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Abstract

Association rule mining is intended for searching for the relationships between

attributes in transaction databases. The whole process of rule discovery is very

complex, and involves pre-processing techniques, a rule mining step, and post-

processing, in which visualization is carried out. Visualization of discovered

association rules is an essential step within the whole association rule mining

pipeline, to enhance the understanding of users on the results of rule mining.

Several association rule mining and visualization methods have been developed

during the past decades. This review paper aims to create a literature review,

identify the main techniques published in peer-reviewed literature, examine each

method’s main features, and present the main applications in the field. Defining

the future steps of this research area is another goal of this review paper.
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1. Introduction

Association Rule Mining (ARM) is definitely one of the most important

and popular data mining techniques for discovering unknown knowledge from

transaction databases. The ARM is also a part of Machine Learning (ML) with

the task to discover interesting relationships between items in large transaction

datasets. The relationships are expressed by association rules determining how

and why certain items are connected. The story of ARM started with a seminal

paper of Agrawal et al. (1994). Agrawal set the theoretical foundations for the

process of ARM, and proposed the first algorithm, called Apriori. Apriori is a

deterministic algorithm for mining association rules, and is still today featured

as one of the top algorithms in the DM domain (Wu et al., 2008), as well as a

member of an unprecedented scale in student textbooks.

In the following years, the ARM gained huge interest in the ML community.

Its popularity was proven with many practical applications, especially, in the do-

mains such as market-based analysis (Nisbet et al., 2018), medical diagnosis (Xu

et al., 2022), census data (Malerba et al., 2002) or protein sequences (Gupta

et al., 2006), among others.

Data analysis pipelines typically consist of data cleanup and minimizing data

imputations (also data pre-processing), data collection and exploration design,

and comprehending the mined knowledge. Thus, the whole ARM pipeline is

complex (see Fig. 1), because it consists of three steps, as follows: the pre-

processing, the ARM, and the post-processing. The input to the pipeline

presents the transaction database, which consists of rows and columns, where

each row presents a transaction, and columns the attributes. In the pre-processing

step, some optional substeps can be applied to make the data more robust, i.e.,

data cleaning and missing data imputation, where some outliers, or rows with

a lot of missing data can even be removed. On the other hand, some other

operations, for example, data squashing (Fister et al., 2022), can help reduce

the transaction dataset. Then, the ARM process itself is performed. In line

with this, several algorithms, e.g., Apriori or Eclat, exist and are, as mentioned,
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Figure 1: The basic ARM pipeline.

some of the most used. The output of this step is usually a huge collection

of mined/identified/found association rules. Usually, researchers present these

rules as a table, or summarize them using some metrics. However, visualization

of the association rules needs to be conducted for the best insights.

Nowadays in ML, there is a trend to go for easier representation of the re-

sults obtained by ML/AutoML (automated ML) pipelines. This intention also

coincides with the emerging research area of eXplainable Artificial Intelligence

(XAI) (Barredo Arrieta et al., 2019; Arrieta et al., 2020). XAI has become an

important part of the future of AI, because XAI models explain the reasoning

behind their decisions. This provides an increased level of understanding be-

tween humans and machines, which can help build trust in AI systems (Kumar,

2022). In summary, XAI is a set of processes and methods to comprehend and

trust the results created by the ML algorithms. In line with this, it tries to

describe an AI model’s impact on the one hand, and exposes its potential biases

on the other. Thus, the ML model is estimated according to its accuracy, fair-

ness, transparency, and outcomes of AI-powered decision-making (Borrego-Dı́az

& Galán-Páez, 2022).

XAI can be manifested in several forms: text explanation, visualization,

local explanation, explanation by example, explanation by simplification, and

feature relevance (Barredo Arrieta et al., 2019; Bennetot et al.). Thus, there

is an increased interest of researchers in developing new methods for easier

representation of the results. Definitely, one of the most important parts of

these efforts is visualization methods (Arrieta et al., 2020).
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Typically, ARM algorithms generate a huge number of association rules.

Frequently, the results are opaque for ordinary users, and need some explana-

tions to understand their meaning. On the other hand, visualization of the

results has a huge explanation power. Although a lot of visual methods have

been proposed for ARM, to the best of our knowledge, no review for dealing

with this problem from the XAI point of view exists nowadays.

Therefore, the aim of this paper is to collect and discuss visualization tech-

niques for ARM that have appeared from its advent to the present day. Each

method is studied in detail and features are compared with each other in the

sense of XAI. The contributions of this review paper are summarized as follows:

• The evolution of ARM visualization methods is presented.

• The features of each of the methods are defined.

• The advantages/disadvantages of each method are outlined.

• An example is presented for each of the surveyed methods.

• Explaining models using the ARM visualization are summarized.

The review of the ARM visualization methods is based on papers published

from three different main sources: the ACM Digital Library, IEEEXplore, and

Google Scholar. The analyse of the methods are highlighted from the following

points of view: (1) characteristics, (2) visualization focus, and (3) attribute

type. The taxonomies of the ARM visualization methods are introduced based

on the highlights.

The structure of the paper is organized as follows: Section 2 deals with

the ARM problem in a nutshell. The mathematical definition of the ARM

visualization is the subject of Section 3. A detailed overview of traditional

ARM visualization methods is reviewed in Section 4. New ideas in the ARM

visualization are the subject of Section 5. The subject of Section 6 is a review

of graphical systems, while Section 7 introduces challenges and open problems.

The review concludes with Section 8 that summarizes the performed work and

outlines potential ideas for the future work.
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2. Association rule mining in a nutshell

The ARM problem is defined formally as follows: Let us suppose a set of

items I = {i1, . . . , iM} and transaction database D = {Tr1, . . . , T rN} are given,

where each transaction Tri is a subset of objects Tri ⊆ I. Thus, the variable

M designates the number of items, and N the number of transactions in the

database. Then, an association rule can be defined as an implication:

X ⇒ Y, (1)

where X ⊂ I (left-hand-side or LHS), Y ⊂ I (right-hand-side or RHS), and

X ∩ Y = ∅. The following four measures are defined for evaluating the quality

of the association rule (Agrawal et al., 1994):

supp(X ⇒ Y ) =
n(X ∩ Y )

N
, (2)

conf (X ⇒ Y ) =
n(X ∩ Y )

n(X)
, (3)

lift(X ⇒ Y ) =
supp(X ∩ Y )

supp(X)× supp(Y )
, (4)

conv(X ⇒ Y ) =
1− supp(Y )

1− conf(X ⇒ Y )
, (5)

where supp(X ⇒ Y ) ≥ Smin denotes the support, conf (X ⇒ Y ) ≥ Cmin the

confidence, lift(X ⇒ Y ) the lift, and conv(X ⇒ Y ) the conviction of the associ-

ation rule X ⇒ Y . There, N in Eq. (2) represents the number of transactions in

the transaction database D, and n(.) is the number of repetitions of the partic-

ular rule X ⇒ Y within D. Additionally, Smin denotes minimum support and

Cmin minimum confidence, determining that only those association rules with

confidence and support higher than Cmin and Smin are taken into consideration,

respectively.

The interpretations of the measures are as follows: The support measures

the proportion of transactions in the database which contain the item. The con-

fidence estimates the conditional probability P (Y |X), denoting the probability
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to find the Y of the rule in transaction under the condition that this transac-

tion also contains the X. The lift is the ratio of the observed support that X

and Y arose together in the transaction if both set of items are independent.

The conviction evaluates the frequency with which the rule makes an incorrect

prediction.

2.1. Numerical association rule mining

Numerical Association Rule Mining (NARM) extends the idea of ARM,

and is intended for mining association rules where attributes in a transaction

database are represented by numerical values. Usually, traditional algorithms,

e.g., Apriori, require a discretization of numerical attributes before they are

ready to use. The discretization is sometimes trivial, and thus does not affect

the results of mining positively.

On the other hand, many methods for ARM exist that do not require the

discretization step before applying the process of mining. Most of these meth-

ods are based on population-based nature-inspired metaheuristics, such as, for

example, Differential Evolution (DE) (Storn & Price, 1997) or Particle Swarm

Optimization (PSO) (Kennedy & Eberhart, 1995). Consequently, the NARM

has recently showed an importance in the data revolution era that has been

confirmed by some review papers (Altay & Alatas, 2019; Telikani et al., 2020)

tackling the solving this class of problems.

Each numerical attribute is determined in NARM by an interval of feasible

values limited by its lower and upper bounds. The more association rules are

mined the broader the interval. The narrower the interval, the more specific

relations are discovered between attributes. Introducing intervals of feasible

values has two major effects on the optimization: To change the existing discrete

search space to continuous, and to adapt these continuous intervals to suit the

problem of interest better.

Mined association rules can be evaluated according to several criteria, like

support and confidence. For the NARM, however, additional measures must be

considered, in order to evaluate the mined set of association rules properly.
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2.2. Time Series Association Rule Mining

TS-ARM is a new paradigm, which treats a transaction database as a time

series data. The formal definition of the NARM problem needs to be redefined in

line with this. In the TS-ARM, the association rule is defined as an implication:

X(∆t) =⇒ Y (∆t), (6)

where X(∆t) ⊂ O, Y (∆t) ⊂ O, and X(∆t) ∩ Y (∆t) = ∅. The variable ∆t =

[t1, t2] determines the sequence of the transactions which have arisen within

the interval t1 and t2, where t1 denotes the start and t2 the end time of the

observation. The measures of support and confidence are redefined as follows:

conft(X(∆t) =⇒ Y (∆t)) =
n(X(∆t) ∩ Y (∆t))

n(X(∆t))
, (7)

suppt(X(∆t) =⇒ Y (∆t)) =
n(X(∆t) ∩ Y (∆t))

N(∆t)
, (8)

where conft(X(∆t) =⇒ Y (∆t)) ≥ Cmax and suppt(X(∆t) =⇒ Y (∆t)) ≥

Smax denotes the confidence and support of the association rule X(∆t) =⇒

Y (∆t) within the same time interval ∆t.

3. Visualization of association rule mining

Visualization of ARM can be described mathematically as a set of triplets:

R = {〈X1, Y1, Z1〉, . . . , 〈Xi, Yi, Zi〉, . . . , 〈Xn, Yn, Zn〉}, (9)

where Xi denotes an antecedent, Yi a consequent, and Zi a vector of available

interestingness measures (e.g., support, confidence, etc.) for i = 1, . . . , N . In a

nutshell, different visualization methods depend on:

• the number of interstingness measures to display,

• the visualization focus,

• the rule set size.
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The number of interestingness measures to display is limited by the number

of dimensions that can be visualized (i.e., 2D or 3D). The visualization focus

determines how the association rule defines the neighborhood of rules to be

visualized. In line with this, the neighborhood is defined by: interestingness

measure, items, similarity of RHS and LHS, or time series’ visualization. The

rule set size limits the number of association rules that are included into a

specific visualization method.

3.1. Study design

For conducting the systematic literature review, we followed the guidelines

presented in the Systematic Literature Review Guidelines in Software Engineer-

ing (Kitchenham et al., 2007). Our primary goal was to identify the frequency

of the ARM visualization methods, the main features of these methods, and the

applications in which these methods were applied. According to our goals, we

developed the following Research Questions (RQ)s:

• RQ1: Which methods are developed for the ARM visualization?

• RQ2: Which challenges and open problems are placed behind the ARM

visualization?

• RQ3: Which software packages are available to users tackling these prob-

lems?

• RQ4: What awaits the methods for visualization of association rules in

the future?

We conducted a literature search using major databases from 18 to 22 November,

2022. The main search strings that were used for searching the databases were

as follows: “association rule mining” AND “visualization” OR “visualisation”.

The search string was also modified according to the search formats of different

databases.

Table 1 presents the results of our search 1. Each of the papers was pre-

screened according to its abstract and keywords.

1Note that we also checked the citing articles of results from Google Scholar manually.
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Database name URL Total Included

ACM Digital Library dl.acm.org 6 4

IEEEXplore ieeexplore.ieee.org 214 21

Google Scholar scholar.google.com 16,100 25+

Total 16,320 25+

Table 1: Search results of papers regarding the keywords in various databases.

When the results were collected, we also filtered out the duplicates. Addi-

tionally, when searching through the Google scholar we checked for citing articles

of each paper, so that additional results were then identified and included in

this review paper. We also specified the selection and exclusion criteria as well

as limitations. The selection criteria were the follows: (1) research paper ad-

dresses any kind of ARM and its connection with visualization, and the research

must be peer reviewed, i.e., published in a referred conference, journal paper,

book chapter or monograph. The search was conducted with exclusion criteria

as follows: “The research paper is not written in the English language”, and

limitations such as: “The literature review search was limited to only three

databases”. The summary of abstracts from IEEEXplore and ACM Digital

Library publications is shown in the wordcloud Fig. 2.

4. A detailed overview of traditional ARM visualization methods

In the following subsections, each of the methods is outlined, followed by a

summary of related work, while several methods are also illustrated by an exam-

ple. The examples of the particular visualization are implemented in arulesViz

(Hahsler et al., 2011) on a set of 11,267 association rules produced by the Apriori

algorithm (Agrawal et al., 1994) mining the Mushroom UCI ML dataset (UC

Irvine ML Repository, 1987) using the following limitations: Smin = 0.3 and

Smin = 0.5.

Table 2 presents a summary of the traditional ARM visualization meth-

ods that were found in our systematic literature review. It is divided into
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Figure 2: Wordcloud of the extracted abstracts.

four columns that present: a sequence number (column ’Nr.’), a class (column

’Class’), a variant (column ’Variant’), and the method’s developer (column ’Ref-

erence’). As can be seen from the table, we are focused on eight classes of visu-

Nr. Class Variant Reference

1 Scatter
Scatter plot Bayardo & Agrawal (1999)

Two key plot Unwin et al. (2001)

2 Graph Graph-based Klemettinen et al. (1994)

3 Matrix
Matrix-based Hian-Huat Ong et al. (2002)

Grouped matrix-based Hahsler & Karpienko (2017)

4 Mosaic
Mosaic plot Hofmann (2008)

Double decker plot Hofmann & Wilhelm (2001)

Table 2: Summary of ARM visualization methods.

alization methods and their variants (together 7 visualization methods). In the

remainder of the paper, the aforementioned visualization methods are illustrated

in a nutshell.
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4.1. Scatter plot

A Scatter plot (Fig. 3a) was firstly used for visualizing mined association

rules by (Bayardo & Agrawal, 1999). In general, this plot is used to display an

(a) Scatter plot. (b) Two-key plot.

Figure 3: Scatter and Two-key plots powered by arulesViz.

association or relationship between interestingness measures Zi (usual support

and confidence) that are presented as dots in the Scatter plot. Additionally, the

third measure (usual lift) is included as a color key. Thus, rules with similar

values of interestingness measures are placed closer to each other, while the

correlation can be established between dependent and independent variables.

Typically, the so-called regression line is drawn in the Scatter plot, representing

the trend of the relationship between two observed variables. This line can also

be used as a predictive tool in some circumstances.

4.1.1. Twokey plot

A two-key plot (Fig. 3b) is a special kind of Scatter plot that was developed

by Unwin et al. (2001), especially, for analyzing association rules. It consists of

a two dimensional Scatter plot displaying an association between two measures

of interestingness (usually support and confidence), while the third measure is

represented by the color of the points (i.e., support/confidence pairs), where the

color corresponds to the length of the rule (also order). Interestingly, 2-order
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association rules describe trails moving from the upper right side (perfect result)

to the left lower side of the same plot (lesser support and lesser confidence).

4.2. Graph-based

Graph-based techniques (Fig. 4) identify how rules share individual item

(Klemettinen et al., 1994; Rainsford & Roddick, 2000; Buono & Costabile, 2005;

Ertek & Demiriz, 2006). They visualize association rules using vertices and

Figure 4: Graph plot powered by arulesViz.

edges, where vertices annotated with item labels represent items, and itemsets

or rules are represented as a second set of vertices. The items are connected

with itemsets/rules using arrows. For rules, arrows pointing from items to rule

vertices indicate LHS items, and an arrow from a rule to an item indicates

the RHS. Interestingness measures are typically added to the plot by using the

color or the size of the vertices representing the itemsets/rules. Graph-based

visualization offers a very clear representation of rules but they tend to become

cluttered easily, and, thus, are only viable for very small sets of rules.

4.3. Matrix-based

Matrix-based visualization (Hian-Huat Ong et al., 2002) (Fig. 5a) identifies

associations between antecedent (LHS) and consequent (RHS) items. Thus,

association rules are organized as a square matrix M = {mj,k} of dimension

M ×M , in which distinct antecedent items Xi ∈ {xi,j} for j = 1, . . . , |Xi| and

12



(a) Matrix plot. (b) Grouped matrix-based plot.

Figure 5: Matrix and Grouped matrix-based plots powered by arulesViz.

distinct consequent items Yi ∈ {yi,k} for k = 1, . . . , |Yi| are included. The values

of some interestingness measure (e.g., lift) are then assigned to the corresponding

position mj,k = Zi of the matrix. Typically, the antecedent itemset of the rules

is ordered by increasing support, while the consequent itemset by increasing

confidence before visualization.

However, the matrix visualization is limited by the rule set size (i.e., <

1, 000), especially in the case of a huge matrix, which makes the exploration of

the matrix much harder.

4.3.1. Grouped matrix-based visualization

The grouped matrix-based visualization (Hahsler & Karpienko, 2017) (Fig. 5b)

is a variant of the original matrix-based visualization, where the large set of dif-

ferent antecedents (the columns in matrix M) are grouped into the smaller set

of groups using clustering. Mathematically, the set of antecedents is grouped

into a set of k groups S = {S1, . . . , Sk} according to minimizing the sum of

squares within the particular cluster, in other words:

arg min
S

k∑
i=1

∑
mi,j∈Si

||mi,j −mi||2, (10)
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where mi = {mi,j} for j = 1, . . . , |Ai| is a column i of matrix M which represents

all values with the same antecedent, and mi is the center of the cluster Si.

Thus, the k-means algorithm (Hartigan & Wong, 1979) is applied 10-times with

random initialization of the centroids. The best solution is then used for an

ARM visualization. The motivation behind the ARM visualization method is

to reduce the antecedent’s dimension that enables more informative visualization

of the association rules.

4.4. Mosaic plot

A mosaic plot (Hartigan & Kleiner, 1984) is applied for visualizing the inter-

esting rule, consisting primarily of categorical attributes (Fig. 6a). It is based

on the so-called contingency table, in which the frequencies of the attribute ap-

pearances in the interesting rule r∗ are assigned to each position mj,k, where

j denotes the corresponding the antecedent attribute Aj and k the consequent

attribute Ak.

Mosaic plot for 1 rule
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Doubledecker plot for 1 rule

GillSize=broad
SurfaceAboveRing=smooth

no
no yes

yes
no yes

yes

no

Bruises=bruises

(b) Double Decker plot.

Figure 6: Mosaic and Double Decker plots powered by arulesViz.

The interesting rule is determined as follows: Let us assume that each

rule ri ∈ R is a tuple ri = 〈Xi, Yi, Zi〉, where X denotes the attributes A =

{Ai, . . . , Ap} belonging to the antecedent, Y to the consequent, Z is a set of

interestingness measures, and X ∩ Y = ∅. Then, the interesting rule r∗ for
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visualizing with mosaic plot is defined as

r∗ ⇒ Y |Z, (11)

where X = {Ax1 = ax1 ∧ Axk = axk}, Y = {Ay = ay}, and Z = {supp, conf },

for which the difference of confidence (doc) for rule X ⇒ Y and ¬X ⇒ Y is the

maximum, in other words:

max
r∈R

conf (X ⇒ Y )− conf (¬X ⇒ Y ). (12)

Mosaic plots were introduced as a graphical analogy of multivariate contingency

tables (Hofmann et al., 2000). This means that the position mi,j (also a cell

in a contingency table) is presented in a mosaic plot as an area divided into

the highlighted part (colored) that is proportional to the support of the rule

X ⇒ Y and the unhighlighted part of the rule ¬X ⇒ Y . Thus, the confidence

is proportional to the height of the highlighted part of the area.

4.4.1. Double Decker plot

Double Decker plot (Hofmann, 2000) allows comparing the proportions of

the highlighted heights referring to confidence measure more easily (Fig. 6b).

While the original mosaic plot splits tiles in vertical and horizontal directions,

the Double Decker splits these only horizontally. As a result, the antecedent of

the interesting rule is now expressed mathematically as:

X = {Ax1
= · ∧Axp = ·},

i.e., the proportions of the highlighted heights are presented in each tile of the

mosaic plot, while the widths of the tiles are represented as labels denoting the

antecedent’s attributes. Thus, the highlighted shades illustrate relations with an

outcome set to ’True’, while the white shades refer to relations, whose outcome

leads to ’False’.

5. New ideas in the visualization of association rules

This section reviews papers dealing with ARM visualization methods that

accumulate new ideas in this domain. The ideas are collected in Table 3, from
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Nr. Class Variant Reference

1 Fishbone Ishikawa diagram Tsurinov et al. (2021)

2 Molecular Molecular representation Said et al. (2013)

3 Lattice Concept lattice Shen et al. (2020)

4 Metro Metro map Fister & Fister (2022b)

5 Sankey Sankey diagram Fister & Fister (2022a)

6 Ribbon Ribbon plot Fister et al. (2020)

7 Glyph Glyph-based Hrovat et al. (2015)

Table 3: Summary of the new ARM visualization methods.

which it can be seen that, here, we were focused on the seven ARM visualization

methods, which, in our opinion, best reflect the development in this domain.

In the remainder of the section, the selected ARM visualization methods are

illustrated in detail.

5.1. Ishikawa diagram

Typically, the Ishikawa diagram (Tague, 2005) is applied as a cause analysis

tool appropriate for describing the structure of a brainstorming session, in which

a development team tries to identify possible reason causing a specific effect.

Consequently, the Ishikawa chart is also called a cause/effect diagram. As a

result of the brainstorming process, a fishbone diagram is constructed as an

arrow with an arc directing to the effect (i.e., a problem statement). Then,

the possible causes of the problem need to be identified that are presented as

branches originating from the main arrow.

The diagram has also been applied in ARM visualization. For instance, the

authors Tsurinov et al. (2021) have established that ARM algorithms produce a

large number of mined association rules in unstructured form. This means that

there is no information about which features are more relevant for a user. In

this sense, they proposed the Fishbone ARM (FARM) that is able to introduce

a hierarchical structure for rules. The structure enables that the priority of
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features becomes clearly visible.

The fishbone structure presents a basis for visualization with FARM. In

this structure, features, inserted as ribs in a symbolic fishbone, are ordered such

that the conviction metric values grow from the rear toward the head. Thus, the

complexity of the structure increases by adding additional attributes. On the

other hand, the statistical significance of the results also needs to be increased.

In line with this, cross-validation is employed for evaluating the significance that

splits the result dataset into two different portions (i.e., test and validation),

and then re-sampled during more iterations.

5.2. Molecular representation

A molecule is a group of two or more atoms connected together with chemical

bounds (e.g., covalent, ionic) (Ebbing & Gammon, 2016). Therefore, a molecule

representation refers to a connected graph with nodes denoting atoms and edges

denoting the chemical bounds between them. The representation inspired Said

et al. (2013) into developing a new ARM visualization method that is devoted

for visualizing items arising in the antecedent and consequent of the selected

association rule. Thus, two characteristics need to be determined: (1) the con-

tribution of each item to the rule, and (2) the correlation between each pair of

antecedents and each pair of consequents from an archive of association rules.

The association rules are explored before visualization according to one of the

interestingness measures selected by the user, e.g., support, confidence, and lift.

The contribution of an item in the selected association rule R = X =⇒ Y is

calculated with measuring the Information Gain (IG) defined by Freitas (1998):

IG(Ai) = Info(R)− Info(R|Ai), (13)

where

Info(R) = −
n∑

j=1

P (Rj) logP (Rj), and

Info(R|Ai) =

m∑
k=1

P (Ai, k)

− n∑
j=1

P (Rj |Ai,k) logP (Rj |Ai,k)

 .

(14)
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Thus, it holds that attributes with higher values of IG are good predictors of

the selected rule. In contrast, if items with low or negative IG values are en-

countered, the selected rules are estimated as irrelevant. On the other hand, the

lift interestingness measure (Eq. 4) is applied for determining the correlations

between pairs of items in the antecedent and consequent, respectively.

The visualization of molecular representation is typically realized using sphere

3D graphs (also powered by R), where spheres present items and edges of the

different distances’ connection between them. The calculated characteristics of

items into the selected rule are captured in a sphere graph as follows:

• the size of the sphere is proportional to the value of IG,

• the positive value of IG is a plot in a sphere of one color (e.g., blue), while

the negative one in a sphere of another color (e.g., white),

• the distance between two spheres is proportional to the measure lift.

However, authors Said et al. (2013) simplified the visualization of association

rules based on a molecular representation by developing a tool for VISual mining

and Interactive User-Centred Exploration of Association Rules (IUCEARVis).

In summary, the main weakness of the molecular structure is that it shows

the importance of items to rules, and cannot show the distribution of association

rules.

5.3. Concept lattice

A concept lattice is a tool for extracting specific information from massive

data. It is obtained after a concept analysis that belongs to the domain of

applied mathematics (Truong & Tran, 2010). The results of the concept analysis

are aggregated in a data structure that is, typically, presented in a Hasse graph.

The Hasse graph consists of concepts representing as nodes in a 2-dimensional

lattice, and edges expressing the generalization and instantiation of relationships

between the concepts (Shen et al., 2020).

Formally, the concept lattice is defined as a triple L = 〈O,A,B〉, where O

denotes a set of objects, A a set of attributes, and B is a binary relationship

matrix B ⊆ O × A denoting that an object o ∈ O and attribute a ∈ A are
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in a relationship, if (i, a) ∈ B. Thus, a node in the concept lattice is defined

as a pair 〈A,B〉, where the former member is also called an extension A ∈ O

(i.e., a collection of objects), and the latter a connotation (i.e., collection of

attributes). Indeed, a combination of objects and attributes is needed for a

more comprehensive analysis of the association rules.

The task of the ARM visual algorithms based on the context is to dis-

play association rules extracted from concept lattice. Thus, the central area

of the visualization interface consists of a 2-dimensional lattice, within which

the concepts are positioned as points according to their values of support and

confidence. Two lines are attached below and above the lattice: The former

represents the objects which have arisen in the antecedent, while the latter the

same in the consequent of the potential association rule. Indeed, if there is a

relationship between particular object and attribute in the relationship matrix

(i, a) ∈ B, the object is connected with the node (concept) using an edge.

The advantages of the ARM visualization based on a concept lattice can

be summarized as follows: (1) a deeper understanding of association rules at

the conceptual level, and (2) analyzing the relationships between concepts more

comprehensively. However, the main weakness of the visualization is that this

is only appropriate for visualizing the binary values of objects. In order to over-

come the problem, Yang (2005) proposed generalized association rules capable

of visualizing the frequent rules in an itemset lattice that presents one item in

parallel coordinates. In this way, many-to-many rules can be visualized on the

one hand, and the large number of rules as selected by the user can be displayed

on the other. Obviously, the advantage of the ARM visualization methods is

that the user can limit the number of association rules for visualization interac-

tively by specifying the parameters Smin and Cmin.

5.4. Metro maps

The concept of information maps enables analysis of data having a ”geo-

graphical look” (Shahaf et al., 2012, 2015). The look can also be prescribed

to mined association rules. Therefore, the idea to visualize these in the form

19



of metro maps has become appreciated (Fister & Fister, 2022b). This means,

similar as the metro map can help a user to orientate him/herself in the environ-

ment, the information map can help them to understand the information hidden

in the mined association rules. Thereby, the metro map is divided into more

metro lines, consisting of various metro stops. In the information sense, each

metro stop represents an attribute, while the metro lines a linear sequence of

the attributes (also different association rules). Mutual connections between the

metro lines reveal how an attribute in one association rule affects an attribute

in the other, and vice versa. Finally, understanding the linear sequences of at-

tributes and connections between them can even tell stories about the specific

information domain.

The metro map is defined mathematically asM = (G,Π, where G = (A,E)

denotes an attribute graph of vertices A = {A1, . . . , AM}, representing at-

tributes and edges E = {ri, . . . , rn} representing simple rules (i.e., rules with

one antecedent attribute and one consequent attribute), together with incident

function ψG that associates an ordered pair ψG = (X,Y ) denoting the implica-

tion X =⇒ Y , and Π is a set of metro lines π ∈ Π (Fister & Fister, 2022b). The

evolutionary algorithm was applied in Fister & Fister (2022b) for constructing

a metro map that must obey the following four objectives: (1) maximum path

length τ , (2) maximum map size K, (3) high coverage, and (4) high structure

quality.

Indeed, the maximum path length refers to the maximum number of metro

stops (i.e., attributes) in a linear sequence. The maximum map size limits the

number of metro lines. The coverage is proportional to the lift interestingness

measure, where we were interested in rules with a lift value > 1, determining

the degree to which the probability of occurrence of the antecedent, and this

of the consequent are dependent on one another. The structure quality ensures

that the linear sequences of the metro stops are coherent in all metro lines.

An example of a metro map obtained by mining the Mushroom dataset,

that was constructed using the parameters τ = 6 and |K| = 4, is illustrated in

Fig. 7. Let us notice that the figure is divided into two parts, i.e., a diagram
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Tag Attribute

at1 e class edible

at1 p class poisonous

at5 f bruises? no

at5 t bruises? bruises

at6 n odor none

at7 f gill-attachment free

at8 c gill-spacing close

at9 b gill-size broad

at11 t stalk-shape tapering

at13 s stalk-surface-above-ring smooth

at14 s stalk-surface-below-ring smooth

at17 p veil-type partial

at18 w veil-color white

at19 o ring-number one

at20 p ring-type pendant

at22 v population several

Figure 7: Metro map plot powered by R.

and a table. The diagram presents the visualized metro map, while the table

the meaning of the metro stops (attributes).

5.5. Sankey diagram

Similar to the metro map, the Sankey diagram is also focused on ”geo-

graphical data”. Additionally, the kind of visualization enables visualization of

hierarchical multivariate data. It is represented as a graph consisting of nodes

representing attributes and edges representing connectivity by flows across time.

In this diagram, the quality of each connection is distinguished by its weight

that is proportional to some of the interestingness measures.

Mathematically, the Sankey diagram is defined as a directed graph G =

〈K,R〉, where K denotes the maximum path length and R is a set of similar

rules Fister & Fister (2022a). The rules in this diagram are presented by the

antecedent X = {Ax1 = ax1∧, . . . ,∧Axk = axk}, representing a set of source

nodes, consequent Y = {Ay = ay}, representing a set of sink nodes, and inter-

estingness measure Z = {supp, cons, lift}, reflecting the quality of a particular

connection. The quality can also be expressed with a linear combination of the
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measures. The similarity between two rules ri and rj is defined as:

sim(rj , rj) =
|Ante(ri) ∩Ante(rj)|+ |Cons(ri) ∩ Cons(rj)|
|Ante(ri) ∪Ante(rj)|+ |Cons(ri) ∪ Cons(rj)|

, (15)

where Ante(.) denotes a set of antecedent attributes, and Cons(.) a set of conse-

quent ones. However, the sim(ri, rj) ∈ [0, 1], where the value 0 means that the

rules are not similar, and 1 that the rules are absolutely similar. The similarities

are then combined into an adjacency matrix Adj , defined as follows:

Adj =


a1,1 . . . a1,M

. . .

aM̃,1 . . . aM,M .

 , (16)

The problem of searching for the most similar set of association rules R is defined

as a Knapsack 0/1 problem (Kellerer et al., 2010).

The construction of the Sankey diagram visualization is divided into two

steps: (1) searching for a set of the most similar association rules, and (2)

visualization using Sankey diagrams. In Fister & Fister (2022a), the authors

proposed a DE meta-heuristic algorithm using the Knapsack 0/1 deterministic

algorithm for determining the set of the most similar rules, while the R pro-

gramming language for statistical computing was applied to solve the second

step.

The example of Sankey diagrams is illustrated in Figs. 8a-8b that refer to

(a) Sankey diagram for time period 1. (b) Sankey diagram for time period 2.

Figure 8: Sankey diagrams for time periods 1 and 2 powered by R.
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mining the sport training database obtained in more seasons (i.e., years). This

database consists of training load indicators measured during an implementation

of a sport training session. The visualization is divided into two parts: The first

part (Fig. 8a) presents the results of the ARM visualization on sport training

data captured during one season, while the second (Fig. 8b) highlights the data

obtained during the next season.

In this way, two historical insights are served to a sport trainer: (1) In

what proportion do the training load indicators contribute to the whole? and

(2) What changes can be observed in the sense of training load indicators by

athletes who have already had the main portion of training sessions during the

previous seasons?

Interestingly, Hlosta et al. (2013) proposed a visualization of evolving as-

sociation rules using graphs, where the nodes of the graphs represent items

and edges specific association rules. Thus, the graph-based diagram shows how

evolving models mined using the ARM algorithms and stored into a transaction

database can be filtered and visualized.

5.6. Ribbon plot

Ribbon plots are appropriate for visualizing data without self-intersections,

where linearized simplification of events exposes the significant ones. Although

the plot is ideal for analyzing linearized sequences, it can be applied successfully

for visualizing the best association rule in NARM, where the proper boundaries

need to be discovered between the numerical attributes. Thus, the attribute

with the best support is compared with the other attributes in the association

rule according to support and confidence. The attributes are ordered into linear

sequence according to the closeness of the first attribute regarding the others.

The inspiration behind the visualization is presented by the Tour De France

(TDF), i.e., the most famous cycling race in the world. Similar as in the TDF,

where the best hill climbers have more chance to win the race, the attribute with

the higher support also has the most decisive role in a decision-making process.

Indeed, virtual hill slopes are visualized as triangles situated on a plain, where
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the left leg denotes an ascent and the right leg a descent of the virtual hill in a

linear sequence, starting from the left to the right side. In the paper of Fister

et al. (2020), the ascent of the virtual hill is proportional to the attribute’s

support, while the descent to the confidence of the simple association rule.

Mathematically, the best rule X ⇒ Y consists of an antecedent X = {Ax =

ax} and a consequent

Y = {Ay1 = ay1 , . . . , Ayk = ayk}

, where the Ax denotes the best attribute according to the support, and simple

association rules Ax ⇒ Ayj for j = 1, . . . , k are ordered as:

conf (Ax ⇒ Ayπ1
) ≥ conf (Ax ⇒ Ayπk

), (17)

where πj is a permutation of the attributes belonging to the consequent. More-

over, the distances distj between the virtual hills are also proportional to distj ∝

conf (Ax ⇒ Ayπj
).

An example of a ribbon plot is illustrated in Fig. 9a representing a visualiza-

tion of the best association rule mined by the uARMSolver (Fister & Jr., 2020)

(i.e., the framework for NARM using the nature-inspired algorithms).

(a) Ribbon plot powered by Matlab.

5' 5' 5'

(b) Glyph-based chart.

Figure 9: Ribbon plot and Glyph-based chart.

The framework was applied for mining a database consisting of transactions

obtained by cycling training sessions. Thus, the best transaction is composed

from seven attributes A1, . . . , Ak+1 ordered into the association rule:

Ax ⇒ Ayπ1
∧ . . . ∧Ayπk

.
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Seven virtual hills can be observed as can be seen from the figure. While the

first three virtual hills are of comparable height to the first one, the remainder

of the hills are of lower height, and, thus, reflect the lower inter-dependence.

5.7. Glyph-based plots

Glyph-based plots are suitable for visualizing multivariate data with more

than two attribute dimensions, where different data variables are presented by

a set of visual channels (i.e., shape, size, color, orientation, curvature, etc.)

(Borgo et al., 2013). Indeed, glyphs are devoted for depicting attributes of data

that, typically, appear in collections of visualized objects. They are founded on

the basics of a semiotic theory that is, in fact, the science of signs (Lagopoulos

& Boklund-Lagopoulou, 2020). According to this theory, signs have emerged in

three forms: icons, indices, and symbols. Icons reflect a physical correlation to

the sign. The index expresses a space and time correlation to the object. In other

words, they have an indirect effect on the object. A meta-physic correlation (i.e.,

no real correlation) exists between the symbol and the sign.

An example of glyph-based visualization for ARM was performed by Hrovat

et al. (2015) that analyzed the time series data gathered from a single athlete

(i.e., a cyclist) during a large time period of training (i.e., the whole season).

In this study, the sequential pattern mining algorithm (Agrawal et al., 1994)

was exploited, where the sequential patterns were discovered by employing the

novel trend interestingness measure for mining sequential patterns. Thus, a

time-series sequences ts = 〈, ts1, . . . , tsm〉 were discovered from a transaction

database consisting of sport training performed by a single athlete.

Two trend interestingness measures are defined in the study as follows: (1)

the duration trend
−→
dut(ts), and (2) the daily trend

−→
dat(ts). The former discovers

trends within a trend database on a monthly, while the latter on a daily basis.

The trend database is constructed from the original transaction database by

dividing each training session into m-time series. Then, the permutation test is

performed, after which those sequential patterns are selected with a minimum

p-value. Obviously, the p-value is obtained as a result of the permutation test,
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and serves as a trend interestingness measure.

Both trend interestingness measures are visualized using glyphs in order to

depict how trends increase or decrease during a specific training period (Fig. 9b).

Thus, two glyph symbols are used by the visualization: (1) level, and (2) vari-

able. The level’s symbol depicts the trend interestingness measure using an

optical channel (i.e., color), where the intensity training load indicators are

presented in different colors, depending on low, moderate, intensity, and high

intensity levels. The variable’s symbol addresses the geometric channels, like:

the cyclist’s speed (as maximum, average or standard deviation), average heart

rate (as minimum, maximum, average and standard deviation), and altitude (as

standard deviation). These symbols are depicted using different shapes.

5.8. Other ideas in ARM visualization

The characteristics of the remainder of the analyzed papers can be summa-

rized in the present section as follows: The majority of the papers were published

for various data mining conferences. As a result, these include ideas more on the

conceptual level, and, therefore, the solutions that they reveal are not robust

enough for using in the everyday real-world environment. On the other hand,

these ideas are not included into some recognizable ARM visualization system.

However, they could be interesting for the potential readers for sure.

The principles of ARM visualization methods, as found in the observed col-

lections of analyzed papers, can be classified into the following two classes (Ta-

ble 4):

• reducing a rule set,

• visual data mining.

Indeed, the first two principles of ARM visualization are used commonly in the

ARM community: Thereby, the association rules are mined using some of the

known mining algorithms. These algorithms produce a lot of association rules

that need to be reduced (also rummaged) into an association rule set necessary

for visualization. The second principle is more goal-oriented, and mines the

association rules either in a visualization context, or tries to reduce their number
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by avoiding occlusions using optimization. In this way, the association rule set

does not need to be reduced further before visualization. Interestingly, the first

principle is characterized for papers which emerged at the beginning of the ARM

visualization domain, while the second one is typical for papers of the new age,

where the ARM exploration is part of the visualization process.

Principles of ARM visualization

1 Reducing rule set Attribute Reference

1 Relational SQL Categorical Chakravarthy & Zhang (2003)

2 Conditional AR analysis Categorical Yamada et al. (2015)

3 Rummaging model Categorical Blanchard et al. (2003)

4 Rummaging model Categorical Menin et al. (2021)

5 Correlation rule visualization Categorical Zheng et al. (2017)

6 Weighted association rules Categorical Saeed et al. (2011)

7 Multiple antecedent Text Wong et al. (1999)

8 Weighted association rules Text Kawahara & Kawano (1999)

9 Hierarchical structure Boolean Jiang et al. (2008)

2 Visual data mining

1 Correlation visualization alg. Categorical Xu et al. (2009)

2 Integrated framework Categorical Couturier et al. (2007)

3 Occlusion reducing Categorical Couturier et al. (2008)

4 Contextual exploration Categorical Yahia & Nguifo (2004a)

5 Generic association rule set Categorical Yahia & Nguifo (2004b)

6 3D visualization engine Categorical Ounifi et al. (2016)

7 Rule-to-items mapping Categorical Wang et al. (2017)

Table 4: Other ARM visualization methods.

Obviously, the reducing can be performed on many ways. For instance,

Chakravarthy & Zhang (2003) proposed a relational SQL query language, with

which a user can select the suitable association rule set for visualization inter-

actively from the collection of association rules stored in tables. Yamada et al.

(2015) applied the conditional association rule analysis and the association rule

analysis with user attributes for the comprehending questionnaire data. Blan-
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chard et al. (2003) introduced the rummaging model for filtering association

rules interactively, and included into an experimental prototype called ARVis.

A similar model was recommended by Menin et al. (2021), devoted to exploring

the RDF data that employed the traditional methods for visualizing and was

incorporated into the prototype ARViz. The gray correlation rule visualization

algorithm was advised by Zheng et al. (2017) that is suitable for considering the

influence of the association rules on the visualization. Saeed et al. (2011) mined

a collection of documents consisting of metadata with the Apriori algorithm,

and selected an association rule set for visualization according to the calculated

weights.

On the other hand, Wong et al. (1999) visualized an association rule set with

multiple antecedents using a 3-dimensional graph, and applied their solution to a

text mining study on a large corpora. Kawahara & Kawano (1999) developed the

web search engine for manipulating weighted association rules. Thus, the text

mining algorithm derived appropriate keywords, while the ROC graph served for

the visualization of association rules. Boolean association rules were visualized

by Jiang et al. (2008) using the hierarchical structure for all of them and depicted

in a Hasse diagram.

Visual data mining can be performed in various ways, as found in our study:

The correlation visualization algorithm was proposed for mining the alarm as-

sociation rules by Xu et al. (2009). Couturier et al. (2007) recommended the

integrated framework for association rule extraction and visualization in one

step, which integrated previous methods of association rule visualization. Oc-

clusion optimization was proposed by Couturier et al. (2008). Contextual explo-

ration of an association rule set was developed by Yahia & Nguifo (2004a) and

Yahia & Nguifo (2004b), where the additional knowledge needed for visualiza-

tion was constructed using the fuzzy meta-rules. Ounifi et al. (2016) solved the

problem of extraction and visualization by a 3-dimensional visualization engine,

while Wang et al. (2017) introduced a 3-dimensional matrix-based visualization

system, where the basic matrix-based approach was extended by rule-to-items

mapping.
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5.9. Taxonomies of the ARM visualization

The ARM visualization methods can be classified according to many aspects.

These aspects depend on the various standpoints from which they are observed.

Indeed, the following questions reflect those standpoints more precisely:

• How to visualize?

• Which visualization methods to use?

• Which characteristics of association rules are essential to visualize?

• What to visualize?

• Which type of attributes to display?

In the remainder of the section, these queries are described in detail.

5.9.1. How to visualize?

The aspect ”How to visualize?” refers to the mode of how the exploration

and visualization are performed. In line with this, four different methods are

distinguished, as follows (Fig. 10):

• reducing the item set,

• visual data mining,

• a concept lattice,

• evolving association rules.

Reducing the item set means that the exploration of association rules is per-

formed with traditional ARM methods (e.g., Apriori, Eclat, evolutionary algo-

rithms), after which the visualization is performed using some traditional or

new age visualization methods. Visual data mining comprises those ARM vi-

sualization methods that perform the exploration and visualization phases in

one step. These methods mine association rules more directionally, where min-

ing can be performed from some concept, can use meta rules, or can be able

to limit the number of occlusions. The concept lattice enables displaying the

structure of the association rules (i.e., attributes) beside the single rules. How-

ever, this visualization method is reserved for displaying the binary association

rules only. The evolving association rules are appropriate for visualizing either
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Figure 10: How to visualize?

warehouse data cubes stored in a multidimensional data model, or data suitable

for displaying by Sankey diagrams.

5.9.2. Which visualization methods to use?

This aspect is focused on the question, which visualization method to use?

In line with this, we can consider that the methods are divided into traditional

and new age visualization methods. The former consists of charts, like scatter

plot, group-based, matrix-based and mosaic plots, and their variants, like two-

key, grouped-matrix and double Decker plots (see Table 5 under the column

”Method”). The new age visualization methods are comprised of an Ishikawa

diagram, molecular representation, a concept lattice, metro maps, Sankey dia-

grams, ribbon plots, and glyph-based charts.

5.9.3. Which characteristics of association rules are essential to visualize?

The characteristics of the ARM visualization methods refer to: (1) the num-

ber of displayed interestingness measures, (2) the rule set size, and (3) the

interactivity tools. The number of displayed interestingness rules determines,

how many of the interestingness measures are included into the representation

for user. For instance, the scatter plot is able to display three interestingness

measures, while the two-key plot actually only two, but the third measure is

presented indirectly by a color. In general, the number of measures by vari-

ous visualization methods are typically in the range [1, 3]. The rule set size
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Scatter plot 3 ¹ l s n

Two key plot 2+ ¹ l s n

Graph-based 2 ¸ s n

Matrix-based 1 ® l s n

Grouped matrix 2 º l s n

Mosaic plot 2 ¶ l s n

Double Decker 2 ¶ l s n

Ishikawa diagram 1 · s n n

Molecular representation 3 ¶ l s n

Concept lattice 1 · s s n

Metro map 1 · s s n n

Sankey map 2 · s n

Ribbon plot 2 ¶ s n n

Glyph-based chart 1 ¶ s n n

Method Characteristics Focus Attribute

Table 5: Taxonomy of the ARM visualization methods.

determines the number of association rules to be displayed by the definite vi-

sualization method. This number is denoted in Table 5 in the column ”Rule

set size” in circles with numbers within them. The numbers present the powers

of base 10. This means that the grouped matrix can display 105 association

rules. The column ”Interactive” shows if specific visualization method supports

interactive tools (e.g., hover, zoom, pan, drill down, etc.) or not. Interestingly,

although the new age visualization methods do not support interactive tools in

general, they allow tuning of parameter settings that enable users some kind of

interactivity.
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5.9.4. What to visualize?

The aspect, answering to the question ”What to visualize?”, deals with the

focus, which an ARM visualization is presenting. Actually, the ARM visual-

ization can be focused on illustrating: (1) number of interestingness measures,

(2) rule length, (3) items, (4) RHS and LHS, and (5) time series data. The

first focus is devoted to displaying the number if interestingness measures. The

rule length refers to the number of attributes in the visualized association rules.

The item focuses on depicting the attributes of the association rules, while the

RHS+LHS focus is concentrated on the structure of the more important rules.

Finally, the last focus considers the time series data.

Interestingly, the concept lattice and metro maps even cover two focuses of

displaying association rules, i.e., items (i.e., attributes) and their structure. On

the other hand, the glyph-based visualization is dedicated for presenting the

time series data.

5.9.5. Which type of attributes to display?

The aspect ”Which type of attributes to display?” is focused on visualization

based to distinguish the attribute types. In the ARM exploration/visualization,

three attribute types can be identified as follows: (1) categorical, (2) numeri-

cal, and (3) binary. Interestingly, the majority of the traditional visualization

methods are suitable for displaying the categorical type of attributes. Usu-

ally, displaying attributes of the numerical type is performed by these visual-

ization methods by discretizing the numerical attributes into discrete classes.

Obviously, the new age visualization methods are capable of working with the

numerical and binary attributes directly as well.

6. ARM visualization systems

The section aims to compile a list of specialized ARM visualization systems

and software packages for any of the ARM visualization methods. Obviously,

this does not present the other visualization libraries, from which we can develop
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some methods (e.g., matplotlib in Python, or ggplot2 in R). The study focused

on presenting only the collection of graphics system that are used more nowadays

in the ARM community. The collection of systems is illustrated in Table 6.

As can be seen from the table, the arulesViz graphics system is the most

complete, due to covering the majority of the visualization methods dealt with in

this review paper. This is an extensive toolbox in the R-extension package (Hah-

sler et al., 2011), and works in two phases: (1) exploration using known ARM

methods to which tools for reducing the huge number of association rules are ap-

plied (e.g., filtering, zooming and rearranging), and (2) visualization of results.

The current version of the software supports the following visualization methods

(i.e., graphics): scatter plots, network plots, matrix-based, graph-based, mosaic

plots and parallel coordinate plots.

The other libraries are just a smaller drop in the ocean and, typically,

they solve only limited ARM exploration/visualization approaches. For ex-

ample, while the NiaARM is focused at this moment on only one visualization

method (i.e., ribbon plot), the PyARMviz graphics system tends to be what is

arulesViz for R, but in Python. Unfortunately, the development of this graph-

ics software has probably stalled since the last commit was done almost three

years ago. On the other hand, the development of the NiaARM is not finished

yet, due to the unfinished inclusion of the new ideas in ARM visualization (e.g.,

metro maps, Sankey diagram, etc.) that should shortly widen the usability of

the graphics system.

7. Challenges and open problems

After deep analysis of the ARM visualization methods, we can conclude that

a universal method for covering all the ARM visualization problems does not

exist. As a result, the arulesViz software package offers a spectrum of solutions

useful for visualization with traditional ARM visualization methods. In this

package, the scatter plot is applied as an entry point for an analysis of how

to distinguish the similarity of association rules according to interestingness
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measures, like support and confidence. Then, the matrix-based visualization

can be applied, capable of organizing association rules into a matrix, where the

antecedent and consequent items can be distinguished. Finally, the graph-based

methods are recommended by authors, in order to get the user the broadest view

of the relationships between individual items reflecting, their memberships in

different association rules.

In summary, the problems caused by using the traditional ARM visualization

methods can be aggregated as follows (Shen et al., 2020):

• the domain knowledge is not displayed sufficiently, i.e., the rules are dis-

played from a single point of view,

• the visualization of background knowledge is not enough for sharing, i.e.,

the role and relationship of global information is lost in the context of the

background knowledge,

• the use and exploration of potential knowledge hidden in non-connected

attributes are reduced.

However, the new age ARM visualization methods tries to reveal the afore-

mentioned problems. Moreover, some of these methods are even able to tell

stories in mined data (e.g., metro maps), while the others are able to analyze

the information from the history point of view (e.g., Sankey diagrams).

Although searching for a new age ARM visualization methods almost stopped

after the rapid development of the traditional ARM visualization methods in

the past, in our opinion, the future of the ARM visualization remains in the

development of the new age ARM visualization methods. These methods might

consolidate displaying items as well as the structure of the association rules.

Additionally, these need to be independent of the attribute types.

The main advantage of the ARM visualization undoubtedly presents the

interactivity of the ARM visualization methods. Interactive visualization im-

proves the user’s experience and interpretation of the results. Although several

popular implementations of the traditional ARM visualization methods (e.g.,

arulesViz R-package by Hahsler & Karpienko (2017), and InterVisAR by (Cheng

et al., 2016)) already offer some interactive tools (e.g., hover, zoom, pan, drill
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down, inspect, brush), these tools are usually missing in the observed new age

ARM visualization methods.

8. Conclusions

Data mining methods today suffer from a lot of comprehension of the mass

results they produce. In line with this, a new domain of AI, the so-called XAI,

has emerged that searches for methods which will be suitable to present these

results clearly to the user. The visualization methods are one of the useful tools

for helping users understand the results of different data mining methods better.

The present study has revised the most important visualization methods

associated with ARM. Consequently, the most important ARM visualization

methods, published in research papers, have been identified, analyzed, and clas-

sified. The ARM visualization methods are divided into traditional and new age

methods. Moreover, they have been classified according to the characteristics

of the displayed association rules, the focus of visualization, and the types of

attributes.

The potential reader of this work will be able to get deeper overview of the

ARM exploration/visualization process. Furthermore, it encourages readers to

open new avenues of potential research. According to the research paper review,

there is a huge opportunity to use the knowledge, especially in biological/medical

sciences.
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R packages

arulesViz https://cran.

r-project.org/web/packages/

arulesViz/index.html

1.1 probably the only state-of-the-

art tool that supports many vi-

sualization methods up to this

date

1.2 includes also interactive tools

Python packages

pycaret https://github.com/

pycaret/pycaret

2.1 basically low-code machine

learning library in Python

2.2 association rule mining is a

part of this library

2.3 library supports 2D and 3D

plots of association rules

NiaARM (https://github.com/

firefly-cpp/NiaARM)

3.1 minor module devoted for visu-

alization

3.2 for now supports only ribbon

plots

PyARMViz https://github.com/

Mazeofthemind/PyARMViz

4.1 Python Association Rule Visu-

alization Library that is loosely

based on ArulesViz

4.2 Development probably stalled

(no commits in the last 2.5

years)

C++ packages

uARMSolver https://github.com/

firefly-cpp/uARMSolver

5.1 small part of this package is de-

voted to the visualization

5.2 provides the coordinates for

metro plots which can be later

visualized using metro map al-

gorithms

Table 6: List of the ARM graphics systems.
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