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ABSTRACT 

Humanitarian logistics service providers have two major responsibilities immediately after 

a disaster: locating trapped people and routing aid to them. These difficult operations are 

further hindered by failures in the transportation and telecommunications networks, which 

are often rendered unusable by the disaster at hand. In this work, we propose a two-echelon 

vehicle routing framework for performing these operations using aerial uncrewed 

autonomous vehicles (UAVs or drones) to address the issues associated with these failures. 

In our proposed framework, we assume that ground vehicles cannot reach the trapped 

population directly, but they can only transport drones from a depot to some intermediate 

locations. The drones launched from these locations serve to both identify demands for 

medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries 

to satisfy them. Specifically, we present a decision framework, in which the resulting 

optimization problem is formulated as a two-echelon vehicle routing problem with trucks as 

the first echelon vehicles and for the second echelon vehicles we consider two types of 

drones. Hotspot drones have the capability of providing cell phone and internet reception, 

and hence are used to capture demands. Delivery drones are subsequently employed to 

satisfy the observed demand. To handle demand uncertainty, we decompose the decision 

problem into two stages: providing telecommunications capabilities in the first stage thereby 

capturing demand precisely and satisfying the resulting demands in the second stage. To 
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solve the resulting models, we propose efficient computational approaches by designing a 

decomposition algorithm with column generation (CG)-based heuristics to identify optimal 

drone routes. To showcase the applicability of our proposed framework, we present results 

from the numerical experiments on datasets created to simulate the demand for medical aid 

in Puerto Rico after Hurricane Maria.  

Key words: Humanitarian logistics, Two-echelon vehicle and drone routing, 

Decomposition algorithm, Column generation. 

1. Introduction 

In the aftermath of a disaster, locating and sending assistance to people that are trapped inside the 

disaster zone is of utmost importance. Trapped populations are unable to leave their positions due 

to infrastructure failures (e.g., flooded streets after hurricanes, destroyed bridges after 

earthquakes), and are often unable to communicate their exact locations and needs, due to 

widespread communication and power systems failures. Even if humanitarian aid agencies become 

aware of the trapped population pressing needs for medical supplies, potable water, and dry food, 

they cannot send help via ground vehicles due to the potentially unusable transportation network 

following the disaster.  

A real-life motivating example is the disastrous impact of Hurricane Maria in Puerto Rico in 2017. 

After the hurricane, much of the island of Puerto Rico was left without functional communication 

infrastructure. Many people were trapped in their communities with limited ability to move and 

without means for communicating their need for food and medical supplies. Furthermore, road 

transportation networks had failed and reaching the people in need using ground vehicles was 

impossible. In cases like these, uncrewed aerial vehicles (UAVs), assisted and transported by 

ground vehicles, can be used to (i) provide telecommunication capabilities to the affected areas, 

and (ii) deliver emergency medical and food supplies to the people in need.   

In our work, we develop mathematical models for scheduling and routing ground and aerial 

vehicles with the double goals of efficiently providing telecommunications capabilities and 

delivering emergency supplies. The problem can be viewed as a variant of the two-echelon 

capacitated vehicle routing problem, in which ground vehicles (trucks, or first echelon vehicles) 
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are tasked with carrying a finite number of uncrewed aerial vehicles (UAVs, drones, or second 

echelon vehicles) equipped with limited medical and other emergency supplies. Due to 

infrastructure failures and to ensure the wellbeing and safety of first responders and emergency 

personnel, ground vehicles can only reach so-called satellite locations outside the disaster zones, 

with drones being deployed to carry out the delivery operations within the zones themselves.  

More specifically, in the proposed framework (referred to hereafter as 2EVRP-HD-UAV), we 

consider two types of uncrewed aerial vehicles: (i) hotspot drones that are responsible for first 

restoring communication signals in an area and can then receive the demand requests from people 

in the area, and (ii) delivery drones that drop off medical supplies at the affected communities 

(demand locations). The demand information becomes available only after the communication 

signal is provided at all the demand locations by the hotspot drones. The demand information then 

dictates the delivery route decisions. We design a two-stage optimization approach to handle the 

demand materialization after the hotspot drone operations. In this framework, the first echelon 

ground vehicle routing and scheduling decisions are also made in tandem with the UAV routing 

decisions to minimize the time to reach all affected communities with aid deliveries and the cost 

of failure to satisfy demand. This setup naturally results in idle times for the ground vehicles at the 

satellite stations due to hotspot drone operations but results in precise demand information. 

This paper is outlined as follows. First, we provide the contributions of the work to the body of 

literature. We then provide an accounting of the relevant literature in Section 2. As our work is in 

the intersection of multiple vehicle routing frameworks, we present a general overview of two-

echelon vehicle routing problems, related solution approaches, and their applications involving 

uncrewed autonomous vehicles (aerial or otherwise). In Section 3, we present our framework with 

the mathematical formulation to model it, and the solution approach to solve it. We finish this 

work with our computational results in Section 4. There, we provide a case study on a simulated 

dataset for relief material demand at the zip code areas in Puerto Rico immediately after Hurricane 

Maria. This is a prime example for our setup as multiple counties in Puerto Rico were left without 

power and communications for many days after the hurricane made landfall. We also show the 

validity of our model on a synthetic dataset (presented in Appendix A2). Finally, we provide our 

concluding remarks in Section 5.  
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1.1. Contributions 

Considering the state of the art (see Section 2 and the detailed literature review), we see that exact 

approaches have not been particularly successful in real-world two-echelon vehicle routing 

problems (2E-VRP) with and without uncrewed autonomous vehicles (UAVs). The scale and 

complexity of the aid routing problems usually encountered in disaster management makes the use 

of exact approaches difficult. To overcome the limitations of these existing approaches, our study 

contributes to the development of models and algorithms for two-echelon vehicle routing problems 

using drones in a post-disaster environment where demand quantities at the affected communities 

are uncertain. We specifically propose a two-stage decision approach to handle demand 

uncertainty. More specifically, our contributions can be summarized as follows. 

First, we investigate a novel 2E-VRP with trucks carrying UAVs as the first echelon vehicles and 

the UAVs as the second echelon vehicles for performing humanitarian logistics operations. Our 

fundamental underlying assumption and driver for this research is that at the time of truck and 

UAV route determination, the actual aid demand at the affected communities is not known. For 

this novel problem, termed 2EVRP-HD-UAV (two echelon vehicle routing problem with hotspot 

and delivery UAVs), we present a mixed integer linear program (MILP). Unsurprisingly, the MILP 

is computationally expensive to solve even for smaller size instances (e.g., ones with 12 hotspot 

locations, 20 demand locations).  

Second, to that end, we present a set covering formulation, which is suitable for column generation. 

We then propose a computational framework for heuristic solution approaches that are based on 

column generation (CG). Our decomposition approach leveraging the problem structure enables 

us to set up very small pricing subproblems for each satellite-drone pair to gain computational 

efficiency. The proposed approach can solve problems of up to 120 demand locations within 

reasonable computational time, as shown in our experiments.  

Finally, to handle demand uncertainty, we design a two-stage decision framework. In the first 

stage, we identify the optimal routes for trucks, hotspot, and delivery drones to provide coverage 

to all demand location, while the second stage decisions involve identifying the best delivery routes 

based on the demand information. The assumption is that the demand information becomes 

available only after the (first stage) routing decisions are made. We formulate the second stage 
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model fixing the truck and hotspot drone routing decisions found at the termination of the first 

stage. Following a CG-based heuristic (a matheuristic, or math-based heuristic), we generate new 

delivery drone routes with the demand information if some of the routes generated in the first stage 

become infeasible. In our experiments, we show that our CG-based computational approaches 

perform better for the proposed two-stage decision framework compared to exact methods for 

solving the MILP model. 

 2. Literature review 

In this section, we provide a general overview of the relevant literature. First, we briefly mention 

recent work in vehicle routing problems in the context of humanitarian logistics and disaster 

management. We then turn our focus to two-echelon vehicle routing problems and provide a 

survey of the state-of-the-art exact and heuristic solution approaches available. Moreover, we 

discuss studies that involve routing of UAVs (drones) along with ground vehicles for optimizing 

deliveries. Finally, we present work on robust vehicle routing problems with uncertain data (as in 

demand uncertainty).  

We begin with a brief discussion of recent work in vehicle routing problems in humanitarian aid 

and relief operations. Interested readers are referred to the review works in [1-3], that cover 

literature which largely inspired our problem definition and our assumptions. Vehicle routing 

problems (VRP) have been studied extensively in this context of natural and human-made disasters 

[4-8]. The underlying assumption of these studies is that of a fully functional post-disaster 

transportation network, which implies that the methods and ideas are not always adoptable in cases 

where the supply chain infrastructure itself gets affected by the disaster. In the absence of supply 

chain infrastructure, the adoption of new technologies and approaches are necessary for fulfilling 

aid demand, which is indeed the premise of our study.   

Two-echelon vehicle routing problems (2E-VRP) are extensions of the classical VRP, where the 

first echelon connects the depot to the intermediate satellite locations and the second echelon 

connects the satellite locations to the customers. Typically, the objective is to minimize the cost 

associated with the operations in both echelons. An excellent survey outlining the state-of-the-art 

advancements in the area can be found in [9]. Exact solution methods for the capacitated version 

of 2E-VRP (commonly referred to as 2E-CVRP) are primarily based on branch-and-

https://www.sciencedirect.com/topics/computer-science/branch-and-cut
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cut algorithms, originally proposed by Feliu et al. [10] and  improved in subsequent studies [11-

13]. Baldacci et al. [14], however, employ a hybrid exact algorithm to decompose the problem into 

a set of capacitated vehicle routing problems. Combining the strengths of  branch-and-cut and 

branch-and-price, Santos et al. [15, 16] use a branch-and-cut-and-price algorithm, strengthened 

with several classes of valid inequalities. More recently, strong valid inequalities within a branch-

and-cut scheme have received significant attention [17, 18].  

Due to the computational complexity associated with solving problems of the 2E-CVRP family 

using exact methods, heuristic approaches have gained traction. Clustering-based heuristics [19] 

and multi-start heuristics [20] showcase the impact of satellite locations on the cost improvement 

opportunities in 2E-CVRP. An adaptive large neighbourhood search (ALNS) [21] algorithm, a 

hybrid metaheuristic based on large neighbourhood search (LNS) [22], and a hybrid multi-

population genetic algorithm [23] have also been used to solve 2E-CVRP problems. Finally, a 

greedy randomized adaptive search procedure (GRASP) combined with a route-first cluster-

second and a variable neighbourhood descent algorithm has also been proposed in [24].  

A specific aspect of 2E-VRP involves cooperation or synchronization between trucks (first 

echelon) and UAVs/drones (second echelon). In this setup, UAVs are launched from and land back 

to a truck to recharge batteries, to be reloaded with delivery items, or to be transported to the next 

launching location. Review works on VRPs with synchronization and cooperative truck-drone 

decision problems can be found in [25, 26].  In the next paragraphs, we discuss some of the recent 

works in this area. 

A two-echelon cooperative truck and drone routing problem is solved by a branch-and-cut 

framework with a separation procedure [27], whereas heuristic approaches are used in [28].  Wang 

et al. [29], on the other hand, derive several worst-case results for multiple trucks and drones 

problems. The study has later been extended in [30, 31], where drones are allowed to provide 

close-enough coverage to the demand points. Carlsson and Song [32] follow a continuous 

approximation approach for solving this family of problems.  

Recently, last-mile deliveries via truck and drone collaboration have resulted in a new variant of 

the traveling salesperson problem (TSP), termed TSP with drone (TSP-D). Murray and Chu study 

the simultaneous routing of a truck and a drone [33] and later Agatz et al. propose several route-

https://www.sciencedirect.com/topics/computer-science/branch-and-cut
https://www.sciencedirect.com/science/article/pii/S037722171730930X#bib0012
https://www.sciencedirect.com/topics/computer-science/search-procedure
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first cluster-second heuristics [34] to solve these problems. A decomposition-based iterative 

approach is also used to solve TSP-D problems [35].  Ha et al. [36] propose heuristic approaches 

to solve the TSP-D problem, whereas a combination of k-means clustering and TSP is proposed 

by Chang and Lee [37]. A case with multiple trucks and drones is studied in [38], where a multiple 

traveling salesperson problem with drones (mTSPD) is solved using an adaptive insertion 

heuristic. A vehicle-assisted multi-drone routing and scheduling problem is studied in [39], with 

an algorithm based on the adaptive memory procedure is proposed to solve it. A route optimization 

method using genetic algorithm for a moving truck and a drone launching problem is presented by 

Savuran and Karakaya [40, 41].   

The existing literature on routing UAVs has been mostly focused on deterministic variants. For 

example, in a recent work, Ghelichi et al. [42] proposed a model for locating charging stations and 

scheduling a fleet of drones for delivery of medical items. Stochastic extensions are an exception: 

for example, a robust optimization approach is proposed by Evers et al. [43] to plan surveillance 

missions using UAVs subject to uncertain weather conditions. A similar approach is used by Kim 

et al. [44] to address uncertainty in battery capacity due to air temperature. In contrast, literature 

on 2E-VRP with stochastic parameters is limited. One of these studies adopts a genetic algorithm 

based method [45]. The other research work employs a simulation-based optimization approach 

[46], in which a Monte Carlo sampling method is used to handle stochastic demand.  

3. The 2EVRP-HD-UAV framework 

In this section, we present the two-stage decision framework for 2E-VRP with hotspot and delivery 

UAVs followed by a CG-based two-stage solution heuristic. Following a disaster, in the absence 

of adequate transportation network infrastructure, affected communities are not directly reachable 

by trucks; in addition, in the absence of communications infrastructure, the demand levels at the 

communities are not known precisely. We discuss the necessary assumptions used to formulate 

the models for the 2EVRP-HD-UAV framework below: 

1. All the trucks and the hotspot and delivery drones are homogeneous (that is, all trucks are 

identical, and all drones are identical).  

2. The weather conditions and vehicle characteristics are deterministic. Vehicle travel speeds and 

other details are estimated considering the specific post-disaster operating conditions.  
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3. The trucks that carry hotspot and delivery drones are dispatched from a central depot and can 

visit satellite stations in sequence. Satellite stations are selected from a suitable set of candidate 

locations in major highways that are still usable after a disaster. A satellite location can be 

visited by at most one truck. 

4. Hotspot and delivery drones are launched from a truck that is stopped at a satellite and are 

routed to one or more hotspot locations and one or more affected communities, respectively 

before they return to that same satellite.  

5. Each affected community has at least one satellite location in its vicinity so that a hotspot drone 

can cover it. We further assume that each community has at least one functioning device to 

send information to and from.  

6. Once a hotspot drone reaches a hotspot location, it hovers until all the affected communities 

that are within a certain distance receive telecommunication signal: this is how the demand 

information of these communities is obtained.  

7. The velocity of hotspot drones is estimated considering the time for hovering to setup 

telecommunication signal and capture demand information.  

8. The times for delivery drones are estimated considering the times required for loading, 

stopping, and delivering aid at disaster affected communities.  

9. Delivery drones can be launched from a satellite only after the hotspot drones launched from 

the same satellite return after their tours.  

10. A delivery drone can be dispatched from a satellite to deliver aid only if the community has 

been provided with coverage from a hotspot drone also launched from that same satellite.  

11. The truck and hotspot drone routing decisions are made in a centralized manner to provide 

telecommunication network and delivery coverage to all communities. The demand 

information gathered by the hotspot drones impacts the delivery drone operations at a local 

(satellite) level. However, it does not impact the truck routing decisions.  

 

With these assumptions at hand, we provide a more formal problem definition in the following 

section. 
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3.1. Problem definition  

To formulate the problem, we consider a graph 𝐺(𝑉, 𝐸). Node set 𝑉 = {0} ∪ 𝑆 ∪ 𝐵 ∪ 𝐶 consists 

of the depot (0), the set of candidate satellite locations (𝑆), the set of candidate hotspot locations 

(𝐵), and a set of affected communities (𝐶). The edge set 𝐸 consists of affected and unaffected 

edges, i.e., 𝐸 = 𝐸𝑎 ∪ 𝐸𝑜. Drones can use any edge in the network, unconstrained from the 

infrastructure condition (e.g., flooded roads, destroyed bridges); on the other hand, ground vehicles 

can only use edges in 𝐸𝑜. We assume that a fleet of identical trucks are available that can transport 

a fixed number of hotspot and delivery drones. For all edges that are operational (∀(𝑖, 𝑗) ∈

𝐸𝑜 , 𝑖, 𝑗 ∈ {0} ∪ 𝑆), we denote traversal times for trucks as 𝜏𝑖𝑗
𝑡 , ∀(𝑖, 𝑗) ∈ 𝐸𝑜. The affected edge set 

𝐸𝑎, on the other hand, are comprised of two subsets of edges,  𝐸ℎ and 𝐸𝑑 which are available for 

traversing by hotspot and delivery drones, respectively. The edge set  𝐸𝑠
ℎ is the collection of edges 

that can be traversed by a hotspot drone launched from a truck that stops and stays at satellite 

location 𝑠 ∈ 𝑆, i.e., ∀(𝑖, 𝑗) ∈ 𝐸𝑠
ℎ, 𝑖, 𝑗 ∈ s ∪ 𝐵𝑠, where 𝐵𝑠 is the set of hotspot nodes located within 

reachable distance from satellite s; if a hotspot drone is launched from 𝑠, the total roundtrip time 

from 𝑠 to 𝑏 is less than the hotspot drone flying time range. The edge set 𝐸ℎ for hotspot drone 

traversing is composed of subset of edges 𝐸𝑠
ℎ , ∀𝑠 ∈ 𝑆, i.e., 𝐸ℎ = ⋃ 𝐸𝑠

ℎ
𝑠∈𝑆 . Edge traversing times 

for hotspot drones are given by 𝜏𝑖𝑗
ℎ , ∀(𝑖, 𝑗) ∈ 𝐸ℎ: 𝑖, 𝑗 ∈ 𝑆 ∪ 𝐵. Similarly, the delivery edge subset 

𝐸𝑑 consists of smaller subsets 𝐸𝑠
𝑑 , ∀𝑠 ∈ 𝑆, i.e., 𝐸𝑑 = ⋃ 𝐸𝑠

𝑑
𝑠∈𝑆 . Arcs in 𝐸𝑠

𝑑 are composed of satellite 

node 𝑠 and the nearby community locations 𝐶𝑠 that are reachable by a delivery drone launched 

from 𝑠. Edge traversing times for delivery drone are 𝜏𝑖𝑗
𝑑 , ∀(𝑖, 𝑗) ∈ 𝐸𝑑: 𝑖, 𝑗 ∈ 𝑆 ∪ 𝐶. The hotspot 

drones are dispatched and routed so that they visit hotspot locations, and a drone visiting a hotspot 

node 𝑏 ∈ 𝐵 can provide telecommunication signals to all the affected communities that are within 

a specified distance from 𝑏. Once a hotspot drone finishes its route, it returns to its launching 

satellite location. Only then the delivery drones can be dispatched from the same satellite location 

to satisfy demands at the communities that have been covered by hotspot drones from the same 

satellite. In Figure 1, we show the pictorial representation of the decision problem. For better 

visualization, we only show a few vehicle routes. Red arcs present the truck routes, whereas 

hotspot and delivery drone routes are shown in green and yellow arcs respectively. 
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Figure 1: A pictorial representation of the decision problem*

The first stage decision problem of the 2EVRP-HD-UAV consists of routing each of the available 

trucks to one or more satellite locations, dispatching and routing of hotspot drones to provide 

telecommunication signal to all communities, and deploying and routing delivery drones to the 

affected communities. The objective is to minimize the cost of delay in reaching all communities, 

along with a (penalty) cost of failing to reach a community by delivery drones.  

To solve the resulting 2E-VRP with two classes of second echelon vehicles, we first develop a 

mixed integer linear programming model and find that the problem is too computationally 

expensive to solve even smaller size instances. For completeness, we present this model in the 

Appendix. That said, in the next subsections we present a set covering problem reformulation that 

enables us to develop a column generation-based decomposition and solution approach. We begin 

by presenting the notations used in the model. 

 
* Drone icons obtained from Pixel perfect and www.flaticon.com. 

https://www.flaticon.com/authors/pixel-perfect
http://www.flaticon.com/
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3.2. First stage set covering problem formulation   

All the necessary notation and the associated parameters used in the remainder of the section are 

presented in the following tables.  

Sets: 

𝑆 Set of all satellite locations 

𝐵 Set of all locations permitted for hotspot drone hovering; 𝐵 = ⋃ 𝐵𝑠𝑠∈𝑆   

𝐶 Set of all community locations; 𝐶 = ⋃ 𝐶𝑠𝑠∈𝑆  

𝐻𝑠 Set of hotspot drones in a truck at satellite 𝑠 ∈ 𝑆 

𝐷𝑠 Set of delivery drones in a truck at satellite 𝑠 ∈ 𝑆 

𝐸𝑜 Set of arcs for trucks; (𝑖, 𝑗) ∈ 𝐸𝑜: 𝑖, 𝑗 ∈ 𝑆 ∪ {0} 

𝐸𝑠
ℎ Set of arcs for hotspot drones starting from satellite 𝑠 ∈ 𝑆; (𝑖, 𝑗) ∈ 𝐸𝑠

ℎ: 𝑖, 𝑗 ∈ 𝑠 ∪ 𝐵 

𝐸𝑠
𝑑 Set of arcs for delivery drones starting from satellite 𝑠 ∈ 𝑆; (𝑖, 𝑗) ∈ 𝐸𝑠

𝑑: 𝑖, 𝑗 ∈ 𝑠 ∪ 𝐶 

𝑈𝑠 Restricted set of hotspot drone routes starting from satellite 𝑠 ∈ 𝑆 

𝑉𝑠 Restricted set of delivery drone routes starting from satellite 𝑠 ∈ 𝑆 

Parameters: 

𝑚𝑡 Number of trucks available  

𝑚ℎ Number of hotspot drones carried in a truck  

𝑚𝑑 Number of delivery drones carried in a truck  

𝐹𝑐
𝑇 Cost of unit time delay in reaching community 𝑐 ∈ 𝐶 by a delivery drone 

𝐹𝑐
𝑅 Cost of failing to reach community 𝑐 ∈ 𝐶 by a delivery drone 

𝜏𝑖𝑗
𝑡  Time to traverse arc (𝑖, 𝑗) ∈ 𝐸𝑜 by a truck 

𝜏𝑖𝑗
ℎ  Time to traverse arc (𝑖, 𝑗) ∈ 𝐸𝑠

ℎ by a hotspot drone 

𝜏𝑖𝑗
𝑑  Time to traverse arc (𝑖, 𝑗) ∈ 𝐸𝑠

𝑑 by a delivery drone 

𝑊ℎ Flying range of a hotspot drone 

𝑊𝑑 Flying range of a delivery drone 

Π𝑠𝑘
ℎ  Route time length for route 𝑘 ∈ 𝑈𝑠  of a hotspot drone from satellite 𝑠 ∈ 𝑆  

Π𝑠𝑝
𝑑  Route time length for route 𝑝 ∈ 𝑉𝑠 of a delivery drone from satellite 𝑠 ∈ 𝑆   

𝑡𝑠𝑐
𝑘  Time to reach community 𝑐 ∈ 𝐶 by delivery drone 𝑘 ∈ 𝐷𝑠 from satellite 𝑠 ∈ 𝑆 

𝑎𝑗
𝑘 =1, if hotspot location 𝑗 ∈ 𝐵 is present in 𝑘 ∈ 𝑈𝑠 

𝑏𝑐
𝑘 =1, if community 𝑐 ∈ 𝐶 is present in 𝑘 ∈ 𝑉𝑠 

𝑔𝑗𝑐 =1, if demand at community 𝑐 ∈ 𝐶 can be confirmed by a hotspot drone hovering at 

𝑗 ∈ 𝐵, 0 otherwise 
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Decision variables:  

𝑥𝑖𝑗 =1, if a truck traverses arc (𝑖, 𝑗) ∈ 𝐸𝑜; 0 otherwise 

𝑦𝑝
𝑠𝑘 =1, if hotspot drone 𝑘 ∈ 𝐻𝑠 travels route 𝑝 ∈ 𝑈𝑠 starting from 𝑠 ∈ 𝑆; 0 otherwise 

𝑧𝑝
𝑠𝑙 =1, if delivery drone 𝑙 ∈ 𝐷𝑠 travels route 𝑝 ∈ 𝑉𝑠 starting from 𝑠 ∈ 𝑆; 0 otherwise 

𝐽𝑐 =1, if community 𝑐 ∈ 𝐶 cannot be reached by a delivery drone 

Τ𝑠𝑐
𝑑  Time to reach community 𝑐 ∈ 𝐶 by a delivery drone launched from satellite 𝑠 ∈ 𝑆 

∆𝑠
ℎ Length of time spent by a truck at satellite 𝑠 ∈ 𝑆 due to hotspot drone flights  

∆𝑠
𝑑 Length of time spent by a truck at satellite 𝑠 ∈ 𝑆 due to delivery drone flights  

𝑇𝑠 Arrival time of a truck at satellite 𝑠 ∈ 𝑆 

The set covering formulation of the first stage enables us to develop a column generation-based 

decomposition heuristic, where the problem is decomposed into a main problem and its 

subproblems. The restricted main problem of the first stage (D-RMP-1) can now be presented in 

(1)—(15). We call this problem restricted because we only consider restricted sets of routes for 

the hotspot and the delivery drones. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐹𝑐
𝑇Τ𝑠𝑐

𝑑

𝑐∈𝐶𝑠∈𝑆

+ ∑ 𝐹𝑐
𝑅𝐽𝑐

𝑐∈𝐶

 
(1) 

Subject to:             Duals 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜:𝑖∉𝑆

≤ 𝑚𝑡                                                                                           
(2) 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜

≤ 1                                                               ∀𝑗 ∈ 𝑆,                                      
(3) 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜

− ∑ 𝑥𝑖𝑗

(𝑗,𝑘)∈𝐸𝑜

= 0                                        ∀𝑗 ∈ 𝑆,                                          
(4) 

𝑇𝑗 ≥ 𝑇𝑖 + ∆𝑖
ℎ + ∆𝑖

𝑑 + 𝜏𝑖𝑗
𝑡 − 𝑀 (1 − 𝑥𝑖𝑗)                    ∀(𝑖, 𝑗) ∈ 𝐸𝑜                                  

𝑇𝑗 ≤ 𝑇𝑖 + ∆𝑖
ℎ + ∆𝑖

𝑑 + 𝜏𝑖𝑗
𝑡 + 𝑀 (1 − 𝑥𝑖𝑗)                    ∀(𝑖, 𝑗) ∈ 𝐸𝑜                                 

(5) 
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∑ ∑ 𝑦𝑙
𝑠𝑘

𝑙∈𝑈𝑠𝑘∈𝐻𝑠

− 𝑚ℎ ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

 ≤ 0                                     ∀𝑠 ∈ 𝑆,                      𝛾𝑠   
(6) 

∑ ∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠𝑘∈𝐷𝑠

− 𝑚𝑑 ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

≤ 0                             ∀𝑠 ∈ 𝑆,                                  𝜃𝑠             
(7) 

∑ 𝑦𝑙
𝑠𝑘

𝑙∈𝑈𝑠

− ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

≤ 0                           ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠                                  𝜑𝑠𝑘          (8) 

∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠

− ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

≤ 0                               ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠                                 𝜙𝑠𝑘             (9) 

∑ ∑ ∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠𝑘∈𝐷𝑠𝑠∈𝑆

𝑏𝑙𝑐 + 𝐽𝑐 = 1                                       ∀𝑐 ∈ 𝐶                    𝜁𝑐     
(10) 

∑ 𝑦𝑙
𝑠𝑘

𝑙∈𝑈𝑠

Π𝑠𝑙
ℎ − ∆𝑠

ℎ≤ 0                                       ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠                         𝜎𝑠𝑘          
(11) 

∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠

Π𝑠𝑙
𝑑 − ∆𝑠

𝑑≤ 0                                  ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠                                 𝜌𝑠𝑘     
(12) 

𝑇𝑠 + ∆𝑠
ℎ + ∑ ∑ 𝑧𝑙

𝑠𝑘𝑡𝑠𝑐
𝑙

𝑙∈𝑉𝑠𝑘∈𝐷𝑠

− 𝑀 (1 − ∑ ∑ 𝑧𝑙
𝑠𝑘𝑏𝑐

𝑙

𝑙∈𝑉𝑠𝑘∈𝐷𝑠

) ≤ Τ𝑠𝑐
𝑑 ,   ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶,   𝛼𝑠𝑐 

(13) 

∑ ∑ ∑ 𝑎𝑝
𝑙

𝑝∈𝐵:𝑔𝑝𝑐=1

𝑦𝑙
𝑠𝑗

𝑗∈𝐻𝑠𝑙∈𝑈𝑠

− ∑ ∑ 𝑧𝑖
𝑠𝑘

𝑖∈𝑉𝑠

𝑏𝑐
𝑖

𝑘∈𝐷𝑠

≥ 0          ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶,             𝜋𝑠𝑐   
(14) 

𝑥𝑖𝑗 , 𝑦𝑚
𝑠𝑘 , 𝑧𝑝

𝑠𝑙 , 𝐽𝑐 ∈ {0,1};  ∆𝑠
ℎ, ∆𝑠

𝑑 , 𝑇𝑠, Τ𝑠𝑐
𝑑 ≥ 0             

  ∀𝑠 ∈ 𝑆, (𝑖, 𝑗) ∈ 𝐸𝑜 , 𝑚 ∈ 𝑈𝑠, 𝑝 ∈ 𝑉𝑠 , 𝑘 ∈ 𝐻𝑠, 𝑙 ∈ 𝐷𝑠, 𝑐 ∈ 𝐶        
(15) 

The objective, shown in (1), is to minimize a comprehensive cost function, which includes both 
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cost and time components. More specifically, the objective function minimizes: (i) the total time 

to reach all community, and (ii) the penalty for failure to reach communities by delivery drones. 

We omit any fixed cost associated with truck or drone dispatch since we assume that a fixed set of 

trucks is available, each of them equipped with a fixed number of hotspot and delivery drones.  

Constraints (2) limit the maximum number of trucks that can be used, while the number of trucks 

allowed to visit a satellite location is restricted to at most one by constraints (3). Flow preservation 

for trucks at satellite nodes is ensured by constraints (4). Constraints (5) dictate the time it takes a 

truck to reach each satellite node. In constraints (6) and (8), we ensure that hotspot drones are only 

dispatched from a satellite node if a truck has visited that node; furthermore, the number of hotspot 

drones dispatched is limited by the number of drones carried by that truck. A similar set of 

constraints, given in (7) and (9), applies to delivery drones. Constraints (10) ensure that every 

community is either visited by a delivery drone or the variable 𝐽𝑐 takes a non-zero value. According 

to constraints (11)—(12), the lengths of time that a truck has to spend at a satellite location due to 

flights of hotspot and delivery drones are bounded by the maximum flight times of hotspot and 

delivery routes originating from that satellite, respectively. Constraint set (13) defines the required 

times to reach every community by a delivery drone from each satellite. Constraints (14) are 

coverage constraints that allow for a community to be visited by a delivery drone dispatched from 

a satellite only if that location has been covered by a hotspot drone launched from the same 

satellite. Finally, variable restrictions are presented in (15).  

The D-RMP-1 formulation enables us to consider only a subset of routes to solve (1)—(15) instead 

of enumerating every possible route for the hotspot and delivery drones. The generation of routes 

and determination of route parameters for hotspot and delivery drones are relegated to the pricing 

problems.  

Since we have two different drone route sets in our problem: one for hotspot drones and the other 

for delivery drones, we initially attempted to develop a framework where a pricing problem 

generates routes for both types of drones simultaneously. But we found the resulting pricing 

problem is computationally very expensive. To formulate smaller and easier to solve pricing 

problems, we designed two decomposition approaches. In the first approach, we follow a satellite-

level decomposition, where one pricing problem is formulated for each satellite. We present the 



15 

 

pricing problems resulting from this decomposition scheme in the Appendix. In the second 

decomposition approach, we design satellite-drone-level decomposition approach, where one 

pricing problem is formulated for each satellite and each drone carried on a truck visiting the 

satellite. We found the second decomposition approach to be computationally more efficient. The 

pricing problem formulation resulting from the second decomposition approach for generating 

delivery drone routes is presented in Section 4.3. We also formulate a similar pricing problem for 

generating hotspot drone routes, which we present in the Appendix. We present the delivery drone 

route generation pricing problem below starting with the brief explanations of the notations.  

Before showing the pricing problem, we present some more notation. 

Newly defined decision variables for the drone route generation pricing subproblem:  

𝑣𝑖𝑗
𝑠𝑘 =1, if arc (𝑖, 𝑗) ∈ ⋃ 𝐸𝑠

𝑑
𝑠∈𝑆  is traversed by delivery drone 𝑘 ∈ 𝐷𝑠; 0 otherwise 

𝔱𝑗
𝑠𝑘 Time to reach node 𝑗 ∈ 𝐶𝑠 ∪ 𝑠 by delivery drone 𝑘 ∈ 𝐷𝑠 

3.3. Pricing subproblems for generating delivery drone routes (D-PSP-DD-1) 

The pricing subproblems for generating route for each delivery drone 𝑘 ∈ 𝐷𝑠 from satellite 

𝑠 ∈ 𝑆, are given in (16)—(22).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    (𝑅𝐶)𝑠𝑘
𝑑

=  −𝜃𝑠 − 𝜙𝑠𝑘 − ∑ ∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑𝑗∈𝐶𝑠

(𝜁𝑗 + 𝜋𝑠𝑗 + 𝜌𝑠𝑘𝜏𝑖𝑗
𝑑 )

− ∑ 𝛼𝑠𝑗 (𝔱𝑗
𝑠𝑘 + 𝑀 ∑ 𝑣𝑖𝑗

𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

)

𝑗∈𝐶𝑠

 

(16) 

Subject to:  

∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

𝜏𝑖𝑗
𝑑 ≤ 𝑊𝑑                                                                                 

(17) 
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∑ 𝑣𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑑
𝑠

≤ 1                                                                               
(18) 

∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

≤ 1                                                    ∀𝑗 ∈ 𝐶𝑠,                               
(19) 

∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

− ∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑗,𝑖)∈𝐸𝑠
𝑑

= 0                              ∀𝑗 ∈ 𝐶𝑠,                              
(20) 

𝔱𝑗
𝑠𝑘 ≥ 𝔱𝑖

𝑠𝑘 + 𝜏𝑖𝑗
𝑑 − 𝑊𝑑(1 − 𝑣𝑖𝑗

𝑠𝑘)                      ∀(𝑖, 𝑗) ∈ 𝐸𝑠
𝑑                 

(21) 

𝔱𝑗
𝑠𝑘 ≤ 𝔱𝑖

𝑠𝑘 + 𝜏𝑖𝑗
𝑑 + 𝑊𝑑(1 − 𝑣𝑖𝑗

𝑠𝑘)                      ∀(𝑖, 𝑗) ∈ 𝐸𝑠
𝑑 ,                

𝑣𝑖𝑗
𝑠𝑘 ∈ {0,1}, ∀𝑠 ∈ S, (𝑖, 𝑗) ∈ 𝐸𝑠

𝑑 , 𝑘 ∈ 𝐷𝑠 ,      𝔱𝑗
𝑠𝑘 ≥ 0,   ∀𝑗 ∈ 𝐶𝑠,          

(22) 

The objective function in (16) finds the best reduced cost (𝑅𝐶)𝑠𝑘
𝑑  of delivery route for drone 𝑘 ∈

𝐷𝑠 launched from satellite 𝑠 ∈ 𝑆. If the obtained reduced cost is negative, then that route is added 

to the restricted set 𝑉𝑠. Constraints (17) limits the total travel distance of a drone. Each drone can 

be used only along a single path starting from the satellite under consideration according to 

constraints (18). Each community location can be visited at most once per constraints (19); 

constraints (20) provide the balancing of inbound and outbound arcs coincident to a community 

location. Constraints (21) indicate the time to visit two consecutive nodes on delivery drone route. 

Finally, constraints (22) provide non-negativity bounds. As a reminder, 𝜃𝑠 , 𝜙𝑠𝑘 , 𝜁𝑐 , 𝜌𝑠𝑘, 𝛼𝑠𝑐,

𝜋𝑠𝑐;  ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠, 𝑐 ∈ 𝐶𝑠 are the dual variables associated with constraints (7), (9), (10), (12), 

(13), and (14). 

It is necessary to mention here that since all the delivery drones are assumed identical, the best 

route for the first delivery drone aboard a truck stopped at satellite 𝑠 (𝑘 ∈ 𝐷𝑠: 𝑘 = 1) would be 

considered as the best route for each of the other delivery drones (𝑘 ∈ 𝐷𝑠: 𝑘 = 2. , … , 𝑚𝑑) on that 

truck. The same circumstances are true for hotspot drones. To avoid generating the same route for 

all the drones from satellite 𝑠, we update the list of nodes to be visited (𝐵𝑠 for hotspot drones and 
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𝐶𝑠 for delivery drones) for each pricing problem at every iteration. This update is done by dropping 

the nodes that are included in the already generated routes from the same iteration. For example, 

for the first delivery drone from the truck stopped at satellite 𝑠, it will consider all the community 

nodes  that can be reached from the satellite (𝐶𝑠) for route generation, whereas for the second 

drone, that is 𝑘 ∈ 𝐷𝑠: 𝑘 = 2, the set of nodes to be visited will be updated to 𝐶𝑠 ≔ 𝐶𝑠  − {𝑗 ∈

𝐶𝑠: ∑ 𝑣𝑖𝑗
𝑠1

(𝑖,𝑗)∈𝐸𝑠
𝑑 = 1} by removing the nodes that are in the first drone’s route. This results in faster 

solution of pricing problems and distinct routes at the expense of (slightly) higher route costs. 

The first stage model provides us with the routes and schedules for trucks, hotspot drones and 

delivery drones, which are then passed on to the second stage problem. The decision problem in 

this stage is to select optimal drone routes from the candidate route set to satisfy the demand at the 

affected communities while abiding by the number of drone and load carrying capacity constraints. 

If the existing route set fails to satisfy the demands, new delivery routes are generated while the 

truck and hotspot drone operations are assumed to be fixed and irreversible. 

3.4. Second stage restricted main problem  

The solution from D-RMP-1 is used as input to the second stage model (D-RMP-2). The demands 

at the affected communities are known precisely in the second stage. With these, the second stage 

problem determines the delivery drone routes to satisfy the demand at the affected communities. 

The parameters and variables in this stage are defined below. 

Newly defined set and parameters: 

𝑉𝑠
′ Restricted set of delivery drone routes 

𝐹𝑐
𝐷 Cost of failing to satisfy each unit demand at community 𝑐 ∈ 𝐶  

𝐹𝐸 Cost of exceeding carrying capacity of a delivery drone by one unit 

𝑄𝑐 Delivery target at community 𝑐 ∈ 𝐶 

𝐿𝑚𝑎𝑥  Maximum delivery capacity of a delivery drone  

�̅�𝑖𝑗 =1, if a truck traverses arc (𝑖, 𝑗) ∈ 𝐸𝑜 in the final solution of the first stage; 0 otherwise  

Τ𝑠𝑐
𝑑  Time to reach community 𝑐 ∈ 𝐶 by a delivery drone launched from satellite 𝑠 ∈ 𝑆  

𝑒𝑠𝑐 =1, if community 𝑐 ∈ 𝐶 is provided telecommunication coverage by a hotspot drone 

launched from satellite 𝑠 ∈ 𝑆 

∆̅𝑠
ℎ The longest route completion time by a hotspot drone launched from satellite 𝑠 ∈ 𝑆 in 

the first stage 
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𝑑𝑠𝑘
𝑐  Delivered quantity at community 𝑐 ∈ 𝐶 by a delivery drone following route 𝑘 ∈ 𝑉𝑠

′ from 

satellite 𝑠 ∈ 𝑆  

Newly defined decision variables 

𝐴𝑐 Missed delivery amount at community 𝑐 ∈ 𝐶 

𝐺𝑠𝑘 Carried load amount exceeding the drone load capacity by delivery drone 𝑘 ∈ 𝐷𝑠 

launched from satellite 𝑠 ∈ 𝑆 

We keep the variables 𝑧𝑙
𝑠𝑘, ∆𝑠

𝑑, 𝑇𝑠, 𝛵𝑠𝑐
𝑑 ;  ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝑉𝑠

′ , 𝑘 ∈ 𝐷𝑠, 𝑐 ∈ 𝐶 defined in the first stage. We 

keep the constraints (5), (7), (9), (12), (13) from the first stage model with the modification below: 

fix  𝑥𝑖𝑗 ≔ �̅�𝑖𝑗;  ∀(𝑖, 𝑗) ∈ 𝐸𝑜   and ∆𝑠
ℎ: = ∆̅𝑠

ℎ;  ∀𝑠 ∈ 𝑆  

The restricted main problem for the second stage (D-RMP-2) can now be presented in (23)—(28). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐹𝑐
𝑇Τ𝑠𝑐

𝑑

𝑐∈𝐶𝑠∈𝑆

+ ∑ 𝐹𝑐
𝑅𝐽𝑐

𝑐∈𝐶

+ ∑ 𝐹𝑐
𝐷𝐴𝑐

𝑐∈𝐶

+ ∑ ∑ 𝐹𝐸𝐺𝑠𝑘

𝑘∈𝐷𝑠𝑠∈𝑆

 
(23) 

Subject to:             Duals 

       (5), (7), (9), (12), (13)           (24) 

∑ ∑ ∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠
′𝑘∈𝐷𝑠𝑠∈𝑆

𝑑𝑠𝑘
𝑐 + 𝐴𝑐 ≥ 𝑄𝑐                                       ∀𝑐 ∈ 𝐶                   𝜁𝑐

′     
(25) 

∑ ∑ 𝑧𝑙
𝑠𝑘

𝑙∈𝑉𝑠
′

𝑏𝑐
𝑙

𝑘∈𝐷𝑠

− 𝑒𝑠𝑐 ≤ 0          ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶,                𝜋𝑠𝑐
′    (26) 

∑ ∑ 𝑧𝑙
𝑠𝑘𝑑𝑠𝑘

𝑐

𝑐∈𝐶𝑙∈𝑉𝑠
′

≤ 𝐿𝑚𝑎𝑥 + 𝐺𝑠𝑘                     ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠                     𝜇𝑠𝑘
′     (27) 

𝑧𝑙
𝑠𝑘 ∈ {0,1};  ∆𝑠

𝑑 , 𝑇𝑠, Τ𝑠𝑐
𝑑 , 𝐺𝑠𝑘 , 𝐴𝑐 ≥ 0             

  ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝑉𝑠
′ , 𝑘 ∈ 𝐷𝑠, 𝑐 ∈ 𝐶        

(28) 
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The second stage objective function (23) minimizes: (i) the cost associated with the time to reach 

communities by delivery drones, (ii) the penalty for failure to reach communities by delivery 

drones, (iii) the cost of unfulfillment of demand at communities, and (iv) the cost of violating 

delivery drone load carrying capacities. Constraints (25) ensure that the demand at community 𝑐 ∈

𝐶 must be satisfied by the delivery drone or variable 𝐴𝑐 becomes equal to the value of the missed 

delivery amount. According to constraints (26), community 𝑐 ∈ 𝐶 can be served by a delivery 

drone launched from satellite 𝑠 ∈ 𝑆 only if community 𝑐 is provided telecommunication coverage 

by a hotspot drone launched from 𝑠. Constraints (27) ensures that the total delivery amount by 

drone 𝑘 ∈ 𝐷𝑠;  ∀𝑠 ∈ 𝑆 at the communities along its route is either bounded by the drone load 

capacity, or variable 𝐺𝑠𝑘 takes the value equal to the excess amount. Lastly, the variable restrictions 

are given in (28). Like in the first stage, the generation of new delivery routes and determination 

of route parameters for delivery drones are relegated to the pricing problem. 

3.5. Pricing subproblems for generating delivery drone routes-2nd stage (D-PSP-DD-2) 

We introduce two new sets of decision variables for the pricing problems. 

Newly defined decision variables: 

𝑞𝑖𝑗
𝑠𝑘 Quantity transported through arc (𝑖, 𝑗) ∈ 𝐸𝑠

𝑑 by a delivery drone launched from satellite 

𝑠 ∈ 𝑆 by delivery drone 𝑘 ∈ 𝐷𝑠  

𝑝𝑗
𝑠𝑘  Amount delivered at community 𝑗 ∈ 𝐶 by a delivery drone launched from satellite 𝑠 ∈ 𝑆 

by delivery drone 𝑘 ∈ 𝐷𝑠  

The pricing subproblems for generating route for each delivery drone 𝑘 ∈ 𝐷𝑠 from satellite 𝑠 ∈ 𝑆, 

are given in (29)—(34).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    (𝑅𝐶′)𝑠𝑘
𝑑

= −𝜃𝑠
′ − 𝜙𝑠𝑘

′ − ∑ ∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑𝑗∈𝐶

(𝜋𝑠𝑗
′ + 𝜌𝑠𝑘

′ 𝜏𝑖𝑗
𝑑 )

− ∑ 𝛼𝑠𝑗
′ (𝔱𝑗

𝑠𝑘 + 𝑀 ∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

)

𝑗∈𝐶𝑠

− ∑(𝜁𝑗
′ + 𝜇𝑠𝑘

′ )𝑝𝑗
𝑠𝑘

𝑗∈𝐶𝑠

 

(29) 

Subject to:  
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(17) − (22)                          
(30) 

𝑞𝑖𝑗
𝑠𝑘 ≤ 𝑣𝑖𝑗

𝑠𝑘𝐿𝑚𝑎𝑥                                  ∀ (𝑖, 𝑗) ∈ 𝐸𝑠
𝑑 ,                                         

(31) 

∑ 𝑞𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸s
𝑑

− ∑ 𝑞𝑗𝑘
𝑠𝑘

(𝑗,𝑘)∈𝐸s
𝑑

= 𝑝𝑗
𝑠𝑘                         ∀ 𝑗 ∈ 𝐶𝑠,                                      

(32) 

∑ 𝑝𝑗
𝑠𝑘

𝑗∈𝐶

≤ 𝐿𝑚𝑎𝑥                   
(33) 

𝑝𝑗
𝑠𝑘, 𝑞𝑖𝑗

𝑠𝑘 ≥ 0                                     ∀𝑗 ∈ 𝐶𝑠, (𝑖, 𝑗) ∈ 𝐸𝑠
𝑑   

(34) 

Objective function (29) minimizes the reduce cost (𝑅𝐶′)𝑠𝑘
𝑑  of a delivery route for drone 𝑘 ∈ 𝐷𝑠 

launched from satellite 𝑠 ∈ 𝑆, where 𝜁𝑐
′ , 𝜋𝑠𝑐

′ , 𝜇𝑠𝑘
′  are the dual variables associated with constraints 

(25)—(27), and 𝜃𝑠
′, 𝜙𝑠𝑘

′ , 𝜌𝑠𝑘
′ , 𝛼𝑠𝑐

′  are the dual variables associated with constraints (7), (9), (12), 

(13) as modified for D-RMP-2. If the reduced cost is found to be negative, then the route is added 

to the set 𝑉𝑠
′. Constraints (31)—(33) ensure that load carrying capacity of delivery drones are not 

violated and restrict the delivery amount at each community.  In the next subsection, we present 

our solution algorithm for this two-stage decision framework. 

3.6. Algorithm for solving the deterministic two-echelon vehicle routing model 

Step 1. We initialize an iteration counter, generate initial routes for the hotspot and delivery drones 

and add them to 𝑈𝑠; ∀𝑠 ∈ 𝑆 and 𝑉𝑠; ∀𝑠 ∈ 𝑆, respectively. These initial sets can be empty or can 

contain routes with only one hotspot node and one community node, respectively. 

Step 2. We relax the variable integrality restrictions and solve the D-RMP-1 with the current 

restricted route sets 𝑈𝑠, 𝑉𝑠; ∀𝑠 ∈ 𝑆. We obtain dual solution sets 𝛾𝑠, 𝜃𝑠, 𝜑𝑠𝑘 , 𝜙𝑠𝑙 , 𝜁𝑐 , 𝜎𝑠𝑘 , 𝜌𝑠𝑙 ,

𝛼𝑠𝑐, 𝜋𝑠𝑐; ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠, 𝑙 ∈ 𝐷𝑠, 𝑐 ∈ 𝐶 associated with constraints (6)—(14).  

 Step 3a. We solve D-PSP-HD-1 (see Appendix) for each satellite and each hotspot drone (∀𝑠 ∈

𝑆, 𝑘 ∈ 𝐻𝑠). Following each pricing problem solution, we update the hotspot node set 𝐵𝑠 ≔ 𝐵𝑠  −
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{𝑗 ∈ 𝐵𝑠 : ∑ 𝑢𝑖𝑗
𝑠(𝑘−1)

(𝑖,𝑗)∈𝐸𝑠
ℎ = 1} ; ∀𝑘 ∈ 𝐻𝑠: 𝑘 = 2. , … , 𝑚ℎ. For each satellite, we continue solving 

D-PSP-DD-1 until 𝐵𝑠 = ∅, or if number of routes generated equals 𝑚ℎ. If ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠 ∶

(𝑅𝐶)𝑠𝑘
ℎ ≥ 0, we store the corresponding hotspot drone route to 𝑈𝑠; ∀𝑠 ∈ 𝑆. 

Step 3b. We solve D-PSP-DD-1 for each satellite and each delivery drone (∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠). 

Following each pricing problem solution, we update the community node set 𝐶𝑠 ≔ 𝐶𝑠  −

{𝑗 ∈ 𝐶𝑠 : ∑ 𝑣𝑖𝑗
𝑠(𝑘−1)

(𝑖,𝑗)∈𝐸𝑠
𝑑 = 1} ; ∀𝑘 ∈ 𝐷𝑠: 𝑘 = 2. , … , 𝑚𝑑. For each satellite, we continue solving 

D-PSP-DD-2 until 𝐶𝑠 = ∅, or if number of routes generated equals 𝑚𝑑. If ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 ∶

(𝑅𝐶)𝑠𝑘
𝑑 ≥ 0, we store the corresponding delivery drone route to 𝑉𝑠; ∀𝑠 ∈ 𝑆. 

Step 4. If (𝑅𝐶)𝑠𝑘
ℎ ≥ 0; ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠 in Step 3a, and (𝑅𝐶)𝑠𝑘

𝑑 ≥ 0; ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 in Step 3b, go 

to Step 5. Otherwise, if  ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠 ∶ (𝑅𝐶)𝑠𝑘
ℎ < 0 in Step 3a, or ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 ∶ (𝑅𝐶)𝑠𝑘

𝑑 < 0 

in Step 3b, we go back to Step 2. 

Step 5. We solve the D-RMP-1 with the current restricted sets 𝑈𝑠, 𝑉𝑠; ∀𝑠 ∈ 𝑆 using the relax-and-

fix heuristic. At first, D-RMP-1 is solved with relaxing the integrality restriction on variables for 

delivery drone routes (𝒛) and the optimal solution for truck routes (𝒙) and hotspot drone routes (𝒚) 

are obtained. Next, the variables 𝒙 and 𝒚 are fixed at their optimal values and the D-RMP-1 is 

solved again with integrality restriction imposed on 𝒛. We store the solutions from D-RMP-1 for 

the second stage as follows: �̅�𝑖𝑗 ≔ 𝑥𝑖𝑗
∗ ;  ∀(𝑖, 𝑗) ∈ 𝐸𝑜; 𝑉𝑠

′ ≔ 𝑉𝑠
∗ , ∀𝑠 ∈ 𝑆;  ∆̅𝑠

ℎ≔ ∆∗
𝑠
ℎ, ∀𝑠 ∈ 𝑆; 𝑒𝑠𝑐 =

min(1, ∑ ∑ ∑ 𝑎𝑗
𝑙

𝑗∈𝐵𝑠
𝑦𝑙

𝑠𝑘𝑔𝑗𝑐𝑘∈𝐻𝑠𝑙∈𝑈𝑠
) , ∀𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, 𝑑𝑠𝑘

𝑐 : = 𝑏𝑐
𝑘𝑄𝑐, ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝑉𝑠

′, 𝑐 ∈ 𝐶 and then 

go to Step 6.  

Step 6. We relax the variable integrality restrictions and solve the D-RMP-2 with the current 

restricted route sets 𝑉𝑠
′; ∀𝑠 ∈ 𝑆. We obtain dual solutions 𝜁𝑐

′ , 𝜋𝑠𝑐
′ , 𝜇𝑠𝑘

′  associated with constraints 

(25)—(27), and also 𝜃𝑠
′, 𝜙𝑠𝑘

′ , 𝜌𝑠𝑘
′ , 𝛼𝑠𝑐

′  that are associated with constraints (7), (9), (12), (13) 

modified for D-RMP-2.  

Step 7. We solve D-PSP-DD-2 for each satellite and each delivery drone (∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠). 

Following each pricing problem solution, we update the community node set the same way as we 

did in Step 3b. For each satellite, we continue solving D-PSP-DD-2 until 𝐶𝑠 = ∅, or if number of 
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routes generated equals 𝑚𝑑. If ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 ∶ (𝑅𝐶)𝑠𝑘
ℎ ≥ 0, we store the corresponding delivery 

drone route to 𝑉𝑠
′, ∀𝑠 ∈ 𝑆. 

Step 8. If (𝑅𝐶′)𝑠𝑘
𝑑 ≥ 0, ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠  in Step 7, go to Step 9. Otherwise, if  ∃𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 ∶

(𝑅𝐶′)𝑠𝑘
𝑑 < 0, we go back to Step 6. 

Step 9. Imposing variable integrality restrictions, we solve the D-RMP-2 with the current restricted 

drone route set 𝑉𝑠
′, ∀𝑠 ∈ 𝑆. We stop the algorithm when the optimal delivery drone route set is 

found by D-RMP-2. 

4. Numerical experiments and discussion  

In this section, we present a case study for post-disaster emergency aid deliveries in the island of 

Puerto Rico using our framework. We visually present the selection of satellite, hotspot, and 

demand locations in Figure 2. Satellite stations, corresponding to the intersections of major 

highways, are shown in red, hotspot locations, corresponding to pre-disaster telecommunication 

towers, are in green, and delivery locations, corresponding to zip codes, are in blue.  

Two of the most important metrics for post-disaster aid delivery operations are the average 

proportion of unfulfilled demand and the average delay in reaching communities. In the 

remainder of this section, we investigate the effect of various parameters on these two metrics 

using a case study simulating a post-disaster emergency aid delivery problem in Puerto Rico. 

 

Figure 2: Locations of satellites, hotspots, and communities. 
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Some of the parameters are to be selected by policy makers and stakeholders; others are dependent 

on the nature and severity of the disaster and the geography of the impacted area. Our numerical 

experiments and result analyses can provide humanitarian logistics service providers with crucial 

insights for the necessary trade-offs between unfulfilled demand and delay in sending emergency 

aid.  

4.1. Computational experiments 

We create datasets of four different sizes, with 60, 80, 100, and 120 community locations, 10 

satellite locations, and 40 hotspot locations. For each problem instance, we randomly select the 

locations of communities and generate demand quantities in the range of [2,15]. We set the number 

of trucks at 4 (i.e., 𝑚𝑡 = 4) and consider 1 hotspot drone in each truck (𝑚ℎ = 1). For choosing 

the number of delivery drones per truck (𝑚𝑑), first we fix the delivery drone load capacity, 𝐿𝑚𝑎𝑥, 

at 25 units, which exceeds the maximum possible demand quantity at any community. Next, we 

identify the minimum number of drones that are necessary to exceed the sum of demand quantities 

at the communities that can be served from each satellite, and we select the minimum of these 

numbers to serve as the number of delivery drones carried by a truck. We set the drone flying 

ranges 𝑊ℎ and 𝑊𝑑 at 35 miles. To calculate the distances between nodes, we use the geodesic 

distance measure and consider 1 mile/minute for all ground and aerial vehicles. For binary 

parameters 𝑔𝑗𝑐, ∀𝑗 ∈ 𝐵, 𝑐 ∈ 𝐶, i.e., we consider three different hotspot coverage radii (signal 

strengths) for hotspot drones equal to 12, 16, and 20 miles. We set delay cost parameters 𝐹𝑐
𝑇 at 

$1/minute, 𝐹𝑐
𝑅 at $10000 for failure to reach a community, and 𝐹𝐸 at $10000 for per unit violation 

of delivery drone load capacity. For the per unit demand unfulfillment cost 𝐹𝑐
𝐷 parameter, we 

randomly generate it in the range of [10, 1000].  

We implement the model and solution algorithm in AMPL and then use the CPLEX 20.1.0 solver 

to obtain optimal solutions to all generated datasets. We use a computer with Dual Intel Xeon 

Processor (12 Core, 2.3GHz Turbo) with 64 GB of RAM, and Windows 64-bit operating system. 

A summary of our results is presented in Table 1. To run these experiments, we calculate 𝑚𝑑 using 

the approach mentioned above and set its value at 4, 6, 9, and 10, for 60, 80, 100, and 120 size 

instances respectively.  
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From Table 1, we see that the total cost decreases with the increase in hotspot coverage radius for 

each instance size, as expected. We further notice that when the hotspot coverage radius is small 

and fewer delivery drones are carried in each truck, a higher proportion of the total requested 

demand is unfulfilled. For example, when the coverage radius is 12 miles, the 60-community case 

with only 4 drones in each truck results in a higher proportion of unfulfilled demand compared to 

larger size instances, when more drones are carried in a truck. An interesting outcome from our 

experimentation is that as the number of drones per truck increases, the impact of the hotspot 

coverage radius diminishes. We also notice the effect of hotspot coverage radius on the average 

delay to reach communities. A larger coverage radius results in a more relaxed version of the 

problem and usually leads to decreased average delay times. We consider delay time as the length 

of time span between the first truck staring its route (the beginning of the planning horizon) and a 

delivery drone reaching a community.   

Table 1: Computational results summary for the 2EVRP-HD-UAV framework (5 case average). 

Instance 

size 

  

Hotspot 

coverage 

radius 

(miles)  

CPU time  

(second)  

Total cost of delay 

and unfulfillment 

($) 

Proportion of 

unfulfilled 

demand 

(%)  

Average delay to 

reach communities 

(minute)  

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

60 

12 399.40 32.02 13804.60 5188.57 11.05 4.33 89.85 2.55 

16 241.20 30.56 5765.80 324.61 0.00 0.00 96.10 5.41 

20 255.00 18.03 5360.20 336.22 0.00 0.00 89.34 5.60 

80 

12 1428.60 393.38 14746.60 2050.49 7.66 2.00 94.13 0.92 

16 369.60 32.03 7684.00 178.77 0.00 0.00 96.05 2.23 

20 538.25 38.40 7502.40 141.51 0.00 0.00 93.78 1.77 

100 

12 2255.00 453.32 16644.60 6106.53 6.99 4.14 91.53 0.47 

16 1072.40 80.00 8786.60 213.64 0.00 0.00 87.87 2.14 

20 1200.20 87.34 8429.00 165.20 0.00 0.00 84.29 1.65 

120 

12 3183.00 123.37 12622.60 289.01 0.43 0.10 104.23 2.62 

16 2359.00 264.59 10518.00 117.35 0.00 0.00 87.65 1.65 

20 2939.60 170.77 10100.40 162.34 0.00 0.00 84.17 1.35 
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4.2 Sensitivity analysis 

We run experiments to study the effect of various parameters on the routing decisions and the 

resultant cost, the proportion of unfulfilled demand, and the average delay in reaching 

communities. We focus on the 60-community size instances for this analysis and present five 

datasets. To generate the first four datasets, we randomly select communities across Puerto Rico 

with higher probability to different geographical areas: (i) northwestern part of the island, (ii) 

northeastern part of the island, (iii) southwestern part of the island, and (iv) southeastern part of 

the island, respectively. We present these datasets in the maps of Figure 3. For the fifth dataset, 

we randomly select locations without any geographical preference (i.e., all locations are equally 

probably selected). 

 
Figure 3: Locations of satellites (red pins), and communities (blue pins) predominantly in (a) 

northwestern, (b) northeastern, (c) southwestern, and (d) southeastern regions of Puerto Rico. 

We run numerical experiments using these datasets. For the 2EVRP-HD-UAV framework, we 

introduce several variations of the number of delivery drones carried in each truck and flying 

ranges of delivery drones. We find that the unfulfilled proportion of demand decreases with the 

increase in the delivery drone flying range and the number of delivery drones carried in a truck. 

The rate of decrease varies with the hotspot coverage radius, and the unfulfilled proportion of 

demand decreases at a highest rate when the hotspot coverage radius is set at 12 miles. For higher 

values of coverage radius, e.g., for 16 and 20 miles, the rate of decrease is very similar. We present 

these insights in Figure 4. 
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Figure 4: Variation in unfulfilled demand with change in (a) delivery drone flying range and (b) 

number of delivery drones per truck. 

We also study the variation in the average delay in reaching communities as the delivery drone 

flying range and the number of delivery drones carried in a truck change. For a fixed number of 

delivery drones carried by a truck, the average delay time increases with the increase in drone 

flying range, whereas the proportion of unfulfilled demand decreases as evident from Figure 5(a). 

The increase in the delay time halts if the unfulfilled proportion of demand reaches zero. On the 

other hand, both the average delay and the unfulfilled proportion of demand decrease with an 

increase in the number of delivery drones, which can be seen in Figure 5(b). 

 

 

Figure 5: Variation in unfulfilled demand and average delay in reaching communities with 

change in (a) delivery drone flying range and (b) number of delivery drones per truck. 
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5. Concluding remarks 

In this paper, we study two-echelon vehicle routing problems (2E-VRP) under stochastic 

conditions in the context of humanitarian logistics. Following a disaster, the demand for 

emergency supplies (medical kits, dry food, water) in the affected communities is uncertain due to 

absence of communication infrastructure (to communicate the demands); furthermore, the delivery 

of the necessary supplies through traditional ground transportation is not always possible due to 

infrastructure damage. To handle this humanitarian aid delivery problem, we propose a unique 2E-

VRP framework, where trucks carrying drones travel from satellite location to satellite location. 

When a truck stops at one of those designated locations, drones are dispatched for second echelon 

(“last mile”) deliveries. We develop a computational framework to handle the demand uncertainty, 

where a special purpose drones, i.e., hotspot drones are used for handling demand uncertainty, by 

providing communications capabilities to allow people to communicate their demands.  

In the presented framework, we propose a solution approach in two stages. In the first stage, we 

identify optimal routes for reaching every demand location such that total time to reach a 

community is minimized, while we also cover each community with the use of a hotspot drone 

(for providing a communication signal). In the second stage, the demand information is revealed, 

and we choose among the routes obtained in the first stage or identify better routes to minimize 

the cost of reaching the demand locations as well as the cost of missing demands. We design a 

decomposition scheme and an efficient column generation-based heuristic solution approach that 

results in small and manageable pricing subproblems for hotspot and delivery drone route 

generation. 

In our current 2E-VRP framework, we consider only one source of uncertainty, i.e., demand for 

emergency aid at the affected communities. During real-world humanitarian logistics operations, 

several other parameters are of a stochastic nature. For example, we consider the flying time range 

and load carrying capacities of drones as deterministic. These two properties of drones are 

significantly impacted by weather conditions during delivery operations. We plan to extend our 

study by incorporating uncertain weather conditions in terms of stochastic flying range and load 

carrying capacity of drones in the future. 
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Appendix 

A1. Mixed integer linear programming model 

The full MILP model is presented in (A1)—(A24). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐹𝑐
𝑇Τ𝑠𝑐

𝑑

𝑐∈𝐶𝑠∈𝑆

+ ∑ 𝐹𝑐
𝑅𝐽𝑐

𝑐∈𝐶

+ ∑ 𝐹𝑐
𝐷𝐴𝑐

𝑐∈𝐶

 
(A1) 

Subject to:              

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜:𝑖∉𝑆

≤ 𝑚𝑡                                                                                           (A2) 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜

≤ 1                                                               ∀𝑗 ∈ 𝑆,                                      (A3) 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐸𝑜

− ∑ 𝑥𝑖𝑗

(𝑗,𝑘)∈𝐸𝑜

= 0                                        ∀𝑗 ∈ 𝑆,                                          (A4) 

𝑇𝑗 ≤ 𝑇𝑖 + ∆𝑖
ℎ + ∆𝑖

𝑑 + 𝜏𝑖𝑗
𝑡 + 𝑀 (1 − 𝑥𝑖𝑗)                     ∀(𝑖, 𝑗) ∈ 𝐸𝑜                                    

𝑇𝑗 ≥ 𝑇𝑖 + ∆𝑖
ℎ + ∆𝑖

𝑑 + 𝜏𝑖𝑗
𝑡 − 𝑀 (1 − 𝑥𝑖𝑗)                    ∀(𝑖, 𝑗) ∈ 𝐸𝑜                                  

(A5) 

∑ ∑ 𝑦𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑠
ℎ𝑘∈𝐻𝑠

− 𝑚ℎ ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

 ≤ 0                           ∀𝑠 ∈ 𝑆,                                               (A6) 
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∑ 𝑦𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑠
ℎ

− ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

 ≤ 0                                    ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠,                              (A7) 

∑ 𝑦𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

− ∑ 𝑦𝑗𝑙
𝑠𝑘

(𝑗,𝑙)∈𝐸𝑠
ℎ

= 0                                       ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠, 𝑗 ∈ 𝐵,                (A8) 

∑ ∑ ∑ 𝑦𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ𝑘∈𝐻𝑠𝑠∈𝑆

≤ 1                                            ∀𝑗 ∈ 𝐵,                                            (A9) 

𝑡𝑗
𝑠𝑘 ≥ 𝑡𝑖

𝑠𝑘 + 𝜏𝑖𝑗
ℎ − 𝑊ℎ(1 − 𝑦𝑖𝑗

𝑠𝑘)                      ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠, (𝑖, 𝑗) ∈ 𝐸𝑠
ℎ,              

𝑡𝑗
𝑠𝑘 ≤ 𝑡𝑖

𝑠𝑘 + 𝜏𝑖𝑗
ℎ + 𝑊ℎ(1 − 𝑦𝑖𝑗

𝑠𝑘)                      ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠, (𝑖, 𝑗) ∈ 𝐸𝑠
ℎ,                  

(A10) 

∑ 𝑦𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

𝑑𝑖𝑗 − ∆𝑠
ℎ≤ 0                                             ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐻𝑠,                                        (A11) 

∑ 𝑧𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑠
𝑑

− ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

 ≤ 0                                         ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠,                                     (A12) 

∑ ∑ 𝑧𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑠
𝑑𝑘∈𝐷𝑠

− 𝑚𝑑 ∑ 𝑥𝑖𝑠

(𝑖,𝑠)∈𝐸𝑜

 ≤ 0                           ∀𝑠 ∈ 𝑆,                                               (A13) 

∑ 𝑧𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

− ∑ 𝑧𝑗𝑙
𝑠𝑘

(𝑗,𝑙)∈𝐸𝑠
𝑑

= 0                                       ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠, 𝑗 ∈ 𝐶,                (A14) 
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∑ ∑ ∑ 𝑧𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑𝑘∈𝐷𝑠𝑠∈𝑆

+ 𝐽𝑐 = 1                              ∀𝑗 ∈ 𝐶,                                          
(A15) 

𝔱𝑗
𝑠𝑘 ≥ 𝔱𝑖

𝑠𝑘 + 𝜏𝑖𝑗
𝑑 − 𝑊𝑑(1 − 𝑧𝑖𝑗

𝑠𝑘)                      ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 , (𝑖, 𝑗) ∈ 𝐸𝑠
𝑑 ,               

𝔱𝑗
𝑠𝑘 ≤ 𝔱𝑖

𝑠𝑘 + 𝜏𝑖𝑗
𝑑 + 𝑊𝑑(1 − 𝑧𝑖𝑗

𝑠𝑘)                      ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠 , (𝑖, 𝑗) ∈ 𝐸𝑠
𝑑 ,                

(A16) 

∑ 𝑧𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

𝑑𝑖𝑗 − ∆𝑠
𝑑≤ 0                                              ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠,                                        

(A17) 

∑ ∑ 𝑧𝑚𝑙
𝑠𝑘

(𝑚,𝑙)∈𝐸𝑠
𝑑𝑘∈𝐷𝑠

− ∑ ∑ 𝑦𝑖𝑗
𝑠𝑝

(𝑖,𝑗)∈𝐸𝑠
ℎ:𝑔𝑗

𝑙=1𝑝∈𝐻𝑠

≤ 0        ∀𝑠 ∈ 𝑆, 𝑙 ∈ 𝐶,                                   

(A18) 

∑ ∑ 𝑞𝑗
𝑠𝑘

𝑘∈𝐷𝑠𝑠∈𝑆

+ 𝐴𝑐 ≥ 𝑄𝑐                              ∀𝑗 ∈ 𝐶,                                          
(A19) 

𝑝𝑖𝑗
𝑠𝑘 ≤ 𝐿𝑚𝑎𝑥𝑧𝑖𝑗

𝑠𝑘                                        ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠, (𝑖, 𝑗) ∈ 𝐸𝑠
𝑑 ,                

(A20) 

∑ 𝑞𝑗
𝑠𝑘 

𝑗∈𝐶

≤ 𝐿𝑚𝑎𝑥                                      ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠,                (A21) 

∑ 𝑝𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

− ∑ 𝑝𝑗𝑙
𝑠𝑘

(𝑗,𝑙)∈𝐸𝑠
𝑑

= 𝑞𝑗
𝑠𝑘                                       ∀𝑠 ∈ 𝑆, 𝑘 ∈ 𝐷𝑠, 𝑗 ∈ 𝐶,                (A22) 
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Τ𝑠𝑗 ≥ 𝑇𝑠 + ∆𝑠
ℎ + ∑ 𝔱𝑗

𝑠𝑘

𝑘∈𝐷𝑠

− 𝑀 (1 − ∑ ∑ 𝑧𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑𝑘∈𝐷𝑠

)          ∀𝑠 ∈ 𝑆, 𝑗 ∈ 𝐶, 
(A23) 

𝑥𝑖𝑗 , 𝑦𝑘𝑙
𝑠𝑓

, 𝑧𝑚𝑛
𝑠𝑝 ∈ {0,1}; 𝐽𝑐, 𝐴𝑐, 𝑝𝑖𝑗

𝑠𝑘 , 𝑞𝑗
𝑠𝑘, 𝑇𝑠, ∆𝑠

ℎ, ∆𝑠
𝑑, 𝑡ℎ

𝑠𝑓
, 𝔱𝑐

𝑠𝑟 ≥ 0 

   ∀𝑠 ∈ 𝑆, (𝑖, 𝑗) ∈ 𝐸𝑜 , (𝑘, 𝑙) ∈ 𝐸𝑠
ℎ , (𝑚, 𝑛) ∈ 𝐸𝑠

𝑑 , 𝑐 ∈ 𝐶, ℎ ∈ 𝐵, 𝑓 ∈ 𝐻𝑠, 𝑟 ∈ 𝐷𝑠,         
(A24) 

The objective, shown in (A1), is to minimize a comprehensive cost function, which includes both 

unfulfillment cost and delay cost components. More specifically, the objective function minimizes: 

(i) the total delay time to reach all community, and the penalty for (ii) failure to reach communities 

and (iii) failure to satisfy demand by delivery drones. We omit any fixed cost associated with truck 

or drone dispatch since we assume that a fixed set of trucks is available, each of them equipped 

with a fixed number of hotspot and delivery drones.  

Constraints (A2)—(A5) restricts the truck routes and satellite visiting times. Constraint (A2) limit 

the maximum number of trucks that can be used, while the number of trucks allowed to visit a 

satellite location is restricted to at most one by constraints (A3). Flow preservation for trucks at 

satellite nodes is ensured by constraints (A4). Constraints (5) dictate the time it takes a truck to 

reach each satellite node. Constraints (A6)—(A11) dictate the hotspot routes and hotspot location 

visiting times. In constraints (A6) and (A7), we ensure that hotspot drones are only dispatched 

from a satellite node if a truck has visited that node; furthermore, the number of hotspot drones 

dispatched is limited by the number of drones carried by that truck. Constraints (A8) ensure the 

low preservation for hotspot drones at hotspot location nodes, while the number of hotspot drones 

allowed to visit a hotspot location is restricted to at most one by constraints (A9). Constraints 

(A10) dictate the time it takes a hotspot location node by a hotspot drone launched from each 

satellite. According to constraints (A11), the lengths of time that a truck has to spend at a satellite 

location due to hotspot drone flights are bounded by the maximum flight times of hotspot routes 

originating from that satellite, Constraints (A12)—(A17) are analogous to constraints (A6)—

(A11), except for they restrict the delivery drone routes and community location visiting times. 



35 

 

Among these constraints, (A15) differs from (A9), which ensure that every community is either 

visited by a delivery drone or the variable 𝐽𝑐 takes a non-zero value. Constraints (A18) are coverage 

constraints that allow for a community to be visited by a delivery drone dispatched from a satellite 

only if that location has been covered by a hotspot drone launched from the same satellite. 

Constraints (A19)—(A22) restrict the load quantities carried and delivered at communities by 

delivery drones. According to constraints (A19), demand at every community is either satisfied by 

a delivery drone or the variable 𝐴𝑐 takes a non-zero value. Constraints (A20)—(A21) restricts the 

maximum load quantity that can be delivered by a delivery drone to the drone load carrying 

capacity, while constraints (A22) ensure the product flow balance at each community node. 

Constraint set (A23) defines the required times to reach every community by a delivery drone from 

each satellite. These constraints keep track of the elapsed time between the beginning of the 

planning period and the time to reach each community by a delivery drone. Finally, variable 

restrictions are presented in (A24).  

A2. Comparison between the exact method and CG-based heuristic approach 

We run numerical experiments with small size problem instances to compare the solution quality 

computational time given by the exact method of solving the MILP model and the CG-bases 

solution approach we design for the 2EVRP-HD-UAV framework presented in Section 4. 

We create datasets for a 20×20 square region, where we randomly select locations for satellites, 

hotspots, and communities. We create 5 data sets for each of the problem size (with the number of 

communities 20, 30, 40, and 50). We set the number of satellite locations at 5, number of hotspot 

locations at 8, and number of trucks at 3. For generating demand and setting other parameter 

values, we follow the same procedure discussed in Section 6. We summarize our findings in Table 

A1 below. 
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Table A1: Comparison between the exact method and column generation-based heuristic  

Problem 

size 

MIP model with exact method Column generation-based heuristics Difference between 

CG-based heuristic 

and exact method  

(%) 
CPU time (second) 

Objective 

function value 

CPU time 

(second) 

Objective 

function value 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

Objective 

function 

value 

CPU 

time 

20 1991.0 1081.0 731.2 51.2 40.4 4.2 861.8 40.1 15.15 (56.72) 

30 27794.6 2901.4 1054 27.4 107.0 39.9 1202.8 23.4 14.12 (95.67) 

40 * * * * 152.2 16.4 1534.2 73.7 - - 

50 * * * * 318.0 22.3 1940.8 36.7 - - 

* Time limit of 86400 seconds (24 hours) was reached. 

A3. Pricing subproblems for generating hotspot drone routes (D-PSP-HD-1) 

We define the following two decision variables for these pricing subproblems:  

𝑢𝑖𝑗
𝑠𝑘 =1, if arc (𝑖, 𝑗) ∈ ⋃ 𝐸𝑠

ℎ
𝑠∈𝑆  is traversed by hotspot drone 𝑘 ∈ 𝐻𝑠;0 otherwise 

𝑡𝑗
𝑠𝑘 Time to reach node 𝑗 ∈ 𝐵𝑠 ∪ 𝑠  by hotspot drone 𝑘 ∈ 𝐻𝑠       

The pricing subproblems resulting from the satellite-drone level decomposition for generating 

route for each hotspot drone 𝑘 ∈ 𝐻𝑠 from satellite 𝑠 ∈ 𝑆 are given in (A25)—(A31). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    (𝑅𝐶)𝑠𝑘
ℎ =  −𝛾𝑠 − 𝜑𝑠𝑘 + ∑ 𝑢𝑖𝑗

𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

( ∑ ∑ 𝜋𝑠𝑐

𝑗∈𝐵𝑠𝑐∈𝐶𝑠:𝑔𝑗
𝑐=1

− 𝜎𝑠𝑘𝜏𝑖𝑗
ℎ ) 

Subject to: 

(A25) 

∑ 𝑢𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

𝜏𝑖𝑗
ℎ ≤ 𝑊ℎ                                                                               

(A26) 
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∑ 𝑢𝑠𝑗
𝑠𝑘

(𝑠,𝑗)∈𝐸𝑠
ℎ

≤ 1                                                                          
(A27) 

∑ 𝑢𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

≤ 1                                                    ∀𝑗 ∈ 𝐵𝑠,                               
(A28) 

∑ 𝑢𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

− ∑ 𝑢𝑖𝑗
𝑠𝑘

(𝑗,𝑖)∈𝐸𝑠
ℎ

= 0                        ∀𝑗 ∈ 𝐵𝑠                                  
(A29) 

𝑡𝑗
𝑠𝑘 ≥ 𝑡𝑖

𝑠𝑘 + 𝜏𝑖𝑗
ℎ − 𝑊ℎ(1 − 𝑢𝑖𝑗

𝑠𝑘)                     ∀(𝑖, 𝑗) ∈ 𝐸𝑠
ℎ ,                           

𝑡𝑗
𝑠𝑘 ≤ 𝑡𝑖

𝑠𝑘 + 𝜏𝑖𝑗
ℎ + 𝑊ℎ(1 − 𝑢𝑖𝑗

𝑠𝑘)                     ∀(𝑖, 𝑗) ∈ 𝐸𝑠
ℎ ,                         

(A30) 

𝑢𝑖𝑗
𝑠𝑘 ∈ {0,1}, (𝑖, 𝑗) ∈ 𝐸𝑠

ℎ;            𝑡𝑗
𝑠𝑘 ≥ 0, ∀𝑗 ∈ 𝐵𝑠,                 

(A31) 

The objective function in (A25) finds the best reduced cost (𝑅𝐶)𝑠𝑘
ℎ  of a route for hotspot drone 

𝑘 ∈ 𝐻𝑠 launched from satellite 𝑠 ∈ 𝑆. If the obtained reduced cost is negative, then that route is 

added to the restricted set 𝑈𝑠. Constraints (A26) limits the total travel time of a drone. Each drone 

can be used only along a single path starting from the satellite under consideration according to 

constraints (A27). Each hotspot location can be visited at most once per constraints (A28); 

constraints (A29) provide the balancing of inbound and outbound arcs coincident to a hotspot 

location. Constraints (A30) indicate the time to visit two consecutive nodes on hotspot drone route. 

Finally, constraints (A31) provide non-negativity bounds. As a reminder, 𝛾𝑠, 𝜑𝑠𝑘 , 𝜎𝑠𝑘 , 𝜋𝑠𝑐; ∀𝑠 ∈

𝑆, 𝑘 ∈ 𝐻𝑠, 𝑗 ∈ 𝐶𝑠 in (A25) are the dual variables associated with constraints (6), (8), (11) and (14) 

in the D-RMP-1 model presented in subsection 4.1. 
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A4. Pricing subproblems for generating routes in satellite-level decomposition 

The pricing subproblems for generating routes for hotspot drones launched from satellite 𝑠 ∈ 𝑆, 

are given in (A32)—(A33). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    ∑ (−𝛾𝑠 − 𝜑𝑠𝑘 + ∑ 𝑢𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
ℎ

( ∑ ∑ 𝜋𝑠𝑐

𝑗∈𝐵𝑠𝑐∈𝐶𝑠:𝑔𝑗
𝑐=1

− 𝜎𝑠𝑘𝜏𝑖𝑗
ℎ ))

𝑘∈𝐻𝑠

 

Subject to: 

(A32) 

(𝐴26) − 𝐴(31)             (A33) 

In this pricing subproblems, we impose the constraints (A26)—(A31) for each hotspot drone 𝑘 ∈

𝐻𝑠 from satellite 𝑠 ∈ 𝑆. 

A5. Pricing subproblems for generating delivery routes in satellite-level decomposition 

The pricing subproblems for generating route for delivery drones launched from satellite 𝑠 ∈ 𝑆, 

are given in (A33)—(A34).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    ∑ (−𝜃𝑠 − 𝜙𝑠𝑘 − ∑ ∑ 𝑣𝑖𝑗
𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑𝑗∈𝐶𝑠

(𝜁𝑗 + 𝜋𝑠𝑗 + 𝜌𝑠𝑘𝜏𝑖𝑗
𝑑 )

𝑘∈𝐷𝑠

− ∑ 𝛼𝑠𝑗 (𝔱𝑗
𝑠𝑘 + 𝑀 ∑ 𝑣𝑖𝑗

𝑠𝑘

(𝑖,𝑗)∈𝐸𝑠
𝑑

)

𝑗∈𝐶𝑠

) 

(A33) 

Subject to:  

(17) − (22)                         
(A34) 

In this pricing subproblems, we impose the constraints (17)—(22) for each delivery drone 𝑘 ∈ 𝐷𝑠 

launching from satellite 𝑠 ∈ 𝑆. 


