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Abstract

Parking guidance information (PGI) systems are used to provide information to

drivers about the nearest parking lots and the number of vacant parking slots.

Recently, vision-based solutions started to appear as a cost-effective alternative

to standard PGI systems based on hardware sensors mounted on each parking

slot. Vision-based systems provide information about parking occupancy based

on images taken by a camera that is recording a parking lot. However, such

systems are challenging to develop due to various possible viewpoints, weather

conditions, and object occlusions. Most notably, they require manual labeling

of parking slot locations in the input image which is sensitive to camera angle

change, replacement, or maintenance. In this paper, the algorithm that per-

forms Automatic Parking Slot Detection and Occupancy Classification (APSD-

OC) solely on input images is proposed. Automatic parking slot detection is

based on vehicle detections in a series of parking lot images upon which clus-

tering is applied in bird’s eye view to detect parking slots. Once the parking

slots positions are determined in the input image, each detected parking slot

is classified as occupied or vacant using a specifically trained ResNet34 deep

classifier. The proposed approach is extensively evaluated on well-known pub-

licly available datasets (PKLot and CNRPark+EXT), showing high efficiency in

parking slot detection and robustness to the presence of illegal parking or pass-
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ing vehicles. Trained classifier achieves high accuracy in parking slot occupancy

classification.

Keywords: parking slot detection, parking occupancy, vehicle detection, deep

learning, PKLot, CNRPark-EXT

1. Introduction

Urban population and the number of motor vehicles are constantly increas-

ing and thus saturating not only the road network but also space reserved for

the vehicles parking. The shortage of parking space is especially pronounced

in crowded urban areas where the available parking space is in high demand

throughout the whole day. With limited parking space, the drivers are forced to

cruise for vacant parking slots and thus are creating mobile queues which affect

normal traffic flow. Apart from traffic congestion, cruising for parking space cre-

ates additional pollution and CO2 emissions, negatively impacts driving time,

and creates additional costs for the driver Zhu et al. (2020).

To make it easier to find a vacant parking space and to enable more efficient

utilization of available parking spaces, different parking guidance information

(PGI) systems are installed by parking providers Lin et al. (2017). Such sys-

tems require accurate and real-time information about the occupancy of each

individual parking slot in a certain parking area in order to provide relevant

information to the nearby drivers via mobile apps or information panels Guo

et al. (2014). A straightforward approach for getting information about the

occupancy of each parking slot is based on the installation of some kind of sen-

sor on each parking slot. Typically, ultrasonic sensor Chen & Chang (2011),

magnetic sensor Zusheng Zhang et al. (2015); Sifuentes et al. (2011) or even

the combination of two sensors SENSIT; Alam et al. (2018) is mounted on each

parking slot to detect the presence of a vehicle. While such approaches can pro-

vide highly accurate information to a PGI system, they require additional costs

in terms of sensors cost, installation, and maintenance. Recently, parking slot

occupancy detection based on computer vision emerged as a promising source
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of information for PGI systems Cai et al. (2019); Acharya et al. (2018); Ng et al.

(2020); Amato et al. (2017). These solutions extract information about parking

occupancy from images obtained by a camera that is recording parking area

from a certain viewpoint such that parking slots are at least partially visible.

This approach can be attractive since it does not require any additional sensors

besides the camera and can provide additional information regarding parking

usage such as vehicle recognition. Since many parking areas are already covered

with surveillance cameras, such approach to parking occupancy detection can

be quite cost-effective with respect to sensor-based systems and can be imple-

mented quickly and more easily. Obviously, bad weather conditions like snow or

rain, significant illuminance changes during daytime and nighttime operation,

different camera viewpoints, vehicle occlusion, and presence of passing and ille-

gally parked vehicles are the main challenges when developing and implementing

vision-based PGI systems.

A significant problem in most of the vision-based solutions for parking slot

occupancy classification is the requirement for manual labeling of the parking

slots in the input image obtained by a camera that is recording a certain park-

ing area, i.e. a parking lot. The resulting annotations are then used to extract

every individual parking lot from the camera image. Each extracted patch is

then classified as occupied or not by using some kind of classifier. This classifier

can follow traditional computer vision approach (typically feature extraction +

SVM classifier de Almeida et al. (2015)) or can be based on deep learning (DL)

approach Acharya et al. (2018); Amato et al. (2017). However, this manual la-

beling can be cumbersome and time-consuming if the system is going to process

images from several cameras. Apart from that, in case of camera angle change

or zooming, maintenance, or camera replacement the labeling procedure must

be repeated. In this spirit, automatic parking space detection is recently pointed

out in de Almeida et al. (2022) as a significant problem of modern vision-based

parking lot management.

A bunch of training data is a must if DL classifier is to be used for parking slot

occupancy classification. This lack of a consistent and representative dataset
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was recognized by the research community. In de Almeida et al. (2015), the

PKLot dataset was proposed which is a relatively large dataset that contains

labeled images from two parking scenes from different camera views in different

weather conditions. Similarly, in Amato et al. (2017) CNRPark+EXT dataset is

presented which contains annotated images of parking scenes in different weather

conditions as well during the night. Both datasets are publicly available and

are often used for the training and benchmarking of DL classifiers.

There are several attempts reported in literature which are using object de-

tection as a source of information regarding parking slot occupancy. In Ke et al.

(2020) authors are using single-stage object detector on edge devices and send

the detections for further analysis by the PGI system server. In Padmasiri et al.

(2020) automated vehicle parking occupancy detection is performed in real-time

with two-stage detectors Faster R-CNN and RetinaNet. However, many false

positive detections arise in such approach due to passing vehicles. Additionally,

most of such approaches are focused on the implementation part without get-

ting into detailed evaluation on publicly available datasets like de Almeida et al.

(2015); Amato et al. (2017) and some require additional a priori knowledge to

efficiently judge parking occupancy status based on input image Martin Nieto

et al. (2019).

In this paper, vision-based algorithm for Automatic Parking Slot Detection

and Occupancy Classification (APSD-OC) is proposed. The proposed APSD-

OC removes the need for manual labeling of parking slots and further improves

the accuracy of the occupancy classification. We approach the problem of park-

ing slots position determination as a vehicle detection problem in the series

of images captured by a camera through a certain period of time and by tak-

ing into account that drivers usually park their vehicles inside marked parking

slots. The vehicle detection is performed on a set of input images followed by

the appropriate algorithm for determining positions of the marked parking slots

which includes perspective transformation and detections clustering. As such,

APSD-OC can distinguish regular parking slots from parking violations, i.e. ve-

hicles parked outside any marked parking slots, and consequently exclude the
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latter from further analysis. Once the parking slots are detected, in each sub-

sequently captured image these parking slots are cropped and each is classified

as occupied or vacant with the proposed classifier. The complete procedure can

be easily applied to any parking surveillance problem since it does not require

any additional parameters which are difficult to obtain like the camera angle,

camera parameters, or homography matrix. The only required parameter to be

provided by end-user is the number of visible parking slots which can be easily

obtained and thus the whole algorithm can be applied to a different parking

lot relatively easily. The proposed approach is extensively analyzed on the two

well-known publicly available datasets and is compared with the state-of-the-art

solutions showing the high efficiency both in parking slot detection and parking

slot occupancy classification.

The paper is structured as follows. In Section 2 related work is overviewed,

advantages and disadvantages of recent approaches are pointed out. The pro-

posed algorithm for automatic parking slot detection and occupancy classifi-

cation is presented in Section 3. The description of used datasets and how

experiments are performed are given in Section 4 with the obtained results and

accompanying discussion. In the end, conclusions are given with guidelines for

future work.

2. Related Work

A rough categorization can be made on vehicle-driven and space-driven

methods as proposed in Huang & Wang (2010). The vehicle-driven methods

are focused on vehicle detection upon which vacant parking slots are deter-

mined. In the latter case, the focus is on direct detection of the available parking

slots in an overall scene. Similarly, in Martin Nieto et al. (2019) a categoriza-

tion is given regarding how methods perform parking slot classification: image

segmentation based systems Huang & Wang (2010); Al-Kharusi & Al-Bahadly

(2014), machine learning over parking slots patches Tschentscher et al. (2015);

Amato et al. (2017) and vehicle detection techniques based on object detectors
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Martin Nieto et al. (2019); Padmasiri et al. (2020); Xie et al. (2015).

Also, two main directions of research can be differentiated in the literature

regarding used algorithms. The first one is based on traditional computer vision

techniques Al-Kharusi & Al-Bahadly (2014) which are often coupled with (shal-

low) machine learning methods (e.g. support vector machines - SVM) to answer

the question of whether a certain parking slot is occupied or not de Almeida

et al. (2015). The second direction of research is more recent and uses deep

learning as its main engine to determine parking slot occupancy status Nurul-

layev & Lee (2019); Acharya et al. (2018); Amato et al. (2017); Padmasiri et al.

(2020); Ke et al. (2020); Cai et al. (2019); Coleiro et al. (2020); Martin Nieto

et al. (2019). In both cases, a certain mechanism is implemented or a priori

information is given to the system which determines actual parking slots in the

scene. Some of the aforementioned papers are overviewed in more detail in the

rest of this section.

An intelligent parking management system, based solely on traditional image

processing techniques, is proposed in Al-Kharusi & Al-Bahadly (2014). This

includes colorspace transformation, morphological operation (dilate and erode),

thresholding, edge detection, and Hough transform. The focus of the paper is on

the overall system and the actual efficiency regarding parking slot classification

is not reported. The authors also point out that the method does not have the

same efficiency in different weather conditions.

Although the problem of parking occupancy can be solved with traditional

computer vision techniques, most of the recent papers introduce machine learn-

ing to build a more efficient parking slot occupancy classifier. Paper de Almeida

et al. (2015) is a significant work in the field of parking management since it

proposed the PKLot dataset and thus enabled a systematic benchmark of dif-

ferent parking occupancy classification methods. Apart from that, the authors

proposed a parking slot occupancy SVM classifier based upon textual descrip-

tors such as Local Binary Patterns (LBP) and Local Phase Quantization (LPQ).

When the same view of parking was used for training and testing the classifier,

the recognition rate went over 99%. However, when the classifier was trained on
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one set of parking lots and tested on another one, the recognition rate was 89%,

indicating that further research in generalization capabilities of used classifiers

should be performed.

Many researchers recognized that hand-crafted visual features (SIFT, SURF,

ORB, etc.) have a limited ability to adapt to variations of object appearance

that are highly non-linear, time-varying, and complex. Interestingly, pretrained

CNN showed as an excellent ”off-the-shelf” feature extractor in many different

visual recognition tasks Razavian et al. (2014). Therefore, in Acharya et al.

(2018) authors are using VGG CNN Simonyan & Zisserman (2014) pretrained

on ImageNet to efficiently extract features and to train a binary SVM classifier

for the purpose of parking occupancy classification. The authors trained the

classifier on the PKLot dataset and tested it on a specific dataset called Barry

street. This dataset contains 810 images of the parking lot with 30 parking

slots resulting in 24300 annotations, i.e. patches of occuppied or vacant parking

slots. The proposed approach achieved 96.6% accuracy on the Barry street

dataset. The authors also point out that in practice it should be able to detect

the predefined areas of the parking slots automatically rather than manually

identifying the boundaries.

In Ahrnbom et al. (2016) authors developed a parking slot occupancy clas-

sifier that combines Integral Channel Features (ICF) with Logistic Regression

(LR) or SVM. The proposed method was designed to achieve good accuracy

and robustness but keeping in mind overall method complexity so that it can

run on embedded devices. At first, ten feature channels are extracted for each

input image, such as color channels in LUV color space, gradient magnitude,

and quantized gradient channels. Then, feature vectors are calculated from a

certain feature channel in an efficient manner using the integral image approach.

In the end, logistic regression and SVM classifiers are trained. Both types of

classifiers are trained and tested on the PKLot dataset.

Authors in Amato et al. (2017) specifically designed a deep neural net-

work called mAlexNet for the purpose of parking occupancy classification. The

efficiency of the method is extensively tested on PKLot and CNRPark-EXT
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datasets and outperforms AlexNet and LPQ from de Almeida et al. (2015) in

terms of classification accuracy and area under the curve (AUC). Interestingly,

this deep network is three orders of magnitude smaller than the original AlexNet

and can be implemented on an embedded platform like Raspberry Pi 2 model

B.

In Nurullayev & Lee (2019), CarNet is proposed which is DNN that uses di-

lated convolutional neural network to indicate parking space occupancy status.

Input to the CarNet is a 54x32 RGB image of a parking slot. The presented

experiments show that CarNet outperforms AlexNet Krizhevsky et al. (2012)

and other well-known DL architectures on PKLot dataset and mAlexNet Amato

et al. (2017) on CNRPark-EXT dataset. While CarNet achieves quite high pre-

cision and robustness, it requires that parking slot images are manually cropped

from the input image of a whole parking lot. The comparison of CarNet with

our approach can be found in the results section.

Authors in Ke et al. (2020) point out that a key component of modern smart

cities is traffic surveillance which needs significant computing power and storage.

In case of a parking space occupancy, computing workload can be moved toward

the edge, i.e. local devices equipped with cameras. The proposed approach

balances computational load and data transmission volume. Therefore, a single-

stage object detector called Single Shot Detector (SSD) is used on edge devices to

detect vehicles. The detections are sent to the server which runs object tracking

(to reduce false positive detections) and occupancy judgment algorithms. The

obtained results on a parking garage use-case show that such approach yields

efficient and reliable detection performance in various environmental conditions.

In Padmasiri et al. (2020), a scalable software architecture solution is pro-

posed which enables reliable implementation of an end-to-end automated vehi-

cle parking occupancy detection system. The vehicle detection is performed in

real-time with two-stage detectors Faster R-CNN and RetinaNet. The proposed

approach is tested on the PKLot dataset and the efficiency of the object detector

is expressed in average precision (AP). The status of each parking lot is obtained

by an object detection algorithm but the actual parking slots position detec-
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tion is missing so that moving vehicles are often detected as occupied parking

spaces. The authors put significant effort into system usability so the developed

web-based and mobile-based applications enable end-users easy finding of free

parking slots.

Video-based parking occupancy detection is proposed in Chen et al. (2020).

Hereby, YOLOv3 Redmon & Farhadi (2018) based on MobileNet version 2 is

used for vehicle detection. To train YOLOv3, authors have firstly labeled the

CNRPark dataset. Additionally, the authors implemented a voting mechanism

to prevent false positive classifications of parking spaces caused by large vehi-

cles passing by. The solution was evaluated using the CNRPark-EXT dataset,

a simulated model of a street with parking lots, and real images taken with a

camera. The information regarding parking lot occupancy is further processed

by a streetlight control system. The authors report high accuracy on the CNR-

Park+EXT dataset. Unfortunately, test data and annotations are not publicly

available.

Obviously, manual labeling of the parking spots as proposed in Amato et al.

(2017); Nurullayev & Lee (2019) can be cumbersome and time-consuming, es-

pecially in the case of parking with large number of parking slots. Additionally,

in the case of camera movement, the labeling process must be repeated. The

need for automatical identification of the parking slots boundaries in practical

applications is clearly pointed out in Acharya et al. (2018); de Almeida et al.

(2022). There are several attempts in the literature to perform automatic park-

ing slot detections. In Martin Nieto et al. (2019) authors proposed automatica

detection of each parking slot when car park area is rectangular and forming

a parking grid. However, additional information must be provided, e.g. user

must specify the corners of the parking area and the number of slots, as well as

camera homography matrix has to be estimated. Recently, two step automatic

parking slot detection is proposed in Patel & Meduri (2020). At first, vehicle

detection is performed using Faster R-CNN or Yolov4 and then vehicle tracking

is performed to distinguish between stationary vehicles and moving vehicles.

While the proposed apporach obtains pretty high recall values for CNRPark-
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EXT datasets (even 100% during busy days when all slots are occupied), it

appears that false positives can occur due to illegally parked vehicles.

3. Proposed Approach to Automatic Parking Slot Detection and Oc-

cupancy Classification

A parking slot is defined as an area that is designed for a single vehicle

parking and is usually marked with painted white or blue lines on a road surface.

Automatic parking slot detection is defined as the localization of a parking slot

within the input image obtained by a camera that is recording the parking

area. One way to describe the parking slot location in the image is by using

a rectangular bounding box (BB) which is defined by its center, width, and

height in pixels. Our approach for automatic parking slot detection relies on

the processing of the camera images which are acquired with a certain sampling

frequency. This is typically 5 minutes in practice. The core assumption of our

proposed approach is that parking slots are parts of an image where repeated

vehicle detections occur since the drivers are forced to park the vehicle inside

the marked area. However, one should be aware that drivers sometimes make

parking violations, i.e. they park vehicles in a prohibited space such as entrance

or sidewalk, and which can lead to congestion or even accidents. Such locations

should be ignored in parking slot detection since they are not valid parking slots.

An example of a parking lot image from the PKLot dataset is shown in Figure 1.

Properly parked vehicles are those parked inside slot markings and are marked

with blue BBs. The rest of the vehicles are making parking violations and are

marked with yellow BBs. Once the detection of parking slots is finished, newly

acquired images are processed to obtain the status of each parking slot (is it

occupied or vacant) and the information can be sent to a PGI system.

The proposed Automatic Parking Slot Detection and Occupancy Classifica-

tion (APSD-OC) algorithm contains two main parts as can be seen in Figure 2

with grey overlays. The upper part performs parking slot detection outputting

the corresponding rectangular area for each detected parking slot. Once the de-
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Figure 1: An example of a parking lot image from PKLot dataset. Properly parked vehicles

are marked with blue bounding box.

tection part is finished, the bottom part determines the status of each detected

parking slot using a deep classifier.

Automatic parking slot detection is based on the processing of available park-

ing lot images which were captured using a camera with a fixed position and

angle. These images should be collected over a period of time in which all park-

ing slots are used for vehicle parking so they can be properly detected. To each

obtained image an object detector is applied which outputs a rectangular BB

for each detected vehicle inside the image. Once all images are processed, BB

centers clustering is performed to reveal locations where vehicles are detected

consistently. However, since parking cameras can be mounted in different phys-

ical locations and angles, images can be obtained from different perspectives

which can affect the efficiency of the clustering process due to different BB cen-

ter densities in areas closer to the camera versus areas more far back. Therefore,

BB centers are firstly transformed using a homography matrix which relates the

original camera view and the bird’s eye view of the parking lot. Once the cluster

centers are obtained in bird’s eye view, these are further examined by analyzing

the distribution of BB centers that belong to each cluster. By doing so it can

be distinguished to a certain degree if a cluster center corresponds to a regular
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parking slot or to some kind of unmarked parking lot area where sporadical or

illegal parking occurs. Parking slot occupancy classification can be relatively

easily performed once the precise locations of parking slots are available. All de-

tected parking slots are cropped from the input image and are processed using a

deep classifier which outputs the probability that each parking slot is occupied.

Single or multiple
parking lot image(s)

Calculate
homography matrix H

using CNN

BB centers
transformation to
bird's eye view

Stored vehicle
detections for a

sequence of parking
lot images

Vehicle detectorSequence of
parking lot images

BB centers clustering
using DBSCAN

Cluster centers
filtering and inverse

transformation

Crop each detected
parking slot Parking lot imageParking occupancy

deep classifier

Parking slots detection

Parking slots occupancy
classification

Figure 2: The block diagram of the proposed APSD-OC algorithm.

3.1. Vehicle Detection Using YOLOv5

The first step in the proposed APSD-OC algorithm is to detect vehicles in

a sequence of N input images taken by a camera recording the same parking

lot for a certain period of time. A vehicle detection implies locating a vehicle

in the image, typically with the rectangular BB which tightly surrounds the

vehicle. Therefore, each detected vehicle in image is represented with a vector

vi = [ci, wi, hi] where ci = [xi, yi] is BB center, wi is BB width, and hi is BB

height. An example of vehicle detection in an input image from PKLot dataset
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is shown in Figure 3a where BBs are marked with blue color and blue dots

represent corresponding BB centers.

For the task of vehicle detection, we use YOLOv5, an object detector from

the YOLO family of end-to-end deep learning models designed for real-time

object detection. This model was selected as it has proven to have solid per-

formance on our dataset images. YOLO object detectors Redmon & Farhadi

(2018), compared to R-CNNs Ren et al. (2015), replace the need for a region

proposal step by splitting the input into a grid of cells, each containing a pre-

defined number and shape of BBs over which an objectiveness score and a class

prediction are made. Objectiveness score is the probability of a particular cell

containing the object, while the class prediction is the probability distribution

over the classes. This architecture choice enabled the efficiency of YOLO fam-

ily. For the purpose of detecting vehicles in images a version yolov5x of the

YOLOv5 model pretrained on the COCO dataset is used Jocher et al. (2021).

COCO dataset contains 200,000 labeled images with 1.5 million object instances

and 80 object categories. During inference, we only considered classes ”car” and

”truck” and used a confidence threshold of 0.5 during the processing of all im-

ages. Before entering the network images were resized to 1280× 1280 px.

In this algorithm step, vehicle detection is performed for N available images

for a given camera as shown in Figure 3b (just centers of BBs are shown). The

resulting BBs are stored for further processing with a clustering algorithm in

order to detect actual parking slots and to discard locations corresponding to

illegal parking, bus stops, etc.

3.2. Perspective Transformation

Generally speaking, a camera that is recording a parking lot should be

mounted in such a way that all parking slots can be seen as much as possi-

ble, i.e. vehicle presence and its position can be clearly distinguished in the

obtained image. Therefore, installation of the camera depends on several fac-

tors for a particular parking lot which include camera field-of-view, number of

parking lots, presence of the trees or other structures, and so on. For example,
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(a) Vehicle detection in a single input image. (b) Vehicle detection in multiple input im-

ages.

Figure 3: Vehicle detection using Yolov5 in input images from PKLot dataset.

the PKLot dataset de Almeida et al. (2015) is created using a low cost full

high definition camera (Microsoft LifeCam, HD-5000) positioned at the top of

a nearby building to minimize the occlusion between adjacent parked vehicles.

Figure 3a shows a single input image from PKLot dataset with highlighted

BBs and their centers using detector from Subsection 3.1. If N such images

are processed using this detector, as shown in Figure 3b, then it can be noticed

that clusters of BB centers emerge on positions where vehicles are often parked.

Due to the camera perspective, adjacent clusters that correspond to parking

slots closer to the camera appear more distant than the adjacent clusters corre-

sponding to parking slots that are further away from the camera. Therefore, to

make the clustering process more efficient, the APSD-OC algorithm uses per-

spective transformation to obtain a bird’s eye view (or top view) of a parking

lot, minimizing the discrepancy between the distance of the adjacent clusters

for any part of the parking lot.

The aforementioned perspective transformation can be achieved with the

usage of 3x3 homography matrix H which maps each BB center image co-

ordinates ci = [xi, yi]
⊤ to the bird’s eye view c

′

i = [x
′

i, y
′

i]
⊤ according to

[x
′

i, y
′

i, 1]
⊤ = H[xi, yi, 1]

⊤. In practice, a homography matrix is not known

and has to be estimated. For example, in Martin Nieto et al. (2019) the homog-

raphy matrix for each camera is obtained using four points from each camera

viewpoint and each point correspondence in an image extracted from a top view.

The top view is in this case obtained from Google Earth. Obviously, such an
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approach requires certain manual work and requires additional information (top

view) which sometimes might not be available.

To make the proposed APSD-OC algorithm more general we automate ho-

mography matrix H estimation by using the approach of obtaining bird’s eye

view from an image proposed in Abbas & Zisserman (2019). Hereby, homog-

raphy is parametrized with only four parameters corresponding to the vertical

vanishing point and ground plane vanishing line (horizon) in the image. These

are regressed directly using a CNN. The CNN is trained on a large synthetic

dataset which contains ground truth for the horizon line and the vertical vanish-

ing point and which is built using CARLA simulator. The dataset is created by

randomly changing camera height, field of view, roll and tilt angle thus obtaining

different camera positions and orientations that can be found in practice.

Figure 4a shows the perspective transformation of the image shown in Fig-

ure 3b. It can be noticed that the distance between BB centers that correspond

to adjacent parking slots is approximately the same in the whole image when

the perspective transformation is applied, i.e. in bird’s eye view.

3.3. Bounding Box Centers Clustering Using DBSCAN

Figure 3b shows the image of the parking lot with overlayed vehicle detec-

tions in N images and the corresponding bird’s eye view is shown in Figure 4a

(for the sake of simplicity just BB centers are shown). It can be noticed that BB

centers tightly group around the center of each parking slot, but also there are

a number of detections outside any parking markings which are due to illegal

vehicle parking, passing vehicles, or even false vehicle detections. The former

ones look like high-density regions and the latter ones appear as low-density

regions (or outlying observations). In this case, it is beneficial to use some kind

of density based spatial clustering in the bird’s eye view.

Here we opt for a well-known DBSCAN algorithm Ester et al. (1996). DB-

SCAN relies on density based notion of clusters and it can detect clusters of

arbitrary shape. Given the set of points, DBSCAN groups together points that

are close to each other in certain space (usually Euclidean distance is applied)
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(a) Transformed BBs centers of vehicle de-

tections for N input images.

(b) Centers of clusters obtained by DBSCAN

algorithm applied to transformed BB centers.

(c) Noise points of DBSCAN algorithm. (d) Standard deviation si of BBs centers

around the corresponding cluster center mi.

Figure 4: Example of clustering of BB centers using DBSCAN in bird’s eye view - an example

from PKLot dataset (UFPR05 camera).

and if their count exceeds a predefined threshold. As such, DBSCAN requires

only two parameters: eps defines how close two points should be to each other

to be considered as a part of the same cluster and minPoints which is the

minimum number of points for a region to be considered as a cluster. Points

that are not reachable from any other point belonging a cluster are considered

as outliers or noise points.

Figure 4b shows the application of DBSCAN algorithm on transformed BB

centers from Figure 4a. Each cluster of BB centers is represented with mean
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value mi of belonging points in bird’s eye view. It can be noticed that most

cluster centers mi correspond to parking slots locations. However, some centers

can be found in the middle of the road representing clusters that are formed by

the detections of illegaly parked vehicles. Noise detections, or more precisely

centers of such vehicle detections, are shown in Figure 4c. Most of these noise

points are due to passing cars or very short illegal parking (e.g. short stop

behind a properly parked vehicle). For the next step of the algorithm only

cluster centers mi are considered while the noise points are discarded.

3.4. Cluster Centers Filtering and Inverse Transformation

The last step in automatic parking slot detection is filtering of the obtained

cluster centers mi and their transformation to the original view. Most of mi

values correspond to parking slots, see for example Figure 4b. However, some

of these values can correspond to physical locations where parking violations

often occur. To efficiently filter out such values, we take into account that the

deviation of BBs centers around the corresponding mean values is usually much

greater in case of parking violations than the deviation of BBs centers around

the corresponding mean value for regular parking since in the latter case drivers

are forced to park the vehicle inside slot markings. More precisely, for each

mi we define si as the sum of standard deviations of x and y coordinates of

corresponding BB centers. These si values are then sorted in ascending order

and every value outside the range [Q1−1.5∗ IQR,Q3+1.5∗ IQR] is discarded.

Hereby, Q1 is the first quartile of the BB centers, Q3 is the third quartile of the

BB centers, and Inter-Quartile Range is IQR = Q3−Q1. After that, the first

nbottom values are selected as final parking slots where nbottom corresponds to

the number of visible parking slots and must be provided by the user.

This step is illustrated in Figure 4d where each cluster center mi has a

corresponding standard deviation si. It can be noticed that cluster centers

mi corresponding to parking slots have a low value of si while these values

are significantly larger in locations where parking violations occur. For this

particular parking lot the parameter nbottom is equal to 44. The cluster centers
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mi, which are filtered out in this algorithm step, are shown in yellow color.

The very last step in automatic parking slot detection is the transformation

of cluster centers mi to the original view using matrix H−1. Since the second

part of the proposed APSD-OC algorithm predicts the occupancy of each park-

ing slot, it is necessary to add area ai in form of BB around each mi which will

be cropped and analyzed by the deep classifier. The area is defined as the mean

of BBs that belong to the certain cluster. This is illustrated in Figure 5 where

mi and area ai are shown in original camera view for two different parking lots

from PKLot and CNRPark-EXT dataset.

(a) Filtered cluster centers mi (in blue) cor-

responding to the parking slots.

(b) Area ai of each detected parking slot.

(c) Filtered cluster centers mi (in blue) cor-

responding to the parking slots.

(d) Area ai of each detected parking slot.

Figure 5: Cluster centers filtering and inverse transformation.
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3.5. Occupancy Classification Using Deep Classifier

Obtained parking slot locations in original view are portions of an image

which can be cropped and used as input to an image based parking occu-

pancy classifier. For this purpose, a ResNet34 deep classifier pretrained on

ImageNet was fine-tuned and benchmarked on various splits from the PKLot

and CNRPark-EXT datasets. ResNet architecture introduced residual modules

which allowed for building deeper networks without vanishing and exploding

gradients. Residual modules achieve this by utilizing skip connections along

which gradients flow more easily.

We followed the Amato split regarding training/testing data Amato et al.

(2017), so we can easily compare our DL classifier with current state-of-the-

art. Before training, we replace the ResNet34 head with randomly initialized

weights and freeze the rest of the layers. We use a learning rate finder Smith

(2015) to determine the base learning rate. The learning rate finder determines

the optimal learning rate by starting a training with a low learning rate and

doubling it for each subsequent minibatch until loss starts increasing. Our

optimal learning rate is then an order of magnitude less than the learning rate

when the loss starts increasing. A learning rate scheduler is also used with linear

warmup on 30% of batches and cosine annealing on the rest, based on the 1cycle

policy Smith & Topin (2017). We also used cyclical momentum Smith (2018)

which we vary in the opposite direction of the learning rate. The used optimizer

is Adam. Initial momentum is set to 0.95, minimum momentum is set to 0.85

and a final momentum is set to 0.95. We train like this for one epoch, unfreeze,

then do the same over 5 epochs with discriminative learning rates sliced from

base lr/200 to base lr/2.

Two examples of the application of the proposed APSD-OC algorithm on

the parking lot from the PKLot dataset are shown in Figure 6. It can be noticed

that regular parking slots were successfully detected while the parking violations

are ignored. Vacant and occupied parking slots were successfully classified by

the trained deep classifier in both examples and are marked with green and red

BBs, respectively. Similarly, Figure 7 shows the example of APSD-OC algorithm
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application on a camera from CNRPark-EXT dataset. It can be noticed that

parking slots are successfully detected although significant occlusion by the trees

is present (see Figure 7a). Two parking violations and a passing vehicle are

successfuly ignored in Figure 7b.

(a) Parking lot with all vehicles properly

parked.

(b) Crowded parking lot with many parking

violations.

Figure 6: Two examples from PKLot dataset and final output of the proposed APSD-OC

algorithm.

(a) Parking lot with several properly parked

vehicles.

(b) Crowded parking lot with a passing ve-

hicle and two parking violations.

Figure 7: Two examples from CNRPark-EXT dataset and final output of the proposed

APSD-OC algorithm.

4. Results and Discussion

Two publicly available datasets are used for APSD-OC algorithm evaluation:

PKLot de Almeida et al. (2015) and CNRPark-EXT Amato et al. (2017). PKLot
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dataset contains the images from the parking lot of the Federal University of

Parana (UFPR) and the Pontifical Catholic University of Parana (PUCPR),

Brazil. Images were captured every 5 minutes in time interval over 30 days. In

that way, three different weather conditions are present in the dataset: sunny,

cloudy and rainy. The images have 1280 x 720 pixels resolution and were stored

without compression in JPEG format. Two different parking lots were captured.

The images are organized into three folders with respect to the location of

capturing: UFPR04, UFPR05, and PUCPR. The first two contain images of

the parking lot captured from the 4th and 5th floor of the UFPR building, while

the last one contains images of the parking lot captured from the 10th floor of

the PUCPR administration building. Each valid parking space, i.e. parking slot

which is signed with a yellow or white line is annotated with the oriented BB

and can be easily extracted from the whole parking image. The CNRPark-EXT

dataset is an expansion of the original CNRPark dataset Amato et al. (2017),

containing labeled images of the parking lot in the campus of the National

Research Council (CNR) in Pisa, Italy. The parking lot contains a total of 164

parking slots which are captured by 9 cameras with different points of view

and different perspectives from November 2015 to February 2016. In that way

different weather and light conditions were captured: sunny, rainy and overcast.

However, parking slots are annotated with non-rotated BBs which often do not

cover precisely or entirely the parking slot area. The sample images from each

dataset can be seen in Figure 8. The statistics regarding each dataset can be

found in Table 1. Clearly, PKLot has significantly higher numbers of annotated

parking slots. However, CNRPark-EXT has a lot of challenging images due to

the occlusion of nearby objects such as lamps, trees, or other vehicles.

The evaluation of the proposed APSD-OC algorithm is performed with re-

spect to the efficiency of the parking slot detection from the camera images

and with respect to the efficiency of the parking slot occupancy classification

throught the set of experiments. In the first part of experiments, images from

the parking camera are fed to the algorithm which determines positions of park-

ing slots. In the second part of experiments, cropped images of the parking slots
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(a) PKLot PUCPR sunny (b) PKLot UFPR04 cloudly (c) PKLot UFPR05 rainy

(d) CNRPark-EXT C1 sunny (e) CNRPark-EXT C8 overcast (f) CNRPark-EXT C3 rainy

Figure 8: Sample images from PKLot and CNRPark-EXT datasets in different weather

conditions.

Dataset Image res-

olution

Sample

time

# of views # of im-

ages

# of anno-

tations

PKLot 1280x720 px 5 minutes 3 12,417 695,900

CNRPark-

EXT

1000x750 px 5 minutes 9 4,278 144,965

Table 1: PKLot and CNRPark-EXT datasets properties.

are fed to the classifier which determines parking slot occupancy status.

4.1. Parking Slot Detection Results

Although PKLot dataset and CNRPark-EXT dataset contain annotations

of the regular parking slots, these cannot be used to evaluate the proposed

automatic parking slot detection algorithm since some of the regular parking

slots are not annotated within the dataset. This means that some false positive

detection can arise during detector evaluation which are in fact regular parking

spaces.

Therefore, for parking slot detection evaluation, we manually counted the
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number of parking slots for each parking camera in the PKLot dataset and

CNRPark-EXT dataset. Only parking slots that are visible and which are

marked with (white) separating lines are counted. In that way, we obtained

a total of 41, 44, and 170 regular parking slots for UFPR04, UFPR05 and

PUCPR. In comparison, PKLot paper de Almeida et al. (2015) reported 28, 40

and 100 parking slots for UFPR04, UFPR05, and PUCPR parking cameras. In

the case of the PUCPR parking camera, we analyzed only a middle part of the

camera image which contains six rows of parking slots. A similar practice was

used in the PKLot dataset paper, where only part of the whole image was used

for cropping of the training and testing images for classification purposes. The

discarded upper part of the image corresponds to the parking area which is far

from the camera and consequently, vehicles appear quite small in the image.

The discarded lower part of the image corresponds to the area where vehicles

are not clearly or completely visible. Regarding the CNRPark-EXT dataset,

whole input camera images were used in the case of cameras C2-C8, while in

the case of camera C1 and C9 part of the image was analyzed.

Standard metrics for object detections are used for efficiency of parking slot

detection:

• TP - detection of existing parking slot

• FP - detection of non-existing parking slot

• FN - existing parking slot not detected

• Precision = (TP )/(TP + FP )

• Recall = (TP )/(TP + FN)

Table 2 shows the obtained parking slot detection results for PKLot dataset.

The available images for each camera were divided in a way that chronologically

first 30%, 50%, 80%, or all 100% of camera images are used for parking slot

detection. It can be noticed that FN detections are significantly dropping as

the volume of the available data is increased, especially for the PUCPR parking
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lot. This is expected since more and more vehicles are parked inside parking

slots thus satisfying minPoints parameter of the DBSCAN algorithm. On the

other hand, FP results are not significantly changing, proving the robustness

of the proposed approach to false vehicle detections, passing vehicles, parking

violations, and so on. For UFPR04 and UFPR05 parking cameras precision

and recall go beyond 90% when over 50% of the available data is used, while

in the case of PUCPR this happens at 80% since this is a much larger parking

lot. For example, the algorithm has only one FP and one FN detection for

UFPR05 camera when 100% of the data is used. This result can be also seen in

Figure 5b. Interestingly, we noticed that UFPR04 camera is moved at a certain

point in time and our assumption about fixed camera position and angle is not

satisfied. Therefore, results for 80% and 100% of UFPR04 camera images are

not reported in Table 2.

Sample

size

TP FP FN Precision

[%]

Recall

[%]

# of

parking

slots

UFPR04

30% 36 5 5 87.80 87.80 41

50% 38 3 3 92.68 92.68 41

80% Results not reported due to the camera movement 41

100% Results not reported due to the camera movement 41

UFPR05

30% 36 8 8 81.82 81.82 44

50% 40 3 4 93.02 90.91 44

80% 42 2 2 95.45 95.45 44

100% 43 1 1 97.73 97.73 44

PUCPR

30% 142 11 28 92.81 83.53 170

50% 147 10 23 96.63 86.47 170

80% 155 9 15 94.51 91.18 170

100% 158 7 12 95.76 92.94 170

Table 2: Results of parking slot detection on PKLot dataset.
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Table 3 shows the obtained parking slot detection result for CNRPark-EXT

dataset. Hereby, the same pattern can be observed like in PKLot dataset results

- more data mostly ensure higher precision and recall in parking slot detection.

Interestingly, for the number of cameras (C2, C4, C5, C6, C7, C8, C9) 100%

precision is obtained since in these camera images there are practically no park-

ing violations so each detection corresponds to the actual parking slot. However,

for most of the cameras obtained recall is somewhat lower than for the PKLot

dataset which can be attributed to the occlusion of parking slots with nearby

objects like trees. In such parking slots vehicles are often not properly detected

in first algorithm step.

4.2. Parking Slot Occupancy Classification Results

For the parking slot occupancy classification standard metrics are used:

• TP - occupied parking slot classified as occupied,

• TN - vacant parking slot classified as vacant,

• FP - vacant parking slot classified as occupied,

• FN - occupied parking slot classified as vacant,

• Accuracy = (TP + TN)/(TP + TN + FP + FN),

• AUC - area under the Receiver Operating Characteristic (ROC).

To make a fair comparison with recent approaches, we followed guidelines

from PKLot dataset de Almeida et al. (2015) and considered 50% of the images

available in the subsets UFPR04, UFPR05, and PUCPR for training and 50%

for testing. We performed single parking lot training and multiple parking lot

testing since we are mostly interested in the generalization power of classifiers.

This results in three different classifiers where each classifier is evaluated on three

different test datasets. The number of images containing occupied or vacant

parking slots can be found in Table 4. It can be noticed that the PUCPR

parking lot has a higher number of images in comparison with UFPR04 and
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Sample

size

TP FP FN Precision

[%]

Recall

[%]

# of

parking

slots

Camera 1

30% 29 6 7 82.86 80.56 36

50% 31 4 5 88.57 86.11 36

80% 26 4 10 86.67 72.22 36

100% 30 5 6 85.71 83.33 36

Camera 2

30% 9 1 2 90.00 81.82 11

50% 8 3 3 72.73 72.73 11

80% 10 0 1 100.00 90.91 11

100% 11 0 0 100.00 100.00 11

Camera 3

30% 22 4 4 84.61 84.61 26

50% 24 2 2 92.31 92.31 26

80% 23 3 3 88.46 88.46 26

100% 25 1 1 96.15 96.15 26

Camera 4

30% 36 3 5 92.31 87.80 41

50% 38 0 3 100.00 92.68 41

80% 38 1 3 97.44 92.68 41

100% 39 0 2 100.00 95.12 41

Camera 5

30% 46 0 7 100.00 86.79 53

50% 46 0 7 100.00 86.79 53

80% 49 0 4 100.00 92.45 53

100% 49 0 4 100.00 92.45 53

Camera 6

30% 44 1 9 97.78 83.02 53

50% 48 1 5 97.96 90.57 53

80% 48 0 5 100.00 90.57 53

100% 48 0 5 100.00 90.57 53

Camera 7

30% 48 0 9 100.00 84.21 57

50% 49 0 8 100.00 85.96 57

80% 52 0 5 100.00 91.23 57

100% 52 0 5 100.00 91.23 57

Camera 8

30% 52 0 4 100.00 92.86 56

50% 49 0 7 100.00 87.50 56

80% 51 0 5 100.00 91.07 56

100% 51 0 5 100.00 91.07 56

Camera 9

30% 29 0 3 100.00 90.63 32

50% 31 0 1 100.00 96.88 32

80% 30 0 2 100.00 93.75 32

100% 29 0 3 100.00 90.63 32

Table 3: Results of parking slot detection on CNRPark-EXT dataset.
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UFPR05 since the corresponding camera covers a significantly higher number

of parking slots. Also, subsets are imbalanced, vacant slots being majority class

for UFPR04 and PUCPR parking lots, and occupied slots being majority class

for UFPR05 parking lot. However, this imbalance is not significant and does

not require any special approach to classifier training and testing.

# of parking slots
Parking lot Subset

Occupied Vacant Total

UFPR04

Train 23,050 29,871 52,921

Test 23,075 29,847 52,922

Total 46,125 59,718 105,843

UFPR05

Train 48,967 33,925 82,892

Test 48,459 34,434 82,893

Total 97,426 68,359 165,785

PUCPR

Train 96,736 115,375 212,111

Test 97,493 114,619 212,112

Total 194,229 229,994 424,223

Table 4: Summary of created PKLot subsets.

The comparison regarding classification accuracy is made with CarNet Nu-

rullayev & Lee (2019) and mAlexNet Amato et al. (2017). The obtained results

are presented in Table 5 for different combinations of training and testing sub-

sets. The best result is shown in bold for each considered case. The obtained

results show that our proposed deep classifier obtains the best result in seven out

of nine possible subset combinations. This strongly indicates that the proposed

approach to parking occupancy classifier learning results in high generalization

power. This is especially pronounced when learning on the PUCPR subset and

testing on the UFPR04 subset where significantly different camera perspectives

are present. In this case, our approach has 4% higher accuracy than state-of-

the-art approach CarNet Nurullayev & Lee (2019).

The proposed classifier efficiency on the PKLot dataset in terms of AUC is

reported in Table 6. The comparison is performed with CarNet Nurullayev &

Lee (2019), mAlexNet Amato et al. (2017) and the approach based on integral
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Testing accuracy
Method Training subset

UFPR04 UFPR05 PUCPR

Ours

UFPR04 99.98% 95.47% 99.19%

UFPR05 95.29% 99.92% 98.08%

PUCPR 98.62% 98.60% 99.93%

CarNet

UFPR04 95.60% 97.60% 98.30%

UFPR05 95.20% 97.50% 98.40%

PUCPR 94.40% 97.70% 98.80%

mAlexNet

UFPR04 99.54% 93.29% 98.27%

UFPR05 93.69% 99.49% 92.72%

PUCPR 98.03% 96.00% 99.90%

Table 5: Accuracy of parking slots classification on PKLot dataset.

channel features proposed in Ahrnbom et al. (2016). Again, our proposed ap-

proach achieves the best result in seven out of nine possible subset combinations

and obtains AUC greater than 0.99 for each subset combination thus confirming

its high generalization abilities.

In the case of the CNRPark-EXT dataset, we also followed the dataset split

proposed in Amato et al. (2017) so we can directly compare our classifier with

mAlexNet, AlexNet and partially with Nurullayev & Lee (2019). According to

Table 7, our proposed classifier outperforms mAlexNet and AlexNet for each

train/test subset combination by a large margin. For example, when training

our classifier only on CNRPark dataset, which contains images from only two

cameras and images captured during sunny days, it obtains significantly higher

accuracy (more than 4%) than AlexNet when testing on CNRPark-EXT TEST

dataset which contains 9 cameras and different weather conditions. When the

training subset contains CNRPark dataset and images from CNRPark-EXT

train C1-C8, then accuracy on CNRPark-EXT TEST dataset goes over 99% in-

dicating that very high classifier accuracy can be obtained if the training subset

contains different viewpoints and weather conditions. The proposed classifier

also outperforms state-of-the-art CarNet on CNRPark-EXT dataset as shown

in Table 7.
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More detailed experiments were conducted related to viewpoint changes and

weather conditions like in Amato et al. (2017). The classifier was trained on

images taken with a single camera (C1 and C8) and tested against images of

all other cameras in the CNRPark-EXT dataset. The obtained results regard-

ing viewpoint generalization of the built classifier are reported in Table 8. In

almost all cases proposed classifier outperforms mAleXNet, achieving accuracy

over 95% in all cases except in case of training on images taken by camera C8

and testing on images taken by camera C1 since these are two cameras with

significantly different viewpoints (C1 is a side view of a parking lot and C8 is a

front view of a parking lot). However, the difference in the obtained accuracy

of the proposed classifier on the same test camera does not differ more than 1%

when training on C1 or C8 which is not true for mAlexNet. It can be concluded

that the proposed classifier has better viewpoint robustness.

Similar behavior can be observed when training the classifier on images cap-

tured during particular weather condition (sunny, rainy, or overcast) and testing

against images captured during remaining weather conditions. The obtained re-

sults regarding weather generalization are shown in Table 9. It can be noticed

that the proposed classsifier significantly outperforms mAlexNet and obtains

accuracy over 98% in all cases. Certainly, the proposed classifier is very robust

to the weather conditions changes as well.

5. Conclusions

In this paper, vision-based algorithm called APSD-OC is proposed. APSD-

OC automatically detects parking slots and classifies each parking slot as occu-

pied or free. As such it contains two main parts. In the first part, the locations

of parking slots in the input image are determined. Hereby, vehicles are detected

in a series of input images using YOLOv5. After that, the detections centers are

transformed to bird’s eye view using a homography matrix which is obtained

by a CNN. The transformed detections are clustered using DBSCAN algorithm.

The resulting centers are filtered and are projected back to the original view
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where they correspond to the locations of parking slots. In the second part of

the algorithm, the detected parking slots are classified as occupied or vacant

using a ResNet34 based classifier.

The proposed APSD-OC algorithm is evaluated on two publicly available

datasets: PKLot and CNRPark-EXT. The evaluation is carried on by analyz-

ing parking slot detection and parking slot occupancy classification performance

of the proposed APSD-OC algorithm. The obtained results show that detection

precision and recall goes well beyond 90% as more input images are used in the

detection procedure on both datasets. The proposed algorithm is robust to the

presence of parking violations and passing vehicles which are often appearing in

images of the PKLot dataset. The trained deep classifier shows high accuracy,

obtaining AUC over 0.99 for different combinations of training and testing sub-

sets in the case of PKLot dataset thus significantly outperforming CarNet and

mAlexNet. The same can be observed in the case of CNRPark-EXT dataset,

proving high classifier robustness to viewpoint change and weather conditions.

Our future work will include estimation of the number of regular parking

slots from the shape of the vehicle detections distribution. Apart from that, we

will try to utilize the fact that parking slots have a certain spatial relationship

to obtain even more accurate parking slot detection.
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Method Training subset Testing subset AUC

Ours UFPR04 UFPR04 0.9999

CarNet UFPR04 UFPR04 0.9790

ICF+LR UFPR04 UFPR04 0.9994

ICF+SVM UFPR04 UFPR04 0.9996

PKLot UFPR04 UFPR04 0.9999

Ours UFPR04 UFPR05 0.9989

CarNet UFPR04 UFPR05 0.9935

ICF+LR UFPR04 UFPR05 0.9928

ICF+SVM UFPR04 UFPR05 0.9772

PKLot UFPR04 UFPR05 0.9595

Ours UFPR04 PUCPR 0.9995

CarNet UFPR04 PUCPR 0.9982

ICF+LR UFPR04 PUCPR 0.9881

ICF+SVM UFPR04 PUCPR 0.9569

PKLot UFPR04 PUCPR 0.9713

Ours UFPR05 UFPR04 0.9943

CarNet UFPR05 UFPR04 0.9796

ICF+LR UFPR05 UFPR04 0.9963

ICF+SVM UFPR05 UFPR04 0.9943

PKLot UFPR05 UFPR04 0.9533

Ours UFPR05 UFPR05 0.9999

CarNet UFPR05 UFPR05 0.9989

ICF+LR UFPR05 UFPR05 0.9987

ICF+SVM UFPR05 UFPR05 0.9988

PKLot UFPR05 UFPR05 0.9995

Ours UFPR05 PUCPR 0.9978

CarNet UFPR05 PUCPR 0.9791

ICF+LR UFPR05 PUCPR 0.9779

ICF+SVM UFPR05 PUCPR 0.9405

PKLot UFPR05 PUCPR 0.9761

Ours PUCPR UFPR04 0.9985

CarNet PUCPR UFPR04 0.9845

ICF+LR PUCPR UFPR04 0.9829

ICF+SVM PUCPR UFPR04 0.9843

PKLot PUCPR UFPR04 0.9589

Ours PUCPR UFPR05 0.9981

CarNet PUCPR UFPR05 0.9938

ICF+LR PUCPR UFPR05 0.9457

ICF+SVM PUCPR UFPR05 0.9401

PKLot PUCPR UFPR05 0.9152

Ours PUCPR PUCPR 0.9998

CarNet PUCPR PUCPR 0.9986

ICF+LR PUCPR PUCPR 0.9994

ICF+SVM PUCPR PUCPR 0.9994

PKLot PUCPR PUCPR 0.9999

Table 6: Results of parking slot occupancy classification on PKLot dataset.37



Method Training

subset

Testing

subset

Testing

accuracy

AUC

Ours

CNRPark
CNRPark-EXT

TEST

97.66% 0.9969

mAlexNet 93.52% 0.9838

AlexNet 93.63% 0.9877

Ours
CNRPark+EXT

TRAIN C1-C8

CNRPark-EXT

TEST

99.34% 0.9994

mAlexNet 95.88% 0.9937

AlexNet 96.85% 0.9957

Ours

CNRPark+EXT

TRAIN

CNRPark-EXT

TEST

99.67% 0.9981

mAlexNet 97.71% 0.9967

AlexNet 98.00% 0.9974

CarNet 98.11% N/A

Table 7: Results of parking slot occupancy classification on CNRPark-EXT dataset - parking

lot generalization.

Testing accuracy
Training subset Testing subset

Ours mAlexNet

CNRPark-EXT C1

CNRPark-EXT C1 - -

CNRPark-EXT C2 99.19% 94.85%

CNRPark-EXT C3 97.28% 93.11%

CNRPark-EXT C4 97.89% 96.00%

CNRPark-EXT C5 97.60% 95.91%

CNRPark-EXT C6 97.25% 95.61%

CNRPark-EXT C7 96.99% 91.43%

CNRPark-EXT C8 97.43% 94.61%

CNRPark-EXT C9 95.75% 90.96%

CNRPark-EXT C8

CNRPark-EXT C1 92.79% 92.39%

CNRPark-EXT C2 99.99% 94.51%

CNRPark-EXT C3 97.01% 93.66%

CNRPark-EXT C4 98.29% 97.53%

CNRPark-EXT C5 97.49% 97.93%

CNRPark-EXT C6 96.72% 97.68%

CNRPark-EXT C7 95.55% 93.53%

CNRPark-EXT C8 - -

CNRPark-EXT C9 96.47% 94.65%

Table 8: Results of parking slot occupancy classification on CNRPark-EXT dataset - view-

point generalization.
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Testing accuracy
Training subset Testing subset

Ours mAlexNet

CNRPark-EXT

SUNNY

OVERCAST 99.69% 97.80%

RAINY 99.02% 95.79%

CNRPark-EXT

OVERCAST

SUNNY 98.95% 91.63%

RAINY 98.11% 94.68%

CNRPark-EXT

RAINY

SUNNY 98.54% 93.53%

OVERCAST 99.39% 98.27%

Table 9: Results of parking slot occupancy classification on CNRPark-EXT dataset - weather

generalization.
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