
ar
X

iv
:2

30
5.

10
04

4v
3 

 [
cs

.C
V

] 
 8

 A
ug

 2
02

3

Two-Stream Regression Network for Dental Implant

Position Prediction

Xinquan Yanga,b,c, Xuguang Lid, Xuechen Lia,b,c, Wenting Chene,
Linlin Shena,b,c,∗, Xin Lid, Yongqiang Dengd

aCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen,

China
bAI Research Center for Medical Image Analysis and Diagnosis, Shenzhen University,

Shenzhen, China
cNational Engineering Laboratory for Big Data System Computing Technology, Shenzhen

University, China
dDepartment of Stomatology, Shenzhen University General Hospital, Shenzhen, China

eDepartment of Electrical Engineering, City University of Hong Kong, Hongkong, China

Abstract

In implant prosthesis treatment, the design of the surgical guide heavily relies

on the manual location of the implant position, which is subjective and prone

to doctor’s experiences. When deep learning based methods has started to be

applied to address this problem, the space between teeth are various and some

of them might present similar texture characteristic with the actual implant

region. Both problems make a big challenge for the implant position prediction.

In this paper, we develop a two-stream implant position regression framework

(TSIPR), which consists of an implant region detector (IRD) and a multi-scale

patch embedding regression network (MSPENet), to address this issue. For

the training of IRD, we extend the original annotation to provide additional

supervisory information, which contains much more rich characteristic and do

not introduce extra labeling costs. A multi-scale patch embedding module is

designed for the MSPENet to adaptively extract features from the images with

various tooth spacing. The global-local feature interaction block is designed to
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build the encoder of MSPENet, which combines the transformer and convolution

for enriched feature representation. During inference, the RoI mask extracted

from the IRD is used to refine the prediction results of the MSPENet. Exten-

sive experiments on a dental implant dataset through five-fold cross-validation

demonstrated that the proposed TSIPR achieves superior performance than

existing methods.

Keywords: Implant Prosthesis, Dental Implant, Vision Transformer, Deep

Learning

1. Introduction

Dental implant is a common surgical procedure in oral and maxillofacial

surgery (Varga Jr et al., 2020), in which the surgical guide plays an important

role in precise bone drilling and implant placement (Gargallo-Albiol et al., 2021;

Vinci et al., 2020). However, the design of the surgical guide heavily relies on

the manual location of the implant position using the patient’s panoramic ra-

diographic image, or cone beam computed tomography (CBCT) data, which is

subjective and prone to doctor’s experiences (Liu et al., 2021). In contrast, ar-

tificial intelligence (AI) methods can quickly locate the implant position, which

is trained using a large number of successful implant cases designed by dentists

with rich related clinical experiences. As the AI methods always give the same

prediction for the same data, it is thus more objective when predicting the im-

plant position and have less varitions. Therefore, it inspire us to improve the

efficiency of surgical guide design using deep learning-based methods.

Generally, the prediction of implant location in CBCT data can be consid-

ered as a three-dimensional (3D) regression task. However, the training of a 3D

neural network requires a lot of training data, which leads to higher collection

and labeling costs. The common solution is to convert the 3D CBCT data into a

series of 2D slices. Dental-YOLO (Widiasri et al., 2022) utilized the 2D sagittal

view of CBCT to measure the oral bone, e.g., the alveolar bone, and determine

the implant position indirectly. ImplantFormer (Yang et al., 2022) predicts the
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implant position using the 2D axial view of tooth crown images and projects

the prediction results back to the tooth root by the space transform algorithm.

Even though current methods can achieve great performance on the implant

position prediction, these methods do not consider the influence of the variation

of the tooth cross-sectional area, which may degrade the performance of the

prediction network.

First of all, physically, the irregular structure of the tooth leads to the de-

crease of cross-sectional area from the tooth crown to the tooth root. As a

result, the gap between neighboring teeth increase as the number of CT lay-

ers grows. When the gap between neighboring teeth is big enough, the regions

between sparse teeth may have a similar characteristic with the actual implant

region (see Fig. 1(a)), which will misguide the prediction network to generate

false positive detection. Secondly, as shown in Fig. 1(b), the tooth spacing has a

big variation (from 9.71 to 14.72 mm) across different patients, where the fixed

kernel size of convolution or patch embedding can not extract robust features.

Both problems make a big challenge for implant position regression.

To tackle these challenges, we develop a two-stream implant position regres-

sion framework (TSIPR), which consists of an implant region detector (IRD)

and a multi-scale patch embedding regression network (MSPENet). IRD is an

object detector designed to locate the implant region and filter out the region of

sparse teeth. The training of IRD uses the extended bounding box of implant

position annotation. Compared to the ground-truth position (the red point in

Fig. 2) that has little useful texture, the extended box (the dashed blue box in

Fig. 2) contains much more rich characteristics, i.e., the neighboring teeth. More

importantly, the acquisition of the extended box do not introduce extra labeling

costs. MSPENet is devised to regress the precise implant position. To adap-

tively extract features from the images with various tooth spacing, we design a

multi-scale patch embedding module, to aggregate the features extracted from

different sizes of patch embedding for more robust features. A global-local fea-

ture interaction block (GLFIB) is designed as the encoder of MSPENet, which

integrates the global context of the transformer and the local texture extracted
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from the convolution for enriched feature representation. As the output of IRD

is the bounding box with the high confidence, which represents the most prob-

able implant region, the false detection generated at the other regions will be

removed. During inference, the heatmap with implant position generated by the

MSPENet is multiplied with the region of interest (RoI) mask extracted from

the IRD, to refine the prediction results. The main contributions of this work

are summarized as follows:

• We develop a two-stream implant position regression framework (TSIPR),

which includes a MSPENet for implant position regression and an IRD to

locate the most probable implant region. The RoI mask extracted from

the IRD is used to refine the prediction results of the MSPENet, which

greatly reduces the false detection rate.

• For the training of IRD, we extend the original annotation to provide

additional supervisory information. The extended bounding box contains

much more rich characteristic and do not introduce extra labeling costs.

• For the MSPENet, a multi-scale patch embedding module is designed to

adaptively extract features from the images with various tooth spacing

and a global-local feature interaction block is designed to integrate the

global context and the local texture for enriched feature representation.

• Extensive experiments on a dental implant dataset demonstrates that the

proposed TSIPR achieves superior performance than the existing methods,

especially for patients with sparse teeth.

The rest of the paper is organized as follows. Section 2 briefly reviews the

related works. Section 3 gives the details of the proposed method. Section

4 presents experiments on a dental implant dataset and the experimental re-

sults are compared with that of mainstream detectors and the state-of-the-art

methods. Section 5 provides the conclusions.
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Figure 1: (a) Example images of the sparse teeth in the tooth crown image. The red and

yellow circles denote the actual regression region and the area prone to generate false alarms,

respectively. (b) Comparison of the tooth crown images with different tooth spacing.

2. Related work

2.1. Deep learning in dentistry

Deep learning technology has been applied in many tasks of dentistry, such

as tooth segmentation, orthodontic treatment, and dental implant classifica-

tion. For tooth segmentation, the studies mainly focus on two kinds of data,

i.e. CBCT data and 3D dental point cloud data. Jang et al. (Jang et al.,

2021) proposed a fully automated method of identifying and segmenting 3D

individual teeth from dental CBCT images, which addressed the difficulty of

separating the individual tooth from adjacent teeth and its surrounding alveo-

lar bone. Zhang et al. (Zhang et al., 2018) proposed a label tree-based method

to assign each tooth several labels and decompose the segmentation task into

several sub-tasks for resolving the problem of limited training data. Mahdi et

al. (Mahdi et al., 2020) proposed a residual network-based faster R-CNN model

for automatic teeth recognition, which further refined the candidates using a

candidate optimization technique that evaluates both positional relationship

and confidence score. For orthodontic treatment, Qian et al. (Qian et al., 2020)

proposed a multi-head attention neural network for detecting cephalometric

landmarks, which consists of a multi-head and an attention. The multi-head

component adopts multi-head subnets to learn different features from various

aspects. The attention uses a multi-attention mechanism to refine the detection

based on the features extracted by the multi-head. Dai et al. (Dai et al., 2019)
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Figure 2: Comparison of implant position annotation and the extended implant region.

proposed a new automated cephalometric landmark localization method based

on GAN, which trains an adversarial network to learn the mapping from features

to the distance map of a specific target landmark. For the task of dental implants

classification, Sukegawa et al. (Sukegawa et al., 2020) evaluated a series of CNN

models, i.e. a basic CNN with three convolutional layers, VGG16 and VGG19

transfer-learning models, and fine-tuned VGG16 and VGG19 for implant classi-

fication. Kim et al. (Kim et al., 2020) developed an optimal pre-trained network

architecture for identifying four different types of implants, i.e. Brånemark Mk

TiUnite Implant, Dentium Implantium Implant, Straumann Bone Level Implant

and Straumann Tissue Level Implant on intraoral radiographs.

2.2. Deep learning in object detection

Current object detectors can be divided into two categories, i.e. anchor-

based and anchor-free. The anchor-based detector sets the pre-defined anchor

box before training and the anchor-free detector directly regresses the bounding

box of the object. The anchor-based detector can be further grouped into one-

stage and two-stage methods. SSD (Liu et al., 2016) and YOLO (Redmon et al.,

2016) are classic one-stage detectors, which directly predict the bounding box

and category of objects based on the feature maps. Faster R-CNN (Ren et al.,

2015) is a classical two-stage detector that consists of a region proposal network

(RPN) and a prediction network (R-CNN (Girshick et al., 2014)). A series
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of detection algorithms (Cai & Vasconcelos, 2018; Sun et al., 2021; Tan et al.,

2020; Wang et al., 2022) have been proposed to improve the performance of

these anchor-based detectors. Compared to the anchor-based detector that

heavily relies on the predefined anchor box, the anchor-free detector breaks

such limitation. CornerNet (Law & Deng, 2018) simplified the prediction of the

object bounding box as the regression of the top-left corner and the bottom-

right corner. CenterNet (Duan et al., 2019) further simplified CornerNet by

regressing the center of object. With the development of the vision trans-

former, transformer-based anchor-free detector achieves great success in object

detection. DETR (Carion et al., 2020) employs ResNet as the backbone and

introduces a transformer-based encoder-decoder architecture for the object de-

tection task. Deformable DETR (Zhu et al., 2020) extends DETR with sparse

deformable attention that reduces the training time significantly.

2.3. Deep learning in implant position estimation

The computer-aided diagnosis (CAD) systems has been applied to dental

implant planning. Sadighpour et al. (Sadighpour et al., 2014) developed an

ANN model which utilized a number of input factors to formulate a decision

regarding the type of prosthesis (fixed or removable) and the specific design of

the prosthesis for rehabilitation of the edentulous maxilla. Lee et al. (Lee et al.,

2012) applied fuzzy recognition map for implant abutment selection. Szejka et

al. (Szejka et al., 2011) developed an interactive reasoning system which requires

the dentist to select the region of interest within a 3D bone model based on com-

puted tomography (CT) images, to help the selection of the optimum implant

length and design. However, these CAD systems need manual hyperparameter

adjustment.

Recently, researchers proposed different approaches to determine the implant

position using the panoramic radiographic images and 2D slices of CBCT. Kurt

et al. (Kurt Bayrakdar et al., 2021) utilised multiple pre-trained convolutional

networks to segment the teeth and jaws to locate the missing tooth and gen-

erate a virtual tooth mask according to the neighbouring teeth’ location and
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tilt. Widiasri et al. introduced Dental-YOLO (Widiasri et al., 2022) to detect

the alveolar bone and mandibular canal based on the sagittal view of CBCT to

determine the height and width of the alveolar bone. Yang et al. (Yang et al.,

2022) developed a transformer-based implant position regression network (Im-

plantFormer), which directly predicts the implant position on the 2D axial view

of tooth crown images and projects the prediction results back to the tooth root

by the space transform algorithm. However, these methods do not consider the

irregular structure of tooth, which is a big challenge to produce false alarms.

Algorithm 1 Pseudocode of the workflow of TSIPR.

Input: The tooth crown image of the patient p̃ - Ip̃.

Output: The implant position at tooth root yr.

1: M = IRD(Ip̃)

2: H = MSPENet(Ip̃)

3: Ĥ = M ⊗H

4: Posp̃c(i) = Extract(Ĥ)

5: Posp̃r(j) = T
Pos

p̃
c→Pos

p̃
r
(Posp̃c(i))

3. Method

Using tooth crown image to regress the implant position has been shown

to be effective in (Yang et al., 2022). Therefore, in this work, we follow this

paradigm to train TSIPR. An overview of TSIPR is presented in Fig. 3. It

mainly consists of an implant region detector (IRD) and a multi-scale patch

embedding regression network (MSPENet). We provide a pseudocode as Algo-

rithm 1 to explain the workflow of TSIPR. During training, IRD and MSPENet

are trained separately. In inference, IRD and MSPENet share the same tooth

crown image Ip̃ ∈ R
H×W×C of patient p̃ as input, and the outputs of IRD and

MSPENet are the most probable implant region M ∈ R
H
4
×

W
4 and the heatmap

with the implant position H ∈ R
H
4
×

W
4 , respectively. Then, we multiply M

with H to filter out the error detection generated by the MSPENet and obtain
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Figure 3: The overview of the proposed TSIPR.

the filtered heatmap Ĥ ∈ R
H
4
×

W
4 . In the end, the refined implant positions

Posp̃c(i) = (xp̃
i , y

p̃
i , z

p̃
i ) extracted from Ĥ are projected from the tooth crown to

tooth root area by the space transformation algorithm T
Pos

p̃
c→Pos

p̃
r

(Yang et al.,

2022) to obtain the implant position at tooth rootPosp̃r(j) = (x̂p̃
j , ŷ

p̃
j , ẑ

p̃
j ).

3.1. Implant Region Detector

As shown in Fig. 1(a), the gap between neighboring teeth at the region of

sparse teeth has a similar characteristic with the actual implant region, which

will misguide the prediction network to generate false detection. To tackle this

problem, we propose to train an implant region detector (IRD) to filter out the

false detection.

The IRD is trained using the extended bounding box of implant position

annotation (shown as the dashed blue box in Fig. 2). Different from the original

9



implant position annotation (the red point in Fig. 2) that has little useful texture

at the implant region, the extended box includes the neighboring teeth that

enable the implant region to contain rich characteristics. Moreover, at the scale

of the extended region, the real implant region has a larger interval between the

neighboring teeth than that between sparse teeth. Both characteristics can be

easily captured by the IRD. As the output of IRD is the bounding box with the

highest confidence, which represents the most probable implant region, the false

detection generated at the region of sparse teeth will be removed. Specifically,

we set the size of the extended box as 128 × 128 to ensure that the texture of

neighboring teeth is included. The extended bounding box will not introduce

additional labeling costs, as the coordinate of the extended box is determined

according to the original annotation.

Considering that the output of IRD is used to refine the detection results, a

trade-off between location performance and inference speed is required. There-

fore, we introduce a strong detector, i.e. YOLOv7-X (Wang et al., 2022) as

IRD. The network architecture is shown in Fig. 3, which consists of a backbone,

a neck and three prediction heads. IRD takes Ip as input. Feature maps of

three different resolutions are extracted by the backbone and then input into

the neck for feature fusion. Finally, the location prediction head generates the

bounding box of the probable implant region. The IRD network is optimized

by three loss functions, i.e. classification loss Lcls, localization loss Lloc and

confidence loss Lcof . Lcls and Lcof are the cross-entropy loss function and Lloc

is the GIoU loss (Rezatofighi et al., 2019). The overall training loss of IRD is:

LI = Lcls + Lloc + Lcof (1)

3.2. Multi-scale Patch Embedding Regression Network

In implant position regression, ViT relies on the patch embedding operation

and multi-head self-attention (MHSA) to build the relationship between the

implant position and the texture of neighboring teeth (Yang et al., 2022). How-
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ever, due to the structural difference in the patient’s mouth, the teeth spacing

of tooth crown image has a big variation in different patients (see Fig. 1(a)).

The single kernel size of patch embedding in ViT can not perform well in this

situation. Additionally, although ViT shows great performance in capturing

global context (Tuli et al., 2021), it may ignore the local texture within each

patch (Lowe, 1999), which can not extract enriched feature representation. In

contrast, convolutional neural network (CNN) benefits from the inductive bias

to capture local texture (Baker et al., 2018). To tackle the above issues, we

design a multi-scale patch embedding regression network (MSPENet) to predict

the implant position, which mainly consists of three parts: i) Multi-scale Patch

Embedding, ii) Encoder and Decoder, iii) Regression Head. An overview of the

proposed network is presented in Fig. 3.

Given a tooth crown image Ip, the multi-scale patch embedding module

firstly extracts robust features by three different sizes of patch embedding. Then,

the output features are integrated together by concatenation and input into the

encoder for further feature extraction. The decoder is used to recover the high-

resolution representation from the output of encoder. In the end, the regression

head aims to output a Gaussian heatmap that highlights a precise implant

position. Next, we will introduce these modules in detail.

3.2.1. Multi-scale Patch Embedding Module

The multi-scale patch embedding module is devised to extract robust fea-

tures from the input image. Similar to the CvT (Wu et al., 2021), we use

convolution with overlapping patches to implement the patch embedding layer.

The convolutional patch embedding layer enables us to output features of the

same resolution with different patch sizes. Specifically, we select three patch

embedding layers with size of 5×5, 8×8, and 10×10, respectively. The patch

sizes are determined by the experimental results. The multi-scale patch embed-

ding module takes Irp as input and separately extracts image features in parallel.

Then, the extracted multi-scale features are aggregated by concatenation. To

fuse the features of different patch embedding layers, we use 1×1 convolution
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to smooth the aggregated feature. The output feature is fed into the encoder

for further feature learning.

3.2.2. Encoder and Decoder

Recent works show the benefit of combining convolution and transformer in

network design (Chen et al., 2022; Mehta & Rastegari, 2021), in which the con-

volution captures the local texture and the transformer extracts global context.

Considering that the local texture within the patch is also important for the

prediction of implant position, we devise a global-local feature interaction block

(GLFIB) for Encoder to integrate both local texture and global context. The

architecture of GLFIB is given in Fig. 3. GLFIB consists of three branches of

transformer and one branch of convolution in parallel. We use multiple trans-

former modules to enrich the channel. This design aims to enable the network to

focus more on capturing the relationship between different patches. To alleviate

the computational burden, we follow (Lee et al., 2022) to adopt depth-wise con-

volutions and the efficient factorized self-attention (Xu et al., 2021) to construct

GLFIB. Specifically, the local feature of network l ∈ R
h̃×w̃×c̃ is separately fed

into each branch for feature extraction, and then the output features of branches

are aggregated together by concatenation:

A = concat[C1(l), T1(l), T2(l), T3(l)], (2)

where A ∈ R
h̃
2
×

w̃
2
×4c̃ is the aggregated feature. C(·) and T (·) is the convolution

and transformer module, respectively. The kernel size of both modules are 3

×3. After obtaining the aggregated features, we use f(·) to interact features

between local texture and global context:

O = f(A), (3)

where O ∈ R
h̃
2
×

w̃
2
×2c̃ is the final output feature. We use 1×1 convolution with

channel of 2c̃ for f(·). The encoder of MSPENet consists of four cascaded

GLFIB, and the output of the last GLFIB is used as input for the decoder.

The output of the Encoder is a high-level feature. To ensure fine-grained

heatmap regression, three deconvolution layers are adopted as the Decoder to
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recover high-resolution features from the output of encoder. The Decoder con-

secutively upsamples feature map as high-resolution feature representations, in

which the output resolution the same as the first GLFIB. In the end, the up-

sampled feature map is input into the regression network to locate the implant

position.

3.2.3. Regression Head

The regression network consists of a heatmap head and a local offset head,

which is used for predicting the implant position. The heatmap head gen-

erates an Gaussian heatmap F ∈ [0, 1]
W
g
×

H
g , where g is the down sampling

factor of the prediction and set as 4. Following the standard practice of Cen-

terNet (Zhou et al., 2019), the ground-truth position is transformed into the

heatmap F using a 2D Gaussian kernel:

Fxy = exp(−
(x− t̃x)

2 + (y − t̃y)
2

2σ2
) (4)

where (t̃x, t̃y) is ground-truth annotation in F . σ is an object size-adaptive

standard deviation . The heatmap head is optimized by the focal loss (Lin et al.,

2017):

Lh =
−1

N

∑

xy







(1− F̂xy)
α log(F̂xy) if Fxy = 1

(1 − F̂xy)
β log(F̂xy)

λ log(1− F̂xy) otherwise
(5)

where α and β are the hyper-parameters of the focal loss, F̂ is the predicted

heatmap. The heatmap F is expected to be equal to 1 at the groundtruth

position, and equal to 0 otherwise.

The local offset head computes the discretization error caused by g, which

is used to further refine the prediction location. The loss of the local offset

Lo is optimized by L1 loss (Girshick et al., 2014). The overall training loss of

MSPENet is:

LM = Lh + Lo (6)

3.3. Two-Stream Implant Position Regression Framework

TSIPR is proposed for better predicting the implant position, which paral-

lelizes a coarse implant region detector - IRD and an implant position regression

13



Figure 4: Some sample images in the dental implant dataset. The red points denote the

implant position annotation.

network - MSPENet. The output of IRD, i.e., a probable implant region, is used

to filter out the error detection generated by the MSPENet. Specifically, in in-

ference, given a tooth crown image Ip̃ of the patient p̃, the implant position can

be derived as following procedure:

M = IRD(I lp̃,Wl), (7)

H = MSPENet(Irp̃ ,Wr), (8)

where M ∈ R
ĥ
4
×

ŵ
4 is the RoI mask of implant region. Wl and Wr represent the

learning parameters of IRD and MSPENet, respectively. After getting the re-

gression heatmap H ∈ R
ĥ
4
×

ŵ
4 from the MSPENet, to filter out the false positive

predictions, the RoI mask is applied for refinement:

y = E(M ⊗H), (9)

where y is the extracted implant position at tooth crown and E represents

the coordinate extraction operation. ⊗ is the matrix multiplication operation.

However, the predicted implant positions at the tooth crown area are not the real

location of implant. To obtain the implant position at tooth root, we introduce

a space transformation algorithm (Yang et al., 2022), which fit the center line

of implant using predicted implant position at tooth crown and then extend the

center line to the root area. By this means, the intersections of implant center

line with 2D slices of tooth root image, i.e. the implant position at tooth root

area, can be obtained.
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4. Experiment

4.1. Dataset

The dental implant dataset used for evaluation is collected from the Shen-

zhen University General Hospital (SZUH), and all the implant positions were

annotated by three experienced dentists. Specifically, the dataset contains 154

patients, from which 3045 2D slices of tooth crown are selected. Some sample

images of the dataset are shown in Fig. 4. All the CBCT data were captured

using the KaVo 3D eXami machine, supplied by Imagine Sciences International

LLC. The resolution of the tooth crown image is 776×776. We perform five-fold

cross-validation for the experiments, i.e. the number of the training and testing

images in each fold is 2436 and 609, respectively.

Both the location and regression branches are trained using the same train-

ing image, while the training label and image size are different. The location

branch - IRD uses the extended bounding box as annotation, which is generated

by extending the ground-truth position to a fixed size (128× 128) box. The re-

gression branch - MSPENet is trained using the original ground-truth position.

The image size used in the location and regression branch are 640 × 640 and

512× 512, respectively.

4.2. Implementation Details

Pytorch is used for model training and testing. For the training of IRD,

we use a batch size of 16, SGD optimizer and a learning rate of 0.01. Four

data augmentation methods, i.e. mosaic, mixup, photometric distortion and

geometric are employed. The network is trained for 80 epochs. For the training

of MSPENet, we use a batch size of 8, Adam optimizer and a learning rate

of 0.0005 for network training. A series of augmentation methods, i.e. adding

random noise (Kaur et al., 2021), enhancing contrast (Ubhi et al., 2022), ran-

dom crop, random scale and random flip are employed. The network is trained

for 140 epochs and the learning rate is divided by 10 at 40th and 60th epochs,

respectively. All the models are trained and tested on the platform of TESLA
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Table 1: Performance Comparison of Different IRD.

Network Precision(%) Recall(%) AP75% FPS

Yolov7 78.1 84.5 84.0 72

Yolov7-X 86.9 81.7 87.8 65

Yolov7-W6 86.8 84.2 89.3 57

V100 GPU. For the training of other baseline detectors, MMDetection library

and ImageNet pre-training models are used.

4.3. Evaluation Criteria

In the clinical, the diameter of the implant is 3.5∼5mm, and the mean

error between the predicted and ideal implant position is required to be less

than about 5 pixels (1mm with the CBCT imaging resolution in the paper),

i.e., around 25% of the size of implant. Therefore, instead of general AP50,

AP75 (Kaur et al., 2022) is used as the evaluation criteria in this work. The

calculation of AP is defined as follows:

Precition =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =

∫ 1

0

P (r)dr (12)

Here TP, FP and FN are the number of correct, false and missed predictions,

respectively. P(r) is the PR Curve where the recall and precision act as abscissa

and ordinate, respectively.

4.4. Performance Analysis

4.4.1. Comparison of different IRD

IRD is designed for locating the implant region to refine the predicted im-

plant position. Therefore, a high accurate detector with quick inference speed

detector is required. To have a good trade-off between accuracy and speed for

16



Figure 5: Visual comparison of detection results between the single-scale and multi-scale

patch embedding network. The red and green circles denote the ground-truth position and

the predicted implant position, respectively.

the IRD, we compare three versions of Yolov7 detector, results are listed in Ta-

ble 1. Since the implant region located by the IRD is a coarse area, the AP50

is used as the evaluation criteria to assess the location performance. From the

table we can observe that the Yolov7-X achieved the highest precision of 86.9%

and a medium AP value 87.8%. Although the Yolov7-W6 achieved the best

overall performance, i.e. 89.3% AP, the precision rate is close to the Yolov7-X.

Compared to the recall rate, the precision of the bounding box is a more im-

portant index for the IRD since only the highest confidence box is selected for

each image. In terms of the inference time, Yolov7-W6 is slower than Yolov7-

X for nearly 10 fps. Yolov7 has the highest inference speed, but the locating

performance is poor. Consequently, we chose the Yolov7-X as the IRD for the

implant region location task.
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Figure 6: PR curve of the TSIPR in different IoU.
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Table 2: Ablation study of different patch size in the multi-scale patch embedding module.

Network
Patch Size

AP75%
5 6 7 8 9 10

MSPENet

X 14.7±0.3511

X 14.2±0.3417

X 13.9±0.2283

X 14.5±0.4314

X 14.3±0.6315

X 14.6±0.1354

X X X 15.4±0.3215

4.4.2. Component Ablation

To validate the effectiveness of the proposed multi-scale patch embedding

module, we compare the network performance of both single-scale and multi-

scale patch embedding. Specifically, we test the patch size from 5 to 10 in the

experiment and the results are listed in Table 2. From the table we can observe

that the performance of the single-scale network with different patch sizes is

similar. We choose three patch sizes (5, 8, 10) with the highest performance

for our multi-scale patch embedding module. As the combination of multi-

scale patch embedding can extract robust features from images with different

tooth spacing, the multi-scale patch embedding can improve nearly 0.7 ∼ 1.5%

location performance compared to the single scale one. This experimental results

are consistent with our assumption and demonstrate the effectiveness of the

proposed multi-path patch embedding method.

In Fig. 5, we visualize the detection results of the single-scale and multi-

scale patch embedding network. The visualization indicates that the multi-

scale patch embedding network generate more accurate detection results than

the single-scale.
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Table 3: Ablation study of the proposed GLFIB. T and C denote the transformer and convo-

lution, respectively.

Network GLFIB AP75%

MSPENet

[T,T,T,T] 14.0±0.4713

[C,T,T,T] 15.4±0.3215

[C,C,T,T] 14.6±0.6135

[C,C,C,T] 13.3±0.3354

[C,C,C,C] 12.2±0.5241

4.4.3. Ablation of the GLFIB

To demonstrate the effectiveness of the proposed GLFIB, we conduct an

ablation of convolution and transformer in the GLFIB. Results are listed in

Table 3. From the table we can observe that the pure transformer architecture

achieves an AP of 14.0%, which outperforms the pure convolutional architecture

by 1.8% AP. When introducing a convolution into the GLFIB, the AP value

improves by 1.4%. This experimental result demonstrates that the extracted

local texture from the CNN can provide fine-grained feature for the prediction

network. With the increment of the number of convolutions, the AP value

decreases. This phenomenon illustrates that the prediction of implant position

relies on the global context, which is consistent with our design intention. The

experimental results validate the effectiveness of the GLFIB, which combines

the convolution and transformer for better feature extraction.

4.4.4. Branch Ablation

As previously discussed, MSPENet might easily generate false detection at

the sparse teeth region. We conducted an ablation experiment to validate

whether the proposed IRD can reduce the false detection rate. Fig. 6 shows

the PR curve and the F1 score of the TSIPR for different IoU, the abscissa and

ordinate of PR curve is Recall and precision, respectively; on the dash line the

recall equals to precision. From the curves we can observe that for both IoU of

0.5 and 0.75, the PR curve of network with IRD branch is above the baseline
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Figure 7: Comparison of the detection results of the MSPENet and TSIPR. The red and green

circles denote the ground-truth position and the predicted implant position, respectively. The

dashed red circle indicates the region of false detection.
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Table 4: Comparison of the proposed method with other mainstream detectors.

Methods Network Backbone AP75% F1 Score Param(M) FPS

CNN-based

CenterNet

R50

10.9±0.2 10.8±0.1 32.29 69

ATSS 12.1±0.2 11.9±0.2 32.30 35

VFNet 11.8±0.8 11.8±0.1 32.78 28

RepPoints 11.2±0.1 11.1±0.3 36.84 16

ImplantFormer 11.5±0.3 11.3±0.3 24.73 65

Transformer-based

Deformable DETR 12.8±0.1 12.5±0.1 41.07 22

ImplantFormer ViT-B-R50 13.7±0.2 13.6±0.2 100.52 14

MSPENet(ours)
-

15.4±0.3 15.2±0.2 14.21 58

- TSIPR(ours) 15.7±0.4 15.6±0.3 85.51 46

PR curve, which indicates that the IRD branch can improve the detection per-

formance on both recall and precision. The F1 score of the network with IRD

are also 2.23% and 0.56% higher when IoU equals to 0.5 and 0.75, respectively.

We also visualize the detection results of the MSPENet and TSIPR in Fig. 7.

We can observe from the figure that the detection results predicted by the

MSPENet have false detections in the teeth area with large space. When the

IRD is introduced, the false detection results are filtered greatly, which is con-

sistent with the experimental results.

4.4.5. Comparison to the mainstream Detectors

To demonstrate the superiority of our method, we compare the location per-

formance of the proposed TSIPR with other mainstream detectors. As little

useful texture is available around the center of implant, the anchor-based detec-

tors cannot regress implant position successfully. Only the CNN-based anchor-

free detectors (VFNet (Zhang et al., 2021), ATSS (Zhang et al., 2020), Rep-

Points (Yang et al., 2019), CenterNet (Zhou et al., 2019)), transformer-based

detectors (Deformable DETR (Zhu et al., 2020) and ImplantFormer (Yang et al.,

2022)) are employed for comparison. Results are listed in Table 4.

From the table we can observe that the transformer-based methods perform

better than the CNN-based networks (e.g., ImplantFormer achieved 13.7% AP,

which is 1.6% higher than the best performed CNN-based network - ATSS). This
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experimental result demonstrates that the capacity of building the long-ranged

dependency is important for the implant position regression. Our method,

MSPENet, achieves the highest AP - 15.4% among the transformer-based meth-

ods, which outperforms the ImplantFormer by 1.7% AP. When applying the IRD

to filter out the false detection, the AP value reaches 15.7%.

To further validate the effectiveness of TSIPR, we introduce more metrics for

comparison, i.e., F1 score, parameter, and FPS. From the table we can observe

that the proposed TSIPR also performs the best, in terms of F1 score, with

reasonable efficiency. These experimental results prove the effectiveness of our

method, which achieves the best performance among all benchmarks.

5. Conclusion and Future Work

In this study, we develop a two-stream implant position regression frame-

work (TSIPR) for CBCT data based implant position prediction, which con-

sists of an implant region detector (IRD) and a multi-scale patch embedding

regression network (MSPENet). We extend the original annotation to provide

additional supervisory information for the training of IRD, which locates the

most probable bounding box of implant region to filter out the false regressions

generated by the MSPENet. For the MSPENet, a multi-scale patch embedding

module is designed to adaptively extract features from the images with various

tooth spacing. The global-local feature interaction block is designed to build

the encoder of MSPENet, which combines the transformer and convolution for

enriched feature representation. Extensive experiments on a dental implant

dataset demonstrated that the proposed TSIPR achieves superior performance

than the existing methods, especially for patients with sparse teeth.

Although the proposed TSIPR achieves a promising performance than the

previous methods, it has some limitations. Firstly, the annotation of the implant

position is difficult, which requires a pair of CBCT data captured pre- and

post-implantation, for each patient. Secondly, TSIPR does not fully explore 3D

context. As the network input is a single 2D slice of tooth crown, the texture
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variation between the neighbored slices is not used. Therefore, in the future

work, we will explore semi-supervision approaches and expand the TSIPR to

take multiple slices as input to fully explore 3D context. In real clinics, as IRD

only output the most probable implant region, TSIPR can not perform well for

patients with multiple missing teeth.
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