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Abstract—The rapid growth of location-based social networks (LBSN) has generated massive multi-mode entities such as users, 

locations and social topics, as well as multi-relationships among them. Learning deep user preferences over POIs and social topics 

in LBSN has attracted more and more attentions. However, most of the previous studies have failed to incorporate the severely 

sparse and multi-dimensional relational data of heterogeneous LBSN, which plays a vital role to enhance the prediction 

performance. Toward this challenge, in this paper, we propose a unified pairwise relationship prediction framework based on graph 

neural networks combined with dual attention mechanism model, dubbed GE2AT, which has fully considered to incorporate three 

types of user behavioral relations to better capture user preference over different entities. Specifically, we first model LBSN as one 

user social graph only including social relations, and other two bipartite graphs involved user-location check-in relations and user-

social topics following relations respectively. Then, we propose dual graph attention networks to jointly learn deep latent 

representations of different entities by aggregating features from neighbors with different importance weights. After that, we adopt 

two MLPs to output the pairwise preferences of users over POIs and social topics. In addition, to alleviate data sparsity problem, 

on the basis of MLPs output results, we further leverage social relationships as social-aware influence for similar user preferences 

so as to enhance the pairwise prediction performance. Extensive experiments on two real-world datasets have demonstrated that 

our proposed framework GE2AT significantly outperform the state-of-the-art baselines on both prediction tasks for user 

preferences on POIs and social topics. 

 

Keywords—Graph neural network• Location based social networks• Dual graph attentions• User preferences 

 

1 INTRODUCTION 

As a newly emerging type of heterogeneous information networks, LBSN has become a research hotspot in recent years. We 

present an illustrative example for LBSN in Fig.1, which consists of three entity layers, e.g., geographical space layer, user layer 

and social media layer, containing with numerous users, locations and media topics or tags respectively, wherein there also exist 

massive multi-types of relations among them, namely user-user social relations, user-location check-in relations, and user-social 

topics following relationships. Different from traditional social networks, LBSN provides users with multi-dimensional 

information and services around their current locations, thus enriching both on-line and off-line daily lives. For example, the users 

in popular LBSNs such as Foursquare, Yelp and Facebook, can not only post and share their tips or daily photos with friends like 

social networks, but also visit or check-in the recommended points of interest (POIs), e.g., restaurants, venues, scenic spots, etc. 

However, how to exploit user-centric multi-relational data in heterogeneous LBSN, generating offline POIs and online social topics 

recommendation is still a great challenge at present. 
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Fig.1. Multilayer model of LBSN with multi-dimensional relations among multi-mode entities (e.g., users, POIs and social topics) such as 

social relations between users, check-in relations between users and POIs, and following relationships between users and social topics. 

As known to all, LBSN is presently facing more serious sparsity problem especially for multi-dimensional relations than 

traditional social networks, which becomes a great obstacle for the performance improvement of recommendation tasks. The 

reasons are twofold, on one hand, as for location check-in data, LBSN usually has millions of POIs, while only small number of 

locations such as scenic spots, restaurants and so on, are most frequently visited by many users, and the number of visited locations 

by a user usually takes up a very small portion in all available POIs because of the spatial locality of users' daily activities. For 

instance, the density of check-in data (e.g., in Foursquare or Yelp) is less than 0.1%. On the other hand, as for users’ social links, 

social networks generated by users' friendships generally have small world phenomenon and scale-free characteristics. These laws 

show that the social links of users obey the power law distribution. In other words, only a few users have more social friends, while 

many other users only have very few social friends. 

Considering these two types of sparse data in LBSN, many previous traditional studies have focused on learning latent features 

representation based on low-dimensional space embedding via matrix factorization (e.g., GeoMF[1], GraRep[2], and SSTPMF[3]) 

or random walk based approaches(e.g., DeepWalk[4], LINE[5], and CLoRW[6]). However, these studies have several common 

limitations. First, the computation complexity will increase exponentially with the dimensionality increasing of factorization or 

random walks, thus they are not suitable for large-scale graphs or networks. Second, we notice that all these approaches belong to 

shallow models, which are employed to learn the linear latent features of relational entities in LBSN, instead of real non-linear 

features among them. Therefore, there still need more efforts to model the deep non-linear embeddings for heterogeneous entities 

in LBSN, i.e., user preferences on social topics and POIs. 

Inspired by recent advancements in deep learning, graph neural networks (GNN) [7-9] have brought a new idea for tackling 

above problems. The core idea behind GNN is to learn representation by means of iteratively aggregating feature information from 

local graph neighbors using neural networks. As expected, GNN-based models have demonstrated powerful representation 

capability on homogeneous graphs. For example, Hamilton et al.[8] introduce a framework called GraphSAGE, which uses neural 

networks, e.g., LSTM, to aggregate neighbors’ feature information. Despite of achieving great success, GNN-based methods are 

insufficient to identify varying importance of different neighbors or modalities, hindering the information propagation and resulting 

in suboptimal representations. To make up this defect, attention mechanism[10] is furtherly introduced to learn different importance 

for nodes and their neighbors. For example, Wu et al.[11] propose DANSER with dual graph attention networks for user-based 

and item-based embeddings to improve recommendation performance. Besides, Yan et al.[12] employ self-attention mechanism 

to integrate multiple metapath-based network embeddings for personalized recommendation. Overall, most existing GNN-based 

models have not fully considered for fusing different types of nodes and relations in heterogeneous graph. Thereby, the challenge 

of how to jointly capture the complex non-linear representations for various entities with multi-typed relations especially in LBSN 

is still far from to be resolved. 

To address above issues, we propose a unified pairwise relationship prediction framework based on dual graph attention 

networks, called GE2AT, to learn deep representations of user preferences in LBSN. In our framework, we consider to combine 

three types of user centric relations in LBSN such as user’s check-in relations to locations, following relations on social topics, 

and social friendships. Specifically, we first model two types of bipartite graphs for pairwise entities, i.e., users and locations, users 

and social topics. Then, we introduce the attention mechanism into two bipartite graphs to generate dual graph attention networks 

so as to jointly learn the representations of user preferences, where one is modeled the attentive weights from user-location bipartite 

graph, and the other is modeled from user-social topics bipartite graph. Finally, we adopt multilayer perceptron (MLP) to predict 

two types of pairwise relationships, i.e., user-to-POIs relations and user-to-social topics relations. Meanwhile, we further enhance 

the prediction performance by fully taking users’ social influence into account, being combined with the output of MLPs. 

The contributions of this paper can be summarized as follows. 

1) We propose a unified pairwise relationship prediction framework called GE2AT, to learn non-linear latent representations of 

heterogeneous entities by utilizing GNN combined with dual graph attentions in heterogeneous LBSN. 
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2) We further exploit the social influence to improve the prediction performance on the basis of the output of MLPs, which 

makes the users with social relations have similar preferences on both POIs and social topics as much as possible. 

3) In our framework, we consider to jointly capture user preferences by fully incorporating three types of user behavioral 

relations in LBSN, namely the check-in relations between users and locations, the following relations between users and social 

topics, and the social relationships among users. 

4) We conduct extensive experiments on two real-world datasets. The experimental results show that our proposed framework 

GE2AT significantly outperforms several state-of-the-art methods on both prediction tasks of user preferences on POIs and social 

topics. 

The remainder of this paper is organized as follows. In Section 2, the related work is reviewed. Section 3 formulates the problem, 

and then the details of our proposed framework are presented in Section 4. The experimental results are presented in Section 5. 

Finally, Section 6 concludes this paper and outlines our future work. 

2 RELATED WORK 

In this section, we review related studies in the field of LBSN, namely POI recommendation and neural network-based 

recommendation. 

2.1 POI Recommendation 

So far, POI recommendation has become one popular focal point in LBSN. Most prior studies employ the matrix factorization 

(MF) based collaborative filtering methods to alleviate data sparsity problem and provide better POI recommendation performance. 

For example, Lian et al.[1] propose a geographical weighted matrix factorization model, dubbed GeoMF, that integrated 

geographical influence by modeling users’ activity regions and the influence propagation on geographical space. Similarly, 

Griesner et al.[13] also present an approach integrating temporal and geographic influences into matrix factorization. However, 

these models have ignored to consider fusing context information. To combine more influential factors, a ranking-based matrix 

factorization model is proposed by Li et al.[14] for learning users’ preference rankings for locations, fusing with the geographical 

influence scores of neighboring locations and the temporal influence. Zhang et al.[15] utilize a fused matrix factorization 

framework to take into account the social, multi-tag and geographic influences to enhance POI recommendation performance. Lyu 

et al.[16] adopt weighted matrix factorization method with consideration of multi-information for travel location recommendation. 

Besides, there are other alternative studies such as Davtalab  et al. [3] and Qian et al.[17] integrate user similarity, social influence 

and POI similarity into a unified probabilistic matrix factorization(PMF) framework for POI recommendation. 

In particular, to extend matrix model to high-order space, newly tensor factorization approaches are exploited to incorporate 

more types of influential factors such as geographical influence, temporal influence, social influence and content influence. For 

example, Yao et al.[18] present a collaborative filtering POI recommendation method based on nonnegative tensor factorization 

and fuse users’ social relations as regularization terms of the factorization to improve the recommendation accuracy. Yang et al.[19] 

design a personalized context-aware location recommendation model STAP, which applies nonnegative tensor factorization to 

collaboratively infer users’ spatial temporal activity preference. Zheng et al.[20] leverage ranking-based collective tensor 

factorization techniques to recommend both POIs and activities. Similarly, for another variant of POI recommendation, Zhao et 

al.[21] propose a ranking-based pairwise tensor factorization framework for successive POI recommendation. He et al.[22] further 

present a tensor-based latent model considering the influence of user’s latent behavior patterns, which is determined by the 

contextual temporal and categorical information. 

In summary, we argue that most existing MF-based models leveraging the dot product as the similarity measure are insufficient 

to capture the real non-linear latent features of multi-mode entities in LBSN and further alleviate the data sparsity issue due to their 

limited generalization. 

2.2 Neural Network Based Recommendation 

Recently, there are a bunch of methods using neural networks for various recommendations in LBSN, which may bring new 

opportunities to promote better recommending performance. One research line is to utilize Recurrent Neural Networks (RNN) to 

cope with sequential and temporal mobility data in LBSN, some researchers adopt the RNN model to derive a deep representation 

for the check-in visiting trajectory for next POI prediction. For instance, Liu et al.[23] propose a RNN-based architecture to model 

spatial temporal contexts so as to get more accurate location prediction. Liao et al.[24] present multi-task context aware RNN to 

leverage the spatial activity topic for both activity and location prediction, which considers to integrate the temporal context 

information and sequential pattern. More recently, several variants of RNN have been investigated to overcome its inherent 

limitations. For example, Zhao et al.[25] extend RNN model and introduce an innovative gate mechanism into LSTM architecture 

to learn user’ sequential visiting behaviors for the next POI recommendation. Huang et al.[26] develop a RNN-based network 

architecture called ST-LSTM for next POI recommendation, to jointly model the spatiotemporal contextual information derived 

from LBSNs. Similarly, Yang et al.[27] also present a novel neural network model to provide both location recommendation and 

friend recommendation, which employed the RNN and Gated Recurrent Unit (GRU) models to characterize short-term and long-

term sequential contexts separately. Moreover, Doan et al.[28] design a deep long short term memory RNN model with attention 
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mechanism to capture both the sequential, and temporal/spatial characteristics into its learned representations for successive POI 

recommendation. Recently, Wang et al.[29] propose a novel next-item recommendation model which leverages interval and 

duration gated LSTM to accurately capture users’ long-term and short-term preferences. Although the RNN and its variants are 

quite effective in sequential modeling problems, they lack the ability of fusing multi-dimensional relations in heterogeneous LBSN. 

Apart from above relevance, another research line is to adopt Graph Neural Network (GNN) to learn meaningful representations 

for graph-structured data. Different from RNNs, GNN based models can be straightforwardly applied to model a set of nodes and 

their relationships, where there isn’t a natural order of nodes in the graph. Recent advances on GNN frameworks have demonstrated 

superior performance for traditional recommending tasks. Some state-of-the-art methods such as Fan et al.[30] propose a graph 

network model GraphRec+ to learn better user and item representations with attention mechanism for social recommendations, 

while this model only incorporates the social graph into recommendation, ignoring other associated rich side information on users 

as well as items. Wang et al.[9] also develop a new recommendation framework based on GNN, called NGCF, which exploits the 

user item graph structure by propagating embeddings on it. As for other variants of GNN, Wei et al.[31] design a Multimodal 

Graph Convolution Network (MMGCN) framework built upon the message-passing idea of GNN for personalized micro-video 

recommendation, which could yield modal-specific representations of users and micro-videos to better capture user preferences. 

Ying et al.[32] introduce a random walk based GCN algorithm called PinSage for a variety of recommendation tasks, which 

combines efficient random walks and graph convolutions to generate embeddings of nodes that incorporates both graph structure 

as well as node feature information. Moreover, Liu et al.[33] design a GNN-based model PIGAT to extract user-item interaction 

representations, wherein the attention mechanism is introduced to capture two types of the importance of each interacted user or 

item to improve the prediction performance of content-aware recommendation. Recently, Du et al.[34] propose a new unified 

framework based on hierarchical multi-head self-attention network, which fuses both long and short-term preferences of users for 

better next item recommendation. While regarding to the recommendation of LBSN, so far only a few studies have paid attention 

to this promising area, e.g., Zhang et al.[35] propose an integrated framework named Context Graph Attention (CGA) that could 

model heterogeneous context information with the attention mechanism, where model CGA used two context-aware attention 

networks to learn the different influence of friends and neighboring POIs. 

To sum up, due to the heterogeneity of LBSN, most existing GNN based methods have the limitations of either dropping node 

attributes, discarding rich multi-relations or only utilizing specific meta-paths. There is still big room for improvement by 

exploiting more comprehensively the information embedded in heterogeneous graphs. Thereby, in this paper, we propose an 

innovative GNN-based framework with dual attention mechanism to learn the latent representations of heterogeneous LBSN for 

better recommendation performance.

 

3 PROBLEM DEFINITION AND PRELIMINARIES 

In this section, we first introduce the definitions and notations used in this paper, and then present the problem formulation to 

be addressed in LBSN. 

3.1 Notations 

The key notations and their descriptions used in this paper are summarized in Table 1. 

Table 1. Notations of the parameters used in our model. 

Symbol Description 

U 

P 

R 

S 

Set of users  

Set of locations or POIs 

Set of social topics  

User social relation matrix 

iu  User embedding vector 

i

∗
u  Aggregated user embedding vector 

jp  POI embedding vector 

kr  Social topic embedding vector 

ije  Attentive weight for an edge between vertex i and j 

N( )ih  Aggregated neighborhood representation of vertex i 

( )iN ,
( )iM  The first-order neighboring sets interacted with vertex i   

ijα , jkβ ,
tjη ,

kjµ  Normalized attention weights between pair vertices 

( )oD  The adjacent set of social friends connected with user o 

ijy , ijy′  The output results of MLPs 
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ojz , ojz′  Social-aware prediction of user preferences  

For simplicity, in the light of Fig.1, the heterogeneous LBSN intuitively consists of three layers involved with multi-types of 

entities and relations. Aiming to handle graph structure data easily by our proposed model, we further detach heterogeneous LBSN 

into three individual graphs according to the relationship types as shown in Fig.2, such as user social links graph, user-social topics 

bipartite graph, and user-locations bipartite graph. Some fundamental definitions are defined as follows. 

Definition 1. Social links graph: is an undirected graph that describes the social links of users, denoted as ( , )Gs U V= , where 

U is set of users, and {( , ) | , }
i j i j

V u u u u U= ∈  is the set of edges with social friendships among users. Here, this graph structure 

can be easily expressed as adjacent matrix by n n×∈S  , if 
i

u  and 
j

u  are social friends, then 
ijs =1, otherwise it equals 0. 

Definition 2. User-social topics graph: is a bipartite graph which indicates the following relations between users and social 

topics. This graph is denoted as Gt ( R,Er)U= ∪ , where U and R are the sets of users and social topics respectively, and an edge 

i j=( ) Ere u ,r ∈  represents that user iu  follows or interests specific social topic 
jr . 

Definition 3. User-locations graph: is another bipartite graph which indicates the relations between users and locations or POIs 

from their check-in history. This graph is denoted as Gp ( ,Ep)U P= ∪ , where U denotes the same user set, and P is the set of 

locations respectively, and an edge 
i j=( ) Epe u , p ∈  indicates that user iu  has checked in specific location

jp . 

social links graph(a)

u3

u5

u1

u2u4

user Users

Social topics

User-social topics 

bipartite graph
(b)

u3u1 u2 u4

r1 r2 r3 r4

Users

Locations

User-location bipartite 

graph
(c)

u1 u3 u4
u2

p1 p2 p3 p4

 
Fig.2. A toy example of LBSN model decomposed into one social links graph and two bipartite graphs, note that all users in the three 

graphs refer to the same users in LBSN. (a) social links graph only involving social relations between users (b) user-social topics graph is one 

bipartite graph contained with following relations between users and social topics (c) user-locations graph is another bipartite graph contained 

with check-in relations between users and POIs or locations 

 

3.2 Problem Formulation 

In the real world, we observe that the users with social or friendship relations have mutual influences to each other’s interests 

or preferences, in other words, similar social users may have similar interests or preferences. Under this premise, given user social 

links graph, user-location bipartite graph, and user-social topic bipartite graph, we aim to exploit these input graph data to generate 

high-quality embeddings of users, POIs, and social topics. Specifically, the further problem we study in heterogeneous LBSN is 

how to predict the pairwise values for user-centric preferences from the following two aspects. 

Task1: Pairwise learning for user preferences on POIs in bottom layer of LBSN 

Given three types of relational graph data in LBSN as illustrated in Fig.2, our goal is to output the predicting pairwise results 

for a target user to preferred POIs. 

Task2: Pairwise learning for user preferences on social topics in upper layer of LBSN 

Likewise, the other goal is to output the predicting pairwise results for a target user to preferred topics. 

After obtaining the predicted pairwise vector values, we can use them to score all POIs and topics for target users, and select the 

top-ranked POIs and topics as the recommendation results for them. 

4 MODEL FRAMEWORK 

4.1 Architecture Overview 

In this section, we formally present a unified pairwise prediction framework, called GE2AT, which is based on graph neural 

network with dual attention mechanism. The overview framework of GE2AT model is illustrated in Fig.3, consisting of four 

components: (1) input layer that offers the initialization of three types of user-centric graph data, i.e., social links graph, user-

location bipartite graph, and user-social topic bipartite graph;(2) embedding layer learns the representations by graph neural 

network with dual attention mechanism;(3) hidden layer performs latent features modeling through parallel MLPs, to fuse pairwise 

interaction information for user multi-behaviors;(4) prediction layer outputs the predicting pairwise values of user preferences. 
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Fig.3.Pairwise prediction framework combined with social influence and graph embeddings with dual attention mechanism. In the framework, 

Attention1 represents one type of attention from user-social topics bipartite graph. Attention2 represents the other type of attention from user-

POI bipartite graph. Social links graph as in Fig2.(a), user-social topics bipartite graph as in Fig2.(b), and user-locations bipartite graph as in 

Fig2.(c). 

 4.2 Embedding Layer 

In our framework, the embedding layer aims to learn the embeddings of various entities in LBSN through Graph Attention 

Networks (GAT). To this end, it first requires to model three types of graph structure data from the bottom input layer respectively. 

More specifically, as for the social links graph, we utilize the adjacent matrix 
n n×∈S   to express the users’ social embeddings, 

where the row vector iS  indicates the relation links of some user 
i

u . As we argue that different social users have different 

contributions to predict the output results of user’s preference on the top prediction layer, where the contribution weights are 

dependent on his social neighbors or friends. Thereby, we take social-aware influences into account and further discuss their effects 

for user preferences in subsection 4.4. 

Next, as for the latter two bipartite graphs, e.g., user-POIs bipartite graph and user-social topics bipartite graph are employed 

to generate interactive embeddings. To be specific, we utilize dual GATs to combine all the feature representations by 

aggregating the propagated information from neighbors. Firstly, regarding user-POIs bipartite graph as one GAT with 

considerations of the check-ins relations between users and POIs, denoted as UL-GAT, we use an embedding vector d

i ∈u   

to denote a user i and another embedding vector d

j ∈p   to represent a POI j, where d is the length of embedding vector. To 

model user and POI embeddings, let ( )iN  and ( )jM  be the first-hop neighbor sets of user i and POI j respectively. We perform 

embedding propagation between the connected user and POI pairs and aggregate their neighbors combined with attentive 

weights. Hence, we define the following functions as:
 

( )

( ) ( 1) ( 1)

Ng( )
i

l l l

i i= − −
u h u,                                                                                           (1)  

 
( )

( ) ( -1) ( -1)g ( , )
j

l l l

j M j=p h p                                                                                           (2) 

where g ( )⋅  is the aggregation function to be specified, l is the embedding propagation layers, a user (or POI) is capable of receiving 

the messages propagated from its l-hop neighbors. 
( )

( 1)

N i

l −
h  denotes the implicit neighbor-based representations of user i. Likewise, 

( )

( -1)

j

l

Mh  denotes the implicit neighbor-based representations of POI j. Specifically, the classical aggregation function for g ( )⋅  is 

usually adopted LeakyReLU(.) as the nonlinear activation function. In such aggregation, we assume that different neighbors would 

have the different contributions to the representations of users or POIs, namely, user i is influenced unequally by the attentive 

weights of his neighbors. Formally, we rewrite above two formulations as 

( )

( ) ( 1) ( 1) ( -1) ( -1)LeakyReLU ( )− −

∈

⋅ ∑
i

l l l l l

i ij ij i

j N

= αu W p u+
                                                          (3) 

( )

( ) ( 1) ( 1) ( -1) ( -1)LeakyReLU( )− −

∈

′ ⋅ ∑
j

l l l l l

j jk jk j

k M

= βp W u p+
                                                         (4) 

where W and ′W are the trainable transformation matrices, and ijα  denotes the user-based attention weight interacted with 
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different neighboring POIs of user i, 
jkβ denotes the POI-based attention weight interacted with different neighboring users of POI 

j. Both ( -1)l

iu  and ( -1)l

jp  are the representations after (l-1) propagation steps, storing the information from their (l-1)-hop neighbors. 

Hereafter, we introduce the self-attention method to obtain the above attentive weights in Eq.(3) and Eq.(4), which reflects the 

affinity between the interactive user and POI pairs. For simplicity, we adopt a two-layer neural network called as the attention 

network to learn the varying importance for each edge with pair of vertices, taking the attention weight of an edge 
ije  defined as 

follows 

T

2 1 1 2( ( ) )= ⋅ ⋅ ⊕ + +ij s i s je ϑW W W u W p b b                                                                  (5) 

where ( )ϑ ⋅  is the nonlinear activation function, and ⊕  denotes the concatenation of two vectors. The parameters 1W  and 2W  

are weight matrices of the attention network, 1b  and 2b  are bias vectors of the attention network, while sW  is the shared 

transformation matrix that maps the users and POIs features to the same comparable space. It is worth noting that 
ije  indicates the 

importance of an edge with pair vertices is symmetric, i.e., user i to POI j and vice versa. 

More formally, the final user-based or POI-based attention weights are obtained by employing the softmax function to normalize 

above self-attention weights across all neighboring edges, which is formulated as follows: 

( )N

exp( )
softmax( )

exp( )
∈

= =
∑

i

ij

ij ij

ikk

e
e

e
α                                                                         (6) 

( )M

exp( )
softmax( )

exp( )
∈

= =
∑

j

jk

jk jk

jtt

e
e

e
β                                                                         (7) 

Secondly, we consider the user-social topics bipartite graph as another GAT with considerations of the following relations 

between users and social topics, denoting as UT-GAT. In order to better learn the embeddings for users and social topics, let 
d

t ∈u   and d

k ∈r   denote the embedding vectors of arbitrary user and social topic in UT-GAT respectively, where d is the 

length of embedding vector. Likewise, we then proceed to propagate and aggregate the embeddings of interacted users and social 

topics, as well as their neighbors. Analogously, we define the following functions as: 

( )

( ) ( 1) ( 1) ( -1) ( -1)LeakyReLU( )− −

∈

⋅ ∑
t

l l l l l

t tj tj t

j N

= ηu W r u+ 
                                                              (8) 

( )

( ) ( 1) ( 1) ( -1) ( -1)LeakyReLU( )− −

∈

′ ⋅ ∑
k

l l l l l

k kj kj k

j M

= µr W u r+
                                                            (9) 

where 
( )tN  and 

( )kM  represent the first-hop neighbor sets of user t and social topic k respectively, 
tjη  denotes the neighbor-based 

attention weight of user t, 
kjµ denotes the neighbor-based attention weight of social topic k. Analogously, to obtain these attentive 

weights, we also employ the softmax function to normalize the self-attention weights across all neighboring edges of specific user 

or social topic as following. 

( )N

exp( )
softmax( )

exp( )
∈

= =
∑

t

tj

tj tj

tkk

e
e

e
η                                                                         (10) 

( )M

exp( )
softmax( )

exp( )
∈

= =
∑

k

kj

kj kj

kii

e
e

e
µ                                                                        (11) 

Note that as shown in Eq.(3) and Eq.(8), all users in UL-GAT actually refer to the same users in UT-GAT, thus we consider to 

combine the both user embeddings from UL-GAT and UT-GAT into one unified representation. To this end, we utilize the 

information being propagated from different neighbors along both bipartite graph structures to update the representations of nodes. 

Namely for each user iu , let Nih  and Mih  denote his two types of neighbor representations, i.e., locations and social topics, which 

are recursively propagated from different modalities. As illustrated in Fig.4, in order to encode local graph structural information 

into the deep user representations, we perform embedding propagation from the first-order to high-order neighbors, and then non-

linearly aggregate different types of neighborhood representations. Technically, the aggregation function is employed not only to 

transform location-based and social topic-based embedding space to the same latent space, but also to make different kinds of 

neighbors have varying contributions to the aggregated user embeddings. 
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Fig.4. Aggregating two types of user neighbors from UL-GAT and UT-GAT. Given a sampled user iu , Nih denotes his one type of 

neighbors’ representations from bipartite graph UT-GAT, and Mih is his the other type of neighbors’ representations from bipartite graph 

UL-GAT. 

Thereby, the user embeddings of Eq.(3) and Eq.(8) can be merged into the aggregated user embedding formally defined as 

( ) ( )

( ) ( ) ( ) ( ) ( )

N MAggre( )=Aggre( , )
i i

l l l l l

i i i=∗
u h h u u,                                                                      

( )

( 1) ( 1) ( -1) ( 1) ( -1) ( -1)=LeakyReLU( ( + * )− − −

∈

⋅ ∑
i

l l l l l l

ij ij ij ij i

j N

α ηW p r u)+
                                               (12) 

In this way, the embedding layer will finally yield three types of interactive embeddings for users, POIs and social topics 

corresponding to the Eq(4), Eq(9) and Eq(12) respectively. 

4.3 Hidden Layer 

This layer aims to leverage two parallel MLPs to predict the initial pairwise relationships such as users to POIs, as well as users 

to social topics. By default, each standard MLP is a stack of fully connected layers, which enables the model to learn the high-

order latent interaction features among multiple entities in a hierarchical and non-linear manner. As shown in Fig.3, given two 

MLPs denoted as *MLP1 i k(u ,r )  and *MLP 2 i j(u ,p ) , are used to output two types of pairwise relationships for user preferences 

respectively. More specifically, to predict the pairwise values for users and POIs, we use one MLP, namely MLP2 to concatenate 

the original user embedding *

iu  and POI embedding 
jp , and the concatenation vector is generated as *[ ]i j⊕u p , then we feed it 

into multiple hidden layers of MLP for pairwise prediction as 

*

1 [ ]i j= ⊕h u p                                                                              

2 2 1 2( )= ⋅ + bσh W h                                                                

1

T

( )

= ( )

′ ′ ′ ′−

′

⋅ ⋅ ⋅
= ⋅ +

⋅
l l l l

ij l

b

y w

σ

φ

h W h

h

                                                           (13)

 

where ( )⋅σ  is the activation function, we empirically adopt the rectified linear unit Re LU( )x . ′l  is the index of a hidden layer, 

W  and b  denote the weight matrix and bias vector, and 
ijy  is the initial predicted value for user preference of user *

iu  to POI 
jp . 

We use sigmoid function 1
(1 )

( ) −+= xe
xφ  to output the final prediction value. 

Analogously, while predicting the pairwise values for users and social topics, we use another MLP, namely MLP1 to concatenate 

the input embeddings of user and social topic vectors, denoted as *[ ]i k⊕u r , and then feed it into multiple hidden layers for 

pairwise prediction as 

*

1 [ ]i k
′ = ⊕h u r                                                                                

 2 2 1 2( )′ ′ ′ ′= ⋅ + bσh W h                                                                
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 1

T

( )

= ( )

′ ′ ′ ′−

′

⋅ ⋅ ⋅
′ ′ ′ ′= ⋅ +

′ ′ ′⋅
l l l l

ik l

b

y w

σ

φ

h W h

h

                                                             (14) 

where ( )σ ⋅  uses the same function as above. ′W  and ′b  also denote the weight matrix and bias vector, and ′
iky  is the initial 

predicted value for user preference of user *

iu  to social topic kr . 

4.4 Prediction Layer 

After obtaining two types of initial pairwise predictions from the hidden layer, the last prediction layer proceeds to assemble 

these prediction results by imposing social influence of neighbors on them. As is well known that a user’s preference is similar to 

or influenced by his/her directly connected social friends according to sociology theory. Thereby, we propose to infer the social-

aware based user preferences for the target user which is indirectly dependent on his social neighbors. Towards this end, on the 

basis of the output predictions of 
ijy  and ik

′y  as stated from Eq.(13) and Eq.(14), we further take the social influence of user 

neighbors into consideration, assume ojz  and 
okz′  denote the preferences of a target user 

ou  over POI 
jp  and social topic 

kr  

respectively. Then, the formulized social-aware preferences of this user determined by his social neighbors are given as the 

following. 

( )

=

o

oj oi ij

i D∈

∗∑z S y
                                                                                                 (15) 

( )

=
o

ok oi ik

i D∈

′ ′∗∑z S y
                                                                                                 (16) 

where 
( )oD  denotes the friendship set of target user 

ou  with social links, and S  represents the social links matrix. 
ijy  is the 

prediction result of neighboring user 
iu  to POI 

jp , likewise ik
′y  is the prediction result of neighboring user 

iu  to social topic 
kr . 

The intuition behind Eq.(15) and Eq.(16) reflects that similar social users are prone to have the same preferences over POIs and 

social topics. 

4.5 Model Training 

To estimate model parameters of our GE2AT, we need to specify an objective function to optimize. As our model outputs two 

types of pairwise prediction results for user’s preferences, i.e., a target user to POIs, and to social topics, we consider to jointly 

train the model by optimizing the sum of two loss functions as follows. 

1 1(u,p) (u,r)= J +(1- ) J⋅ ⋅Loss λ λ                                                                          (17) 

where 
(u,p)J  denotes the predicting loss of user’s preferences over POIs, and 

(u,r)J  denotes the predicting loss of user’s preferences 

over social topics. While 
1λ  is the weight factor to control the trade-off among the two objectives. For simplicity, we would like 

to fix this parameter 
1λ =0.5 in our experiments, that means the same loss weight of user’s preferences on POIs and social topics. 

Moreover, both 
(u,p)J  and 

(u,r)J  are corresponding to the commonly used log-loss function which is formally defined by 

( , ) ( , )

J = log ( | , ) - log - log(1- )
+ −

+ −

∈Χ ∈Χ

′ ′Χ ∪ Χ Θ Θ = ∑ ∑e m ij ij

i j i j

p y y                                                

 
( , )

=- log +(1- )log(1- )ij ij ij ij

i j

y y y y
+ −∈Χ ∪Χ

′ ′∑                              (18) 

In above equation, X+  is a set of positive samples from the dataset, and X−  is the set of negative samples. 
eΘ  denotes the 

parameters of the embedding layer for two attention networks included in Eq.(3)~(12), and Θm
 represents the parameters of hidden 

layer for MLPs included in Eq.(13) and (14). In addition, 
ijy  and 

ijy′  are the actual and prediction of preference of target user iu  

over POI or social topic 
jp . We would like to minimize the discrepancy of the pairwise loss function so as to obtain the optimized 

model parameters. 

To optimize the combined loss function, we adopt the mini-batch Adam[37] optimizer to train our model by adjusting the 

learning rate and parameters until the overall loss converges or is sufficiently small. When we perform mini-batch training, where 

each mini-batch contains both user-POIs and user-social topics graph data. There are three types of embeddings in our model, 

including user embedding, location embedding, and social topic embedding. In our implementation, the model parameters for 

embeddings in dual GATs and initial hidden states in MLPs are randomly initialized with Gaussian distribution, where the mean 

and the standard deviation is 0 and 0.1, and the output layer’s parameters are set to follow uniform distribution. More precisely, 
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we set batch size to 512, embedding size to 256, and the number of neighborhood propagation layers to 3. Besides, the MLP layer 

is set to contain 3 layers with hidden size 256-128-64-1, respectively. In order to avoid additional over-fitting when training the 

model, the dropout strategy has been applied to our MLPs. The dropout is to randomly drop some neurons with the probability 

tuned in {0.0,0.1,0.2,0.3}.

 

5 PERFORMANCE EVALUATION 

In this section, we conduct intensive experiments to evaluate the effectiveness of our proposed framework GE2AT in comparison 

with the state-of-the-art baseline models. All the models are implemented by Python3.6 running on Windows 10 with Intel 

Xeon4210 CPU, 64GB RAM and GTX1080 GPU. 

5.1 Experimental Settings 

1) Datasets 

We choose two publicly available LBSN datasets, i.e., Foursquare(NYC) and Yelp. Before conducting the experiments, we need 

to preprocess these datasets in order to filter out some abnormal outlier data such as inactive users and unpopular POIs. For example, 

as for Foursquare(NYC), we only remove those users as well as their social relations who post less than 5 tips or reviews, and 

locations which have fewer than 2 check-in records. Meanwhile regarding Yelp, we also eliminate those users and their social 

relations with less than 5 reviews, and those locations which have no more than 50 check-in records. After that, the filtered datasets 

comprise the number of users, locations, check-ins, social links and reviews. The statistics of these datasets are shown in Table2.
 

 

Table 2. Basic parameters of two LBSN datasets 

Datasets #Users #Locations #Check-ins #Links #Reviews #Check-in Density 

Foursquare(NYC) 4,811 27,303 59,027 44,397 113,254     4.49E-4 

Yelp 16,184 22,005 515,563 314,341 454,086     1.44E-3 

As observed from Table 2, the check-in density of user-POI matrix in Foursquare(NYC) and Yelp is 4.49E-4 and 1.44E-3 

respectively, which reflects that both datasets are very sparse. Whereas in terms of social relations, the average degree of linked 

users is about 9.2 for Foursquare(NYC) and 19.4 for Yelp, that indicates the social interactions in these two datasets are relatively 

close. 

2) Baseline methods 

To evaluate the performance of our model, we compare our proposed GE2AT with the following baselines. 

GeoMF[1]: it is based on weighted matrix factorization for POI recommendation, as a variant of matrix factorization based 

model, which also considers check-ins as an implicit feedback and incorporates geographical influence by modeling users’ activity 

regions and predefined POIs’ influence areas. 

NeuMF[37]: this model is proposed neural based CF model which integrates matrix factorization(MF) and MLP into a unified 

model, which uses multiple hidden layers above the element-wise and concatenation of user and location embeddings to capture 

their nonlinear feature interactions. In this work, we employ three-layered architecture. 

PACE[38]: this method is a deep neural architecture based on user preference and context embedding with representation 

methods. It is a general semi-supervised learning framework that jointly models social influence and user trajectory behavior to 

predict both user preference over POIs and various context associated with users and POIs. In this work, we set the two 

configuration parameters of PACE, i.e., R capacity to 3 and Q number of hidden layers to 3. 

NGCF[9]: Neural Graph Collaborative Filtering is the most recent item-based recommendation model built upon graph 

convolutional networks. In this work, we employ NGCF on user-POI check-ins graph by using two graph convolution layers. 

CGA[35]: this model is the state-of-the-art attentive collaborative filtering method for POI recommendation in LBSNs, which 

applies two context-aware attention networks to learn the influence weights of different friends and neighboring POIs respectively. 

These baselines could be categorized into three groups: the first belongs to conventional MF based collaborative filtering model 

without consideration of social network information, the subsequent two models are neural network-based prediction models, and 

the last two belong to GNN-based models for recommendation. 

3) Evaluation Metrics 

For performance comparison with baselines, we apply three widely used metrics for evaluating the prediction performance, i.e., 

Pre@k(precision), Rec@k(recall), and NDCG@k (normalized discounted cumulative gain). These metrics reflect different aspects 

of the results: precision and recall measure the number of correct prediction results, while NDCG consider the rank of the 

predictions, and NDCG gives a higher score to the hit items that are ranked higher in the ranking list. To be fair, we repeatedly 

conduct our experiments 10 times and take the average values of metrics into comparison. For each dataset, we randomly select 
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80% data as the training set, another 10% as the validation set used for tuning the parameters, and the remaining 10% as testing 

data.  

5.2 Performance Comparison and Analysis 

1）Prediction performance of user’s preferences over POIs 

We compare the overall performance of POI predictions for the existing state-of-the-art models on Foursquare(NYC) and Yelp. 

Specifically, the comparison results of Pre@K, Rec@K and NDCG@K with varying top-k values on the two datasets are reported 

in Fig.5 and Fig.6, respectively. From the results, we have the following observations:  

(1) General MF-based method of GeoMF has the worst performance on two datasets, this indicates that the inner product is 

insufficient to capture the complex relations between users and locations. Besides, although GeoMF has integrated geographical 

influence, it did not take other useful information such as social relations into account. Nevertheless, GeoMF is unsuitable for 

highly sparse user check-in data, which leads to the three types of metrics very low in all cases. 

(2) When comparing the neural network based models of NeuMF and PACE, we observe that both of the baseline models 

consistently outperform GeoMF much better in all metrics, demonstrating the importance of nonlinear feature interactions between 

user and location embeddings. However, NeuMF achieves slightly lower prediction performance than PACE. The reason might be 

that PACE shows the extra effectiveness of exploiting user and POI context graphs, while NeuMF fails to explicitly explore the 

high-order connectivity in embedding learning. 

(3) Among the graph neural based models, both NGCF and CGA yield the second best performance compared with above neural 

network based models on two datasets. By comparison, NGCF slightly outperforms CGA on Foursquare(NYC) dataset, whereas 

it performs less well than CGA on Yelp dataset in most cases. In particular, compared with PACE, NGCF improves relatively the 

average performance by 23.1% on precision, 15.3% on recall and 13% on NDCG as shown in Fig.5 on Foursquare(NYC) dataset, 

respectively. However, CGA exhibits the average performance improvement by 36% on precision, 9.5% on recall and 21.4% on 

NDCG as shown in Fig.6 on Yelp dataset, respectively. The results demonstrate the benefits of exploiting graph neural networks 

for POI prediction. We conjecture that the superior performance of these two models are due to two reasons. One is that leveraging 

neural attentive mechanism just like CGA results in better prediction quality when the user-POI interaction data is less sparse such 

as Yelp dataset. The other reason is that exploiting the high-order connectivity or neighbors such as NGCF greatly facilitates the 

representation learning to infer user preferences, as the deeper interaction information can be effectively captured. 

(4) Our proposed GE2AT method significantly outperforms all other methods across both datasets. Concretely, by comparing to 

the strongest method, we observe that GE2AT constantly yields the average increases of precision by 23.3%, recall by 33.3% and 

NDCG by 37.2% on Foursquare(NYC), and similarly the average improvements on Yelp are about 26% on precision, 10% on 

recall and 34.9% on NDCG. These comparison results for POI prediction indicate that our GE2AT model benefits from combining 

the merits of graph neural representations learning from high-order connectivity and dual attentive mechanism to better improve 

prediction performance. In other words, this happens because GE2AT has fully integrated the advantages of both NGCF and CGA 

methods. Furthermore, owing to incorporating social influence information, GE2AT could not only effectively alleviate the data 

sparsity problem, but also consistently achieve the best performance than those utilizing only user check-in relational data in our 

experiments. 
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(a)Precision@K                                      (b)Recall@K                                   (c)NDCG@K 

Fig.5.  POIs prediction performance on Foursquare(NYC) dataset 
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(a)Precision@K                                     (b)Recall@K                                  (c)NDCG@K 

Fig.6.  POIs prediction performance on Yelp dataset 
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2）Prediction performance of user’s preferences over social topics 

Regarding social topics prediction, we first need to extract the semantic topics from all the reviews or tips associated with users 

and locations. Similar to many works, we use the popular Gensim tool (https://radimrehurek.com/gensim/) to learn the embedding 

of each topic with traditional Word2vec model. The number of social topics is tuned to 120 on both datasets. 

The performance comparisons of Pre@K, Rec@K and NDCG@K with K setting to [5,10,15,20,25] on the two datasets are 

shown in Fig.7 and Fig.8, respectively. Note that GeoMF is unsuitable for social topics prediction thus excluded from the 

competitors. The cause is that GeoMF is only applied for POI recommendation by leveraging the weighted user-POI check-ins 

matrix as well as geographical influence. From the comparison results, we have the following findings: 

(1) Both neural network based and graph neural network based methods have demonstrated good performance for social topics 

prediction on two datasets, especially they almost have close prediction performance regarding precision. For example, NeuMF 

and PACE have close precision to NGCF and CGA on Foursquare(NYC) and Yelp. While in terms of the results of recall and 

NDCG, we observe that NeuMF and PACE obviously underperform the latter two methods, the relative average reduction on 

Foursquare(NYC) and Yelp is by 11% and 25% on recall metric, and 18% and 17% on NDCG metric, respectively. These results 

imply that both neural network embedding and graph neural embedding are effective and can accurately capture the complex non-

linear embeddings of users and social topics when existing richer interaction data between them, unlike the very sparse interaction 

between users and POIs. Whereas we further highlight that the latter graph neural based methods still have the stronger overall 

prediction power than the former two methods such as NeuMF and PACE. 

(2) Among all the compared baselines, our GE2AT performs the most superior performance for social topics prediction in all 

cases, and constantly yields at least 13% relative improvements on Foursquare(NYC) and more than 30% improvements on Yelp 

when compared with the strongest baseline. Such improvements could be attributed to the following two reasons. 

—Our dual attentive graph networks effectively models better user preferences, thus improving prediction quality. 

—Incorporating social influence information is helpful to alleviate the data sparsity issue in a large extent. The comparison 

results have verified that social influence is very important to learn user preferences and boost the prediction performance. 

(3) To sum up, comparing the results on Foursquare(NYC) and Yelp datasets, our GE2AT model achieves the best performance 

for both types of prediction tasks in all cases. On this basis, some meaningful conclusions could be summarized as follows. Firstly, 

extending graph neural embeddings with dual attention mechanism by differentiating importance weights for neighboring entities 

is the most effective way to capture the best user preferences in heterogeneous LBSN. Secondly, we exploit neural networks 

through multiple MLPs to make the deep pairwise prediction of user preferences over POIs and social topics with extra 

consideration of the social influence to alleviate data sparsity problem. Thirdly, we fully take into account incorporating multi-

dimensional relation data of LBSN to boost the prediction performance. For instance, GE2AT model has effectively fused three 

types of heterogeneous relationships such as user social relations, user-to-location check-ins relations and user-to-social topics 

following relations. 
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Fig.7. Social topics prediction results on Foursquare(NYC) dataset 
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Fig.8. Social topics prediction results on Yelp dataset 

3）Parameter analysis 

We further conduct experiments to analyze the effects of different model parameters on the performance of GE2AT. Here, we 

mainly focus on two important components in our framework, one is the parameters of dual graph attention networks in the 

embedding layer, and the other is the parameters of MLPs in the hidden layer. 

To investigate the effects of dual graph attention networks, we evaluate different impacts caused by the two key parameters of 

this module, including the number of sampled neighbors N and the influence of the propagation layer numbers l. By varying the 
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parameters, we test the performance of GE2AT for predicting top-10 POIs and social topics. The results on NDCG@10 are shown 

in Fig.9 and Fig.10, from which we have the following findings: 

(1) When the number of sampled neighbors varies from 10 to 60 on two datasets for two prediction tasks, the metric of 

NDCG@10 increases steadily at first as a proper number of neighbors is considered. It demonstrates that integrating the local 

neighboring information can enhance the node representation. However, when the size of neighbors exceeds a certain value, the 

prediction performance decreases slightly. Obviously, we can find that the best neighbor size ranges from 30 to 40 for both 

prediction tasks. This occurs because when the neighbors are not enough, the embedding layer is unable to capture better 

representations of user preferences hidden in dual graph attention networks. While increasing redundant neighbors may be easily 

involved more noisy or uncorrelated neighbors to the representation learning, the performance improvement will be hindered 

because of them. 
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Fig.9. Impact of number of sampled neighbors 

(2) When varying the number of the propagation layers (i.e., parameter l), the NDCG@10 performance achieves the best results 

under 4 propagation layers for POIs prediction task, and 3 propagation layers for social topics prediction task in dual graph attention 

networks, respectively, which shows that the increasing of propagation layers does not correspondingly lead to better performance. 

The marginal improvement on the two datasets verifies that conducting 3 propagation layers is sufficient to capture the deep non-

linear representations of different entities. This seems to indicate that the discrimination of the nodes is decreasing as the number 

of layers increases. Thus, we argue that increasing propagation layers makes the high-order neighbors more similar, and further 

learns more similar node representations. 
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Fig.10. Impact of propagation layers 

Next, to evaluate the impacts of the hidden layers in the MLPs, we vary the number of hidden layers (i.e., parameter l′ ) from 1 

to 5, but the input embedding size is fixed to 256. As shown in Fig.11, we note that the best architecture of MLP is implemented 

with 3 hidden layers, while further stacking more hidden layers will lead to slight overfitting issue across two datasets. The results 

of two prediction tasks have relatively stable performance, and tend to exhibit the lower gaps below 11% variation of NDCG for 

POIs prediction and 9% variation for social topics prediction among all different layer structures. This verifies the effectiveness of 

using MLPs to model user preferences over POIs and social topics. In summary, we find that the prediction performance of GE2AT 

clearly depends on the number of neighbors and the embedding layers of dual graph attention networks, but not much beneficial 

from the number of hidden layers of MLPs. 
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Fig.11. Impact of the number of hidden layers in MLPs 

6 CONCLUSION 

In this work, we explore how to jointly learn the deep user preferences by fusing multi-types of relations in heterogeneous LBSN. 

Towards this end, we have proposed a novel unified pairwise relationship prediction framework known as GE2AT, which utilizes 

graph neural networks combined with dual graph attentions. Our model has considered to fully incorporate three types of user 

behavioral relations in LBSN, i.e., social relations between users, user-location check-in relations and user-social topics following 
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relations. More specifically, GE2AT focuses on graph embeddings of different entities by leveraging dual attention mechanism, 

and it can adaptively capture better non-linear representations of user preferences via aggregating information from neighbors. 

Furthermore, GE2AT also incorporates the social influence to further improve the pairwise prediction performance, by leveraging 

social relations to shape similar user preferences. Extensive experiments on Foursquare(NYC) and Yelp datasets have 

demonstrated the effectiveness of our proposed GE2AT, which achieves very significant improvements of prediction performance 

in terms of three commonly-used metrics compared to several state-of-the-art baselines. This, in turn, indicates a promising 

direction that modeling and optimizing prediction tasks by graph representation learning, especially for massive sparse and multi-

dimensional data in heterogeneous information networks. 

In future, we will extend our work by considering more information such as temporal and sequential behaviors of users to capture 

the dynamic evolution of user preferences in LBSN, so as to gain better prediction performance and scalability.   
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