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Abstract The objective of our study is to observe dynamics of multiple substances in vivo with high temporal
resolution from multi-spectral magnetic resonance spectroscopic imaging (MRSI) data. The multi-spectral MRSI can
effectively separate spectral peaks of multiple substances and is useful to measure spatial distributions of substances.
However it is difficult to measure time-varying substance distributions directly by ordinary full sampling because
the measurement requires a significantly long time. In this study, we propose a novel method to reconstruct the
spatio-temporal distributions of substances from randomly undersampled multi-spectral MRSI data on the basis of
compressed sensing (CS) and the partially separable function model with base spectra of substances. In our method, we
have employed spatio-temporal sparsity and temporal smoothness of the substance distributions as prior knowledge
to perform CS. By directly reconstructing the spatio-temporal distributions of the substances themselves without
reconstructing the spectra, this method significantly reduces the amount of MRSI data required per single time
frame. We have formulated a regularized minimization problem for reconstruction and solved it by the alternating
direction method of multipliers (ADMM). The effectiveness of our method has been evaluated using phantom data
sets of glass tubes filled with glucose or lactate solution in increasing amounts over time and animal data sets of a
tumor-bearing mouse to observe the metabolic dynamics involved in the Warburg effect in vivo. The reconstructed
results are consistent with the expected behaviors, showing that our method can reconstruct the spatio-temporal
distribution of substances with a temporal resolution of four seconds which is extremely short time scale compared
with that of full sampling. Since this method utilizes only prior knowledge naturally assumed for the spatio-temporal
distributions of substances and is independent of the number of the spectral and spatial dimensions or the acquisition
sequence of MRSI, it is expected to contribute to revealing the underlying substance dynamics in MRSI data already
acquired or to be acquired in the future.
Keywords: Magnetic resonance spectroscopic imaging, Spatio-temporal reconstruction, Substance dynamics,

Compressed sensing, ℓ1 regularization, Alternating direction method of multipliers

I. INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI) has been recognized as a powerful tool to measure spatial
distributions of chemical substances in vivo (Posse et al., 2013). It enables us to detect substances by identifying
substance-specific spectral peaks. In multi-spectral MRSI, one can expect better separation of spectral peaks produced
by different substances, and thus increasing the number of spectral dimensions of MRSI allows us to detect more kinds
of substances (Glunde and Bhujwalla, 2011; Thomas et al., 2001). For example, 2D spectral MRSI acquired with a
pulse sequence incorporating 1H-13C heteronuclear multiple quantum coherence (HMQC) (van Zijl et al., 1993) yields
2D spectra for H and C nuclei, which allow us to separate spectral peaks of lactate and fat, which are difficult with
only the spectra for H nucleus. However, multi-spectral MRSI suffers from a prolonged acquisition time required to
complete signal encodings for multiple spectral and spatial dimensions.
The prolonged acquisition time prevents MRSI from detecting substances whose distributions vary in time. This is

because the substance distributions will change before the signal encoding of multiple spectral and spatial dimensions
is completed. If the signal acquisition will be significantly accelerated, one will be able to observe spatio-temporal
distributions of substances as a “movie.” Many acceleration methods for signal acquisition have been proposed
(Bogner et al., 2021). A method of combining multiband slice selection with consistent k-t-space EPSI has been
developed for accelerated spectral imaging (Schmidt et al., 2019). There is also a report of ultra-fast imaging of
hyperpolarized biomolecules with 1D spectral MRSI using multi-echo balanced steady-state free precession sequences
(Müller et al., 2020). Although these methods have been successful in reducing the scanning time, acceleration is
restricted by the performance of MR system and the design of acquisition pulse sequence. In order to circumvent such
restrictions, an acceleration method which can be performed without special MR system or complicated acquisition
pulse sequence has to be developed.
The objective of this research is to reconstruct spatio-temporal dynamics of substances in vivo from undersampled

multi-spectral MRSI data acquired on time-varying samples on the basis of compressed sensing (CS) (Donoho, 2006;
Lustig et al., 2007). Undersampling is a way for acceleration without special MR system or complicated acquisition
pulse sequence. It enables us to reduce the signal acquisition time by obtaining a small fraction of signals compared
with full sampling. We employ a reconstruction method based on CS that directly estimates the spatio-temporal
distributions of multiple substances by modeling the temporal variation of the substance distributions and using the
base spectra of substances as prior knowledge. It should be noted that in our method the substance distributions
are not obtained via reconstructing the MRSI spectra, but by directly reconstructing the substance distributions
themselves.
The CS provides a general framework for reconstruction from undersampled data with prior knowledge that variables

to be estimated should be sparse. In a previous study (Santos-Dı́az and Noseworthy, 2019), 1D MRSI spectrum was
reconstructed with a 3-fold CS acceleration factor using sparsity of the spectrum in the wavelet-transformed domain.
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The spatial dimensions in MRSI can provide various other types of sparsity besides the sparsity of MR spectra. For
example, the sparsity about variations of spectra along spatial dimensions has been utilized in 1D spectral MRSI
(Saucedo et al., 2021) and 2D spectral MRSI (Iqbal et al., 2017). The sparsity of both of the 2D wavelet transform
of spectra in the two spatial dimensions and the 3D total variation of spectra has been exploited in reconstruction of
undersampled 1D spectral MRSI data (Nassirpour et al., 2018). As a modeling of the temporal structure, Larson et al.
(2011) reconstructed the substance dynamics with high temporal resolution by exploiting the sparsity of the wavelet
transform of the spectrum in the time dimension. Their method used hyperpolarization of 13C to enhance the signal
intensity of MRSI, and also constructed a pulse sequence suitable for the target substance, resulting in fast signal
acquisition.
In addition, we have incorporated the partially separable function (PSF) model (Haldar and Liang, 2010; Liang,

2007), which is also known as the subspace model, into CS in order to achieve a temporal resolution that is much
higher than the time scale of full sampling. The PSF model exploits low-rankness of data in conjunction with low-rank
matrix decomposition methods. By combining this idea with CS, MRSI data for the reconstruction of a 1D spectral-
2D spacial MRSI image has been acquired in as short a time as 5 minutes (Klauser et al., 2021), and high-resolution
imaging data has been created from the sparsely sampled and short-time acquired transients in mass spectrometry
imaging (Xie et al., 2022). The PSF model has also been employed to achieve the reconstruction of dynamic MRI
images (Djebra et al., 2022; Feng et al., 2020). A report by Li et al. (2021) has shown that high temporal and spatial
resolution were achieved by using the PSF model and machine learning at the stage of data acquisition rather than
reconstruction. Lam et al. (2020) has reported an MRSI acceleration method that represents the high-dimensional
spectroscopic imaging data as a union or superposition of subspaces by learning an efficient model to represent
spectroscopic images using training data. Our method utilizes a pre-acquired spectrum as the base spectrum for each
substance, but the base spectrum would also be obtained by learning parameters involved in the base spectrum, as in
the previous study by Lam et al. (2020). In other words, a future development of our method incorporating artificial
intelligence is expected.
Our method does not utilize prior knowledge of the sparsity of the spectrum to perform CS, but only the sparsity

that is supposed to exist in the substance distributions. This is because our method is not aimed at reconstructing
spectra, but at reconstructing the spatio-temporal distributions of substances. In our method, the following two
points were used as prior knowledge. One is that the substance distributions should have smoothness between
adjacent time frames, since the substance does not appear or disappear suddenly, as is naturally assumed for the
substance distributions, and the other is about sparsity where the substance under consideration exists only in a few
spatial areas in the field of view and temporal intervals of the measurement. We adopted only these natural points as
the prior knowledge because we considered them to be the most reasonable and appropriate conditions for observing
a variety of phenomena occurring in vivo.
To the best of our knowledge, no study has reported the method that reconstructs substance dynamic images per

time frame with arbitrary length frommulti-spectral MRSI by directly reconstructing the spatio-temporal distributions
of multiple substances using the sparsity in the temporal variation of the substance distributions as a prior knowledge
for CS. Furthermore, the framework of our method is independent of the spectral and spatial dimensions of MRSI.
In addition, the method can be applied to MRSI signals acquired with any MRSI pulse sequence, as long as they
are randomly undersampled. The target substance is specified at the stage of reconstruction. The method is very
systematic in that it is possible to reconstruct the spatio-temporal distributions of the target substances by simply
performing the reconstruction with this method on MRSI data acquired in any dimensions and with any acquisition
sequence. Therefore, this method is expected to contribute to the effective utilization of both existing MRSI data and
those to be acquired in the future.

II. THEORY

This section describes a formulation to represent the reconstruction of the spatio-temporal distributions of sub-
stances as a minimization problem. With reference to the PSF model, the ideal spatio-temporal spectrum is repre-
sented by a linear combination of the spectra of the substances. The coefficients to be multiplied to the base spectra
of the substances are the spatio-temporal distributions of the substances which are the targets of the estimation.
Prior knowledge regarding the spatio-temporal distributions of substances, in both spatial and temporal domains, is
incorporated into the formulation of CS as regularization. These formulations directly connect the spatio-temporal
distributions of substances to be estimated with the measured MRSI signals. The substance distribution correspond-
ing to each time point of the time-series of the measured MRSI signal is estimated, taking account of the distributions
at the time points before and after that time point.
Let J be the number of types of substances to be considered. Let x(r, t; j) denote the spatio-temporal distribution

of substance j ∈ {1, . . . , J} at spatial position r at time t, which we wish to estimate. The ideal spatio-temporal
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spectrum Θ(f , r, t) as a function of frequency f associated with the spectral measurements, spatial position r, and
time t is then given by

Θ(f , r, t) =

J
∑

j=1

θB(f ; j)x(r, t; j), (1)

where θB(f ; j) denotes the substance-specific spectrum which would be obtained if substance j were measured in
isolation without spatial encoding, which we call the base spectrum. In other words, the spatio-temporal spectrum
is represented as a linear combination of base spectra with coefficients given by spatio-temporal distributions of
substances. We write this linear relation abstractly as

Θ = ΘBx. (2)

Relationship of the signal y and the spectrum Θ in MRSI is modeled as the discrete Fourier transform in the spatial
dimensions as well as in the spectral dimensions. Let R ⊂ RN denote the spatial region of interest, which is assumed
to be a direct product of intervals, such as a rectangle for N = 2, and appropriately discretized into a Cartesian grid.
Let Q ⊂ RM denote the measured range of spectra, which is also assumed to be a direct product of intervals and
appropriately discretized into a Cartesian grid. When M = 1, Q corresponds to the range of detection times in the
readout direction. When M ≥ 2, the additional dimensions of Q consist of axes of evolution times. The MRSI signal
to be acquired from the spatio-temporal spectrum Θ(f , r, t) at time t is modeled as

y(τ ,k, t) = F [Θ(f , r, t)] (3)

for (τ ,k) ∈ F(Q) × F(R), where F denotes the discrete Fourier transform operator, and where F(Q) and F(R)
denote the dual grids of Q and R, respectively, on which the discrete Fourier coefficients are defined.
If one could acquire the MRSI signals {y(τ ,k, t)} at all grid points of F(Q)×F(R) at time t, then simple application

of inverse discrete Fourier transform would give us the spatio-temporal spectrum Θ(f , r, t) at time t. When the
spatio-temporal spectrum Θ(f , r, t) changes over time, however, one cannot acquire the full set of MRSI signals
{y(τ ,k, t) : (τ ,k) ∈ F(Q) × F(R)} for the spatio-temporal spectrum Θ(f , r, t) at time t, simply because of the
prolonged acquisition time of MRSI. If the time scale of temporal changes of the spatio-temporal spectrum is not too
short, one could consider aggregating MRSI signals acquired within a time interval whose length is short relative to
the time scale, such as the sliding window methods (d’Arcy et al., 2002) and the keyhole technique (Van Vaals et al.,
1993).
In this paper, we take an approach based on the Bayesian framework, in which x is estimated on the basis of a

posterior probability of x given MRSI signals. The posterior probability is given in terms of a prior and a likelihood.
Let P (x) be an appropriate prior distribution for the spatio-temporal distributions x(r, t), (r, t) ∈ R×T , where T ⊂ R

denotes the time interval over which we are interested in the spatio-temporal distributions. A likelihood function
quantifies, given a spatio-temporal spectrum, how likely a set of acquired MRSI signals is. Let T = {sn ∈ T : n =
1, 2, . . .} denote the set of time points at which one acquires MRSI signals. We assume that MRSI signals are acquired
at time t = sn on a subsetDn of grid points in F(Q)×F(R), for n = 1, 2, . . ., and let y(sn) = {y(τ ,k, sn) : (τ ,k) ∈ Dn}
be the set of MRSI signals acquired at time t = sn. Let P (y|Θ,D) denote the likelihood function of y acquired on
D ⊂ F(Q)× F(R) given Θ. Let y∗ = {y(sn) : sn ∈ T } be a collection of acquired MRSI signals on T . On the basis
of the Bayesian framework, we can then construct a posterior distribution of x given y∗ as

P (x|y∗) ∝ P (x)
∏

n

P (y(sn)|ΘBx(sn),Dn). (4)

The maximum-a-posteriori (MAP) estimation of the spatio-temporal distribution x given y∗ is then formulated as
the minimization of the negative log posterior, as

min
x

(

− logP (x)−
∑

n

logP (y(sn)|ΘBx(sn),Dn)

)

. (5)

Given MRSI signals y = {y(τ ,k) : (τ ,k) ∈ D ⊂ F(Q)×F(R)}, we define the likelihood function P (y|Θ,D) as

P (y|Θ,D) ∝ exp

[

−
1

2σ2
‖y −F(Θ)‖2D

]

, (6)

where for ζ = {ζ(τ ,k) ∈ C : (τ ,k) ∈ D} we let

‖ζ‖2D =
∑

(τ ,k)∈D

|ζ(τ ,k)|2. (7)
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FIG. 1. A diagram of the proposed reconstruction method. The randomly undersampled MRSI signals are divided into time
frames with arbitrary time width along the actual elapsed time and the spatio-temporal distributions of substances are assigned
to the time frames.

It amounts to assuming that the noises in MRSI signal acquisition are independent zero-mean complex Gaussian with
variance 2σ2.
The prior distribution P (x) summarizes our beliefs, prior to data acquisition, about how plausible a spatio-temporal

distribution x is. First, one can argue that in MRSI experiments we are basically interested in substances which
are more or less localized in space, and accordingly, a spatio-temporal distribution is expected to be sparse in space.
Second, metabolism in vivo consists of gradual processes, so that temporal changes of the spatio-temporal distributions
are expected to occur smoothly. A prior distribution that incorporates the above two factors may be given by

P (x) ∝ exp

[

−λx‖x‖1 − λW1‖Wx‖1 −
1

2
λW2‖Wx‖22

]

, (8)

where ‖X‖p, p = 1, 2, is the ℓp-norm of X , and where W is a time-difference operator, defined as Wx(t) = x(t +
∆)− x(t) with time difference ∆ > 0. The first term in the exponent corresponds to the ℓ1-norm regularization and
it promotes sparsity of the spatio-temporal distributions, whereas the second and the third terms correspond to what
is called the elastic net regularization (Zou and Hastie, 2005) on Wx and they encourage temporal smoothness of the
spatio-temporal distributions. The regularization parameters λx, λW1, λW2 > 0 control the relative strengths of the
three terms ‖x‖1, ‖Wx‖1, and ‖Wx‖22.
Our formulation of estimating the spatio-temporal distributions x on the basis of acquired MRSI signals y∗ is

therefore given by the convex minimization problem

min
x

(

1

2

∑

n

‖y(sn)−F(ΘBx(sn))‖
2
Dn

+ λx‖x‖1 +λW1‖Wx‖1 +
1

2
λW2‖Wx‖22

)

, (9)

which has a form of a regularized least-squares regression, and where the variance parameter σ2 has been absorbed
into the regularization parameters λx, λW1, and λW2. We reconstruct the spatio-temporal distributions of substances
by solving this minimization problem.

III. MATERIAL AND METHODS

In this section, we describe the procedures of the phantom and the animal experiments, the imaging protocol
in the data acquisition, how to set the time frame and construct the base spectrum in preparation for recon-
struction, the algorithm of the optimization method, and the reconstruction setting. In particular, the procedure
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described in subsection D, which divides the measured MRSI signal into time frames with arbitrary time width
along the actual elapsed time and assigns the spatio-temporal distribution of substances to each time frame,
is important for this reconstruction method. A diagram of the proposed reconstruction method is shown in
Fig. 1A diagram of the proposed reconstruction method. The randomly undersampled MRSI signals are divided into time frames

A. Phantom experiments

We evaluated the performance of the reconstruction by our method using phantom experiments. MRSI data sets
were acquired in three different settings using samples for which the spatial distributions of the substances and the
time variations of their amount were known. In Experiment 1, uniformly 13C-labeled D-glucose ([U-13C6]glucose)
(Cambridge Isotope Laboratories, Inc., Andover, MA, USA) solution was instilled into a glass tube at a constant rate
to increase the volume of the solution during the data collection. In Experiment 2, [U-13C6]glucose and [U-13C3]lactate
solutions were instilled into the respective glass tubes. In Experiment 3, in addition to the setting of Experiment
2, a live mouse was also placed between the glass tubes for data acquisition of fat. The treatment of the mouse
followed the one described in the animal experiment section below. The instilled volume of the solution was set to
be increased along the slice direction of MR scans; since the MR scans were performed without slice selection, the
increase in volume was measured as an increase in the spectral intensity of the corresponding voxels. In Experiment
1, a total of 400 µL of glucose solution was instilled at four different instillation rates of 53.3 (Experiment 1-1), 22.9
(Experiment 1-2), 11.1 (Experiment 1-3), and 5.9 (Experiment 1-4) µL/min, and the time required to instill the entire
solution was 7.5, 17.5, 36.0, and 68.0 min, respectively. One tube was used to inject the glucose solution, and the
four experiments with different settings in Experiment 1 were performed separately. In Experiments 2 and 3, a total
of 400 µL of glucose solution and a total of 400 µL of lactate solution were instilled at rates of 22.9 µL/min for 17.5
min and 5.9 µL/min for 68.0 min, respectively. The instillation of both solutions into each of the two glass tubes was
started simultaneously. The data acquisition started just prior to the beginning of instillation and continued until a
set of 1,024 MRSI data were collected over 68 minutes.

B. Animal experiment

We furthermore evaluated our reconstruction method using animal experimental data in Experiment 4. In the
experiment a tumor-bearing mouse injected with glucose solution was examined to observe metabolic processes related
to the phenomenon called the Warburg effect (Hsu and Sabatini, 2008; Vander Heiden et al., 2009). The Warburg
effect refers to the phenomenon occurring in tumor cells which, unlike cells in normal tissues, exhibit high glycolytic
activity and tend to convert most glucose to lactate, so that the amount of lactate in our experimental setting is
expected to increase gradually (about several minutes to several hours (DeBerardinis et al., 2007)) in tumor following
the injection. However it is difficult to observe the dynamics via full-sampling MRSI, because the process occurs in
short time scale relative to the time required for full sampling of MRSI signals.
All animal procedures were conducted in accordance with guidelines of animal experimentation at Kyoto Univer-

sity, where the experiment was conducted. A male BALB/c nude mouse (CLEA Japan, Inc., Tokyo, Japan) was
transplanted with murine colon carcinoma cells (Colon 26, 1 × 106 cells / 50 µL) into subepidermal tissues on the
right back near the shoulder several weeks prior to the MR experiments. Two molar of [U-13C6]glucose solution was
prepared for the injection of glucose. Before the MR scanning, a 27-gauge butterfly needle attached to a 1-mL plastic
syringe through a tubing filled with the [U-13C6]glucose solution was inserted into the abdomen. Throughout MR
scanning, the mouse was anesthetized with 1–2.5 % isoflurane (Forane; Abbott Japan, Co., Ltd., Tokyo, Japan) in a
1.5 L/min air flow through a plastic mask. The injection of glucose solution was started at 4 minutes and 47 seconds
passed from the beginning of the MR scanning. The injection continued at a constant rate of 10 µL/s, yielding a total
injection time of 30 s.

C. Data acquisition

We acquired 2D spectral and 2D spatial MRSI data. The MRSI pulse sequence we employed incorporates a gradient
enhanced 1H-13C heteronuclear multiple quantum coherence (HMQC) based preparation (van Zijl et al., 1993). For
acceleration of data acquisition, we just employed random undersampling, and did not use any fast-imaging methods
specific to target substances or any special accelerating techniques in the pulse sequence, in order to demonstrate that
our method works efficiently without them.
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For designing the sequence of undersampling points in conjunction with the CS-based reconstruction, we employed
Sobol sequences (Niederreiter, 1992; Sobol’, 1967), which are one of low-discrepancy sequences. A low-discrepancy
sequence is a pseudo-random sequence with the property that its finite-length subsequences are close to uniformly
distributed. In actual MR scanning, signals can be acquired rapidly enough along readout trajectories without
undersampling. Since 1H-13C HMQC uses 1H spectral direction as the readout axis in F(Q2), in our experiment, the
sequence of undersampling points was determined for the remaining three axes of 13C spectral dimension in F(Q1)
and two spatial dimensions in F(R1)×F(R2).
It is a common practice in designing undersampling points in MRSI (Furuyama et al., 2012) that regions with

higher signal-to-noise ratio (SNR) are sampled more frequently than those with lower SNR. As for the 13C dimension,
the sampling for small-τ points and large-τ points are corresponding to the regions with higher and lower SNR,
respectively. To achieve such non-uniform sampling, we applied nonlinear transformation to the elements of Sobol
sequences in 13C dimension. The particular form of the nonlinear transformation we used is as follows: Let NC be
the number of grid points in the 13C dimension of F(Q1). Given an element η ∈ [0, 1), in the 13C dimension, of a
member in a Sobol sequence and a parameter ψ > 0, we determined the corresponding index d ∈ {1, . . . , NC} via the
following nonlinear transformation:

d =

⌊

log[1− (1 − ψNC)η]

logψ

⌋

+ 1. (10)

If η is uniformly distributed over [0, 1), then the probability distribution of d satisfies P (d) ∝ ψd. We chose the value
ψ = e−4/NC via our preliminary experiments, and used it in the following experiments. As for the spatial dimensions,
on the other hand, we did not employ non-uniform undersampling, as our preliminary phantom experiments showed
that non-uniform undersampling did not improve performance. It can be ascribed to the fact that the spatial reso-
lution in our experiments was relatively low. When the spatial resolution is higher, one might consider non-uniform
undersampling in the spatial dimensions as well, with higher sampling points near the origin of the k-space.
A preclinical 7T MR system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) and a double resonant 1H/13C

transmit-receive volume coil (Doty Scientific, Inc., Columbia, SC, USA) were used. The following acquisition param-
eters were used: TR/TE = 990.7/10.7 ms, FOV = 4× 4 cm2 (Experiment 1) and 4× 8 cm2 (Experiments 2, 3 , and
4), coronal orientation without slice selection, numbers of points = 32 (13C) and 256 (1H), bandwidths = 2000 Hz
(1H) and 8000 Hz (13C), imaging matrix size = 8 × 8 (Experiment 1) and 8 × 16 (Experiments 2, 3 , and 4), and
four-step phase cycling. The MRSI acquisition took approximately 68 minutes for a sequence of undersampling points
of length 1,024 with four-step phase cycling per point, which constitute what we call an MRSI acquisition session.
We performed a single MRSI acquisition session in each of the phantom experiments (Experiments 1, 2, and 3), and
repeated six MRSI acquisition sessions with the same sequence of undersampling points, yielding a set of 6,144 MRSI
data in the animal experiment (Experiment 4). Exactly the same sequence of undersampling points determined by
a Sobol sequence as described above was used for all MRSI acquisition sessions in Experiments 2, 3, and 4, whose
settings share the same imaging matrix.
In addition to the MRSI data, we acquired MRS data to construct the base spectra. The MRS data were obtained

after the MRSI acquisition session (Experiments 1, 2, and 3), and every time between the consecutive MRSI acquisition
sessions (Experiment 4), with the same acquisition parameters as the MRSI acquisition except for the use of phase
encoding gradients. In the MRS scan, we performed full sampling along the 13C spectral dimension, yielding full-
sampled data in F(Q). The scanning time was 2.1 minutes. In Experiment 4, the total scanning time was 7.3 hours
including the six MRSI and the five MRS acquisition sessions, as well as the preparation time between consecutive
sessions.

D. Preparation of reconstruction

We discretize the whole elapsed time T into M equally-spaced time frames T̄ = {tm ∈ T : m = 1, . . . ,M}, where
M is the total number of time frames in the entire time to be reconstructed. The spatio-temporal distributions x are
then defined at these time frames, and let xm = x(tm). For convenience, we assume that the set T of time points at
which one acquires MRSI signals is a subset of the set T̄ of time frames. If it is not the case, then one can interpolate
x to evaluate the likelihood of the acquired MRSI signals at time points in T . The MRSI acquisition had some blank
time during the intervals between the consecutive MRSI acquisition sessions to acquire MRS data and to prepare the
next acquisition session in Experiment 4. As a consequence, there are time frames in T̄ that are not in T . We here
define D = {m : tm ∈ T } as an index set to indicate the acquisition time points. Then |D| means the number of
time frames where MRSI data exists. The MRSI signals for m ∈ D are collectively represented as ym = y(tm) for
simplicity. Assuming the time difference ∆ in the definition of the time-difference operator W to be equal to the time
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frame interval, our minimization problem [9equation.2.9] is discretized as

min
x

(

∑

m∈D

{

1

2
‖ym −Amxm‖22 + λx ‖xm‖1

}

+

M−1
∑

m=1

{

λW1 ‖xm+1 − xm‖1 +
1

2
λW2 ‖xm+1 − xm‖22

}

)

, (11)

where Am = UmFΘB, where Um is the operator to extract elements corresponding to the undersampling points
(τ ,k) ∈ D at time tm, and where F is the inverse discrete Fourier transform matrix. Regularization with ‖x‖1 is
introduced only for time frames in T : If the regularization were introduced for time frames in T̄ \T as well, then xm

for m 6∈ D would tend to zero, which is certainly undesirable.
We prepared the base spectra ΘB for target substances. We observed glucose in Experiment 1, glucose and lactate

in Experiment 2, and fat as well as glucose and lactate in Experiments 3 and 4. The natural abundance of 13C of
approximately 1.1 % yields significant MRSI signals from fat independent of injection of 13C-labeled glucose, which
hampers accurate estimation of the amount of glucose and lactate. Distribution of fat is expected to be constant in
time during the MRSI data acquisition, although we did not utilize the fact as prior knowledge of our reconstruction.
In the 2D MRS spectrum of 1H-13C HMQC, the spectral peak corresponding to fat is separable from those of glucose
and lactate. We extracted a 2D spectrum corresponding to each of the three substances from the spectra obtained
by MRS measurements. In the phantom experiments we used the data from the MRS acquisition session after the
MRSI acquisition session. In the animal experiment, we employed the data from the second MRS acquisition session,
in which one can expect relatively large amounts of glucose and lactate existing in the body of the mouse, yielding
reliable base spectra for glucose and lactate.

E. Optimization methods

The optimization problem (11equation.3.11) contains a large number of variables to be optimized. We employed
an optimization algorithm by Wahlberg et al. (2012), which is based on the alternating direction method of multi-
pliers (ADMM), to solve the problem. A basic idea behind the algorithm is to perform variable splitting, that is,
introduction of auxiliary variables along with equality constraints, in order to make the resulting problems separable
into smaller-sized subproblems, thereby allowing us to solve them efficiently. We show a pseudocode of our algo-
rithm in Algorithm 1algorithm.1, and describe it in the following. It should be noted that we do not claim that
the particular form of the algorithm described below is optimal in any sense: It nevertheless demonstrates that the
ADMM-based approach makes the large-scale optimization problem computationally feasible.
We rewrite the minimization problem (11equation.3.11) via variable splitting as

min
x,h

f(x,h)

s.t. (x,h) ∈ C,
(12)

where the objective function f and the constraint set C are defined as

f(x,h) =
∑

m∈D

{Φm(xm) + Ξm(xm)} +
M−1
∑

m=1

Ψm(hm), (13)

Φm(xm) =
1

2
‖ym −Amxm‖22 , (14)

Ξm(xm) = λx ‖xm‖1 , (15)

Ψm(hm) = λW1 ‖hm‖1 +
1

2
λW2 ‖hm‖22 , (16)

C = {(x,h) : hm = xm+1 − xm, m = 1, . . . ,M − 1} , (17)

with variables x = {x1, . . . ,xM} and h = {h1, . . . ,hM−1}, x1, . . . ,xM ,h1, . . . ,hM−1 ∈ RN×J . The constraint
(x,h) ∈ C can alternatively be represented using an indicator function to further rewrite (12equation.3.12) as

min
x,h,z,s

{f(x,h) + IC(z, s)}

s.t. x = z, h = s,
(18)

with variables x = (x1, . . . ,xM ), h = (h1, . . . ,hM−1), z = (z1, . . . , zM ), and s = (s1, . . . , sM−1), where IC(z, s) is
the indicator function on the constraint set C, taking 0 if (z, s) ∈ C, and ∞ otherwise.
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Following the standard prescription of ADMM, we introduce the augmented Lagrangian for our problem (18equation.3.18),
as

Lρ1,ρ2
(x, z,u,h, s,ν) = f(x,h) + IC(z, s) +

ρ1
2

‖x− z + u‖22 +
ρ2
2

‖h− s+ ν‖22 , (19)

where u and ν are scaled dual variables associated with the constraints x = z and h = s, respectively, and where
ρ1, ρ2 > 0 are penalty parameters. Each iteration of ADMM consists of four steps, which will be described in the
following.
The first step in the ADMM iteration is minimization of the augmented Lagrangian over x. At iteration k, we solve

the following minimization subproblem

xk+1
m := arg min

x

{

Φm(x) + Ξm(x) +
ρ1
2

∥

∥x− zk
m + uk

m

∥

∥

2

2

}

, m = 1, . . . ,M. (20)

We again make use of variable splitting to handle the above subproblem as

min
x,α

{

Φ(x) + Ξ(α) +
ρ1
2

∥

∥x− zk
m + uk

m

∥

∥

2

2

}

s.t. x = α,
(21)

with zk
m and uk

m given. The augmented Lagrangian for this subproblem is

Lρ1,µ(x,α,β; z
k
m,u

k
m) = Φ(x) + Ξ(α) +

ρ1
2

∥

∥x− zk
m + uk

m

∥

∥

2

2
+
µ

2
‖x−α+ β‖22 , (22)

where β is a scaled dual variable associated with the constraint x = α, and where µ > 0 is a penalty parameter.
We then apply the ADMM update to the augmented Lagrangian (22equation.3.22), yielding an inner loop of the
algorithm: at iteration k′ perform the updates

xk,k′+1
m := arg min

x

{

1

2
‖ym −Amx‖22 +

ρ1
2

∥

∥x− zk
m + uk

m

∥

∥

2

2
+
µ

2

∥

∥

∥
x−αk,k′

m + βk,k′

m

∥

∥

∥

2

2

}

, (23)

αk,k′+1
m := arg min

α

{

λx ‖α‖1 +
µ

2

∥

∥

∥
α− (xk,k′+1

m + βk,k′

m )
∥

∥

∥

2

2

}

, (24)

βk,k′+1
m := βk,k′

m + (xk,k′+1
m −αk,k′+1

m ). (25)

The minimization problems (23equation.3.23) and (24equation.3.23) are explicitly solved, and the update in the inner
loop of the algorithm is consequently derived as

xk,k′+1
m :=

{

Real(A∗tr
m Am) + (ρ1 + µ)I

}−1
{

Real(A∗tr
m ym) + ρ1(z

k
m − uk

m) + µ(αk,k′

m − βk,k′

m )
}

, (26)

αk,k′+1
m := SoftThr

(

xk,k′+1
m + βk,k′

m ; λx/µ
)

, (27)

as well as (25equation.3.23), where the complex conjugate transpose is denoted by a superscript ∗tr. The soft-threshold
function SoftThr(ξ; ι) ≡ sign(ξ)max {|ξ| − ι, 0} (Wright et al., 2009) was applied to update αm. The inner loop is to

be iterated an enough number of times. The values of xk,k′

m after an enough number of iterations in the inner loop
are to be used as the solution xk+1

m of the subproblem (20equation.3.20) in the first step.
The second step is established by the minimization of the augmented Lagrangian over h, which amounts to solving

hk+1
m := arg min

h

{

Ψm(h) +
ρ2
2

∥

∥h− skm + νk
m

∥

∥

2

2

}

= arg min
h

{λW1 ‖h‖1 +
ρ2(1 + λW2/ρ2)

2

∥

∥

∥

∥

h−
skm − νk

m

1 + λW2/ρ2

∥

∥

∥

∥

2

2

}

, m = 1, . . . ,M − 1. (28)

This minimization is again explicitly solved and the solution is given by

hk+1
m := SoftThr

(

skm − νk
m

1 + λW2/ρ2
;

λW1

ρ2(1 + λW2/ρ2)

)

. (29)

In the third step, we calculate

(zk+1, sk+1) = ΠC(x
k+1 + uk,hk+1 + νk), (30)
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Algorithm1 Optimization procedure for our problem.

Input: y, A, L; λx, λW1, λW2: Regularization parameters; ρ1, ρ2, µ: Penalty parameters; γ = ρ2/ρ1
xm ← Real(A∗tr

m ym); zm ← xm; αm,βm,um,hm,ωm, qm, sm, gm, bm,νm ← 0 {Initialization}
while xm not converged do

{Step 1, Eqs. (25equation.3.23)–(27equation.3.27)} (m = 1, 2, . . . ,M)
while xm not converged do

xm ←
{

Real(A∗tr
m Am) + (ρ1 + µ)I

}

−1 {
Real(A∗tr

m ym) + ρ1(zm − um) + µ(αm − βm)
}

αm ← SoftThr(xm + βm; λx/µ) (m ∈ D), αm ← xm + βm (m /∈ D)
βm ← βm + (xm −αm)
end while

{Step 2, Eq. (29equation.3.29)} (m = 1, 2, . . . ,M − 1)

hm ← SoftThr
(

sm−νm

1+λW2/ρ2
; λW1

ρ2(1+λW2/ρ2)

)

{Step 3, Eqs. (32equation.3.32)–(33equation.3.33)}
ωm ← xm + um, qm ← hm + νm (m = 1, 2, . . . ,M)
b1 ← ω1 − γq1, bM ← ωM + γqM−1, bm ← ωm + γ(qm−1 − qm) (m = 2, 3, . . . ,M − 1)
g1 ← (1/L1,1)× b1, gm ← (1/Lm,m)× (bm − Lm,m−1gm−1) (m = 2, 3, . . . ,M)
zM ← (1/LM,M )× gM , zm ← (1/Lm,m)× (gm − Lm+1,mzm+1) (m = M − 1,M − 2, . . . , 1)
sm ← zm+1 − zm (m = 1, 2, . . . ,M − 1)
{Step 4, Eqs. (34equation.3.34)–(35equation.3.35)}
um ← um + (xm − zm), νm ← νm + (hm − sm) (m = 1, 2, . . . ,M)
end while

Output: xm

that is, the projection of (xk+1+uk,hk+1+νk) onto the constraint set C. It is formulated as the following minimization
problem:

(zk+1, sk+1) = arg min
(z,s);s=Wz

{

ρ1‖x
k+1 − z + uk‖22 +ρ2‖h

k+1 − s+ νk‖22
}

. (31)

The solution is explicitly given by

zk+1 = (LLtr)−1
{

xk+1 + uk + γW tr(hk+1 + νk)
}

, (32)

sk+1 =Wzk+1, (33)

where γ = ρ2/ρ1, the superscript tr represents the transpose of a matrix, W is the matrix calculating the time
difference, and L denotes the Choleskey factorization of I + γW trW . That L is a band matrix allows efficient imple-
mentation, which is illustrated in Algorithm 1algorithm.1 following the formulation by Wahlberg et al. (2012).
As the last step of ADMM, we update the scaled dual variables.

uk+1
m := uk

m + (xk+1
m − zk+1

m ), m = 1, . . . ,M, (34)

νk+1
m := νk

m + (hk+1
m − sk+1

m ), m = 1, . . . ,M − 1. (35)

All the updating processes described so far are summarized in Algorithm 1algorithm.1. We implemented the
algorithm on Matlab (ver. R2017b, MathWorks, Inc., Natick, MA, USA).

F. Reconstruction setting

The interval of time frames was set to four seconds. This interval corresponds to the acquisition time of MRSI
data for a single undersampling point. The total number M of time frames and the number of the time frames in D
having MRSI data were set as M = |D| = 1, 024 in the phantom experiments and M = 6, 604 and |D| = 6, 144 in
the animal experiment, respectively. In the phantom experiments, since we reconstructed the substance distributions
from the data of a single acquisition session with no gaps during the total time of MRSI measurement, all time frames
in T̄ have MRSI data. Thus, in our settings, M and |D| are the same in the phantom experiments. In the animal
experiment, on the other hand, M > |D| due to the multiple gaps between MRSI acquisition sessions.
The optimization for the reconstruction via the ADMM requires specification of the penalty parameters ρ1, ρ2, and

µ. In principle, the reconstructed result should not depend on the choice of the penalty parameters if the algorithm
were iterated infinitely, as our problem to be solved is a convex optimization problem. In practice, however, the choice
of the penalty parameters affects convergence speed of the algorithm and behavior in convergence to the solution.
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FIG. 2. The root mean squares (RMSs) of xk−zk and zk−zk−1 at kth iteration. The vertical axis is in the logarithmic scale.
Around the 500th iteration, the slope of the curves became more gradual.

FIG. 3. The RMSE of the 2-fold CV for combinations of the regularization parameters in Experiment 4. (a) All combinations.
(b) Combinations with λx = 100. Note that the same color range covers different value ranges in figures (a) and (b) to provide
the visualization to identify large and small values.

If one uses too small values for them, the algorithm would require many iterations until convergence is achieved.
With too large values, on the other hand, the algorithm would tend to be unstable. We selected ρ1 = µ = 10−3 and
ρ2 = 10−1 on the basis of our preliminary experiments, which empirically allowed fast convergence of the algorithm.
We set the total number of iterations to solve the optimization problem (18equation.3.18) to 1,000, and performed

the optimization of the subproblem (20equation.3.20) in Step 1 of Algorithm 1algorithm.1 with two iterations of
Eqs. (25equation.3.23)–(27equation.3.27). These were determined on the basis of the following observation.
We show in Fig. 2The root mean squares (RMSs) of xk − zk and zk − zk−1 at kth iteration. The vertical axis is in the logarithmic

how two residuals ‖xk − zk‖2 and ‖zk − zk−1‖2 changed in the execution of our algorithm. These two residuals were
employed in Wahlberg et al. (2012) to assess convergence of optimization by ADMM. Since the values had a tendency
to decrease slowly after around 500th iteration, we selected 1,000 iterations in our algorithm. As for the inner loop
performing the minimization in Step 1, the first iteration brought us closer to the optimal solution, and after the
second iteration, the value remained almost the same.

IV. RESULTS

First, we determined the three regularization parameters λx, λW1, and λW2 via 2-fold cross validation (CV) as
follows: The MRSI data were divided into two subsets according to the order of the scanned readouts, with the
odd-numbered readouts as subset 1 and the even-numbered readouts as subset 2. Estimation of x was performed
with one of the subsets, and the quality of the estimated x was assessed with the other subset, via calculat-
ing the values of y corresponding to the latter subset from the estimated x, and then evaluating the root mean
square error (RMSE) of the calculated values of y against the readouts in the latter subset. In other words, re-
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FIG. 4. Reconstructed spatio-temporal distributions of each substance in the phantom experiments (Experiments 1, 2, and
3). One column shows the time variation of one substance in one experiment. Each figure shows a colored map of the spatial
distribution of a substance in a single time frame. In Experiment 3, images are displayed as colored maps overlaid on the 1H
T2-weighted images of mouse shown in gray scale for anatomical reference. For each substance, values of x were rescaled so
that the maximum value is equal to 1. The ”Frame” indicates the time frame index of the reconstruction and the ”Time”
indicates the elapsed time (in minute) from the beginning of the scanning. The images lined up vertically throughout all the
experiments are the results of the same time frame. The rightmost column shows the T2-weighted images taken immediately
after the end of each experiment.

garding each subset as a dataset which has some missing readouts, we used it to estimate x for all time frames
and calculated the values of y for the missing readouts using the estimated x. The values of the parameters λx,
λW1, and λW2 were chosen from {10−4, 10−3, 10−2, . . . , 106, 107}. We show the results of CV in Experiment 4 in
Fig. 3The RMSE of the 2-fold CV for combinations of the regularization parameters in Experiment 4. (a) All combinations. (b)
where parameter combinations having high and low RMSEs are depicted in red and blue, respectively. The axes in
Figs. 3The RMSE of the 2-fold CV for combinations of the regularization parameters in Experiment 4. (a) All combinations. (b)
(a) and (b) are in the logarithmic scale. One observes in Fig. 3The RMSE of the 2-fold CV for combinations of the regularization parameters
(a) that the RMSE values were nearly unchanged when λx is large. Figure 3The RMSE of the 2-fold CV for combinations of the regularization
(b) shows the results with λx = 100 in the λW1-λW2 plane, where the CV achieved smaller RMSEs for the most
part. We found minimizers of the RMSE values among all of the 123 possible parameter combinations and set them
as the values of the regularization parameters: (λx, λW1, λW2) as (101, 103, 100) (Experiment 1), (101, 102, 10−1)
(Experiment 2), and (100, 103, 10−1) (Experiments 3 and 4).
With the regularization parameters selected above, we performed the reconstruction using all the acquired MRSI

data. Figures 4Reconstructed spatio-temporal distributions of each substance in the phantom experiments (Experiments 1, 2, and
and 6Reconstructed spatio-temporal distributions of glucose (upper row), lactate (middle row), and fat (lower row) in the animal
show snapshots of the reconstructed spatio-temporal distributions. For each time frame and for each substance, the
dimension of x is 8 × 8 for Experiment 1 and 8 × 16 for Experiments 2, 3, and 4, corresponding to the spatial
resolution of MRSI. For visualization, we post-processed the estimated x via first performing up-sampling of x with
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FIG. 5. Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest value for each substance
in the phantom experiments. The locations of the selected pixels are indicated by square markers in the T2-weighted image
in each figure. Horizontal axis represents the elapsed time in minute. Vertical axis represents values of x, rescaled so that the
maximum value is equal to 1 in each substance.

FIG. 6. Reconstructed spatio-temporal distributions of glucose (upper row), lactate (middle row), and fat (lower row) in the
animal experiment (Experiment 4). Images are displayed as colored maps overlaid on the 1H T2-weighted images. For each
substance, values of x were rescaled so that the maximum value is equal to 1. Elapsed times from the beginning of the scanning
(in hour) and corresponding time frame indices are also shown at the bottom.

the bi-cubic interpolation, and then rescaling the values by setting the maximum value to unity for each substance.
Each resulting image of x was overlaid on T2-weighted MR image of the mouse in Experiments 3 and 4. Each image
shows the ventral view of the mouse.

Figures 5Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest value for each substance
and 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a), the tumor
show the estimated temporal profiles of the amount of substances. The horizontal axis in Figures 5Reconstructed temporal profiles
and 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a), the tumor
represents the elapsed time from the start of the MRSI measurement; the unit in Figure 5Reconstructed temporal profiles of the amoun
is minute, and the unit in Figure 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to
is hour. In Figure 5Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest value for each substance
the temporal variation of the estimated x of the spatial pixel (indicated by the square markers on the T2-weighted
images in the figures) where the amount of each substance in each experiment took its maximum value is depicted. It
should be noted that the vertical axis represents values of substance amounts, rescaled so that the maximum value of
the reconstructed spatio-temporal distribution of each substance is 1. Each curve then represents relative temporal
changes of the amount of the substance. In Figure 5Reconstructed temporal profiles of the amount of substances at spatial pixels
(a), we can observe the increase in glucose instilled at different instillation rates. In Figures 5Reconstructed temporal profiles of the
(b) and (c), an increase in lactate was observed after the increase in glucose. In Experiments 1-1–1-4, the instillation of
glucose solution ended at 7.5, 17.5, 36.0, and 68.0 min, respectively. In Experiments 2 and 3, the instillation of glucose
and lactate ended at 17.5 and 68 min, respectively. In Figure 5Reconstructed temporal profiles of the amount of substances at spatial
▽ indicates the time at which the instillation of each solution was finished.
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FIG. 7. Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a),
the tumor (b), and the neck (c) in the animal experiment (Experiment 4). The pixels are indicated by white square markers
in T2-weighted anatomical images. Horizontal axis represents the elapsed time in hour. Vertical axis represents values of x,
rescaled so that the maximum value is equal to 1 in each substance.

Figures 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a),
(a)–(c) show temporal profiles of the three substances at the injection site, inside the tumor, and at the neck which is a
lipid abundant region, respectively. Each of these positions is indicated in the inset of each figure with a square marker.
The values of the substance amounts were rescaled so that the maximum value of the reconstructed spatio-temporal
distribution of each substance is 1. The increase and decrease of glucose and lactate, and the constancy of fat were ob-
served in Figures 6Reconstructed spatio-temporal distributions of glucose (upper row), lactate (middle row), and fat (lower row)
and 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a), the tumor
Glucose spread over the whole body in the early stage and decayed in the latter half. At the injection site, glucose
increased quickly in the beginning, and decreased slowly after that. Inside the tumor, glucose increased more slowly
than that at the injection site, and decreased in the latter half. Lactate increased following the rise of glucose and
kept a high level in the tumor. At the neck, glucose showed slight increase but lactate did not. Fat remained almost
constant in time, with larger amount around the neck where more fat is located.

V. DISCUSSION

In order to validate our method, we first performed the phantom experiments. Figure 4Reconstructed spatio-temporal distributions
shows that the spatio-temporal distributions of glucose, lactate, and fat are appropriately reconstructed by our method,
and they are consistent with the settings of the respective experiments. Figure 5Reconstructed temporal profiles of the amount of substances
shows the reconstructed temporal profiles of the amounts of the substances at spatial pixels where the reconstructed
profiles attained the largest values. In Experiments 1–3, the glucose increased and then remained almost constant. The
time at which it reached the end of the increase corresponded approximately to the time at which the instillation of the
solution actually ended (▽ in Figure 5Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest
Lactate continued to increase until the end of the experiment, which was consistent with the experimental setting that
the instillation completed at the end of the measurement. In Figure 5Reconstructed temporal profiles of the amount of substances
(c), the amount of fat did not fluctuate with time, which was consistent with the fact that the amount of fat in a
mouse did not change in the short period of time. On the basis of the above, we have succeeded in demonstrating the
spatio-temporal distributions of the three substances with a temporal resolution of four seconds from undersampled
MRSI data.
In Figure 5Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest value for each substance

we observe that in Experiments 1-4 and 2, the amounts of the substances were reconstructed to be zero for several
minutes after the start of the measurement, even though the instillation of the solution started at the beginning of the
measurement. Since our reconstruction method employs ℓ1-norm regularization, small values tend to be estimated
as zero. The fact that the amounts of the substances were estimated to be zero continuously after the beginning
can be attributed to the effect of the ℓ1-norm regularization term in x. In addition, for glucose and lactate in
Experiments 1-1, 1-2, 1-3 and 3, the actual amount of substance is zero at the beginning of measurement, but is
reconstructed to be a constant non-zero value for several minutes after the beginning. This could be due to the effect
of the ℓ1-norm regularization term of xm+1 − xm, which encourages the estimates to satisfy xm+1 − xm = 0. Our
reconstruction method interpolated the missing measurement data by performing ℓ1-norm regularization based on
the prior knowledge in the framework of compressed sensing. Although the effect of ℓ1-norm regularization can be
the limitation of our method, the magnitude of the effect of ℓ1-norm regularization can be changed by adjusting the
regularization parameter. The regularization parameters were determined by CV in this paper, but it may be better
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to determine them according to the variation of the amount of substance to be visualized. In the CV of this paper,
the whole measured MRSI data was equally divided into two data sets, and the regularization parameters were chosen
to reduce the error in estimating the data in the data set not used in the estimation. In Experiment 1, the time
interval in which the amount of glucose was high was the longest in Experiment 1-1 and the shortest in Experiment
1-4. Therefore, it is possible that the CV error tended to be smaller when the estimated MRSI data was fitted to the
measured MRSI data in the time interval with high glucose content, especially in Experiment 1-1. The estimation
results may be more consistent with the experimental settings if the regularization parameters are chosen separately
for the time periods with large and small changes in amount.

In the results of the animal experiment, the estimated spatio-temporal distributions of glucose, lactate, and fat, as
presented in Figs. 6Reconstructed spatio-temporal distributions of glucose (upper row), lactate (middle row), and fat (lower row)
and 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection site (a), the tumor
are consistent with our expectations: The initial increase of glucose at the injection site, followed by its spread over the
whole body and decay, reflects normal physiological processes. The constancy of fat is explained by the endogenous
natural abundance of 13C. The elevation of lactate level within the tumor following the rise of glucose is ascribed
to the Warburg effect. With regard to the Warburg effect, it is said that glucose begins to change into lactate in a
few seconds, and the temporal change of glucose and lactate could not be observed by 2D spectral MRSI with full
sampling due to the prolonged acquisition time. Our method allows us to reconstruct the spatio-temporal distribution
of the substances with a temporal resolution of four seconds, which enables us to observe the Warburg effect in vivo
noninvasively.

One can observe, in Fig. 7Reconstructed temporal profiles of the amount of substances at spatial pixels corresponding to the injection
step-like structure in the first half of the temporal profile for glucose at the injection site, as well as those for glucose
and lactate inside the tumor. It seems that these parts of the temporal profile include some stair-step artifacts,
because one generally expects smooth temporal changes in the distributions, except for the rapid increase of glu-
cose due to its injection. Similar step-like structures can be observed in the results of the phantom experiments as well
(Fig. 5Reconstructed temporal profiles of the amount of substances at spatial pixels with the largest value for each substance in
It is considered that this step-like artifact is not due to noise in measurement but is caused by the regularization. We
observed dependence of the stair-step artifacts on the regularization parameters λW1 and λW2 (results not shown), sug-
gesting that they were indeed artifacts: Smaller λW1 or larger λW2 yielded the estimated temporal profiles smoother.
Although the used values of the regularization parameters in our experiments achieved the smallest RMSE in CV,
there were other sets of the regularization parameters with RMSEs which were not much different from the one with
the smallest RMSE. For example, the parameter values (λx, λW1, λW2) = (100, 102, 102) gave rise to a relatively small
RMSE (Fig. 3The RMSE of the 2-fold CV for combinations of the regularization parameters in Experiment 4. (a) All combinations.
(b)). The resulting temporal profiles became smoother without any noticeable stair-step artifacts, but the rapid in-
crease of glucose at the beginning disappeared. Even if some stair-step artifacts are observed, if we do not strongly
regularize the sparsity of the temporal variation of the substance distribution, we will not be able to observe the rapid
changes. Therefore, the parameter value (λx, λW1, λW2) = (100, 103, 10−1) used in our experiment was suitable for
our measurement data where we want to detect the amount of substances that changes quickly in time. The values
of the regularization parameters should be chosen according to the temporal variation of the substance distribution.

In our method, we assume that the base spectra for the substances of interest are known. In our experiments,
the MRS measurements to prepare the base spectra were performed simultaneously with the MRSI measurement.
If it is not the case, then an alternative approach would be to estimate them jointly with the estimation of x, via
regarding (2equation.2.2) as defining a PSF model, where the base spectra ΘB are assumed independent of positions
or time of appearance of the substances. This assumption is essentially equivalent to that in Lam and Liang (2014);
Ma et al. (2016), and thus efficiently dealt with via low-rank matrix decomposition methods (Haldar and Liang, 2010;
Liang, 2007). As another way to prepare the base spectra of substances, it would be created from the already acquired
MRSI data. Using all acquired MRSI signals without considering temporal or spatial resolution, a combined spectrum
of all substances existing in the imaging area is reconstructed. Characteristic frequencies of spectral peaks are known
for many substances. By analyzing the reconstructed spectrum, it is possible to determine what substances exist
in the object and to extract the spectrum of each substance. By using the extracted spectra of the substances as
base spectra of the substances, the reconstruction can be performed by our method without additional measurement
experiments. If additional measurement experiments are available, one may alternatively perform MRS measurements
on a stable phantom with known substance concentrations in order to prepare the base spectra. The approach with
measurements for the base spectra in advance opens a way to perform quantitative analysis on spatio-temporal
substance distributions from MRSI data. This will be future work on development of MRSI framework.

The advantage of this method is that it can reconstruct the spatio-temporal distributions of multiple substances
simultaneously on a time scale that is much shorter than the time scale of full MRSI sampling. Another advantage
is that it does not require training with a large amount of data in advance and can easily reconstruct the substance
distributions using only the acquired MRSI signal. However, as a limitation, this method cannot reconstruct whole
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MRSI spectra that include various spectral peaks other than those of the substances of interest, because the method
reconstructs the substance distributions using the base spectra that include the peaks of the substances of interest. One
idea to break through this limitation is not to decide on specific substances as the targets of estimation, but to estimate
the whole spectra by combining spectra estimated separately for water, lipid, metabolite, and macromolecules, as is
done in Lam et al. (2020). Another idea is to use a large number of spectra with various peaks as base spectra instead
of spectral peaks of specific substances, to reconstruct the substance distributions without determining the substance
of interest at the reconstruction stage, and to synthesize the entire spectrum to obtain the MRSI spectrum. However,
this method would have a very large number of parameters to be estimated, so it may be necessary to collect some
information in advance by some technique such as machine learning with a large amount of data.
In the experimental setting of this study, we used a 2D spectral and 2D spatial MRSI sequence. In the Fourier space

of F(Q)× F(R), F(Q2) is the readout dimension in which the MRSI signal is acquired at one time. The readout is
performed per point in the remaining three dimensions of F(Q1) × F(R1) × F(R2). The required time for a single
readout per point is four seconds. The resolution of the spectrum was 256 (in the readout direction) × 32, and the
resolution of the space was 8 × 8 or 8 × 16. In order to acquire complete information about the 2D spectrum in
2D space, 32 times sampling in the F(Q1) direction and 8 × 8 or 8 × 16 times sampling in the F(R) direction are
required. In other words, to obtain a single 2D image where each spatial pixel has 2D spectral information, 4 s × 32 ×
8 × 8 (or 16) = 2.3 hours (or 4.5 hours) is required. Therefore, reconstruction from a fully sampled signal only produce
a movie with one time frame of 2.3 hours (or 4.5 hours). In this study, we propose a method to randomly acquire
signals in the three dimensions of F(Q1) × F(R1) × F(R2) and to reconstruct the substance distributions for each
time frame divided by an arbitrary time width from the time-series of the MRSI signals. For the spectral dimension,
we have reduced the number of elements to be reconstructed by using the base spectrum of each substance. By using
compressed sensing on the spatial dimensions R, we have succeeded in obtaining a movie with a time resolution of
four seconds. The time width of the time frame can be determined arbitrarily. In other words, the number of acquired
signals used in one time frame can be arbitrarily determined. The four seconds is a time elapsed during one readout.
It is computationally possible to assign fewer signals to one time frame than the number of signals for one readout.
However, since four-step phase cycling was employed in this experimental condition, signals acquired through four
times signal acquisitions in different phases were combined assuming that the substance distributions did not change,
during this time. Therefore, it is unreasonable to estimate the substance distribution from the signal in the shorter
time than the readout time. For this reason, four seconds is considered to be the lower limit of the time resolution
under the conditions of this experiment, but it could be shortened further by using other MRSI acquisition sequences,
such as ultrafast MRSI imaging with signal enhancement by hyperpolarization (Müller et al., 2020).
As mentioned in the previous paragraph, in this study, a temporal resolution of four seconds was achieved by

reconstructing the substance distribution image of one time frame per MRSI signal obtained as a readout at a single
point in the three dimensions of F(Q1)×F(R1)×F(R2). Since we compressed the spectral dimension using the base
spectra of target substances, the required full sampling points depend on the number of target substances. The CS
acceleration factor (the under-sampling ratio for CS compared to full sampling to reconstruct a spatial distribution of
substances) is calculated to be 3 (number of target substances) × 8 × 16 = 384 in the animal experiments, which is
an extreme acceleration. However, this method does not reconstruct the whole MRSI spectra, nor does it reconstruct
the substance distributions from only the MRSI signal assigned to a single time frame. Therefore, it is not fair to
compare the temporal resolution with those in existing reports that reconstruct the spectrum of a single image. To
the best of our knowledge, there are no reports on methods for estimating spatio-temporal distributions of substances
from MRSI signals with the same strategy as this study, so we cannot compare them directly. In Klauser et al. (2021),
they have achieved CS acceleration factors of up to 6.5 in 1D-spectral 2D-spatial MRSI. A study has reported that
the acquisition time was 0.9 minutes for a spatial matrix of size 17 × 17 × 5 in 1D MRSI (Li et al., 2021). On
the other hand, when imaging is performed using hyperpolarization techniques, the MRSI signal is amplified tens of
thousands of times, so the signal can be acquired in a very short measurement time and the temporal resolution can
be very high. Therefore, it is also not fair to compare the time resolution with experiments that do not use such
signal amplification during imaging, as in this study. In Müller et al. (2020), they have reported that it took only 8.2
seconds to measure 1D MRSI in 3D space.

VI. CONCLUSION

We have reconstructed the spatio-temporal distributions of substances with high temporal resolution from the
undersampled 2D spectral MRSI data using compressed sensing. Our method utilized the acquired MRSI signal
and the base spectra of substances of interest. We exploited the base spectra as well as the temporal change of
the distribution of the substances as the prior knowledge for the compressed sensing. Our method was successful
in reconstructing spatio-temporal distribution of multiple substances only from undersampled MRSI data with base
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spectra of substances of interest. Using our method, it will be possible to observe the spatio-temporal dynamics of
substances with high temporal resolution from existing MRSI data. Indeed in our experiments the temporal resolution
was four seconds in spite of long acquisition time for full sampling. Our method allows us to observe phenomena
where the spatio-temporal distributions of substances change in a short time in vivo, such as metabolic activities and
medical efficacy, and has the potential to capture unknown changes of substances distributed in vivo. In future work,
it is expected that the reconstruction will be performed by preparing a large number of base spectra of substances
without specifying the target substances, which will lead to the discovery of substances whose existence in vivo is
unknown.
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