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Abstract

In social dilemmas, individuals face a conflict between their own self-interest
and the collective interest of the group. The provision of reward has been
shown to be an effective means to drive cooperation in such situations. How-
ever, previous research has often made the idealized assumption that rewards
are constant and do not change in response to changes in the game environ-
ment. In this paper, we introduce reward into the public goods game and
develop a coevolutionary game model in which the strength of reward is adap-
tively adjusted according to the population state. Specifically, we assume
that decreasing levels of cooperation lead to an increase in reward strength,
while increasing levels of cooperation result in a decrease in reward strength.
By investigating coevolutionary dynamics between population state and re-
ward systems, we find that interior stable coexistence state can emerge in
our model, where the levels of cooperation and reward strength remain at
constant levels. In addition, we also reveal that the emergence of a full co-
operation state only requires a minimal level of reward strength. Our study
highlights the potential of adaptive feedback reward as a tool for achieving
long-term stability and sustainability in social dilemmas.
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1. Introduction

Achieving cooperative action among multiple agents is a challenging task,
especially in scenarios where individual interests are at odds with the com-
mon good (Perc et al., 2017; Pendharkar et al., 2012; Liu & Chen, 2020,
2022; Hua & Liu, 2023; Goyal & Kaushal, 2017; Zhu et al., 2023a,b). This
is particularly true in social dilemmas, such as public goods provision or
shared resource management, where individuals may be inclined to free-ride
on others’ contributions instead of making their own (Han et al., 2021a,b;
Han, 2022a,b; Tanimoto, 2015, 2021; Szolnoki et al., 2014; Ito & Tanimoto,
2018). To overcome this challenge and promote cooperation, effective incen-
tive mechanisms are required that incentivize individuals to cooperate while
minimizing the negative consequences of free-riding behavior (Sigmund et al.,
2010; Henrich et al., 2006; Wang et al., 2019; Chen et al., 2015; Wang et al.,
2019; Cimpeanu et al., 2023). Negative incentives, such as costly punishment
or social exclusion, may be necessary to discourage free-riders and promote
equitable distributions of costs and benefits among group members (Szolnoki
& Perc, 2017; Chen et al., 2014). However, the use of negative incentives can
also lead to unintended negative consequences that reduce overall social util-
ity. For instance, the imposition of costly punishment or social exclusion may
trigger retaliation or anti-social punishment behaviors, leading to a break-
down of cooperation among group members (Herrmann et al., 2008; Rand &
Nowak, 2011; Hua & Liu, 2023). As a result, recent research has focused on
developing positive incentive mechanisms, such as rewards, that encourage
cooperation through mutual benefit and shared purpose, while avoiding the
negative consequences of punitive measures.

The use of reward has been shown to be an effective means of promot-
ing cooperation in social dilemmas, providing tangible benefits for those who
choose to cooperate while discouraging free-riders from exploiting the efforts
of others (Du et al., 2018; Balliet et al., 2011; Szolnoki & Perc , 2010). Pre-
vious theoretical research has proposed various types of rewards, including
peer reward (Ozono et al., 2020; Hauert, 2010) and institutional reward (Li
et al., 2021; Szolnoki & Perc, 2015; Dong et al., 2019; Sun et al., 2021; Sasaki
et al., 2012). In a peer incentive scenario, individuals have the ability to
reward others at a personal cost. Previous research has shown that peer
rewards can curb free-riding behavior in human populations. However, the
implement of this type of reward system is costly, which has raised concerns
about the emergence of second-order free-riders. In the institutional reward
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scenario, individuals are not responsible for implementing reward. Instead,
an institution rewards them based on their contributions to the group. Insti-
tutional rewards can overcome the problem of second-order free-riders. How-
ever, maintaining an institution is more expensive than implementing peer
reward, as participants still have to pay for its upkeep even if no individual
is being rewarded (Dong et al., 2019; Sun et al., 2021).

Although previous research has revealed the role of different types of re-
ward in the evolution of cooperation, many of these studies have made an
idealized assumption that the strength of rewards remains constant regardless
of changes in the game environment, which cannot accurately reflect many
real-world scenarios. For example, suppose that a city government decides
to offer rewards to residents who participate in a garbage cleaning activity to
encourage more people to join. If only a few people are willing to participate,
the government may offer higher reward amounts or other benefits to attract
more people. However, as the number of participants increases, the govern-
ment may find that its budget cannot afford such high rewards, and may
therefore reduce the strength of reward to avoid overspending. Until now,
there has been a lack of theoretical research on how the strength of reward
adapts to changes in the proportion of cooperators in the population. It
remains unclear whether adaptive reward can promote the emergence of co-
operation. The question of how much reward strength is needed to maintain
high levels of cooperation is still worth exploring.

Here, we establish a feedback-evolving game model in which the strength
of reward and population status form a two-way feedback loop. Specifically,
changes in the level of cooperation will alter the strength of rewards, which in
turn affects individual decision-making. We adopt a linear feedback form to
describe the effect of strategies on reward strength in public goods games by
following previous works (Weitz et al., 2016; Szolnoki & Chen, 2018; Wang
& Fu, 2020; Chen & Szolnoki, 2018; Shao et al., 2019; Tilman et al., 2020).
Through analyzing the dynamics of the coupled system, we find that the
system can exhibit a stable coexistence state, in which both the frequency of
cooperators and the strength of reward can be maintained at a fixed level.
Furthermore, we find that a state of high-level cooperation and even full
cooperation can be achieved with relatively low levels of reward strength.
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2. Related works

The study of cooperation evolution is one of the most important research
topic in artificial intelligence and social science (Perc et al., 2017; Pendharkar
et al., 2012). It is well-known that cooperation among individuals can provide
benefits to the group as a whole, but it also faces the challenge of cooperation
dilemma, where individual rationality conflicts with collective rationality. To
overcome this dilemma, various mechanisms have been proposed and stud-
ied. One such mechanism is reward, which provides positive feedback to
individuals who exhibit cooperative behavior (Szolnoki & Perc , 2010; Dong
et al., 2019). The use of rewards has been shown to be effective at promoting
cooperation in many contexts, ranging from traditional social dilemmas like
the prisoner’s dilemma to modern online communities and marketplaces.

In recent years, a variety of reward forms have been proposed to promote
cooperation and enhance social welfare in different contexts. Peer reward, as
mentioned earlier, is one such incentive form that provides rewards to others
at a cost to themselves. Previous behavioral experiments and theoretical
studies have revealed the pivotal role played by peer reward in the evolution of
cooperation (Gneezy & Fessler, 2012; Sigmund et al., 2001; Hilbe & Sigmund,
2010). However, one of the biggest obstacles to the evolutionary stability of
the peer reward is the presence of second-order free-riders, i.e., individuals
who abstain from dispensing such incentives. In addition to being costly,
the success of peer reward is also challenged because it may be co-opted to
promote antisocial behavior. Some individuals abuse the reward opportunity
by engaging in antisocial reward, which increases the welfare of free-riders
and, in turn, harms cooperators.

Institutional reward can overcome the problem of second-order free-riders
and avoid antisocial behaviors (Sun et al., 2021; Sasaki et al., 2012). When
this mechanism is effective, individuals no longer bear the cost of reward-
ing cooperators themselves, but rather cooperators are rewarded through an
institutional. However, this approach is more wasteful than peer-based incen-
tives because individuals must pay the cost to maintain the institution even
if no one receives a reward. Theoretical studies based on evolutionary game
theory suggest that the impact of institutional reward on cooperation can be
understood from the perspective of the size of incentives (Sasaki et al., 2012;
Chen et al., 2015). When the size of incentives is very small, institutional
rewards do not promote cooperation, and defection is the most advantageous
strategy. If the incentive value is at an intermediate level, cooperators and
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defectors can coexist stably in the population. For larger incentive values,
cooperators will dominate the entire population. Moreover, recent theoreti-
cal research has unveiled that institutional reward can be employed to foster
the emergence of fairness within the context of ultimatum games (Cimpeanu
et al., 2021, 2023).

Although institutional reward plays an important role in the evolution
of cooperation, previous research has typically assumed that the strength
of incentives is constant and does not vary with changes in the game envi-
ronment. For unlimited incentive budgets, providing high rewards naturally
promotes the emergence of high-level cooperation. However, in actual so-
cial systems, incentive budgets are typically limited, making it particularly
important to design an adaptive and changing reward intensity. Here, we
propose an adaptive reward mechanism in which the intensity of reward is
linearly related to the number of cooperators in the game group. Specifically,
the more cooperators there are, the lower the intensity of reward, and vice
versa.

3. Model and Methods

3.1. Public goods games with institutional reward

We examine a well-mixed population that is infinitely large, where groups
of N players are randomly formed to engage in a public goods game. In
this game, each player decides whether to contribute c to a commonpool or
keep it for themselves. Individuals who choose to contribute are referred
to as cooperators, while individuals who do not contribute are referred to
as defectors. The total contributions are multiplied by a factor r and then
evenly distributed among all group members, regardless of whether they
contributed or not. Therefore, defectors always receive a higher payoff from
the public goods game than cooperators, leading to the social dilemma.

To address the aforementioned social dilemma, we introduce institutional
reward into public goods games. Building on previous work (Chen et al.,
2015), we consider a total budget of rewards Nδ in each game group, where
δ denotes the average per capita reward. The entire incentive budget is
allocated to reward cooperators equally within the game group. As for coop-
erators, their payoffs are increased by aNδ

NC
, where a represents the intensity of

reward, and NC represents the number of cooperators among the remaining
N − 1 players, excluding the player itself. Consequently, the payoffs for a
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cooperator and defector in the public goods game can be expressed as follows:

πC =
rc(NC + 1)

N
− c− δ +

aNδ

NC + 1
, (1)

πD =
rcNC

N
− δ. (2)

3.2. Replicator dynamics

We use replicator equations to describe how the proportion of cooperators
evolves over time (Schuster & Sigmund, 1983; Hofbauer & Sigmund, 1998).
Specifically, the change in the frequency of cooperators is proportional to the
difference between the average payoff of cooperators and the average payoff of
the population. The proportion of cooperators will increase if their average
payoff is higher than that of defectors, and vice versa. Let x and 1 − x be
the proportions of cooperators and defectors, respectively. Accordingly, we
have

ẋ = x(1− x)(fC − fD), (3)

where fC and fD denote the average payoffs of cooperators and defectors,
respectively. In an infinite well-mixed population, the average payoffs of
cooperators and defectors can be written as

fC =
N−1∑
NC=0

(
N − 1

NC

)
xNC (1− x)N−NC−1πC , (4)

fD =
N−1∑
NC=0

(
N − 1

NC

)
xNC (1− x)N−NC−1πD, (5)

where πC and πD represent the payoffs of cooperators and defectors in the
game, respectively, as defined by Equations (1) and (2). By algebraic ma-
nipulation, we can derive the average payoff of cooperators to be

fC =
rc

N
(N − 1)x+

rc

N
− c− δ +

aδ[1− (1− x)N ]

x
.

Similarly, the average payoff of defectors is

fD =
rc

N
(N − 1)x− δ.
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Accordingly, the difference between the average payoffs of cooperators and
defectors can be expressed as fC − fD = rc

N
− c + aδ

x
[1 − (1 − x)N ]. Using

1 − (1 − x)N = x
∑N−1

k=0 (1 − x)k, we can simplify the above difference in

average payoffs as fC − fD = rc
N
− c + aδ

∑N−1
k=0 (1− x)k, which is consistent

with previous work (Chen et al., 2015).

3.3. Feedback-evolving games

The replicator equations presented above treat reward strength as a crit-
ical parameter that influences the evolutionary dynamics of the system. In
previous studies, the reward strength was often considered to be a constant
value that remains fixed throughout the game (Sasaki et al., 2012; Chen
et al., 2015). However, in real-world scenarios, it is common for the reward
strength to vary depending on the number of cooperators in the group. Build-
ing upon previous theoretical studies (Weitz et al., 2016; Tilman et al., 2020),
we construct a feedback-evolving game model in which the strength of reward
and the population state form a feedback loop (see Fig. 1). Specifically, a
decrease in the level of cooperation in the population stimulates the institu-
tion to increase the reward strength, leading to a rise in the reward strength
that promotes the emergence of cooperation. Conversely, an increase in the
level of cooperation will prompt the institution to lower the reward strength,
which in turn may stimulate individuals to free-ride on the contributions of
others.

To describe the impact of strategies on reward strength, we consider a
linear feedback form (Weitz et al., 2016; Tilman et al., 2020). The specific
form of the feedback-evolving game model can be represented as follows

ϵẋ = x(1− x)[
rc

N
− c+ aδ

N−1∑
k=0

(1− x)k],

ȧ = (a− α)(β − a)[u(1− x)− x],

(6)

where ϵ represents the relative speed at which individual behavior influences
affect the strength of reward. A high value of ϵ implies that the reward
strength can change rapidly in response to changes in the proportion of co-
operators or defectors in the group, while a low value of ϵ indicates that
the adjustment of reward strength is relatively slow. Here, we assume that
0 < ϵ ≪ 1, indicating that the evolution of strategies occurs at a much faster
rate compared to the updating of reward strength. Besides, we constrain the
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Figure 1: Diagram of coupled game-reward system.

strength of rewards to be within the range of [α, β], where α represents the
minimum reward strength set by the institution, and β represents the max-
imum reward strength. This constraint reflects the practical considerations
in implementing incentive mechanisms that balance the need for providing
sufficient incentives for cooperation while avoiding overspending. The term
u(1 − x) − x represents that the reward strength increases at a rate of u as
the proportion of defectors in the group increases, decreases with an increase
in the proportion of cooperators at a relative rate of one.

To enhance comprehension of the model employed in this study, we
present a table summarizing the main parameters and their corresponding
definitions. This serves as a useful reference for readers to better grasp the
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underlying assumptions and mechanisms of the model:

Table 1: Model parameters and their corresponding definitions

Parameters Meaning
N Group size
πi Payoff of strategy i in the game
fi Average payoff of strategy i
r Growth factor of common pool
c Cost of cooperation
ϵ Relative speed at which individual behavior affects reward strength
δ Average per capita incentive
x Fraction of cooperation
α Minimum reward strength
β Maximum reward strength
u Rate at which reward strength increases with the proportion of defectors

In the next section, we will delve into the evolutionary dynamics of the
game system described above. Specifically, we will analyze the equilibrium
points and their stability to gain insights into the long-term outcomes of the
system under different conditions.

4. Results

This system (6) has at most seven equilibrium points, namely, (0, α),
(0, β), (1, α), (1, β), (x1, α), (x2, β), and ( u

u+1
, a∗) where x1 is solution to

the equation rc
N

− c + α
∑N−1

k=0 (1 − x)k = 0, x2 is solution to the equation
rc
N
− c+β

∑N−1
k=0 (1−x)k = 0, and a∗ = c−rc/N

δ
∑N−1

k=0 ( 1
u+1

)k
. The first four are corner

equilibrium points in the phase plane [0, 1]×[α, β], the middle two are bound-
ary equilibrium points, and the last one is an interior equilibrium point. In
the Appendix, we provide the stability conditions for these equilibrium points
based on the sign of the real parts of the eigenvalues of the linearized sys-
tem’s Jacobian matrix (Khalil, 1996). Through theoretical analysis, we know
that the equilibrium points (0, α) and (1, β) are unstable. Based on this, we
present five representative evolutionary scenarios.

Stable interior equilibrium
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Figure 2: Stable interior equilibrium point. The replicator equation’s phase portraits with
diverse initial conditions are illustrated in Panel (a). Stable equilibrium points are repre-
sented by solid dots, whereas unstable equilibrium points are depicted as empty circles.
Evolutionary direction is indicated by arrows with color used to represent the magnitude of
the gradient of selection. Panel (b) displays the temporal evolution of strategy frequency
and punishment intensity with a specified initial value. The red dashed line represents
the strength of reward, while the blue solid line represents the frequency of cooperation.
Parameter values are N = 5, F = 3, c = 1, ϵ = 0.1, δ = 0.2, α = 0.5, β = 3, and u = 2.

When δ > c−rc/N∑N−1
k=0 ( 1

u+1
)k
, we know that system (6) has an interior equi-

librium point. Through theoretical analysis, we are able to determine that
it is stable (Detailed theoretical analysis is provided in the Appendix). In

addition, when c−rc/N
Nα

< δ < c−rc/N
α

, the boundary equilibrium point (x1, α)
exists and it is unstable when u − ux1 − x1 > 0. Furthermore, considering
that δ > c − rc/N

Nα
> c − rc/N

Nβ
, we know that the corner equilibrium point

(0, β) is unstable. At the same time, due to δ < c−rc/N
α

, we can determine
that the corner equilibrium point (1, α) is also unstable. Therefore, all four
corner equilibrium points are unstable.

Figure 2 provides numerical examples to verify the theoretical analysis
mentioned above. Specifically, Fig. 2(a) shows the phase portrait of the
replicator system when the parameters satisfy the aforementioned conditions.
Unstable equilibrium points are represented by empty circles, stable equilib-
rium points by solid dots, while arrows indicate the direction of evolution
and the color of arrows depict the magnitude of gradient of selection, red in-
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Figure 3: Full-cooperation state with low-intensity reward. Panel (a) exhibits phase por-
traits of the replicator equation. Panel (b) displays the temporal evolution of coopera-
tion frequency and reward strength for a specific initial condition. Parameter values are
N = 5, F = 3, c = 1, ϵ = 0.1, δ = 1, α = 0.5, β = 3, and u = 2.

dicating the highest gradient value and blue representing the lowest gradient
value. We can observe that there are six equilibrium points in the system,
with the interior equilibrium point being stable while the other five equilib-
rium points are unstable. All interior trajectories ultimately converge to this
stable equilibrium point. In Fig. 2(b), we present the temporal evolution of
the cooperation frequency and reward strength with given initial conditions.
We observe that the frequency of cooperation and reward strength gradually
decrease at first, then increase, and finally decline to stabilize at a certain
fixed value.

Full-cooperation state with low-intensity reward

When δ < c−rc/N∑N−1
k=0 ( 1

u+1
)k
, it can be analyzed that the system does not have

interior equilibrium point. On the other hand, when δ > c−rc/N
α

, the corner
equilibrium point (1, α) is stable. In this case, both boundary equilibrium
points (x1, α) and (x2, β) do not exist. In summary, the system (6) has four
corner equilibrium points, namely (0, α), (0, β), (1, α), and (1, β). Through
analysis, it can be concluded that only the corner equilibrium point (1, α) is
stable, while the other three corner equilibrium points are unstable, which
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Figure 4: Stable boundary equilibrium point (x1, α). Panel (a) presents the phase plane
diagram of the replicator system. Panel (b) shows the time evolution of the system state.
Parameter values are N = 5, F = 3, c = 1, ϵ = 0.1, δ = 0.5, α = 0.5, β = 3, and u = 0.6.

means that maintaining a state of full cooperation state only requires pro-
viding the minimum level of reward strength.

We present numerical examples in Fig. 3 to validate the theoretical anal-
ysis mentioned above. From Fig. 3(a), we can observe that there are four
corner equilibrium points in the phase plane, among which (1, 0.5) is a sta-
ble equilibrium point, and the other three are unstable. Trajectories starting
from different initial points converge to (1, 0.5) eventually. In Fig. 3(b), we
show the time evolution of system states under specific initial conditions. We
can observe that the reward strength initially remains at a high level, then
gradually decreases, and finally stabilizes at the minimum level (a = 0.5).
Meanwhile, the frequency of cooperation gradually increases and eventually
stabilizes at 1.

Moderate level of cooperation with low-intensity reward

When δ < c−rc/N∑N−1
k=0 ( 1

u+1
)k
, the interior equilibrium point does not exist. When

c−rc/N
Nα

< δ < c−rc/N
α

, the boundary equilibrium point (x1, α) exists, and we
can determine that it is stable when u− ux1 − x1 < 0. The other boundary
equilibrium point (x2, β) does not exist when δ > c−rc/N

β
. Therefore, the
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system has five equilibrium points, including four corner equilibrium points
and one boundary equilibrium point. Considering δ < c−rc/N

α
, we can know

that the equilibrium point (1, α) is unstable. At the same time, since δ >
c−rc/N

Nα
> c−rc/N

Nβ
, we know that the equilibrium point (0, β) is also unstable.

Therefore, when u−ux1−x1 < 0, only the boundary equilibrium point (x1, α)
is stable, and the other equilibrium points are unstable. This means that a
moderate level of cooperation can be sustained by providing the minimum
level of reward strength.

In Fig. 4, we present a specific numerical example to validate the theo-
retical analysis results mentioned above. As shown in Fig. 4(a), there are
five equilibrium points in the phase plane, including four corner equilibrium
points and one boundary equilibrium point. We can observe that trajectories
starting from different initial points converge to the boundary equilibrium
point (x1, α). Fig. 4(b) shows the time evolution of the system state. We
can observe that the reward strength initially remains at a high level, then
gradually decreases, and finally stabilizes at the minimum level of reward
strength, which is 0.5. Meanwhile, the frequency of cooperation initially in-
creases, then maintains a sufficient level of cooperation for some time before
gradually decreasing and finally stabilizing near 0.6.

Moderate level of cooperation with high-intensity reward

When c−rc/N
Nβ

< δ < c−rc/N
β

, the boundary equilibrium point (x2, β) exists,
and we know that it is stable when u − ux2 − x2 < 0. In addition, when
δ < min{ c−rc/N∑N−1

k=0 ( 1
u+1

)k
, c−rc/N

Nα
}, we know that both the interior equilibrium

point ( u
1+u

, c−rc/N

δ
∑N−1

k=0 ( 1
u+1

)k
) and the boundary equilibrium point (x1, α) do not

exist. Thus the system has five fixed point. Considering δ < c−rc/N
β

< c−rc/N
α

,

we can know that the equilibrium point (1, α) is unstable. At the same time,

since δ > c−rc/N
Nβ

, we know that the equilibrium point (0, β) is also unstable.

Therefore, when u−ux2−x2 < 0, only the boundary equilibrium point (x2, β)
is stable, and the other equilibrium points are unstable, which means that a
moderate level of cooperation can be sustained, but it requires providing a
sufficiently high level of reward strength.

Fig. 5(a) presents the phase diagram of replicator system (6). We can
observe that there are five equilibrium points in the phase plane, including
four corner equilibrium points and one boundary equilibrium point (x2, β).
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Figure 5: Stable boundary equilibrium point (x2, β). Panel (a) presents the phase plane
diagram of the replicator system. Panel (b) shows the time evolution of the system state.
Parameter values are N = 5, F = 3, c = 1, ϵ = 0.1, δ = 0.05, α = 0.5, β = 3, and u = 0.6.

Only the boundary equilibrium point is stable, and all trajectories eventually
converge to this stable equilibrium point. In Fig. 5(b), we present a specific
example. We can observe that the reward strength gradually increases over
time, reaching its maximum value of 3. Meanwhile, the cooperation fre-
quency initially decreases and then increases, finally stabilizing near 0.3.

Full defection with high-intensity reward

When δ < min{ c−rc/N∑N−1
k=0 ( 1

u+1
)k
, c−rc/N

Nβ
}, we know that both the interior equi-

librium point and two boundary equilibrium point do not exist. In this case,
the system has four corner equilibrium points. We can easily obtain that the
equilibrium point (1, α) is unstable because δ < c−rc/N

Nβ
< c−rc/N

α
. While the

equilibrium point (0, β) is stable because δ < c−rc/N
Nβ

. This means that even
with a very high level of reward strength, it is still not possible to promote
the emergence of cooperation.

In Fig. 6, we provide a numerical example when the parameters satisfy
the above conditions. We can observe that there are four corner equilibrium
points in the phase plane, among which only (0,3) is stable. All interior
trajectories eventually converge to (0,3) regardless of the initial conditions
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Figure 6: Full defection with high-intensity reward. Panel (a) presents the phase plane
diagram of the replicator system. Panel (b) shows the time evolution of the system state.
Parameter values are N = 5, F = 3, c = 1, ϵ = 0.1, δ = 1/75, α = 0.5, β = 3, and u = 2.

(see Fig. 6(a)). In Fig. 6(b), we present the time evolution of the system
state when the initial conditions are fixed. We can observe that the reward
strength initially decreases, then gradually increases, and finally stabilizes at
the upper limit of reward strength. Meanwhile, the frequency of cooperation
gradually decreases and eventually stabilizes at 0.

Finally, we are interested in how feedback speed affects the coevolutionary
outcomes when a stable interior equilibrium point is reached in the system.
As shown in Fig. 7, when the feedback speed ϵ changes from 0.3 to 10, a stable
interior equilibrium point still exists in the system. This implies that when
the feedback speed varies within a certain range, the qualitative outcome
remains independent of the feedback speed.

5. Conclusions

Reward is an effective way to promote the emergence of cooperation. By
providing incentives to individuals or groups who exhibit cooperative be-
havior, rewards can facilitate and reinforce collaborative efforts and help to
improve the welfare of the entire society. Previous studies have investigated
the role of different types of rewards in promoting cooperation, with par-
ticular attention given to institutional rewards in recent years (Sun et al.,
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Figure 7: Invariance of system dynamics given change in the feedback speed. The param-
eter ϵ is being varied from 0.3 to 10 given cases where the dynamics are expected to lead
to a stable interior fixed point. Parameter values are N = 5, F = 3, c = 1, δ = 0.2, α =
0.5, β = 3, u = 2, ϵ = 0.3 in panel (a); ϵ = 0.5 in panel (b); ϵ = 0.7 in panel (c); ϵ = 1 in
panel (d); ϵ = 5 in panel (e); ϵ = 10 in panel (f).

2021; Sasaki et al., 2012). However, studies involving institutional rewards
typically assume that the intensity of the reward is constant and does not
vary with changes in the game environment or state. In this work, we have
proposed an adaptive institutional reward strategy and established a coevo-
lutionary dynamics model, which extends previous research by incorporating
the dynamic nature of reward systems, allowing for a more realistic represen-
tation of how reward structures can evolve over time in response to changes
in population behavior. We have revealed five representative evolutionary
outcomes, including stable interior equilibrium point, the minimum reward
intensity for full cooperation, the minimum reward intensity for moderate
levels of cooperation, the maximum reward intensity for moderate levels of
cooperation, and the maximum reward intensity for full defection.

We have demonstrated that the replicator system can produce a stable
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interior equilibrium point, implying that a constant reward value can main-
tain cooperation at a certain level. In the dynamic feedback design between
reward intensity and frequency of cooperation, the interior stable point is
an important outcome. As the reward intensity and level of cooperation
gradually approach equilibrium, the system tends to stabilize and form an
internal stable point. This interior stable point may be crucial for achieving
long-term cooperation since it can help prevent the system from deviating
or collapsing. We have verified that the feedback speed does not alter this
evolutionary outcome.

We have also revealed that the dynamic system coupling reward intensity
and population state can achieve an ideal state where the population can
maintain full cooperation while the reward intensity is kept at a minimum
value. Previous theoretical research has examined the effect of institutional
rewards on the evolution of cooperation under the condition of constant re-
ward intensity based on public goods games (Chen et al., 2015). Theoretical

results indicate that when the incentive is sufficiently large, i.e., δ > c−rc/N
a

,
the state of full cooperation can be achieved. By releasing the assumption
of a constant reward intensity, and introducing an adaptive reward strategy,
we have revealed that the achievement of the state of full cooperation with a
minimum reward intensity requires δ > c−rc/N

α
. It is evident that it depends

on the value of the minimum reward intensity.
It has been suggested that an adaptive adjustment of reward strength

based on the proportion of cooperators can be considered a manifestation of
the principle of diminishing marginal returns, which stipulates that the ef-
fectiveness of a given reward diminishes as more individuals receive it. Thus,
when there are many cooperators, reducing the reward strength would allow
for a more efficient allocation of resources. Conversely, when the proportion
of cooperators is low, increasing the reward strength can serve to incentivize
initial participation and promote cooperation. By adapting the strength of
rewards based on the proportion of cooperators, we can achieve a balance
between providing sufficient incentives for cooperation and avoiding exces-
sive expenditures. These insights shed light on how the adaptive adjustment
of reward strength influences the evolution of cooperation in various social
contexts.

To sum up, our investigation has shed light on the crucial role of the
feedback loop between reward intensity and population state in shaping co-
operative behavior. Further investigations into various forms of feedback
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and group structures hold great potential for advancing the development
of control strategies that are both efficient and effective in complex systems.
Specifically, future research can focus on examining approaches to attain sys-
tem stability and controllability through exponential feedback mechanisms
(Liu et al., 2022, 2023), while considering diverse population structures (Perc
et al., 2013; Xu et al., 2023) and the optimal institutional incentives (Wang
et al., 2019; Cimpeanu et al., 2023). By delving into these areas, we can
enhance our understanding of cooperative dynamics and pave the way for
more refined and adaptable control strategies in complex systems.

Appendix

Equilibrium analysis of the coupled system
The coupled system that describes the dynamics of the feedback-evolving
game is given as follows:

ϵẋ = x(1− x)[
rc

N
− c+ aδ

N−1∑
k=0

(1− x)k],

ȧ = (a− α)(β − a)[u(1− x)− x].

This dynamical system has a maximum of seven fixed points, which in-
clude all four corners of the domain [0, 1]× [α, β], the boundary fixed point
(x1, α) and (x2, β), and the interior fixed point ( u

u+1
, a∗) where x1 satis-

fies the equation rc
N

− c + αδ
∑N−1

k=0 (1 − x)k = 0, x2 satisfies the equation
rc
N
− c+ βδ

∑N−1
k=0 (1− x)k = 0, and a∗ = c−rc/N

δ
∑N−1

k=0 ( 1
u+1

)k
.

The system always has four corner equilibrium points. However, there
are also two boundary equilibrium points that occur at the boundaries of
the domain and may exist under certain conditions. In the following, we
analyze the conditions for the existence of two boundary equilibrium points
(x1, α) and (x2, β). Here we set that G1(x) = rc

N
− c + αδ

∑N−1
k=0 (1 − x)k

and G2(x) = rc
N

− c + βδ
∑N−1

k=0 (1 − x)k, then G′
1(x) = −αδ

∑N−1
k=1 k(1 −

x)k−1 and G′
2(x) = −βδ

∑N−1
k=1 k(1− x)k−1, which are negative for x ∈ (0, 1).

Considering that G1(0) =
rc
N
−c+Nαδ and G1(1) =

rc
N
−c+δα, we can derive

the conditions for the existence of the boundary equilibrium point (x1, α) as
c−rc/N

Nα
< δ < c−rc/N

α
. Similarly, we can derive the conditions for the existence

of the boundary equilibrium point (x2, β) as
c−rc/N

Nβ
< δ < c−rc/N

β
. Therefore,
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the condition for the existence of both boundary equilibrium points (x1, α)

and (x2, β) is
c−rc/N

Nα
< δ < c−rc/N

β
.

Besides, the condition for the existence of the interior equilibrium point
is 0 < c−rc/N

δ
∑N−1

k=0 ( 1
1+u

)k
< 1.

For convenience, we let h(x, a) = 1
ϵ
x(1−x)[ rc

N
− c+aδ

∑N−1
k=0 (1−x)k] and

g(x, a) = (a − α)(β − a)[u(1 − x) − x]. In order to determine the stability
of equilibrium points in a system, we can investigate the Jacobian matrix
J (Khalil, 1996). The elements of this matrix are given by the following
formula:

J =

(
∂h
∂x

∂h
∂a

∂g
∂x

∂g
∂a

)
, (7)

where 

∂h

∂x
=

1

ϵ
(1− 2x)(

rc

N
− c) +

1

ϵ
aδ[(N + 1)(1− x)N − 1],

∂h

∂a
=

1

ϵ
(1− x)δ[1− (1− x)N ],

∂g

∂x
= (a− α)(β − a)(−u− 1),

∂g

∂a
= (β − 2a+ α)[u(1− x)− x].

(8)

We will now proceed with an analysis of the stability of each equilibrium
point.

For (x, a) = (0, α), the Jacobian is

J(0, α) =

(
1
ϵ
( rc
N
− c) + 1

ϵ
Nαδ 0

0 (β − α)u

)
, (9)

we can know that it is unstable since (β − α)u > 0.
For (x, a) = (0, β), the Jacobian is

J(0, β) =

(
1
ϵ
( rc
N
− c) + 1

ϵ
Nβδ 0

0 (α− β)u

)
, (10)

we can know that it is stable when 1
ϵ
( rc
N
− c) + 1

ϵ
Nβδ < 0.

For (x, a) = (1, α), the Jacobian is

J(1, α) =

(
−1

ϵ
( rc
N
− c)− 1

ϵ
αδ 0

0 −(β − α)

)
, (11)
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we can know that it is stable when −1
ϵ
( rc
N
− c)− 1

ϵ
αδ < 0.

For (x, a) = (1, β), the Jacobian is

J(1, β) =

(
−1

ϵ
( rc
N
− c)− 1

ϵ
βδ 0

0 −(α− β)

)
, (12)

we can know that it is unstable since −(α− β) > 0.
For (x, a) = (x1, α), the Jacobian is

J(x1, α) =

(
a11

1
ϵ
(1− x1)δ[1− (1− x1)

N ]
0 (β − α)(u− ux1 − x1)

)
, (13)

where a11 = 1
ϵ
x1(1 − x1)[−αδ

∑N−1
k=0 k(1 − x1)

k−1] < 0 and this equilibrium
point is stable when u− ux1 − x1 < 0.

For (x, a) = (x2, β), the Jacobian is

J(x2, β) =

(
ā11

1
ϵ
(1− x2)δ[1− (1− x2)

N ]
0 (α− β)(u− ux2 − x2)

)
, (14)

where ā11 =
1
ϵ
x2(1−x2)[−αδ

∑N−1
k=0 k(1−x2)

k−1] < 0, and we can know that
it is stable when u− ux2 − x2 < 0.

For (x, a) = ( u
u+1

, a∗), the Jacobian is

J(
u

u+ 1
, a∗) =

(
a∗11

1
ϵ

1
u+1

δ[1− ( 1
u+1

)N ]

(a∗ − α)(β − a∗)(−u− 1) 0

)
, (15)

where a∗11 =
1
ϵ

u
u+1

1
u+1

[−αδ
∑N−1

k=0 k( 1
u+1

)k−1] < 0. We can get tr (J) = a∗11 < 0

and det (J) = 1
ϵ
δ(a∗ − α)(β − a∗)[1− ( 1

u+1
)N ] > 0, thus this point is stable.
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Tilman, A. R., Plotkin, J. B., Akçay, E. (2020). Evolutionary games with
environmental feedbacks. Nature Communications, 11, 915.

Wang, S., Chen, X., Szolnoki, A. (2019). Exploring optimal institutional
incentives for public cooperation. Communications in Nonlinear Science
and Numerical Simulation, 79, 104914.

Wang, X., Fu, F. (2020). Eco-evolutionary dynamics with environmental
feedback: Cooperation in a changing world. EPL, 132, 10001.

Xu, Y., Wang, J., Xia, C., Wang, Z. (2023). Higher-order temporal interac-
tions promote the cooperation in the multiplayer snowdrift game. Science
China-Information Sciences, doi:10.1007/s11432-022-3738-3.

Weitz, J. S., Eksin, C., Paarporn, K., Brown, S. P., Ratcliff, W. C. (2016).
An oscillating tragedy of the commons in replicator dynamics with game-
environment feedback. Proceedings of the National Academy of Sciences,
113, E7518-E7525.

25



Zhu, Y., Xia, C., Chen, Z. (2023). Nash Equilibrium in Iterated Multiplayer
Games Under Asynchronous Best-Response Dynamics. IEEE Transactions
on Automatic Control, 3230006.

Zhu, Y., Zhang, Z., Xia, C., Chen, Z. (2023). Equilibrium analysis and
incentive-based control of the anticoordinating networked game dynam-
ics. Automatica, 147, 110707.

26


	Introduction
	Related works
	Model and Methods
	Public goods games with institutional reward
	Replicator dynamics
	Feedback-evolving games

	Results
	Conclusions

