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ABSTRACT
Video-based analysis of facial expressions has been increasingly applied to infer health states of
individuals, such as depression and pain. Among the existing approaches, deep learning models com-
posed of structures for multiscale spatiotemporal processing have shown strong potential for encoding
facial dynamics. However, such models have high computational complexity, making for a difficult
deployment of these solutions. To address this issue, we introduce a new technique to decompose
the extraction of multiscale spatiotemporal features. Particularly, a building block structure called
Decomposed Multiscale Spatiotemporal Network (DMSN) is presented along with three variants:
DMSN-A, DMSN-B, and DMSN-C blocks. The DMSN-A block generates multiscale representations
by analyzing spatiotemporal features at multiple temporal ranges, while the DMSN-B block analyzes
spatiotemporal features at multiple ranges, and the DMSN-C block analyzes spatiotemporal features
at multiple spatial sizes. Using these variants, we design our DMSN architecture which has the
ability to explore a variety of multiscale spatiotemporal features, favoring the adaptation to different
facial behaviors. Our extensive experiments on challenging datasets show that the DMSN-C block is
effective for depression detection, whereas the DMSN-A block is efficient for pain estimation. Results
also indicate that our DMSN architecture provides a cost-effective solution for expressions that range
from fewer facial variations over time, as in depression detection, to greater variations, as in pain
estimation.

1. Introduction
Given the population growth, and global shortage of

doctors, among others, healthcare applications have been
driving the development of automatic systems for medical
diagnosis. Such technology can be beneficial to improve the
quality of clinical outcomes, and the access to healthcare
services. Since face can provide information concerning
medical conditions [1], there has been a growing interest in
developing contact-free, objective, and accurate systems for
automatic assistive medical diagnosis from facial videos [1,
2, 3]. These video-based methods encode the correlations
between appearance and dynamics of facial expressions and
health states of an individual. For instance, Jaiswal et al. [4]
proposed amethod that explores facial expressions, and head
pose and movement to predict Attention Deficit Hyperac-
tivity Disorder (ADHD), and Autism Spectrum Disorder
(ASD).

Two emerging applications for automatic facial expres-
sion analysis are depression detection and pain estimation.
Depression is defined as a negative state of mind which
remains for a long period of time. Such a mental health
disorder can affect an individual’s emotions, behavior, mind,
and physical health [5]. In severe conditions, depression con-
ducts to substance abuse and suicidal behavior [6]. Despite
the existence of effective treatment, it is estimated that, in
Europe, about 56% of patients suffering from depression
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receive no treatment [7]. The reasons for this high number
include client fees, and restricted or lack of accessibility to
mental healthcare. Studies also show that clinicians have
difficulties to diagnose depression [8, 9]. Indeed, the assess-
ment of depression has a subjective nature since it relies on
doctor’s perception of patient reports. Inaccurate diagnosis
of depression has produced an alarming number of false-
positives that present grave consequences for the patients [9].

Pain is an important physical sign associated with the
health conditions of an individual. It can be considered
as a highly disturbing sensation caused by injury, illness
or mental distress, and it is related to depression [10].
The clinical evaluation of pain is mainly determined by
patient self-reports (e.g., by using Visual Analogue Scale
(VAS) [11] or Numeric Rating Scale (NRS) [12]). However,
the assessment provided by a patient may not be reliable
since patients may have restricted communication potential
(e.g., neonates), cognitive impairments or are under the
influence of medication. An alternative is the medical staff
(e.g., doctors and nurses) perform the assessment. However,
observers may overestimate or underestimate pain intensity
which impair the treatment [13], and the continuous moni-
toring is impracticable.

Automatic analysis of facial variations for objective
recognition of expressions associated with health states
like depression and pain can assist in the reliability and
improvement of clinical assessment and monitoring, as well
as mitigate issues regarding accessibility and costs. Studies
have found facial cues related to depression, such as limited
facial expressiveness [14], reduced eye contact [15], smiles
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with a shorter duration and less intensity [16], and a small
number of mouth movements [17]. In contrast, facial expres-
sions [18, 3] involving, e.g., closed eyes, raised cheeks, and
a wrinkled nose are relevant indicators of pain. With that,
we can claim that a pain event may produce expressions
with greater facial variations over time, and a depressive
state is linked to expressions with fewer variations over time.
Therefore, systems for facial expression analysis based on
videos can explore these cues to predict depressive or painful
states.

Recently, the emergence of state-of-the-art deep learning
(DL) architectures has contributed to significant progress
in diverse visual recognition tasks, such as action recog-
nition [19], image classification [20], and activity under-
standing [21]. DL models have also been shown to provide
a high level of predictive accuracy for automatic facial
expression analysis from videos [3, 22, 23, 24, 25]. Given
the availability of pre-trained models for still images, DL
models commonly employ 2D Convolutional Neural Net-
works (CNNs) to leverage spatial correlations, along with
an aggregation scheme or a recurrent technique to capture
temporal dependencies [26, 27, 28, 29, 30, 31, 32, 33].
Such an approach has limited capacity in encoding important
dynamic information [23, 24, 25]. Conversely, 3DCNNs can
directly model spatiotemporal variations in facial informa-
tion from input video clips [34, 35, 36]. However, in addition
to high computational complexity, these architectures use
basic building blocks that explore a fixed spatiotemporal
range, which limits the ability to learn discriminative fea-
tures since facial expression variations comprise various
ranges, and the difference of these variations along distinct
levels of a health condition can be small.

In other application domains, efficient architectures have
been developed for the modeling of spatiotemporal informa-
tion [37, 38, 39, 40]. However, these methods also rely on
structures with the ability to explore fixed spatiotemporal
range. To address this problem, some works [23, 24, 25]
present effective architectures to model facial expression
variations in videos. Such methods explore multiscale spa-
tiotemporal features by using either parallel 3D convolutions
with different kernels [23, 25] or multiple structures that
explore different spatiotemporal ranges [24]. Although these
approaches achieve a high level of performance, the models
have a high number of parameters and computations, even
when compared to 3D CNNs.

In this paper, we propose an efficient alternative for
the modeling of facial expression variations captured in
videos. The method decomposes the exploration of multi-
scale spatiotemporal information to reduce computational
costs. Specifically, we introduce a building block called
Decomposed Multiscale Spatiotemporal Network (DMSN).
The structure consists of a sequence of convolutions to
produce multiscale features, where every element operates
on a domain, and the branches of this sequence operate
on a complementary domain of these elements, allowing
to generate multiscale spatiotemporal representations. This
design allows the development of three different blocks:

Figure 1: A variant of proposed DMSN block. Each temporal
convolution (pink block) generates features at different scales.
Spatial convolutions (green block) complement this operation
to explore spatiotemporal features. The fusion stage combines
the multiscale spatial and temporal features. A detailed de-
scription of this block is presented in Section 3.

DMSN-A, DMSN-B, and DMSN-C. The DMSN-A block
learns spatiotemporal features with distinct temporal ranges
at a fixed spatial size (see Fig. 1). The DMSN-B block
explores diverse spatiotemporal features at distinct ranges.
Lastly, the DMSN-C block analyzes spatiotemporal features
with different spatial sizes at a fixed temporal range. Our
proposed blocks employ residual connections, and are im-
plemented using only 1D and 2D convolutions. Using these
three blocks, we design our DMSN architecture which has
the potential to adapt to different facial behaviors thanks to
the different multiscale spatiotemporal representation abili-
ties of the proposed blocks.

The key contributions of this paper are as follows.
• A new building block structure is proposed with three

variants – DMSN-A, DMSN-B, and DMSN-C blocks
– to improve the extraction of multiscale spatiotempo-
ral features. Such variants are employed in our DMSN
architecture to provide discriminative representations
for different facial behaviors.

• We show empirically that our DMSN-C block is effec-
tive for exploring the spatiotemporal dependencies for
depression detection whereas DMSN-A block is effi-
cient to capture facial dynamics for pain estimation.

• An extensive set of experiments on the challenging
AVEC2013 and AVEC2014 depression datasets, and
UNBC-McMaster and BioVid pain datasets, allowing
to validate that our DMSN architecture can provide a
level of performance that is comparable to state-of-
the-art DL models, while significantly reducing the
computational costs.

• An analysis of depression and pain features showing
that depression features are more useful for pain esti-
mation than pain features are for depression detection.
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The rest of this paper is organized as follows. Sec-
tion 2 presents some background on methods for depression
detection, pain estimation, and spatiotemporal modeling.
Our DMSN architecture is introduced in Section 3. Then,
Section 4 describes the experimental methodology, and Sec-
tion 5 discusses the results for validation of our approach.
Finally, Section 6 draws the conclusions of the present work.

2. Related Work
The growing interest in analyzing facial expressions cap-

tured in videos can be attributed to the psychological studies
that indicate the correlation of a health condition and face,
and the recent progress in deep learning and computer vision
methods. The existing works try to explore non-verbal facial
cues in order to infer health conditions. A key challenge is
to obtain a robust representation in a scenario of subjective
variability of facial expressions across different individuals
and capture conditions.
2.1. Models for depression detection

Various authors proposed hand-engineered represen-
tations for depression detection. Some examples are the
method proposed by Cohn et al. [41], that employs Active
AppearanceModel (AAM) features and uses Support Vector
Machine (SVM) as classifier, and the one proposed by
Gupta et al. [42], that uses Local Binary Pattern (LBP)
features and Support Vector Regressor (SVR). DL models
have demonstrated more potential to extract discriminant
features from spatiotemporal expressions correlated with de-
pressive states. A common approach is to employ a 2D CNN
and some aggregation technique to explore facial features
that are extracted from videos [26, 27, 28, 29, 32, 33]. For
instance, Zhou et al. [32] used ResNet-50 to explore the
appearance information, and attentionmechanism to fuse the
static facial features. However, such methods have limited
ability for the encoding of rich spatiotemporal variations in
faces. Two-stream networks [43, 44] and 3D CNNs [34, 35]
have also been presented for depression detection. However,
these methods are composed of structures that analyze a
fixed spatiotemporal range, which reduces the ability to
produce discriminative features. Indeed, it has been shown
that a better multiscale capacity is favorable for depression
detection which is characterized by small facial expression
variations along different levels [23, 24, 45]. In this context,
Song et al. [45] used spectral representations of behav-
ior signals to analyze multiscale depression patterns. Two
recent state-of-the-art methods–Multiscale Spatiotemporal
Network (MSN) [23], and Maximization and Differentiation
Network (MDN) [24]–have shown effectiveness in mod-
eling multiscale spatiotemporal information. The structure
of MSN is composed of 3D convolutions with different
kernel sizes, whereas the one of MDN is formed using
multiple maximization and difference blocks which explore
features in diverse ranges. Although these methods achieve
a high level of performance, their computational costs are
expensive.

2.2. Models for pain estimation
Early methods for pain intensity estimation employed

hand-engineered features such as LBP [46], Gabor [47],
Local Binary Patterns from Three Orthogonal Planes (LBP-
TOP) [48], Histograms of Topographical (HoT) [49], Pyra-
mid Histogram of Orientation Gradients (PHOG) [50] and
Pyramid Local Binary Pattern (PLBP) [50]. In recent years,
DL models have been used to encode facial expression
variations for pain estimation. Some methods generate deep
representations by using frame-wise feature extraction [30,
51, 31]. For instance, Rodriguez et al. [30] employed VGG-
16 architecture to learn spatial features and Long-Short
Term Memory (LSTM) for the capturing of temporal re-
lationships. Other works proposed to model spatiotempo-
ral information within video sequences by employing 3D
CNNs [36, 52]. Using this approach, Wang et al. [52] ap-
plied Convolutional 3D (C3D) network, that has as basic
structure one 3×3×3 convolutional layer, to recognize pain
expressions. However, these two approaches are frequently
ineffective to capture extensive range of facial expression
variations. In [25], the authors presented evidence that a
multiscale approach is more effective for the modeling of
spatial and temporal dependencies related to pain status.
They introduced the Spatiotemporal Convolutional Network
(SCN) which employs as basic structure parallel 3D con-
volutions with different temporal depths. SCN obtains high
performance for pain estimation, but it requires more than
500M trainable parameters, making its deployment costly.
2.3. Spatiotemporal networks

Since 3D CNNs have an ability to directly model spatial
and temporal information, these methods are an intuitive
choice for video analysis. Tran et al. [53] proposed an
architecture with 8 convolutional layers, called C3D, to
learn spatiotemporal features. Carreira et al. [19] proposed
to inflate all the filters and pooling kernels of 2D Incep-
tion model into 3D CNN generating Inflated 3D-ConvNet
(I3D) model. Hara et al. [54] proposed 3D CNNs based
on residual connections called 3D ResNet. In [55], the
authors introduced the SlowFast network which consists of
a slow path to model spatial semantics and a fast path to
capture motion at fine temporal resolution. The principal
drawbacks of employing 3D CNNs are the high compu-
tational complexity, and the lack of pre-trained backbone
models. Recently, diverse architectures have been developed
for efficient spatiotemporal modeling. In [39], Temporal
Segment Network (TSN) is introduced to model long-term
temporal information employing 2D CNNs. Qiu et al. [38]
proposed Pseudo-3D residual network (P3D) which factor-
izes 3D convolution into 2D and 1D convolution. Xie et al.
studied I3D, I2D, as well as the combination of 2D and 3D
methods by using either bottom-heavy (lower layers use 3D
convolutions and upper layers use 2D convolutions) or top-
heavy (lower layers use 2D convolutions and upper layers
use 3D convolutions) networks. Lin et al. [37] proposed
the Temporal Shift Module (TSM) to enable 2D CNNs to
explore spatiotemporal dependencies by shifting channels

W.C. de Melo et al.: Preprint submitted to Elsevier Page 3 of 13



Facial Expression Analysis Using DMSNs

0 200 400 600 800 1000

Frame Number

22

22.5

23

23.5

24

D
ep

re
ss

io
n
 S

co
re

0 50 100 150 200 250

Frame Number

0

2

4

6

8

10

P
ai

n
 I

n
te

n
si

ty

Pain

Depression

Figure 2: Examples of depression and pain expressions in
sequences of consecutive video frames. The depression level
is constant over the video sequence, whereas pain level may
change rapidly over time.

along the temporal dimension. Even though such architec-
tures are efficient for tasks like action recognition, their
structure explores a fixed spatiotemporal range (e.g., P3D
block uses a combination of one 1 × 3 × 3 convolutional
layer with one 3×1×1 convolutional layer, encompassing a
spatiotemporal receptive field size of 3×3×3), which hinders
the capacity of extracting effective representations for facial
expression variations. Instead of exploring a fixed range,
our proposed blocks explore multiple spatiotemporal ranges
favoring the generation of discriminative representations.

In contrast to existing methods that use a structure to
explore multiscale spatiotemporal information (i.e., MSN,
MDN, and SCN), our proposed blocks are designed to
efficiently capture such information for the representation
of facial videos. To achieve this goal, three distinct variants
of the DMSN block are proposed to decompose the extrac-
tion of multiscale spatiotemporal features. The use of these
three variants allows the design of a cost-effective DMSN
architecture. Another unique benefit of our architecture is
the ability to adapt to distinct facial behaviors, since it is built
employing our three proposed blocks.

3. Decomposed Multiscale Spatiotemporal
Network
The dynamics of facial expressions provide rich informa-

tion for the recognition of facial patterns related to a health
condition. Such facial expression variations can be explored,
e.g., velocity or intensity, in order tomodel different levels of
a health state. This work aims to develop a deep architecture
to capture an extensive range of facial dynamics to pro-
duce efficient representations for automatic facial expression

analysis. Specifically, we design the DecomposedMultiscale
Spatiotemporal Network (DMSN) by introducing three mul-
tiscale convolution blocks that employ different strategies to
generate multiscale spatiotemporal representations.

We design our DMSN blocks considering that the facial
behavior can considerably differ in two distinct health diag-
nosis applications. As illustrated in Fig. 2, the level of pain
can change over time, and the correlated facial expressions
can be modified considerably over a short period. On the
other hand, the depression level lasts for a longer period
and the resulting facial expressions tend to have more grad-
ual variations. Consequently, an effective architecture for
facial expression analysis has the capability of adaptation to
distinct facial behaviors. This fact motives us to build our
architecture using blocks with different abilities.

To develop our proposed blocks, we employ a sequence
of convolutions to increase the range of the region under
analysis. This sequence is called Main Stage sub-block (see
Fig. 3). The output of each convolution in the Main Stage is
connected as the input to another convolution that operates
in a complementary domain to encode spatiotemporal infor-
mation. The output feature maps of these branches are at dif-
ferent scales, and a 1×1×1 convolution fuses these features
to generate multiscale spatiotemporal representations.

The architectural design of our DMSN block allows
the investigation of different strategies to extract multiscale
spatiotemporal features. Since the Main Stage sub-block
is responsible for the multiscale ability, it is able to em-
ploy convolutions on either the same or different domains,
which can be beneficial in the elaboration of more efficient
multiscale representations. In this context, we derive three
variants of our proposed block (see Fig. 3). In the sequence,
we present a detailed description of these variants.
3.1. DMSN-A block

Considering that the pain level can vary more rapidly
over time, its level can last for different periods, and it can
produce sudden facial expression variations, we define the
Main Stage of the DMSN-A block as a sequence of 3×1×1
temporal convolutions. This sub-block is formed using four
1D temporal convolutions in order to explore the short,
medium, and long temporal ranges. The output Ti of each1D temporal convolution (Mt

i) is given by:

Ti =

{

Mt
i(x) i = 1

Mt
i(Ti−1) 2 ≤ i ≤ 4

(1)

Each 1D convolution increases the temporal range explored
by this sub-block. Branches of the Main Stage employ 1 ×
3 × 3 spatial convolutions which generate spatiotemporal
features at multiple temporal ranges. The output STj of each2D spatial convolution (Ms

j) is defined by:
STj = Ms

j(Tj) 1 ≤ j ≤ 4 (2)
3.2. DMSN-B block

This block employs theMain Stage sub-block to increase
the explored regions in both domains by using 1×3×3 spatial
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Figure 3: The three proposed DMSN building blocks. Pink blocks represent temporal convolutions whereas green blocks represent
spatial convolutions. Each convolution in the Main Stage extends the range of features, and its branches use a complementary
filter to explore spatiotemporal features. Features of these branches are at different scales, and are combined using a 1 × 1 × 1
convolution.

convolutions and 3 × 1 × 1 temporal convolutions. With the
purpose of maintaining a similar computational complexity
in comparison with DMSN-A block, the DMSN-B block
employs four convolutions in the Main Stage. The output Yiof each element in this sub-block is calculated by:

Yi =

⎧

⎪

⎨

⎪

⎩

Ms
i (x) i = 1

Ms
i−1(Yi−1) i = 3

Mt
i∕2(Yi−1) i = 2, 4

(3)

Each element of this sub-block increases the spatiotemporal
receptive field size in analysis. Branches of the Main Stage
use complementary convolution (in relation to domain) to
generate spatiotemporal features at multiple ranges. Specif-
ically, the output STj of each branch is given by:

STj =

{

Mt
j+3−(j+1)∕2(Yj) j = 1, 3

Ms
j+2−j∕2(Yj) j = 2, 4

(4)

3.3. DMSN-C block
Given that depressive states can present less facial ex-

pression variations over time, and the depression level of
a subject in a video tends to be constant, the DMSN-C
block employs the Main Stage to produce multiscale spatial
features. The sub-block is constituted by a sequence of 1 ×
3 × 3 spatial convolutions where each element increases the
spatial receptive field size. The output Si of each 2D spatial
convolution (Ms

i ) is defined by:

Si =
{

Ms
i (x) i = 1

Ms
i (Si−1) 2 ≤ i ≤ 4

(5)

Branches of theMain Stage use 3×1×1 temporal convolution
to produce spatiotemporal features at multiple spatial sizes.
The output STj of each 1D temporal convolution (Mt

j) canbe given by
STj = Mt

j(Sj) 1 ≤ j ≤ 4 (6)
Furthermore, for DMSN-A, DMSN-B, and DMSN-C

blocks, the first element of the Main Stage reduces the
number of channels by half in comparison with the number
of output channels of the first 1 × 1× 1 convolution whereas
the convolutions in the branches reduces this number by one
quarter (i.e., 1 divided by the number of branches).
3.4. DMSN architecture

We construct the DSMN architecture using our three
blocks. In this way, our model has structures with diverse
capacities favoring the creation of a model that can perform
well in different applications. In Table 1, we provide the
details of our proposed model. The output feature map is
defined as a tensor X ∈ ℝT×H×W ×C , where T , H , W ,
and C are the temporal depth, height, width, and number
of channels, respectively. The model size and the number
of blocks in each layer are defined similarly to ResNet-50.
The DMSN blocks are employed in the residual layers (res)
and the regression layer outputs a value related to pain or
depression score. Moreover, we develop three models which
are named according to the DMSN block they employ, e.g.,
DMSN-A model uses only DMSN-A blocks. With that, we
can understand the contributions of each DMSN block for a
given application.
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Table 1
Properties of the proposed DMSN architecture. DMSN-A, DMSN-B, and DMSN-C models are built using only an instance of
DMSN block. For example, DMSN-A only uses the DMSN-A block.

Layer Output Size Number of Channels Structure Number of Layers
input 16 × 112 × 112 3 ×1
conv1 16 × 56 × 56 64 7 × 7 × 7 ×1

MaxPool 8 × 28 × 28 64 3 × 3 × 3 ×1

res2 8 × 28 × 28 128
DMSN-A

×1DMSN-B
DMSN-C

res3 8 × 14 × 14 256

DMSN-A

×1DMSN-B
DMSN-C
DMSN-A

res4 8 × 7 × 7 512
DMSN-A

×2DMSN-B
DMSN-C

res5 8 × 4 × 4 1024

DMSN-A

×1DMSN-B
DMSN-C
DMSN-A

regression 1 × 1 spatial AvgPool, FC, AvgPool

4. Experimental Methodology
4.1. Depression datasets

We conduct experiments on two public benchmarking
datasets for depression, called the Audio-Visual Emotion
Challenge 2013 and 2014 (AVEC2013 [56] and AVEC2014
[57] depression sub-challenge datasets). This AVEC sub-
challenge consisted of predicting the depression severity
of subjects on Beck Depression Inventory (BDI-II). The
severity of depression can be determined in accordance to
BDI-II score as follows: minimal (0 − 13), mild (14 − 19),
moderate (20 − 28), and severe (29 − 63). Although there
exist other depression datasets such as AVEC2016 [58], to
the best of our knowledge, AVEC2013 and AVEC2014 are
the only datasets that provide raw video data.

The AVEC2013 dataset is composed of 150 videos from
a group of individuals which the average age is 31.5 years.
The individuals were recorded during an interaction with a
computer carrying out 14 tasks, including counting from 1
to 10. The dataset is divided into three partitions: training,
development, and test subsets. Every subset is comprised of
50 videos, where each video has a BDI-II score as a discrete-
value label which indicates the level of depression of an
individual. The maximum duration of videos is 50 minutes,
the minimum is 20 minutes, and the average length is 25
minutes.

The AVEC2014 dataset contains videos of individuals
performing two tasks: Freeform and Northwind. In the first
one, the individuals answer questions like discussing a sad
childhood memory. In the second one, individuals read
audibly an excerpt from a fable. In total, there are 150 videos
of each task with a ground truth label (BDI-II score) for
each video. For both tasks, the videos are distributed in
three partitions: training, development, and test subsets. The
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Figure 4: Examples of facial frames from AVEC2014 and
AVEC2013 depression datasets as well as UNBC-McMaster and
BioVid pain datasets.

videos have length between 6 and 248 seconds. Samples
from both datasets are exhibited in Fig. 4. Due to privacy
concerns, all samples of depression shown in this work are
blurred.
4.2. Pain datasets

To evaluate the performance of our proposed approach
on pain estimation, we conduct experiments on two publicly
available datasets: UNBC-McMaster Shoulder Pain Expres-
sion Archive [59], and BioVid Heat Pain [60].
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The UNBC-McMaster dataset has been largely em-
ployed for pain estimation from facial information. It con-
sists of 200 face videos of 25 individuals with a total
number of 48, 398 frames. Fig. 4 presents some facial frames
from this dataset. Each video is labeled using Prkachin
and Solomon Pain Intensity (PSPI) scores in a frame-level
fashion on a range of 16 discrete levels ranging from 0 (no
pain) to 15 (maximum pain). Since the input of our proposed
model is a clip, we follow the works in [24, 25, 36, 61, 62,
63], which define a label for each clip. Specifically, we use
the average of the pain intensity of each frame inside the clip
as a label. Moreover, since the dataset is highly imbalanced
(82.7% of frames have pain score of 0), we adopted the
common quantization strategy, which maps the pain levels
to 6 ordinal levels as: 0:0, 1:1, 2:2, 3:3, 4-5:4, 6-15:5.

The BioVid Heat Pain dataset contains videos and bio-
signals that were acquired during acute heat-induced pain
experiments in healthy adults. Pain was induced in four dis-
tinct intensities in the right arm of each individual. Although
the dataset includes bio-signals such as Skin Conductance
Level (SCL), electrocardiogram (ECG), electromyography
(EMG), and electroencephalogram (EEG), our experiments
only consider Biovid part A which has 8, 700 videos of 87
individuals. Each video is labeled with a pain stimulus level
which ranges from 0 (no pain) to 4 (severe pain). A sample
from this dataset is shown in Fig. 4.
4.3. Training of the model

The model analyzes faces that are detected and extracted
from video frames of datasets employing MTCNN [64].
Each facial image is resized to form a bounding-box sample
with the size of 112 × 112 × 3 that is fed to the model.
Usually, datasets for facial expression analysis have a limited
amount of training data, which can hinder the generalization
ability of a deep architecture. To avoid this problem, deep
models are normally pre-trained on large datasets and then
fine-tuned on the target dataset. Following the works in [23,
24], our proposed model is pre-trained on the VGGFace2
dataset [65] that contains 3.31 million images of more than
9, 000 subjects. In this process, the model is optimized using
Stochastic Gradient Descent (SGD) with a momentum of
0.9, weight decay 0.0001, and an initial learning rate of 0.01.
The learning rate is divided by 10 after every 10 epochs.
The RGB input images are normalized by using the mean
channel subtraction. In the fine-tuning process, the ADAM
optimization algorithm is adopted. For depression detection
task, the initial learning rate is defined as 0.005, then, in the
second epoch, this rate is modified to 0.0005. The training is
stopped after 3 epochs. For pain estimation task, we define
the learning rate equal to 0.001 under two epochs training. In
the data augmentation process, we follow the same strategy
as in [24, 23].
4.4. Performance measures

For depression detection, an input video from the test
subset is segmented into non-overlapped clips of 16 frames.
The model generates a depression score for each clip and
the median of these values defines the final predicted score

for the input video. In order to provide a fair comparison
with state-of-the-art methods, we report the performance of
the proposed architecture in terms of Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), which are
commonly used for depression detection [33, 26, 27, 24, 35,
34]. For pain estimation, we perform leave-one-subject-out
cross-validation to evaluate the performance of our proposed
model. For fair comparison with state-of-the-art methods,
the performance of our architecture is measured in terms
of Mean Square Error (MSE), and MAE, which are widely
used for pain estimation [25, 24, 30, 51]. The computational
complexity of models is assessed in terms of the number
of parameters (memory complexity), and the number of
Floating Point Operations (FLOPs) for the processing of a
clip (time complexity).

5. Results and Discussion
5.1. Analysis of the DMSN blocks

In order to investigate the potential of the proposed
DMSN blocks, we generate results for the three models that
are named according to the DMSN block they employ, e.g.,
DMSN-A uses DMSN-A blocks. We also compare these
models with our proposed DMSN architecture to show the
benefits of using all DMSN blocks. Finally, we compare
our architecture in terms of performance and computational
complexity with 3D ResNet [54] and three other efficient
spatiotemporal models: TSN [39], TSM [37], and P3D [38].
For fair comparison, all these models follow the same train-
ing process that our proposed architecture, i.e., first pre-train
on VGGFace2 dataset, then fine-tune on depression or pain
datasets.
5.1.1. Depression detection

Table 2 reports the results for our three models on
AVEC2013 and AVEC2014 datasets. When compared with
DMSN-A, DMSN-B achieves better performance, except for
AVEC2013 in terms of MAE. As can be seen, the best per-
formance is obtained by DMSN-C. Regarding the computa-
tional complexity, it is possible to observe that DMSN-A em-
ploys fewer parameters and requires fewer FLOPs, whereas
DMSN-C is more computationally expensive in comparison
with DMSN-A, and DMSN-B. Among our three models,
DMSN-C provides the best trade-off between performance
and computational complexity since this model improves the
results with slightly more resources. From these results, we
can claim that the DMSN-C block is effective to explore
facial expression variations for depression detection.

Table 2 also shows the performance of our proposed
DMSN architecture which employs DMSN-A, DMSN-B,
and DMSN-C blocks. The use of our three blocks in our ar-
chitecture provides an improvement of results over DMSN-
A, DMSN-B, and DMSN-C models (except for AVEC2013
in terms of MAE where DMSN-C achieves the same result).
Observe that DMSN architecture has lower computational
costs than the DMSN-C model. Although our architecture
has higher FLOPs than DMSN-B and is more expensive
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Table 2
Performance of the proposed methods against spatiotemporal models for estimating of depression scores on AVEC2013 and
AVEC2014 datasets.

Architecture AVEC2013 AVEC2014 Parameters ↓ FLOPs ↓RMSE MAE RMSE MAE
3D-ResNet [54] 8.81 6.92 8.40 6.79 63.0M 12.22G
TSN [39] 8.89 6.21 8.72 6.45 23.5M 16.45G
TSM [37] 8.89 6.41 8.53 6.29 23.5M 16.45G
P3D [38] 8.50 6.24 8.63 6.80 24.9M 8.56G
DMSN-A (Ours) 7.98 6.32 8.13 6.48 19.0M 10.26G
DMSN-B (Ours) 7.92 6.59 7.86 6.24 23.6M 10.83G
DMSN-C (Ours) 7.77 6.14 7.66 6.10 25.9M 11.53G
DMSN (Ours) 7.66 6.14 7.50 5.69 22.1M 11.29G

Table 3
Performance of our proposed approach against spatiotemporal
models on UNBC-McMaster and BioVid datasets.

Architecture UNBC-McMaster BioVid
MSE MAE MSE MAE

3D-ResNet [54] 0.75 0.56 2.28 1.30
TSN [39] 0.58 0.53 2.07 1.21
TSM [37] 0.46 0.49 1.94 1.20
P3D [38] 0.67 0.50 2.04 1.23
DMSN-A (Ours) 0.43 0.39 1.68 1.08
DMSN-B (Ours) 0.41 0.37 1.70 1.09
DMSN-C (Ours) 0.44 0.38 1.71 1.09
DMSN (Ours) 0.38 0.35 1.54 1.04

than DMSN-A, DMSN significantly improves the perfor-
mance on depression detection when compared with these
two models. These results demonstrate that the diversity of
multiscale spatiotemporal features explored by our DMSN
architecture enhances the representation for recognition of
depressive states.

We also compare our DMSN architecture with the 3D
ResNet, TSN, TSM, and P3D models in Table 2. DMSN
improves the results by more than 1.0 in terms of RMSE
on AVEC2013 and in terms of MAE on AVEC2014 when
compared with 3D ResNet. DMSN also outperforms TSN,
TSM, and P3Dwhere the difference in results on AVEC2014
is significant. DMSN employs fewer parameters than these
models and has fewer FLOPs, except for P3D. As indicated
by the results, DMSN has the potential to generate efficient
spatiotemporal representations for depression detection.
5.1.2. Pain Estimation

Table 3 presents the performance of our DMSN-A,
DMSN-B, and DMSN-C models on UNBC-McMaster and
BioVid datasets. As can be seen, the three DMSN mod-
els achieve comparable results on UNBC-McMaster pain
dataset. On the other hand, DMSN-A exhibits a better
performance on BioVid pain dataset when compared to
DMSN-B and DMSN-C. Given that the DMSN-A model
requires fewer parameters and FLOPs, the DMSN-A block,
which has the capacity to explore diverse spatiotemporal
features at different temporal ranges, can be considered an

Table 4
Performance analysis of our proposed DMSN architecture for
different input depths on AVEC2014 and UNBC-McMaster
datasets.

Depth AVEC2014 UNBC-McMaster FLOPs↓RMSE MAE MSE MAE
8 8.84 6.71 0.49 0.40 5.64G
16 7.50 5.69 0.38 0.35 11.29G
24 7.50 5.80 0.43 0.36 16.93G
32 7.72 5.96 0.38 0.40 22.57G

efficient strategy to capture spatiotemporal variations for
pain estimation.

In Table 3, we also show the results of our DMSN ar-
chitecture for pain estimation. The employment of the three
DMSN blocks in our architecture produces better results
in comparison with DMSN-A, DMSN-B, and DMSN-C
models. Consequently, the construction of our architecture
using different strategies to learn multiscale spatiotemporal
features favors a performance improvement for an applica-
tion with greater facial expression variations as in pain esti-
mation, and one with fewer facial variations as in depression
detection.

A comparison between our DMSN architecture and 3D
ResNet, TSN, TSM, and P3D models is also presented in
Table 3. Compared with P3D, DMSN improves the results
by 0.5 and 0.29 in terms of MSE on BioVid and UNBC-
McMaster datasets, respectively. In summary, DMSN out-
performs these methods and the difference in results is
higher on BioVid dataset, indicating that DMSN has good
ability to encode facial dynamics for pain estimation.
5.2. Analysis of temporal depth of input

Our DMSN architecture is designed to explore a wide
range of facial expression variations. Consequently, the tem-
poral depth of input is an important factor in the performance
of the model. In Table 4, we perform evaluations consid-
ering inputs with 8, 16, 24, 32 frames. Since the pain and
depression datasets are composed of similar face videos, and
the evaluations involve a long training process, we carry out
this analysis on AVEC2014 and UNBC-McMaster datasets.
For depression detection, using sequences with 8 frames

W.C. de Melo et al.: Preprint submitted to Elsevier Page 8 of 13



Facial Expression Analysis Using DMSNs

Table 5
Evaluation of our DMSN architecture considering different number of branches in the Main Stage sub-block on AVEC2014 and
UNBC-McMaster datasets.

Number of branches AVEC2014 UNBC-McMaster Parameters↓ FLOPs↓RMSE MAE MSE MAE
2 8.45 6.64 0.63 0.52 18.0M 9.64G
3 7.71 6.08 0.45 0.42 20.1M 10.48G
4 7.50 5.69 0.38 0.35 22.1M 11.29G

Table 6
Performance of proposed and state-of-the-art methods for estimating of depression scores on AVEC datasets.

Architecture AVEC2013 AVEC2014 Parameters ↓RMSE MAE RMSE MAE
Baseline-AVEC2013 [56] 13.61 10.88 - - -
Baseline-AVEC2014 [57] - - 10.86 8.86 -
MHH + LBP [66] 11.19 9.14 - - -
LPQ + Geo + CCA [67] 9.72 7.86 - - -
Two-stream GoogLeNet [44] 9.82 7.58 9.55 7.47 -
Two C3D [35] 9.28 7.37 9.20 7.22 ≈64.2M
Two C3D [34] 8.26 6.40 8.31 6.59 ≈64.2M
VGG-16 + FDHH [28] - - 8.04 6.68 ≈138.0M
DTL [29] - - 9.43 7.74 -
ResNet-50 + pooling [32] - - 8.43 6.37 ≈23.5M
Four ResNet-50 [33] 8.28 6.20 8.39 6.21 ≈94.0M
ResNet-50 [26] 8.25 6.30 8.23 6.15 ≈23.5M
Behavior signals [45] 8.10 6.16 8.30* 6.78* -
DLGA-CNN [27] 8.39 6.59 8.30 6.51 -
Two-stream ResNet-50 [43] 7.97 5.96 7.94 6.20 ≈47.0M
MSN [23] 7.90 5.98 7.61 5.82 ≈77.7M
MDN [24] 7.55 6.24 7.65 6.06 ≈52M
DMSN (Ours) 7.66 6.14 7.50 5.69 22.1M
* Results of the method for Freeform task.

significantly degrades the performance of our model. In fact,
very short sequences increase the level of ambiguity along
the depression levels, making harder to generate effective
representations. The model sustains the highest levels of
performance for a clip size of 16 and 24 frames, and worsens
for 32 frames. For pain estimation, the model maintains
a comparable level of performance for all sequences em-
ployed, but the worst results are obtained using clips with
8 frames. Furthermore, as the clip size increases, the model
requires more FLOPs to generate an output.
5.3. Analysis of multiscale spatiotemporal ability

Given that facial dynamics comprise different spatiotem-
poral variations, it is essential that our architecture has a
multiscale spatiotemporal representation ability to encode
such variations. We evaluate this ability in our architecture
by changing the number of branches in the Main Stage sub-
block. To maintain a comparable computational complexity,
when the number of branches is reduced, we increase the
number of channels in the branches of the Main Stage sub-
block. As seen in Table 5, for depression detection and pain
estimation, when more spatiotemporal ranges are explored
(i.e., increasing the number of branches), the performance
of DMSN improves, indicating a boost in the ability of

encoding facial variations. It is worth noting that by in-
creasing the number of branches in the Main Stage sub-
block, the architecture not only enhances the capacity of
exploring spatiotemporal features in different ranges, but it
also increases the diversity of this exploration, since DMSN
employs DMSN-A, DMSN-B, and DMSN-C blocks, which
use different strategies to learn multiscale spatiotemporal
features.
5.4. Comparison with state-of-the-art

In this section, the performance of our DMSN architec-
ture is compared with state-of-the-art methods for depres-
sion detection and pain estimation.
5.4.1. Depression detection

Table 6 compares the performance of our proposed ar-
chitecture with state-of-the-art methods on AVEC2013 and
AVEC2014 depression datasets. DMSN outperforms the
method based on LPQ features [67] and other related de-
scriptors [56, 57, 66]. The methods in [28, 29, 32, 33, 26,
27] are based on 2D CNNs followed by an aggregation
technique. The methods in [35, 34] employ 3D CNNs to
explore spatiotemporal information. The authors in [44, 43]
infer depressive states by using two-stream networks. Our
DMSN outperforms these methods (except for the method
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Table 7
Performance of our proposed DMSN architecture against state-
of-the-art methods on UNBC-McMaster dataset.

Architecture MSE MAE Parameters ↓
RVR+LBP+DCT [46] 1.39 - -
HoT [49] 1.21 - -
OSVR [47] - 0.81 -
RCNN [31] 1.54 - -
VGG-11+LSTM [51] 1.22 0.58 ≈133M
VGG-16+LSTM [30] 0.74 0.5 ≈138M
C3D [25] 0.71 - ≈32M
I3D [36] - 0.80 ≈13M
MDN [24] 0.68 0.42 ≈52M
SCN [25] 0.32 - ≈586.8M
DMSN (Ours) 0.38 0.35 22.1M

in [43] in terms of MAE on AVEC2013, but this approach
employs 24.9M more parameters). These results confirm
findings in [23, 24, 45], which underscore the importance
of a multiscale approach for facial depression recognition.
We also observe that DMSN achieves better results than
the method in [45], which explores behavioral primitives
(facial action units, head pose, and gaze directions). When
compared with MSN [23] and MDN [24], DMSN outper-
forms both models on AVEC2014, and achieves competitive
results on AVEC2013, while requiring 3.51× and 2.35×
fewer parameters than MSN and MDN, respectively. These
results show that our DMSN architecture can provide a cost-
effective solution for depression detection.
5.4.2. Pain estimation

Table 7 compares the performance of our proposed ar-
chitecturewith state-of-the-art methods onUNBC-McMaster
dataset. As can be seen, our DMSN outperforms differ-
ent schemes for pain expression recognition. For instance,
DMSN achieves better results than the method in [30],
which uses VGG-16 architecture and LSTM, while requir-
ing around 6.2 times fewer parameters. The comparison
with the SCN method [25] is interesting because the ba-
sic block of this architecture is composed of parallel 3D
convolutions with diverse temporal depths to explore multi-
scale spatiotemporal information. DMSN presents similar
performance as this method with significant reduction of
parameters (DMSN has around 26.5× fewer parameters).
These results indicate that our DMSN architecture is also
an efficient option for pain estimation.

Table 8 compares our DMSN architecture with state-
of-the-art methods on BioVid dataset. DMSN outperforms
the method in [61] which also explores facial expressions
variations from videos. In [68], the authors explore diverse
features from ECG, EMG, and SCL as well as face videos.
As we can see, DMSN obtains comparable results, demon-
strating that facial expression analysis can provide essential
information for the estimation of pain intensities.

Table 8
Performance of our proposed DMSN architecture against state-
of-the-art methods on BioVid dataset.

Method Modality MSE MAE
I3D [61] Video - 1.42
Fusion [68] Multimodal 1.16 (RMSE) 0.99
DMSN (Ours) Video 1.54 1.04

Table 9
Performance of the proposed method in cross-dataset setting.

Training set Test set RMSE MAE MSE
AVEC2013 AVEC2014 7.78 6.18 -
AVEC2014 AVEC2013 8.36 6.62 -
UNBC BioVid - 1.19 1.92
BioVid UNBC - 0.63 0.91

AVEC2013 UNBC - 0.62 0.92
AVEC2014 UNBC - 0.61 0.90
AVEC2013 BioVid - 1.19 1.95
AVEC2014 BioVid - 1.21 1.99
UNBC AVEC2013 11.13 9.41 -
UNBC AVEC2014 11.24 9.40 -
BioVid AVEC2013 11.10 9.27 -
BioVid AVEC2014 10.93 9.13 -

5.5. Cross-database analysis
In order to assess the generalization capabilities of

our DMSN architecture, we perform cross-database exper-
iments. In this procedure, the source and target databases
can belong to different tasks (e.g., AVEC2013 is the source
database, and UNBC-McMaster is the target database). In
this case, since the labels of pain and depression datasets
are different, we replace the regression layer of DMSN
to properly evaluate the representations generated by the
model. In Table 9, we present the results of this experiment.
When the evaluations are performed in the same task (e.g.,
depression detection), themodel achieves reasonable results,
indicating a robust representation for facial videos. The
analysis between tasks is interesting because it allows an
investigation about the applicability of depression/pain fea-
tures to the pain/depression recognition task.We can observe
that the representations learned on depression datasets allow
DMSN to achieve good results on pain datasets. On the
other hand, when DMSN is trained on pain datasets and
then evaluated on depression detection task, there is a higher
degradation in performance. One reason for this result is the
high level of ambiguity in depressive states which makes it
difficult to directly apply the features of other applications.
5.6. Qualitative results

To interpret the performance differences for depression
detection between our DMSN architecture and DMSN-A,
DMSN-B, DMSN-C models as well as P3D, we present
the class activation maps (CAMs) employing the Grad-
CAM method [69]. In the visualizations of Fig. 5, lighter
colors represent those regions that are most relevant for a
model’s predictions. Considering the most activated regions,
the models appear to explore the eyes and mouth regions.
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P3DDMSNDMSN-CDMSN-BDMSN-A

Figure 5: Example of the CAMs showing the facial regions activated by our proposed DMSN models and P3D on a facial image
from the AVEC2014 dataset.
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Figure 6: Performance analysis of our proposed DMSN architecture and P3D on samples of two individuals from UNBC-McMaster
dataset.

In fact, these regions convey important information about
depressive states. As we can see, our approach is more
effective in exploring such areas than P3D. In comparison
with DMSN-A, DMSN-B, and DMSN-C, DMSN seems to
be more successful in capturing face expression variations
from these areas. We understand that this capacity of DMSN
is a decisive factor for the good performance in depression
detection.

Fig. 6 shows the effectiveness of our approach for pain
estimation by comparing the predictions of our architecture
with that of P3D and ground truth. It can be observed that
our architecture can satisfactorily identify the occurrence of
pain, which is an important characteristic for clinical appli-
cation, whereas P3D has lower accuracy. DMSN presents a
better performance than P3D in recognizing changes of pain
levels, which is due to a better multiscale spatiotemporal
ability of DMSN. In general, our architecture has a good
ability to follow the variations of pain levels, meaning that
DMSN is effectively modeling transitions in facial pain
expressions.

6. Conclusion
In this paper, we propose a structure called Decom-

posed Multiscale Spatiotemporal Network (DMSN) to learn
multiscale spatiotemporal features from facial expressions
in videos. Three variants of the DMSN block are intro-
duced, which employ different strategies to effectively and
efficiently capture facial dynamics. We design our DMSN
architecture using these blocks to explore a variety of mul-
tiscale spatiotemporal features, which favors the adaptation
to different facial behaviors. In our extensive experiments

on AVEC2013 and AVEC2014 depression datasets, and
UNBC-McMaster and BioVid pain datasets, we show that
exploring the spatiotemporal information at multiple spatial
sizes (DMSN-C block) is effective for depression detection,
whereas capturing spatiotemporal features at multiple tem-
poral ranges (DMSN-A block) is efficient for pain estima-
tion.We also show that our architecture achieves competitive
performance against state-of-the-art approaches for depres-
sion and pain expression detection, yet requires significantly
fewer model parameters. Moreover, we demonstrate that
depression features are more useful for pain estimation than
pain features are for depression detection. In future work, we
plan to investigate the performance of our DMSN architec-
ture in other healthcare applications such as stress detection.
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