volume, shape, or macroscopic continuity. Changes that do 1 

not involve discontinuous motion are referred to as deformation. In safety monitoring, 2 

deformation refers to the displacement readings such as horizontal and vertical 3 

displacement – which is different from the established terminology in continuum 4 

mechanics. Discontinuous motion or sliding is an element of slope failure. Spatially, 5 

landslide failure does not occur globally at once but involves several phenomena: 6 

localization of deformation, stress transfer, deformation increase, and surface 7 

penetration (Qin et al., 2002; Reichenbach et al., 2018).  8 

In the traditional channel slope deformation analysis, the deformation data is often 9 

given by a one-dimensional array representing the time history of deformation at a 10 

single monitoring point. This representation omits the spatial dimension of 11 

deformation. The observation points need to be arranged in a two-dimensional grid 12 

covering the slope, and the temporal changes provide the third dimension to capture the 13 

spatiotemporal characteristics of slope deformation. Abnormal deformations in the 14 

slope can be obtained by analysing such 3D records instead of the traditional method. 15 

Monitoring the deformation of expansive soil slopes through various monitoring means 16 

and providing early warnings for abnormal areas will strongly support the prevention 17 

of large-scale deformations and landslides.  18 

To fully represent the spatiotemporal feature of the expansive soil slope 19 

monitoring data, the layout of the observation point is regarded as a two-dimensional 20 

panel, with time processing as the third dimension.  21 

2 Spatiotemporal similarity indicators of deformation 22 

2.1 Similarity feature selection 23 

Expansive soil canal slope deformation monitoring is a systematic project, and 24 

observation points at different positions have different deformation data. The essence 25 

of clustering analysis for these deformation observation points is to extract similarity 26 

features between different deformation sequences and then cluster the similar series. To 27 

achieve a better clustering effect, it is necessary to determine which deformation 28 

features to extract. 29 

Fig. 1 is used to illustrate a selection of features (Chen et al., 2019). The curves 30 

represent displacement time histories measured at three locations on the expansive soil 31 

slope: P1, P2, and P3. The displacement histories of points P1 and P3 are similar, but 32 

their initial values differ, so the final displacement values differ. The initial and final 33 
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values of points P1 and P2 are the same, but their time histories differ in different 1 

periods. For example, in the period from t1 to t2, the displacements at both points are 2 

increasing, but P1 is accelerating while P2 is decelerating. The most significant 3 

difference in magnitude and time history is between points P2 and P3. If the criterion 4 

for clustering is by similar time histories, points P1 and P3 should be classified into one 5 

cluster. If the criterion for clustering is by similar initial and final values, points P1 and 6 

P2 should be classified into one category. If the criterion for clustering increases the 7 

value of the monitored parameter, all points should be clustered into one category. A 8 

rational clustering method should consider several different deformation 9 

characteristics, including the change amount and the rate at each observation point 10 

during the entire period. 11 

 12 
Fig. 1 Development process lines of different deformation data 13 

In clustering analysis, the distance measurement methods used mainly Euclidean 14 

distance, Canberra distance, and Mahalanobis distance (Ercanoglu et al., 2004). The 15 

square of the Euclidean distance, referred to here as SED, is more convenient to work 16 

with as it avoids the calculation of square roots. Since the roles of each indicator and 17 

deformation variable are different, it is necessary to calculate the weight of each 18 

indicator and deformation variable to obtain a weighted distance indicator. Therefore, 19 

the commonly used SED is replaced in this work with a "weighted distance function," 20 

which captures the characteristics of the spatiotemporal deformation sequence. 21 

Different measurement methods use different scales for a variable, e.g., interval 22 

scale, nominal scale, and ordered scale. The deformation monitoring frequency is 23 

usually once a week or once a day, and the deformation unit is generally millimetres. 24 

Therefore, the analysis of spatiotemporal deformation data in this work is based on the 25 

interval scale. 26 

Let 𝛿!"(𝑖 = 1,2,⋯ ,𝑁; 𝑡 = 1,2,⋯ , 𝑇)  denote a deformation value at measuring 27 

point 𝑖 at time 𝑡, and 𝑑!# denote the similarity of the deformation at observation points 28 
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𝑖 and 𝑗, also known as the "distance" between the points (BONZO and HERMOSILLA, 1 

2002). This is defined by: 2 
 𝑑!#"(𝑆𝐸𝐷) = 3𝛿!" − 𝛿#"5

$.  (1) 3 

Large 𝑑!#  indicates a significant difference between deformations at points 𝑖  and 𝑗; 4 

small 𝑑!# indicates similar deformations at the two observation points.  5 

The spatiotemporal clustering of the deformation requires an indicator system for 6 

time series division and spatial observation point clustering. All similarity indicators in 7 

the following text are based on the SED. 8 

2.2 Temporal clustering indicators 9 

The time series of deformation has a variety of modes, and the deformation can be 10 

divided into different stages under different external environmental conditions. If the 11 

deformation time series can be effectively divided, the deformation state and stage can 12 

be identified, which is conducive to judging the safety state of the canal slope. Several 13 

major similarity indicators for time series clustering are studied below. 14 

2.2.1 Basic time indicators 15 

To consider the role of different similarity features and define a temporal similarity 16 

index, three fundamental similarity indicators based on SED are introduced: cross-17 

section "weighted absolute distance," cross-section "weighted incremental distance," 18 

and cross-section "weighted growth distance." 19 

(1) The cross-section "weighted absolute distance" between time instance 𝑖 and 𝑗 20 

is denoted as 𝑑!#% (𝐴𝐷) and given by: 21 
 𝑑!#% (𝐴𝐷) = ∑ ∑ 𝑊𝑋&[𝒙'&(𝑖) − 𝒙'&(𝑗)]$(

&)*
+
')*  (2) 22 

where 𝑊𝑋&  is the weight of the 𝑚 -th deformation variable 𝑥& ; 𝒙'&(𝑖)  is the 23 

deformation value of 𝑚-th variable at observation point 𝑛  at time instance 𝑖 ,3𝑛 =24 

1,2,⋯ ,𝑁，	𝑚 = 1,2,⋯ ,𝑀5 . Here, 𝒙'&(𝑖) = 𝜹'&(𝑖) ; 𝒙'&(𝑗) = 𝜹'&(𝑗) . Since 25 

several deformation variables will be considered, 𝑊𝑋& is used to weigh the importance 26 

of the 𝑚-th deformation variable 𝑥&.  27 

The value of 𝑑!#% (𝐴𝐷) measures the distance between time instance 𝑖 and 𝑗 of the 28 

𝑀 deformation variables at the 𝑁 observation points. The closer the deformation values 29 

at the two-time instances are, the smaller the value of 𝑑!#% (𝐴𝐷) is, indicating similar 30 

deformation at the two-time instances. 31 

(2) The cross-section "weighted increment distance" between time instance 𝑖 and 32 

𝑗 is denoted by 𝑑!#% (𝐼𝐷) and given by: 33 
 𝑑!#% (𝐼𝐷) = ∑ ∑ 𝑊𝑋&(

&)*
+
')* [𝒚'&(𝑖) − 𝒚'&(𝑗)]$ (3) 34 
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where 𝒚'&(𝑖) = 𝒙'&(𝑖) − 𝒙'&(𝑖 − 1); 𝒚'&(𝑗) = 𝒙'&(𝑗) − 𝒙'&(𝑗 − 1). 1 

The value of 𝑑!#% (𝐼𝐷) measures the distance between the deformation increments of the 2 

𝑀 variables at the 𝑁 measuring points during a time interval. The smaller the value of 3 

𝑑!#% (𝐼𝐷), the more similar the deformation increments during the interval are.  4 

(3) The cross-section "weighted growth rate distance" between time instance 𝑖 and 5 

j is denoted by 𝑑!#% (𝐺𝑅𝐷) and given by: 6 
 𝑑!#% (𝐺𝑅𝐷) = ∑ ∑ 𝑊𝑋&[𝒛'&(𝑖) − 𝒛'&(𝑗)]$(

&)*
+
')*   (4) 7 

 𝒛'&(𝑖) =
𝒚!"(!)
𝒙!"(!0*)

  (5) 8 

 𝒛'&(𝑗) =
𝒚!"(#)
𝒙!"(#0*)

  (6) 9 

The value of 𝑑!#% (𝐺𝑅𝐷)  measures the distance between the relative deformation 10 

increments of the 𝑀 variables at the 𝑁 measuring points during a time interval. The 11 

smaller the value of 𝑑!#% (𝐺𝑅𝐷), the more similar the relative deformation increments 12 

during the interval are. 13 

2.2.2 Cross-section "weighted comprehensive distance" 14 

A temporal similarity index is defined by integrating the three similarity indicators. 15 

The index measures the overall similarity of the deformation at observation points at 16 

different times. It is referred to as the cross-section "weighted comprehensive distance" 17 

between time instance 𝑖	and 𝑗, and denoted by 𝑑!#% (𝐶𝐷): 18 
 𝑑!#% (𝐶𝐷) = 𝛼* ∙ 𝑑!#% (𝐴𝐷) + 𝛼$ ∙ 𝑑!#% (𝐼𝐷) + 𝛼1 ∙ 𝑑!#% (𝐺𝑅𝐷)  (7) 19 

where 𝛼*, 𝛼$, 𝛼1 are the weights of the three fundamental time similarity indicators, 20 

respectively, 𝛼* + 𝛼$ + 𝛼1 = 1, 𝛼! > 0	(𝑖 = 1, 2, 3).  21 

2.3 Spatial clustering indicators 22 

A clustering analysis of observation points with similar deformation sequences is 23 

applied to divide the deformation area. Fundamental similarity indicators and a spatial 24 

similarity index corresponding to spatial observation data clustering are defined.  25 

2.3.1 Basic spatial indicators 26 

Analogously to the fundamental temporal similarity indicators, three basic spatial 27 

similarity indicators are defined: the full-time "weighted absolute distance," the full-28 

time "weighted increment distance," and the full-time "weighted growth rate distance." 29 

(1) The full-time "weighted absolute distance" between observation points 𝑘 and 30 

𝑙 is denoted by 𝑑234 (𝐴𝐷) and given by: 31 
 𝑑234 (𝐴𝐷) = ∑ ∑ 𝑊𝑋&%

")* [𝒙&"(
&)* (𝑘) − 𝒙&"(𝑙)]$  (8) 32 

where 𝑊𝑋& is the weight of the 𝑚-th deformation variable 𝑥&; 𝒙&"(𝑘) is the value of 33 
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the 𝑚 -th deformation variable of the observation point 𝑘  at time section 𝑡  (𝑚 =1 

1, 2,⋯ ,𝑀, 𝑡 = 1, 2,⋯ , 𝑇) ; 𝒙&"(𝑘) = 𝛿&"(𝑘) ; 𝒙&"(𝑙) = 𝛿&"(𝑙) . The value of 2 

𝑑234 (𝐴𝐷) measures the distance between deformations at observation points 𝑘 and 𝑙 at 3 

a given time instance. The closer the deformation values of the two observation points 4 

are, the smaller the value of 𝑑234 (𝐴𝐷) is, indicating similar deformation at the two 5 

observation points at the time instance. 6 

(2) The full-time "weighted increment distance" between the observation point 𝑘 7 

and 𝑙 is denoted by 𝑑234 (𝐼𝐷) and given by: 8 
 𝑑234 (𝐼𝐷) = ∑ ∑ 𝑊𝑋&[𝒚&"(𝑘) − 𝒚&"(𝑙)]$%

")*
(
&)*   (9) 9 

where 𝒚&"(𝑘) = 𝒙&"(𝑘) − 𝒙&,"0*(𝑘) ; 𝒚&"(𝑙) = 𝒙&"(𝑙) − 𝒙&,"0*(𝑙) . The value 10 

𝑑234 (𝐼𝐷)  measures the distance between the deformation increments at observation 11 

points 𝑘 and 𝑙 at a given time instance from the last time. The smaller the value of 12 

𝑑234 (𝐼𝐷), the more similar the deformation increments at the two observation points are.  13 

(3) The full-time "weighted growth rate distance" between the observation point 𝑘 14 

and 𝑙 is denoted by 𝑑234 (𝐺𝑅𝐷) and given by: 15 
 𝑑234 (𝐺𝑅𝐷) = ∑ ∑ 𝑊𝑋&[𝒛&"(𝑘) − 𝒛&"(𝑙)]$%

")*
(
&)*   (10) 16 

 𝒛&"(𝑘) =
6"#(%)

7",#()(2)
  (11) 17 

 𝒛&"(𝑙) =
6"#(*)

7",#()(3)
  (12) 18 

The value of 𝑑234 (𝐺𝑅𝐷)  measures the distance between the relative deformation 19 

increments at observation points 𝑘 and 𝑙 at a given instance from the last time. The 20 

smaller the value of 𝑑234 (𝐺𝑅𝐷), the more similar the relative deformation increments of 21 

the two observation points are. 22 

2.3.2 Full-time "weighted comprehensive distance"  23 

Integrating the three fundamental spatial similarity indicators defines a spatial 24 

similarity index. The index measures the overall similarity of the deformation at 25 

different observation points. It is referred to as the full-time "weighted comprehensive 26 

distance" between observation points 𝑘 and 𝑙 is denoted by 𝑑234 (𝐶𝐷): 27 
 𝑑234 (𝐶𝐷) = 𝛽* ∙ 𝑑234 (𝐴𝐷) + 𝛽$ ∙ 𝑑234 (𝐼𝐷) + 𝛽1 ∙ 𝑑234 (𝐺𝑅𝐷)  (13) 28 
where 𝛽*, 𝛽$, 𝛽1 are the weights of the three fundamental spatial similarity indicators, 29 

respectively, 𝛽* + 𝛽$ + 𝛽1 = 1, 𝛽! > 0	(𝑖 = 1, 2, 3). 30 

2.4 Standardized methods for eigenvalues 31 

The fundamental temporal and spatial indicators and the corresponding composite 32 

similarity indices have inconsistent dimensions and magnitudes with potentially 33 

significant differences, affecting the clustering results. Therefore, all the indicators are 34 
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standardized before clustering. The Z-score standardized method (Mohamad and 1 

Usman, 2013) can transform data into a normal distribution with zero means and unit 2 

variance and remove the effect of the feature dimension. This method is applied here 3 

for similarity indicators standardization. Consider 𝑁  observation points and 𝑇  time 4 

sections with recorded deformations. The Z-score standardized formula is given by: 5 
 𝑍(𝑥!") =

7+#08,
9,

  (14) 6 

 𝜇7 =
∑ ∑ 7+#-

#.)
/
+.)

+∙%
  (15) 7 

 𝜎7 = U∑ ∑ (7+#08,)-
#.)

/
+.)

+∙%0*
  (16) 8 

where 𝜇7  is the arithmetic mean (mathematical expectation) of all 𝑥!" , and 𝜎7  is the 9 

standard deviation of all 𝑥!". The range of the standardized data is limited, which can 10 

effectively avoid the influence of different dimensions and value ranges for clustering 11 

performance. 12 

2.5 Entropy weight method 13 

The entropy weight method is a method for determining indicators' weights. 14 

According to information theory (Boer et al., 2005),  information measures the order in 15 

a system, i.e., a negative entropy. The smaller the entropy of an indicator, the greater 16 

the information provided by the indicator. Hence an indicator with smaller entropy 17 

should be assigned a more considerable weight. The steps for determining the weight 18 

of an indicator by the entropy weight method (ZOU et al., 2006) are as follows: 19 

Step1: Calculate the ratio between the value of the variable 𝑥& at observation point 20 

𝑛 and all observation points 21 
 𝑞'& = 7!"

∑ 7!"/
!.)

,	𝑚 = 1, 2,⋯𝑀  (17) 22 

Step 2: Calculate the entropy of the variable 𝑥&. 23 
 𝑒& = −𝑘∑ 𝑞'&+

')* 𝑙𝑛(𝑞'&), 𝑚 = 1, 2,⋯ ,𝑀  (18) 24 
where 𝑘 = *

3'+
 is assumed in this work. The smaller the 𝑒&, the greater the effect of the 25 

variable 𝑥&. 26 
Step 3: Determine the variable's weight after standardizing the entropy value. 27 

Since 𝑒& is a reverse indicator after processing it positively and standardizing, the 28 

weight coefficient of the variable 𝑥& is obtained. 29 
 𝑊𝑋& = *0<"

∑(*0<")
, 𝑚 = 1, 2,⋯ ,𝑀  (19) 30 

The value of 𝛼* , 𝛼$ , 𝛼1 , 𝛽* , 𝛽$  and 𝛽1  in the temporal and spatial similarity 31 

indices are also obtained by these steps.  32 
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3 The spatiotemporal weighted clustering model 1 

3.1 Principles of spectral clustering 2 

Spectral clustering (SC) is based on spectral division theory (Luxburg, 2007). This 3 

method uses eigenvectors of similar data matrices for clustering to make the algorithm 4 

independent of the dimension of data points but only related to the number of data 5 

points. Compared with other methods, SC is simple in idea, easy to implement, does 6 

not easily fall into optimal local solutions, and can identify non-convex distribution 7 

clustering, which can be applied to many practical application problems. 8 

The SC algorithm first defines an affinity matrix describing the similarity of paired 9 

data points according to the given sample dataset, then calculates the eigenvalues and 10 

eigenvectors of the matrix, and finally selects the appropriate eigenvectors to cluster 11 

different data points. SC was first applied to computer vision (Yu and Shi, 2003), VLSI 12 

design (Weiss, 1999), and other fields. It is currently widely studied in behaviour 13 

recognition (Mohamad and Usman, 2013) and text image segmentation (Boer et al., 14 

2005), which is one of the research hotspots in machine learning. Specific SC 15 

algorithm-related content can be found in the literature (Luxburg, 2007) and will not be 16 

described in this paper. 17 

3.2 Validation index of cluster number 18 

It is necessary to conduct a comparative analysis through some indexes to evaluate 19 

the clustering effect and determine the appropriate number of clusters. The main 20 

indexes used are the Davies-Bouldin index (DB index), Dunn index, Rousseeuw's 21 

silhouette value (Silhouette value), and Calinski-Harabaz index (CH index). 22 

(1) DB index 23 

The definition of the DB index (Karo et al., 2017) is as follows: 24 
 𝐷𝐵 = *

(
∑ 𝑚𝑎𝑥!=#3𝑑!#5#)*,$,⋯,(
&
!)*  (20) 25 

 𝑑!# =
9+?90
@(A+,A0)

  (21) 26 

where 𝑀 is the number of clusters, 𝑑!# is the distance between the two samples, 𝜎! is 27 

the average distance from all patterns in cluster 𝑖 to the center cluster 𝑐!, and 𝑑3𝑐! , 𝑐#5 28 

is the distance between cluster centers 𝑐! and 𝑐#. If the clusters 𝑖 and 𝑗 are compact and 29 

their centres are far from each other, the 𝑑!# value will be small. Therefore, the DB 30 

index gets a good partition by looking for the minimum value. Smaller DB values 31 

indicate a better clustering effect. 32 

(2) Dunn index  33 
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The Dunn index (Arbelaitz et al., 2013) can be calculated by Eq. (22): 1 
 𝐷 = @"+!

@"1,
  (22) 2 

where 𝑑&!' is the shortest distance between two elements in different categories, and 3 

𝑑&B7 is the farthest distance between the above two elements. The more significant the 4 

Dunn index, the better the clustering effect.  5 

(3) Silhouette value 6 

Silhouette value (Struyf et al., 1996) can be calculated by Eq. (23):  7 
 s(𝑖) = C(!)0B(!)

&B7{B(!),C(!)}
  (23) 8 

where 𝑎(𝑖) is the average distance of 𝑖 to all other modes in cluster 𝑎, while 𝑏(𝑖) is the 9 

average minimum distance from 𝑖 to all modes in clusters other than cluster 𝑎. The 10 

larger the Silhouette value, the better the clustering effect. 11 

(4) CH index 12 

CH index (Krasnov and Sen, 2019) is a widely used non-labelled clustering effect 13 

evaluation index. The higher the value, the closer the cluster itself, the more dispersed 14 

the cluster, and the better the performance of the clustering algorithm. Cluster cohesion 15 

is calculated based on the distance of each data in the cluster to the centroid. The cluster 16 

separation degree is calculated based on the distance from the cluster's centroid to the 17 

global centroid. The index can be calculated by the formula (24): 18 
 𝜆(𝑁A) =

&!'F+0
&B7F0

  (24) 19 

where 𝐷!# is the distance between the centres of the two classification clusters, and 𝐷# 20 

is the distance set within each cluster. The optimal cluster obtained when 𝜆(𝑁A) reaches 21 

a peak, and when 𝜆(𝑁A) reaches a global maximum, 𝑁A is the optimal value. The value 22 

of the CH index has an extensive range, so all the obtained CH indexes will be 23 

standardized by the Z-score standardized method to facilitate subsequent analysis of the 24 

results. 25 

3.3 Scoring algorithm 26 

The elbow method is generally applied to determine the optimal number of spectral 27 

clustering clusters (Syakur et al., 2018). However, the number of clusters determined 28 

by one index is not necessarily referenced. This study determines the optimal number 29 

of clusters by calculating the above four indexes and then using a voting scoring 30 

algorithm (X. Li et al., 2021). The voting scoring algorithm is described as follows: for 31 

a single index, the score of the optimal number of clusters determined by the index is 32 

𝑃. The number of clusters that are second to the effect is scored 𝑃 − 1, and so on, to 33 
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determine the score of each cluster. Then add the scores of each cluster of the above 1 

four indexes to get the total score of each cluster. The highest-scoring number of clusters 2 

is selected as the final cluster number, and the result obtained by clustering these data 3 

is the optimal clustering result. This scoring algorithm effectively combines the 4 

advantages of different clustering effectiveness indexes and weakens the limitations of 5 

individual indexes. The implementation flowchart of the clustering analysis is shown 6 

in Fig. 2. 7 

 8 
Fig. 2 Spectral clustering analysis implementation flow chart 9 

3.4 Implementation steps of weighted clustering analysis  10 

A weighted clustering model is established based on the spatial-temporal similarity 11 

indicators and SC. First, the deformation sequences are divided into several time 12 

sections. Then the spatial observation points are clustered to realize the effective 13 

clustering of the deformation area based on the division of the time sections. The model 14 

establishment and analysis process are shown in Fig. 3. The basic steps are as follows： 15 

Step 1 Standardize the deformation data to obtain pre-processed data. 16 

Step 2 Calculate the indicator weights by Eqs. (17) ~ (19). 17 

Step 3 Use Eqs. (2) ~ (4) to calculate 𝑑!#% (𝐴𝐷),	𝑑!#% (𝐼𝐷), 𝑑!#% (𝐺𝑅𝐷). 18 

Step 4 Calculate the weights of the indicators 𝑑!#% (𝐴𝐷),	𝑑!#% (𝐼𝐷) and 𝑑!#% (𝐺𝑅𝐷) 19 

after standardization. 20 

Step 5 According to Eq. (7), the cross-section "weighted comprehensive distance" 21 

𝑑!#% (𝐶𝐷) is calculated, and the scoring algorithm determines the number of time series 22 

Determine the initial range of  
cluster number k=2,3,4,…,N

Spectral clustering algorithm is applied using the 
corresponding cluster number
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Calinski-Harabaz 
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Score each index for different cluster number and 
calculate total scores

Determine the optimal number of 
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clusters. The deformation sequence spectral clustering is performed. 1 

Step 6 Based on the time series clustering results, using Eqs. (8) ~ (10) to calculate 2 

𝑑234 (𝐴𝐷),	𝑑234 (𝐼𝐷), 𝑑234 (𝐺𝑅𝐷). 3 

Step 7 Calculate the full-time "weighted comprehensive distance" 𝑑234 (𝐶𝐷) of the 4 

observation points according to Eq. (13). Determine the number of spatial measuring 5 

points clusters by scoring algorithm, perform spectral clustering of the spatial 6 

measuring points, and obtain the clustering analysis results. 7 

Through the spatiotemporal clustering analysis, the similarity period and area of 8 

the deformation can be clustered to realize the state analysis of the expansive soil canal 9 

slope deformation. 10 

 11 
Fig. 3 Implementation process of spatiotemporal clustering  12 

4 Engineering application and discussion 13 

This section takes the deformation of the expansive soil canal slope in the middle 14 

line of the China South-to-North Water Diversion Project as an example to evaluate the 15 

validity of the spatiotemporal clustering analysis model for deformation. 16 

4.1 Engineering background 17 

Expansive soils are distributed in Nanyang, Shahe, Handan, and other areas in the 18 
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central canal of China's South-to-North Water Diversion Project. The cumulative length 1 

of the expansive soil slope is 346.85km, accounting for about 27% of the total length 2 

of the central canal (1266.495km). Due to the unique properties of the expansive soil, 3 

part of the expansive soil canal slope has encountered some problems during 4 

construction and operation. Therefore, it is of great significance to identify the 5 

deformation anomaly area for the long-term operation of the project. Since the project 6 

was put into operation on December 12, 2014, a large amount of canal slope monitoring 7 

data has been accumulated after seven years of operation.  8 

The expansive soil canal slope of the left bank section with stakes 9+120~9+363 9 

in Nanyang is selected for research. The cross-section structure of this canal section is 10 

shown in Fig. 4. The bottom width of the channel is 13.5m, the slope ratio of the water 11 

crossing section is 1:3.0, and the width of the first berm is 5m. The other berm is set up 12 

every 6m above, and the slope ratio between the first-grade berm and the fourth-grade 13 

berm is 1:2.5. The whole section of the canal slope is refilled with cement-modified 14 

soil, of which the thickness of cement-modified soil in the water crossing section is 15 

1.5m, and above the first berm is 1.0m. The concrete arch skeleton and grass planting 16 

in the arch protect the slope. Longitudinal drainage ditches are arranged on all grades 17 

of berms, and horizontal drainage ditches are constructed above the first-grade slope 18 

and berm. The canal section construction was completed in December 2013 and 19 

implemented in December 2014. 20 

 21 
Fig. 4 9+120~9+363 canal slope cross-section structure 22 
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This section of the canal slope is mainly composed of Quaternary Pleistocene silty 1 

clay and calcareous nodule silty clay. The layer description is as follows: 2 

Quaternary Middle Pleistocene (a1~plQ2): the first layer is silty clay, brown and 3 

brownish yellow, with no uniform boundary between soil colors, rigid plastic, 4 

containing ferromanganese and calcareous concretions. The content of calcareous 5 

nodules is 5~15%, enriched in local lumps. This layer is distributed at the elevation of 6 

152.00m~167.00m, and the thickness generally exceeds 15m. The second layer 7 

predominantly consists of clay, grayish yellow, light brownish yellow, hard plastic, iron 8 

and manganese plaques, and occasionally ginger stones. These lays distributed in a 9 

lenticular manner, distributed between 152.00m and 135.00m in elevation, and the 10 

thickest part of the clay layer is located at stake 9+065. The third layer is mainly 11 

composed of calcareous nodule silty clay, the overall color is yellowish brown, the 12 

content of calcareous nodules is between 50-60%, the particle size is generally 0.01-13 

0.04m, and the fine-grained soil is silty clay, hard plastic. It is distributed between 14 

142.00m and 138.20m in elevation, generally 4.0~6.5m thick.  15 

The stratification of fissure development is described as follows: the first layer is 16 

weak to moderate expansion. The top vertical fissures are developed, the micro, small 17 

and large fissures are developed, and the growing fissures are developed—the fissures 18 

towards the NE in this layer. The second layer is moderate expansion. Micro and small 19 

fissures are developed, and large and growing fissures are less developed. The third 20 

layer is moderately expanded, and no fissures are developed. 21 

The section of the canal slope is equipped with 15 inclinometer pipes, 15 surface 22 

horizontal displacement monitoring points, and 15 vertical displacement monitoring 23 

points. The specific layout of deformation monitoring instruments is shown in Fig. 5. 24 

The displacement measured by the inclinometer tube is divided into A and B directions. 25 

The A direction (internal horizontal displacement) is perpendicular to the channel water 26 

flow direction. The B direction is the channel water flow direction. The deformation 27 

amount in the B direction is small. Therefore, the displacement in the B direction is not 28 

analysed here. The A direction displacement is positive when pointing to the hollow 29 

surface of the canal slope and negative otherwise; the horizontal surface displacement 30 

is positive towards the channel's centreline and negative towards the outside of the 31 

channel; the vertical displacement is positive for sinking and negative for rising.  32 



 

17 
 

 1 
Fig. 5 Schematic diagram of the layout of deformation monitoring instruments 2 

The deformation monitoring data and related standardized derivative similarity 3 

indicators of the four sections of 9+120, 9+180, 9+300, and 9+363 of the past four years 4 

from October 10, 2017, to May 21, 2021, were analysed. The process line of the 5 

deformation values (where Fig. 7 shows the maximum internal horizontal displacement 6 

of the inclination tube) of all the observation points in the canal section are shown in 7 

Fig. 7~9.  8 

4.2 Time section division of deformation sequence  9 

Firstly, the deformation period is divided. The range of the number of clusters is 10 

set to [2, 10], and the DB index, Silhouette value, Dunn index, and CH index for 11 

different cluster numbers are calculated, respectively. Then use the scoring algorithm 12 

mentioned in Section 3.3 to calculate the scores for all numbers of clusters. The 13 

calculated index values and scores are shown in Fig. 6. 14 
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Fig. 6 Evaluation of clustering indexes in the scoring algorithm 1 

In Fig. 6(a), the numbers surrounding the circle are the number of clusters, and the 2 

radius is the corresponding index value. In Fig. 6(b), the number in the graph represents 3 

the score of each index at the corresponding number of clusters, and the total height of 4 

the bar chart is the total score. 5 

As shown in Fig. 6(a), the Silhouette value and DB index indicate that the 6 

clustering effect is optimal when the number of clusters is 2, while the CH index leads 7 

to the exact opposite conclusion. The CH index gets the maximum value when the 8 

number of clusters is 3. Using a single index to determine the number of clusters proves 9 

unreliable. As can be obtained from Fig. 6(b)， when the number of clusters is 3, the 10 

total score of all the indexes is the highest, and the highest score is 27. So, the optimal 11 

number of clusters for the time section division is 3. This result further divides and 12 

analyses the deformation in different time sections. 13 

The time section division results of the internal horizontal, surface horizontal, and 14 

vertical surface displacement are shown in Figs. 7-9. The first stage is the deformation 15 

onset stage from June 27, 2017, to June 9, 2018. In this stage, the slope's horizontal 16 

direction surface and vertical surface displacement grow slowly and steadily.  17 

The second stage is from June 20, 2018, to September 13, 2020, which is the 18 

deformation rapid development stage, in which the deformation shows an increasing 19 

trend. The vertical surface displacement grows relatively smooth without jumping 20 

increases. Some observation points' internal and horizontal surface displacements have 21 

a significant jump. 22 

The third stage is from November 9, 2020, to May 21, 2021, which is the 23 

deformation convergence stage. No displacement has changed significantly during this 24 

stage, and the deformation tends to converge. The horizontal surface displacement still 25 

shows an increasing trend, but the increase rate is substantially lower than in the second 26 

stage. This slope is in a safe state at stage 3. 27 

The time-section division results of this model are close to the actual slope 28 

deformation state, which shows the reasonability and the ability to distinguish the 29 

deformation development stage by dividing the time section of the monitoring sequence 30 

through the proposed model. 31 
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 1 
Fig. 7 The process line of the maximum internal horizontal displacement 2 

 3 
Fig. 8 The process line of horizontal surface displacement  4 

 5 
Fig. 9 The process line of vertical surface displacement 6 

4.3 Clustering of spatial observation points 7 

According to the time section division results, spatial clustering analysis was 8 

carried out of the observation points in the three stages. 9 

4.3.1 Deformation onset stage 10 

Perform spatial clustering on the deformation features of the first stage and set the 11 

range of the number of clusters to [2, 10]. The calculated different index values and 12 

scores are shown in Fig.10. The CH index shows the optimal number of clusters is 3, 13 

while all other indexes indicate that the clustering effect is supreme when the number 14 
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of clusters is 2. The total score ranks first when the number of clusters is two can be 1 

obtained from Fig. 10(b), so the best number of clusters is used in the following 2 

clustering analysis. 3 

  

(a) Index value (b) The individual index sores and total scores 

Fig. 10 Evaluation of clustering indexes in the scoring algorithm of stage 1 4 

 5 
Fig. 11 Clustering results in deformation onset stage 6 

The clustering result obtained after clustering the spatial observation points is 7 

shown in Fig. 11. The black dots in the figure represent the corresponding observation 8 

points in Fig. 5. The first grade in the figure means the first-grade bridle path, and so 9 

on. Areas of different colours represent the clustering results. 10 

It can be seen from Fig. 11 that in the first stage, the expansive soil canal slope 11 

section is divided into two regions with similar deformation, among which the first-12 

grade bridle path at the 9+120 and 9+180 sections are similar to zone I. The remaining 13 

are the similarity zone II.  14 

4.3.2 Deformation rapid development stage 15 

Perform spatial clustering of the deformation rapid development stage, set the 16 

range of the number of the cluster to [2, 10], and different index values and scores are 17 

calculated and shown in Fig. 12. The Silhouette index, DB index, and Dunn index 18 

indicate that clustering effect is optimum when the number of clusters is 2. In contrast, 19 

the CH index leads to the exact opposite conclusion. The number of 3 clusters achieved 20 

the highest total score. Therefore, when clustering the deformed feature spaces at this 21 
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stage, the spaces are divided into 3 clusters. The spatial clustering results are shown in 1 

Fig. 13, and the vertical displacement process lines in different regions of this stage are 2 

shown in Fig. 14. 3 

  

(a) Index value (b) The individual index sores and total scores 

Fig. 12 Evaluation of clustering indexes in the scoring algorithm of stage2 4 

 5 
Fig. 13 Clustering results in deformation rapid development stage 6 

 7 
(a) Cluster 1 of stage 2 8 

 9 
(b) Cluster 2 of stage 2 10 
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 1 
(c) Cluster 3 of stage 2 2 

Fig. 14 Vertical displacement clustering results in stage 2 3 

It can be seen from Fig. 13 that the canal slope is divided into three regions with 4 

similar deformation in the second stage, among which the first-grade bridle path at the 5 

9+120 and 9+180 sections is still zone I. The 9+120 second-grade bridle path, the 9+180 6 

second-grade bridle path, the 9+300 first and second berm, and the third-grade slope of 7 

the 9+300 and 9+363 sections formed zone II. The remaining area is zone III. 8 

It can be seen from the vertical displacement process line in Fig. 14 that there is a 9 

6.5×10-3m displacement difference between the observation points in zone I. However, 10 

the changing trend is almost the same, so the two points are still clustered into similar 11 

areas. By September 13, 2020, the vertical displacement range of the observation point 12 

in zone I is -5.5×10-2m~-6.5×10-2m. The development trend in zone II is relatively 13 

close. The displacement growth rate in zone II is lower than that in zone I. By 14 

September 13, 2020, the vertical displacement range in zone II is -1.0×10-2m~-3×10-15 
2m. Except for BM01-9363, the vertical displacement has less growth in zone III. The 16 

vertical displacement of BM01-9363 has increased significantly, and it seems that the 17 

clustering result is not reasonable in terms of vertical displacement results alone. Since 18 

the clustering results comprehensively consider the three deformation variables of the 19 

canal slope, the internal horizontal displacement of the third cluster in the second stage 20 

and the horizontal surface displacement are comprehensively considered. It is found 21 

that the deformation trend and deformation amount of the internal and surface 22 

horizontal displacement of BM01-9363 are closer to those of the observation point in 23 

zone III. Therefore, the BM01-9363 finally belongs to zone III. The clustering results 24 

can reflect the similar degree of deformation values, the similarity of growth trends, 25 

and the comprehensive effect of various deformation variables, reflecting the 26 

advantages of the indicators proposed. 27 
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4.3.3 Deformation convergence stage 1 

Perform spatial clustering on the deformation features of the third stage, and set 2 

the range of clusters to [2, 10]. The calculated different index values and scores are 3 

shown in Fig. 15. The Silhouette index, DB index, and Dunn index all show the 4 

maximum number of clusters is 2, while the CH index shows the optimal one is 4. 5 

Combining the total scores of all the indexes, the number of 4 clusters got the highest 6 

score 29. The spatial clustering results are shown in Fig. 16. 7 

  

(a) Index value (b) The individual index sores and total scores 

Fig. 15 Evaluation of clustering indexes in the scoring algorithm of stage3 8 

 9 
Fig. 16 Clustering results in the deformation convergence stage 10 

It can be seen from Fig. 16 that in the stage of deformation tending to converge, 11 

the slope of the expansive soil canal is clustered into 4 clusters in the spatial area. The 12 

9+120 and 9+180 first-grade bridle paths are still in zone I. Zone II consists of the 13 

9+180 second-grade bridle path, 9+300 first and second berm, 9+300 and 9+363 third-14 

grade slope. Zone III is composed of 9+120 second-grade, third-grade, and 9+180 third-15 

grade bridle path. The remaining area is zone IV. 16 

4.4 Discussion 17 

4.4.1 Comparative analysis of spatiotemporal clustering results with engineering 18 

Through on-site inspection, it was found that the drainage pipes had water seepage 19 

in the second slope of the 9+180 (Fig. 17) and 9+300 (Fig. 18) sections. The concrete 20 
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lining plate had arched in the first slope of the 9+295 (Fig. 19) and the 9+320 (Fig. 20) 1 

sections. It is inferred that the groundwater in the abovementioned area is high, resulting 2 

in drainage pipe seepage and lining arching. In addition, the above regions are all 3 

located in zone II, reflecting the rationality of the spatial clustering. 4 

The results of SIR-3000 geological radar detection on different canal slopes show 5 

that there are significant irregular scattering waves, firm reflection surfaces, abnormal 6 

vertical section waves, and irregular radar reflection wave waveforms in the 7 

9+115~9+180 section of the first berm (Fig. 21). It is inferred that the soil in this area 8 

is a soft interlayer zone, and the water content is abnormally high. These areas are all 9 

located in Zone I, indicating the rationality of spatial clustering. 10 

  

Fig. 17 Second slope in the 9+180 Fig. 18 Second slope in the 9+300 

  

Fig. 19 Lining plate in the 9+295  Fig. 20 Lining plate in the 9+320 
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 1 
(a) The first berm of 9+115~9+150 2 

 3 
(b) The first berm of 9+180~9+200 4 

Fig. 21 Geological radar interpretation map 5 

It can be seen from the above clustering results that the spatiotemporal weighted 6 

clustering method proposed comprehensively analyses the deformation in the different 7 

periods and different zones based on proposed similarity indicators. It can identify the 8 

areas with large and rapidly growing deformation and provide early warning for the 9 

expansive soil canal slope landslide. 10 

4.4.2 Comparative analysis of spatiotemporal weighted and common clustering  11 

In the common clustering analysis of deformation data without considering the 12 

index weight and similarity indicators, the clustering analysis is carried out directly 13 

from the vertical displacement. Spectral clustering is carried out in the time section and 14 
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regional division of the above observation points. The time section division results are 1 

from June 27, 2017, to May 8, 2018, May 20, 2018, to January 17, 2020, and May 14, 2 

2020, to May 21, 2021, and the regional clustering results are shown in Fig. 22. 3 

 4 
Fig. 22 Common clustering results 5 

Both clustering methods divide the vertical displacement sequence into three-time 6 

sections. The expansive soil canal slope is divided into two similar deformation regions 7 

in the first stage, three similar deformation regions in the second stage, and four similar 8 

deformation regions in the third stage. The clustering effect evaluation index values of 9 

the proposed spatiotemporal weighted clustering and common clustering for time 10 

sections and region division for the divided time stage are shown in Fig. 23. 11 

  

(a) Time-division (b) Region division of stage 1 

  

(c) Region division of stage 2 (d) Region division of stage 3 

Fig. 23 Clustering effect evaluation index for the two methods 12 
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It can be seen from the effect evaluation indexes of the time division that the 1 

Silhouette value, Dunn index, and CH index values of weighted clustering are more 2 

significant than the common clustering. The DB index value is smaller than the 3 

common clustering. The smaller the DB index value, the better the clustering effect. 4 

The other three indexes are that the more significant the value, the better the clustering 5 

effect. Therefore, the above index value indicates that the effect of weighted time 6 

division clustering is better than common clustering. 7 

In the first stage, the values of the Silhouette index and Dunn index of weighted 8 

clustering are more significant than the common clustering, while the DB index is 9 

smaller than the common clustering. The above three indexes show that the clustering 10 

performance of weighted clustering is better than the common clustering at this stage, 11 

but the CH index value of the weighted clustering is smaller than that of the common 12 

clustering. It is speculated that the reason is that the BM03-9180 and BM01-9363 are 13 

clustered into zone II of the weighted clustering, while the common clustering cluster 14 

the above two observation points into the zone I. 15 

The CH index value reflects the internal compactness of the clustering results. 16 

From the common clustering results (Fig. 24), the deformation value of the zone where 17 

the above two observation points are located is relatively large, which is close to the 18 

other two observation points in zone I. However, combining all the evaluation index 19 

results and the deformation variable clustering results shows that the effect of weighted 20 

clustering is better than common clustering. The above phenomenon also indicates that 21 

the clustering effect evaluation should comprehensively consider a variety of indexes. 22 

If the clustering effect is evaluated only through a single index, it may cause a bias in 23 

assessing the clustering effect.  24 

In the second and third stages of weighted clustering, the Silhouette index, Dunn 25 

index, and CH index values of weighted clustering are more significant than the 26 

common clustering. In contrast, the DB index value is smaller than the common 27 

clustering. All four indexes show that weighted clustering has a better effect than 28 

common clustering.  29 

The above results show that the performance of weighted clustering is better than 30 

common clustering. It can also comprehensively reflect the magnitude and development 31 

trend of the expansive soil canal slope deformation, which has obvious advantages for 32 

identifying abnormal areas of canal slopes. 33 
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 1 
Fig. 24 Vertical displacement process line of common spatial clustering in area I 2 

Furthermore, an evaluation of the time complexity for both algorithms was 3 

conducted using MATLAB on a central processing unit of Intel(R) Core(TM) i7-9700H 4 

with 16GB of RAM (Zhang et al., 2021b, 2021a). The resulting total time for both 5 

clustering methods on the monitoring data of the expansive soil canal slope is provided 6 

in Table 1. It can be observed from the table that the proposed spatiotemporal weighted 7 

clustering method takes more time compared to the common clustering method, as it 8 

has a higher computational cost. This is due to the need for pre-processing of the 9 

monitoring data, which results in a longer calculation time than the common clustering 10 

method. 11 

Table 1 Execution time （in seconds） of the methods in the monitoring data set 12 
Method Times(s) 

Spatiotemporal weighted clustering method 302.2 

Common clustering method 98.1 

5 Conclusions  13 

According to the main characteristics of expansive soil canal slope deformation, 14 

weighted similarity indicators are constructed from the perspective of spatiotemporal 15 

clustering and consider the influence of various deformation monitoring data. The 16 

entropy method is used to determine the variable monitoring weight, the comprehensive 17 

spatiotemporal indicators, and the corresponding calculation method is proposed. The 18 

spectral clustering method offers a way for dividing the time section and clustering the 19 

spatial area of the observation point. A spatiotemporal clustering model for the 20 

expansive soil canal slope deformation is established. By the proposed method, the 21 

spatiotemporal clustering analysis of the expansive soil canal slope of the Taocha 22 

section of the middle line of the South-to-North Water Diversion Project is carried out, 23 

and the following conclusions are obtained. 24 

(1) The similarity indicators and comprehensive similarity indicators proposed are 25 
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reasonable and can comprehensively reflect the state of expansive soil canal slope 1 

deformation. The adopted spectral clustering method is quick and straightforward to 2 

implement and can divide the deformation sequence into the onset stage, the high-speed 3 

development stage, and the convergence stage. Moreover, it can realize the division of 4 

similar regions in the corresponding stage to reflect the deformed state of the expansive 5 

soil canal slope in different periods. 6 

(2) By comparing the spatiotemporal and common clustering methods, it is found 7 

that the proposed spatiotemporal weighted clustering method has better resolution 8 

ability and can comprehensively reflect the magnitude and development trend of 9 

various monitoring data in different stages. 10 

(3) The collapse of expansive soil canal slopes has certain features of repeatability, 11 

seasonality, and spatial imbalance, which are highly detrimental to the safety of 12 

engineering. To prevent such occurrences, a technique has been suggested that can 13 

accurately detect abnormal deformation in advance, and this approach is recommended 14 

for implementation in relevant projects. 15 
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