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Abstract

Collaborative filtering (CF) has become a popular method for developing recommender
systems (RSs) where ratings of a user for new items are predicted based on her past prefer-
ences and available preference information of other users. Despite the popularity of CF-based
methods, their performance is often greatly limited by the sparsity of observed entries. In
this study, we explore the data augmentation and refinement aspects of Maximum Margin
Matrix Factorization (MMMF), a widely accepted CF technique for rating predictions, which
has not been investigated before. We exploit the inherent characteristics of CF algorithms
to assess the confidence level of individual ratings and propose a semi-supervised approach
for rating augmentation based on self-training. We hypothesize that any CF algorithm’s
predictions with low confidence are due to some deficiency in the training data and hence,
the performance of the algorithm can be improved by adopting a systematic data augmen-
tation strategy. We iteratively use some of the ratings predicted with high confidence to
augment the training data and remove low-confidence entries through a refinement process.
By repeating this process, the system learns to improve prediction accuracy. Our method is
experimentally evaluated on several state-of-the-art CF algorithms and leads to informative
rating augmentation, improving the performance of the baseline approaches.

Keywords: Recommender System, Matrix Factorization, Maximum Margin, Rating
Augmentation, Rating Refinement

1. Introduction

A recommender system (RS) is a subset of information filtering systems designed to
deal with information overload. These systems sift the users through the information space
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and eliminate the need for manual filtering of their possible choices over the entire prod-
uct space. Recently, RS has been widely and successfully applied in several different ap-
plications, including e-commerce (Hidasi et al., 2015), e-library (Wang et al., 2018), e-
learning (Manouselis et al., 2011), tourism (Wang et al., 2017), job recommendation (Dave
et al., 2018), and drug recommendation (He et al., 2018). RS attempts to analyze the feed-
back of the users and recommends a product/item to a user based on past feedback of the
users about the product/item and the user’s taste based on past purchase history. Any RS
aims to construct a probable recommendation set of items tailored for individual users that
matches their needs and taste. In the literature, several techniques have been proposed to
generate a recommendation that can be categorized into content-based (CB), collaborative
filtering (CF), and hybrid approaches (Bobadilla et al., 2013; Burke, 2002). The CB ap-
proach generates the recommendation based on the match between the user’s profiles and
the item’s contents. In contrast, the CF approach uses users’ past preferences for items
that are available in the form of feedback, either explicit, such as ratings and reviews, or
implicit, discovered based on the actions that the user performs concerning items. On the
other hand, the hybrid approach combines different techniques of CF and CB approaches.

Among several approaches for Recommender systems (RSs), collaborative filtering (CF)
has emerged as a fundamental paradigm (Guo et al., 2014; Adomavicius & Tuzhilin, 2005;
Mobasher et al., 2003). Despite the popularity of CF-based methods, their performance is
often greatly limited by the number of observed entries. To alleviate the problem of data
sparsity, researchers have introduced semi-supervised learning. Semi-supervised learning is
a crucial concept that focuses on exploiting knowledge from a large amount of unlabeled
data and the small amount of available labeled data. Most existing CF methods adopt
domain adaptation wherein knowledge learned from side information such as review texts
and pictural data like posters (Yu et al., 2020; Zhao et al., 2016) is transferred to the main
domain. However, exploiting and integrating side information requires consistent knowledge
across auxiliary domains (Zhang et al., 2020; Lu et al., 2013). For example, the knowledge
captured from book reviews is consistent with the knowledge in the movie domain, as both
domains overlap in genre representations. However, it is inconsistent with the knowledge
in the clothing domain (Liu et al., 2019). Thus, there is a need to implement a solution
that can handle data sparsity without the involvement of side information or identification
of compatible domains.

In this paper, we propose a self-training-based CF approach for rating augmentation
that eases the burden of finding compatible domains for knowledge acquisition. In machine
learning research, many self-training based have been proposed for the classification task,
and the area of recommender system has been largely untouched with self-training based
models (Gao et al., 2022; Wu et al., 2018; Nartey et al., 2019; Xie et al., 2020b). The idea
is to leverage the learning process by utilizing both a small portion of label data and a large
amount of unlabelled data (Krishnapuram et al., 2004). The recommendation task over ordi-
nal rating preferences can also be visualized as a classification task (Rennie & Srebro, 2005;
Kumar et al., 2017b,a). In (Kumar et al., 2017a), maximum margin matrix factorization
(MMMF), a popular recommendation model that provides prediction with high accuracy,
is visualized as an extension of a two-class classifier to a unified multi-class classifier and
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proposed a method for ordinal matrix completion by hierarchically arranging multiple bi-
nary MMMF. This paper advances the frontier of research on this subject by investigating
the data augmentation and refinement aspects which are not attempted so far by the re-
searchers. The inherent characteristics of MMMF are exploited to assess the confidence level
of algorithm’s prediction of individual rating. We hypothesize that the any CF algorithm’s
predictions with low confidence can be due to some deficiency in the training data and hence,
the performance of the algorithm can be improved by adopting a systematic data augmen-
tation strategy. In the present study, we consider Maximum Margin Matrix Factorization
as the base CF-based algorithm. We propose a self-training-based semi-supervised approach
for rating augmentation to improve the performance of MMMF. The generic principle that
we adopt here is to assess the algorithm’s prediction confidence qualitatively as low or high.
Our method is an iterative process in which the ratings of unknown items predicted with
high confidence are used to augment the training data. At this stage, the refinement process
removes an entry in the training data that is found to be of low confidence. By repeated
application of the process of augmentation and refinement, the system learns to improve pre-
diction accuracy. We experimentally evaluate the proposed rating augmentation technique
by considering several state-of-the CF algorithms. The experimental result corroborates our
claims that the proposed strategy leads to informative rating augmentation and improves
the performance of the baseline approaches under consideration.

The rest of the paper is organized as follows. Section 2 briefly reviews existing approaches
to handle data sparsity issues in the recommendation system. Section 3 summarizes the
well-known existing MMMF process. We present the proposed ST-MMMF model of rating
augmentation in Section 4. An experimental analysis of the proposed algorithm is reported
in Section 5. Finally, Section 6 concludes and indicates several issues for future work.

2. Related Work

The traditional approaches to alleviating the problem of data sparsity can be broadly
divided into two categories - methods that impute ratings to generate pseudo-rating data
based on some estimation criterion and methods that use auxiliary information (Kuo et al.,
2021; Natarajan et al., 2020; Duan et al., 2022). In this section, we present a brief overview
of the significant approaches proposed to overcome the problem of data sparsity in the
user-item rating matrix.

Rating imputation is a non-trivial task and requires sophisticated methods to infer the
missing rating. Several approaches have been proposed in recent years for rating impu-
tation, among which the mean-based imputation is the most naive. The rating for any
unobserved (user, item)-pair can be imputed either with the user-specific mean or item-
specific mean (Breese et al., 2013; Ghazanfar & Prugel, 2013). The mean method of rating
imputation suffers from high bias because there are going to be so many entries in the rat-
ing matrix with a similar rating level which may lead to an imbalance rating distribution.
Matrix factorization techniques, such as Singular Value Decomposition (SVD) and Non-
negative Matrix Factorization (NMF), have been widely used for imputing missing ratings
in recommender systems (Kim & Yum, 2005; Ranjbar et al., 2015). These methods factorize
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the rating matrix into two low-rank matrices and use the factorized matrices to estimate
the missing ratings. In (Hwang et al., 2016), SVD is applied on the pre-use preferences
matrix to identify the uninteresting items and then assigns zero ratings. Collaborative fil-
tering methods, such as user- and item-based, have also been used to rating imputation (Bell
et al., 2007; Ghazanfar & Prugel, 2013). These methods use the similarity between users
or items to estimate missing ratings (Ren et al., 2012). Bayesian methods, such as Proba-
bilistic Matrix Factorization (PMF) and Bayesian Personalized Ranking (BPR), have been
used to incorporate uncertainty in the imputation process (Mnih & Salakhutdinov, 2007;
Rendle et al., 2012; Wang et al., 2019; Moon et al., 2023). These methods model the rating
matrix as a probabilistic generative model and use Bayesian inference to estimate missing
ratings. The other category of methods uses side information, such as reviews, images, and
videos, to handle the data sparsity problem (Guo et al., 2019). Niu et al. (Niu et al., 2016)
proposed a neighborhood-based approach of collaborative filtering where the reviews are
used as side information to compute the similarity between two users. Ning et al. (Ning &
Karypis, 2012) propose several methods to utilize the item side information to learn sparse
linear coefficient matrix to the top-N recommendation. In (Strub et al., 2016), a Neural
Network architecture called CFN to learn the non-linear representation of users and items.
The authors introduce a novel loss function adapted to input data with missing values and
utilize the side information. A deep hybrid model is proposed to learn deep users’ and items’
latent factors from the rating matrix and side information (Dong et al., 2017). In (Massa &
Avesani, 2004), a trust matrix and the user-item rating matrix are used together to improve
the accuracy of similarity calculation and recommendation quality.

3. Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization (MMMF) is a well-known method for computing
a dense approximationX ∈ RN×M of a sparse matrix Y ∈ RN×M with ordinal entries (Srebro
et al., 2004). The initial proposal for MMMF is formulated as a semi-definite programming
(SDP) problem that can handle the factorization of small matrices. Rennie et al. (Rennie
& Srebro, 2005) proposed a gradient-based optimization method for MMMF to factorize
a matrix with sufficiently large size. We will refer to this as MMMF in our subsequent
discussion. The readers are requested to refer (Rennie & Srebro, 2005; Kumar, 2019) for
details.

3.1. MMMF as Gradient-based Optimization

The MMMF approach is primarily designed for collaborative filtering tasks where the
user’s preferences over items are observed in the form of ratings and are naturally organized
in matrix form. Let Y = [yij] ∈ RN×M denote the rating matrix, where N represents the
number of users, and M is the number of items. The entries yij are from {0, 1, 2, . . . , R},
where R denotes the maximum rating level, and 0 denotes the unobserved entries. Given
a sparse rating matrix Y , MMMF seeks a minimum trace norm matrix X ∈ RN×M that
approximates the observed entries in matrix Y . The gradient-based optimization problem
with a term ∥X∥Σ, trace norm of matrix X, is a complicated non-differentiable function
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for which it is difficult to find the subdifferential (Rennie & Srebro, 2005). Hence, instead
of searching over X, MMMF learns a pair of low norm factor matrices U ∈ RN×d and
V ∈ RM×d such that

Y ≈ UV T , (1)

where d is a parameter.
The factor matrices U and V are obtained by minimizing the regularized loss function

where the Froebenius norm of the factor matrices is used to upper bound the minimization
objective with the term ∥X∥Σ, i.e., for any U and V , ∥UV T∥Σ ≤ 1

2
(∥U∥2F + ∥V ∥2F ). In

order to map the predicted value xij = UiV
T
j into R intervals, MMMF also learns R − 1

thresholds, θi,1 ≤ θi,2, . . . ,≤ θi,R−1, for each ith user. The objective function of MMMF for
ordinal rating predictions can be written as follows.

min
U,V

J(U, V,Θ) =
∑

yij |ij∈Ω

( yij−1∑
r=1

h(UiV
T
j − θi,r) +

R−1∑
r=yij

h(θi,r − UiV
T
j )

)
+

λ

2
(∥U∥2F + ∥V ∥2F ),

(2)
where ∥ · ∥F is Frobenius norm, Ui and Vj denotes the ith row of matrix U and matrix V ,
respectively, Θ = [θij] is a threshold matrix consisting of R− 1 thresholds for each ith user,
λ > 0 is the regularization parameter, Ω is the set of observed entries and h(z) is the smooth
hinge loss defined as

h(z) =


0, if z ≥ 1;
1
2
(1− z)2, if 0 < z < 1;

1
2
− z, otherwise.

(3)

The equation given in (2) can be rewritten as follows.

min
U,V

J(U, V,Θ) =
R−1∑
r=1

∑
(i,j)∈Ω

h
(
T r
ij(θi,r − UiV

T
j )) +

λ

2
(∥U∥2F + ∥V ∥2F ) (4)

where T is defined as

T r
ij =

{
+1, if r ≥ yij;

−1, if r < yij.

Several approaches can be used to optimize the objective function 4. A gradient descent
method and its variants start with random U , V and Θ and iteratively update them using
equations 5, 6 and 7, respectively.

U t+1
ip = U t

ip − c
∂J

∂U t
ip

. (5)
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V t+1
jq = V t

jq − c
∂J

∂V t
jq

. (6)

θt+1
i,r = θti,r − c

∂J

∂θti,r
. (7)

c is the learning rate in the above equations and suffixes t and (t+ 1) indicate current and
updated values. The gradients of the variables to be optimized are determined as follows.

∂J

∂Uip

= λUip −
R−1∑
r=1

∑
j|(i,j)∈Ω

T r
ijh

′(T r
ij(θi,r − UiV

T
j )

)
Vjp (8)

∂J

∂Vjq

= λVjq −
R−1∑
r=1

∑
i|(i,j)∈Ω

T r
ijh

′(T r
ij(θi,r − UiV

T
j )

)
Uiq (9)

∂J

∂θi,r
=

∑
j|(i,j)∈Ω

T r
ijh

′(T r
ij(θi,r − UiV

T
j )

)
(10)

where h′(z) is defined as follows.

h′(z) =


0, if z ≥ 1;

z − 1, if 0 < z < 1;

−1, otherwise.

(11)

Once U , V and θ’s are computed, the matrix completion process is accomplished as follows.

ŷij =

{
r, if (i, j) /∈ Ω ∧ (θi,r ≤ xij ≤ θi,r+1) ∧ (0 ≤ r ≤ R− 1);

yij, if (i, j) ∈ Ω,

where, ŷij is the prediction for item j by user i. For simplicity of notation, we assume
θi,0 = −∞ and θi,R = +∞ for each user i.

3.2. Geometrical Interpretation of MMMF

MMMF decomposes a large user-item rating matrix Y into two low-norm matrices U
and V , the former representing users and the latter representing items. Geometrically, each
row of user latent factor matrix U defines a hyperplane in the d-dimensional space, and
similarly, the rows of V can be viewed as points in the same space. The objective is to learn
from a sparse Y the decision hyperplane for each user to separate points of diferent ratings
with the largest possible margin. When Y is bi-valued ({−1,+1}), the objective is to learn
the hyperplane defining for each user (Ui for user i) a decision function that separates one
rating (+1) from the other (−1) with maximum margin. In the case of ordinal scale, i.e.,
yij ∈ {1, 2, . . . R}, The objective is to partition the set of items embedded as points into
R-regions, each corresponding to a rating level, separated by parallal hyperplanes defined
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by Ui for user i. This is achieved by optimizing a smooth version of the hinge loss function
well-known for margin maximization (Rennie & Srebro, 2005; Kumar et al., 2017a,b; Salman
et al., 2016). The outcome of the optimization is to get the optimal combination of (U, V,Θ)
such that the embedding of items rated as r fall as correctly as possible into regions defined
by (Ui, θi,r−1) and (Ui, θi,r) with sufficient margin. For the simplicity of notation, we assume
θi,0 = −∞ and θi,R = +∞, for each ith user. Figure 1 illustrate this concept by taking
a row of U as the decision hyperplane for a user, and rows of V are embedding of points
corresponding to the items.

Figure 1: Classification by MMMF for the ith user

4. Proposed Algorithm

In this section, we describe the proposed data augmentation and refinement strategy,
denoted as Self-Training with Maximum Margin Matrix Factorization (ST-MMMF), which
is trained in a semi-supervised fashion to generate new rating samples. Data augmentation
in ML allows artificially increasing the size of the training set by adding new synthetic
examples and helps the decision function to become invariant to the changes (Xie et al.,
2020a; Ratner et al., 2017). This can be interpreted as a regularization method that induces
a useful bias by preventing the model from focusing on irrelevant features and making it less
prone to overfitting (Chen et al., 2020). Data augmentation in the present context implies
that some synthetic user-item ratings are introduced where such data is not available in the
original user-item interaction record. In other words, it is to introduce some values when
yij is unknown in Y . The choice of yij cannot be arbitrary, and hence, data augmentation
is the judicious process of selecting unknown yij’s, which can be used to augment the sparse
matrix Y . We show later that our augmentation process satisfies the desirable properties
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required for the purpose. The process of data refinement is yet another strategy adopted
in ML research to improve the system’s performance. In the present context, we design the
proposed data refinement strategy by identifying certain weak yij’s known in the original
training Y and remove them to refine the training set.

ST-MMMF follows an iterative process for data augmentation and data refinement. Each
iteration of ST-MMMF is comprised of four pivotal stages, (1) Learning the latent factor
matrices U , V , and Θ for the current Y , where U (V ) represents the user (item) latent factor
matrix, and Θ signifies the threshold matrix; (2) Augmenting Y with unobserved entries
predicted with high confidence in Stage (1); (3) Refining the augmented Y by removing
the known ratings indicated in Stage (1) as of low confidence; (4) Replacing the matrix Y
with the refined and augmented matrix obtained after Stage (3) for the subsequent training
iteration.

Figure 2: Overview of the ith iteration of ST-MMMF.

Figure 2 depicts a high-level overview of the proposed ST-MMMF approach showing various
stages involved in an ith iteration of the proposed ST-MMMF. The matrix at the top left
corner denotes the input matrix Y to ith iteration. In Stage 1, MMMF is employed to learn
two latent factor matrices, U and V , representing users and items. Additionally, R − 1
thresholds are also learned for each user to map the corresponding real-valued predictions
to the discrete rating scale. The matrix at the top right corner is the predicted matrix
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obtained after the application of the MMMF algorithm over the input matrix Y . Following
the geometrical interpretation of MMMF, we have identified the highly confident predic-
tions corresponding to the unobserved entries in the input matrix Y . Similarly, we have
also marked the observed entries predicted with low confidence. The detailed procedure is
explained in Section 4.1. In Stage 2, a subset of ratings identified to be predicted with high
confidence is included in the matrix Y . The matrix at the bottom right corner shows the
resultant matrix after the augmentation phase, with color-coded entries denoting the newly
added ratings. Finally, in the refinement phase, the observed entries of matrix Y marked to
be predicted with low confidence in Stage 1 are removed. The matrix shown in the bottom
left corner, obtained after Stage 3, is given as input to the next iteration of ST-MMMF.

4.1. Data Augmentation and Refinement

In the original proposal of MMMF, the authors used the all-threshold hinge function
to calculate the prediction loss corresponding to the observed entries in the rating matrix.
Geometrically, the all-threshold hinge function not only tries to embed the points rated as
r by the ith user into the region defined by (Ui, θi,r−1) and (Ui, θi,r) but also consider the
position of the points with respect to other hyperplanes. This is more reasonable in discrete
ordinal rating prediction, where it is always better to predict ‘2’ than ‘5’ if the true label
is ‘1’, unlike the multi-class classification setting where all mistakes are equal. Hence, it
is desirable that Vj, an embedding for jth item rated by the ith user, should satisfy the
condition UiV

T
j − θi,r−1 > 0 for r < yij and UiV

T
j − θi,r < 0 for r ≥ yij. For every ith user,

the points falling in the region defined by (Ui, θi,r−1) and (Ui, θi,r) are assigned rating r in
the prediction.

Figure 3: Overview of ST-MMMF for rating imputation.

ST-MMMF data augmentation and refinement process exploits the geometrical interpre-
tation of MMMF. We assume that the region towards the center defined by (Ui, θi,r−1) and
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Algorithm 1: ST-MMMF ( Y , d, K, λ, τ1, τ2)

Input : Rating Matrix: Y , Size of Latent Dimension Space: d, Regularization

Parameter: λ1, Parameters for Rating Augmentation and Refinement: τ1

and τ2, Sampling Percentage = s

Output: Predicted Rating Matrix: Ŷ

repeat
Ω ← Index(Y ̸= 0)

Y A = [0]N×M

U, V,Θ ←MMMF (Y, d, λ) /* U ∈ RN×d, V ∈ RM×d and Θ = [θij] ∈ RN×R−1 */

X ← UV T

Ŷ ← Discretize (X, Θ)

for i← 1 to N do
ϑi ← AvgDist(θi,1, θi,2, . . . , θi,R−1)

end

/* Augmentation */

foreach ij /∈ Ω do

for r ← 1 to R do
/* θi,0 ← −∞ and θi,R ← +∞ */

if find ‘r’ satisfying Equation (12) then yAij ← r ;

end

end

/* Refinement */

foreach ij ∈ Ω do

for r ← 1 to R do

if find ‘r’ satisfying Equation (13) then yij ← 0 ;

end

end

Y ← Y+ Sample(Y A, s)

until stop criterion reached ;

(Ui, θi,r) contains the points for which rating r is predicted with high confidence. Hence, the
unobserved entry yij satisfying the following condition is augmented with rating r for the
next round of the training process.

θi,r−1 + ϑi ∗ τ1 < UiV
T
j < θi,r − ϑi ∗ τ1 (12)
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Here, ϑi =
1

R−2

∑R−1
r=2 (θi,r − θi,r−1) is the average gap between consecutive pairs of threshold

values learnt for the ith user. τ1 < 0.5 is a shifting parameter used to define the region to-
wards the center bounded by (Ui, θi,r−1) and (Ui, θi,r). In other words, Equation (12) defines
the region of high confidence for the ith user. Any unobserved entry yij satisfying Equa-
tion (12) is then correctly classified as rating r with high confidence. The high-confidence
region for the rating augmentation is depicted in Figure 3. Similarly, the known yij falling
closer the boundary defined by (Ui, θi,r) can be termed as input data with low confidence.
Hence, the observed entry yij satisfying the following condition is discarded for the next
round of the training process.

θi,r − ϑi ∗ τ2 < UiV
T
j < θi,r + ϑi ∗ τ2 (13)

Here, ϑi is the same as defined previously, and τ2 < τ1 is a shifting parameter. Algorithm 1
outlines the main flow of the proposed method where the training set is augmented by adding
all the ratings selected with (τ1, s).

4.2. Handling Skewed Dataset

The ratings are nonuniformly distributed in many real-world datasets and therefore,
in the data augmentation process, the rating label with the highest proportion tends to
be augmented more frequently than that with a smaller proportion. This will result in
the eventual degradation of the quality of the training set. We take into account rating
distribution in the current training set while performing the augmentation to overcome the
possible degradation. The frequency of augmenting rating labels with low distribution is
made more frequently than those with high distribution. Let Zi denote the ratio of ith label
rating in the training set, and S(τ1, s) is the set of ratings selected with the hyperparameters
(τ1, s) for the augmentation. We compute the total number of samples to be augmented to
each rating label from the set S(τ1, s) on the following basis.

(1− Z1)∑R
j=1(1− Zj)

:
(1− Z2)∑R
j=1(1− Zj)

: · · · : (1− ZR)∑R
j=1(1− Zj)

(14)

Furthermore, to avoid the drastic change in rating distribution, the training set can be
augmented with a small proportion of ratings predicted with high confidence. The maximum
number of ratings that can be augmented in each iteration of ST-MMMF is set to 5000 for
our experimental analysis.

4.3. Complexity Analysis

In this section, we analyze the computational complexity of the proposed method. The
time complexity of ST-MMMF mainly comprises of two components: 1) Learning the latent
factor matrices U and V corresponding to users and items, respectively, and a threshold
matrix Θ consisting of R − 1 thresholds for each user; and 2) Computation requires for
augmentation and refinement. The optimization problem of MMMF given in Equation 2
requires major computations for matrix multiplication. For the simplicity of representation,
we assume that the cost of multiplying two matrices of size N × d and M × d is O(NMd).
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The updation of matrix U requires (R−1) time multiplication of two matrices of size N×M
and M ×d in the worst case. A similar computation is required for the updation of matrices
V and Θ. Hence, the overall computation required to learn the matrices U , V , and Θ using
MMMF is O(3t1(R − 1)(NMd)), that is, O(t1RNMd), where t1 is the maximum number
of gradient iteration (Veeramachaneni et al., 2019). The augmentation and refinement pro-
cess inherently calculates two thresholds for each rating level defining the left and right
boundary. During the augmentation phase, only unobserved entries are considered whereas
the refinement phase takes into account observed entries. In summary, each real-valued
prediction is compared with (2 × R) thresholds. Hence, the computation cost required for
the augmentation and refinement phase is O(2RMN), that is, O(RNM). Let t2 denote
the maximum number of iterations required for ST-MMMF. Hence, the overall computation
cost of the proposed method is O(t2(t1RNMd+RNM)), that is, O(t1t2RNMd).

5. Experiments

This section reports the experimental analysis of the proposed ST-MMMF algorithm.
The performance of the rating imputation task is evaluated in terms of the predictive per-
formance of the proposed approach as compared to several existing baseline approaches.

Table 1: Characteristics of MovieLens dataset

Dataset Users Movies Ratings Scale Sparsity
Movielens 100K 943 1682 100, 000 1-5 94%
Movielens 1M 6040 3952 1, 000, 209 1-5 96%

5.1. Experimental Settings

We conduct experiments on two publicly available movie rating datasets: MovieLens
100K and MovieLens 1M 1. The datasets are preprocessed, and users with less than 20
observed ratings are removed. The detailed characteristics of these datasets are reported
in Table 1. Figure 5a and 5b show the distribution of ratings in MovieLens 100K and
MovieLens 1M datasets, respectively.

We adopted the following two evaluation metrics most widely used to evaluate the rec-
ommendation performance of the methods, i.e., mean absolute error (MAE) and root mean
square error (RMSE).

MAE =

∑
ij∈Ω |yij − ŷij

|
|Ω|, RMSE =

√∑
ij∈Ω(yij − ŷij)2

|Ω|
,

We consider SVD (Koren et al., 2009), NMF (Luo et al., 2014), SVD++ (Koren, 2008)
and Co-Clustering (George & Merugu, 2005) as our baseline algorithms for the perfor-
mance evaluation. We have used the Surprise (Hug, 2020) library to run the baseline

1https://grouplens.org/datasets/movielens/

12

https://grouplens.org/datasets/movielens/


Figure 4: Influence of hyper-parameters τ1 and s

algorithms and tunning the hyperparameters after each stage of the augmentation pro-
cess. For ST-MMMF, the regularization value λ is tuned from the candidate set {10 i

16},
∀i ∈ {1, 5, ..., 40}. The value of sampling percentage s in every iteration of ST-MMMF is
searched in {10, 20, . . . , 100}. The parameter τ1 used to determine the high confidence region
is tuned from {5, 10, 15, . . . , 45, 49.99} and the parameter τ2 is fixed to 10, defining it as the
low confidence region and refined noise in each iteration. Figure 4 shows the performance
of ST-MMMF in terms of MAE on the Movielens 100K dataset. The MAE reported is an
average of 50 runs for every pair of (τ1, s) for a fixed value of regularization parameter λ.
We select τ1 = 49.99 and s = 100 corresponding to the smallest MAE for subsequent exper-
iments on both datasets. Furthermore, we randomly selected 80% of the observed ratings
for training and the remaining 20% as the test set. The prediction accuracy averaged over
three runs is reported.

5.2. Results and Analysis

We first analyze the effect of rating distributions on the prediction accuracy of each
rating. It can be seen in 5a and 5b that the ratings exhibit imbalanced distribution, and
the difference between the items rated 1 and 4 is significantly large. This would result
in predictive bias where ratings with large samples may subsume ratings with a few sam-
ples (Kumar et al., 2017a). Our augmentation process discussed in Section 4.2 takes care
of such imbalance rating distribution. To validate the proposed augmentation strategy, we
have conducted some initial investigation using MMMF (Rennie & Srebro, 2005) over both
datasets.

Table 2 and 3 show the effect of augmentation on individual rating prediction using
MovieLens 100K and MovieLens 1M datasets, respectively. We also calculated label-wise
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Table 2: Effect of imputation on MovieLens 100K dataset. ‘*’ indicates that the measure is not applicable.

(a) Confusion matrix after the 1st iteration.

Predicted

1 2 3 4 5 HR@0 HR@1 HR@2 HR@3 HR@4

A
ct
u
al

Training-set

1 2086 1865 864 70 3 0.4268 0.3815 0.1768 0.0143 0.0006

2 160 3198 5296 432 10 0.3516 0.5998 0.0475 0.0011 ∗
3 9 225 16254 5173 55 0.7485 0.2486 0.0029 ∗ ∗
4 0 10 2809 23892 628 0.8739 0.1257 0.0004 0 ∗
5 0 4 159 7030 9767 0.5759 0.4145 0.0094 0.0002 0

Test-set

1 231 248 505 230 8 0.1890 0.2029 0.4133 0.1882 0.0065

2 82 331 1263 583 15 0.1456 0.5915 0.2564 0.0066 ∗
3 30 285 2843 2146 125 0.5237 0.4478 0.0286 ∗ ∗
4 19 68 2033 4249 466 0.6217 0.3656 0.0099 0.0028 ∗
5 4 18 391 2692 1136 0.2679 0.6348 0.0922 0.0042 0.0009

(b) Confusion matrix after the 50th iteration.

Predicted

1 2 3 4 5 HR@0 HR@1 HR@2 HR@3 HR@4

A
ct
u
al

Training-set

1 26470 1522 1101 246 29 0.9013 0.0518 0.0375 0.0084 0.001

2 296 39298 5050 881 64 0.8620 0.1173 0.0193 0.0014 ∗
3 124 570 61769 5653 258 0.9034 0.0910 0.0056 ∗ ∗
4 24 154 4519 66761 802 0.9239 0.0736 0.0021 0.0003 ∗
5 6 34 650 7708 56688 0.8710 0.1184 0.0100 0.0005 0.0001

Test-set

1 243 237 505 229 8 0.1989 0.1939 0.4133 0.1874 0.0065

2 79 341 1261 580 13 0.1500 0.5893 0.2551 0.0057 ∗
3 28 261 2854 2164 122 0.5257 0.4467 0.0279 ∗ ∗
4 18 67 1921 4348 481 0.6361 0.3514 0.0098 0.0026 ∗
5 4 17 383 2685 1152 0.2716 0.6331 0.0903 0.0040 0.0009
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Table 3: Effect of imputation on MovieLens 1M dataset. ‘*’ indicates that the measure is not applicable.

(a) Confusion matrix after the 1st iteration.

Predicted

1 2 3 4 5 HR@0 HR@1 HR@2 HR@3 HR@4

A
ct
u
al

Training-set

1 27187 14822 2817 111 2 0.6050 0.3298 0.0627 0.0025 0

2 1454 47408 35883 1296 4 0.5510 0.4336 0.0151 0 ∗
3 40 3499 166131 39166 121 0.7950 0.2042 0.0008 ∗ ∗
4 1 41 21005 251053 7076 0.8993 0.1006 0.0001 0 ∗
5 3 2 537 44048 136458 0.7537 0.2433 0.0030 0 0

Test-set

1 3530 3530 3473 643 59 0.3142 0.3142 0.3091 0.0572 0.0053

2 2029 5314 9988 4106 75 0.2470 0.5586 0.1909 0.0035 ∗
3 1077 5133 23398 19980 2652 0.4479 0.4807 0.0714 ∗ ∗
4 71 1909 17845 40173 9797 0.5756 0.3960 0.0274 0.0010 ∗
5 32 89 4966 22351 17824 0.3938 0.4938 0.1097 0.0020 0.0007

(b) Confusion matrix after the 50th iteration.

Predicted

1 2 3 4 5 HR@0 HR@1 HR@2 HR@3 HR@4

A
ct
u
al

Training-set

1 84016 13840 3267 235 39 0.8286 0.1365 0.0322 0.0023 0.0004

2 2236 100004 35825 1727 48 0.7151 0.2722 0.0123 0.0003 ∗
3 281 4684 209436 39915 472 0.8220 0.1750 0.0030 ∗ ∗
4 68 323 24209 287691 8165 0.8978 0.1010 0.0010 0.0002 ∗
5 17 74 949 44973 182672 0.7988 0.1967 0.0041 0.0003 0.0001

Test-set

1 3587 3502 3450 640 56 0.3193 0.3117 0.3071 0.0570 0.005

2 1992 5418 9960 4083 59 0.2519 0.5556 0.1898 0.0027 ∗
3 1057 5082 23525 19956 2620 0.4503 0.4793 0.0704 ∗ ∗
4 40 1854 17799 40370 9732 0.5784 0.3945 0.0266 0.0006 ∗
5 21 75 4886 22285 17996 0.3976 0.4923 0.1079 0.0017 0.0005
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(a) MovieLens 100K (b) MovieLens 1M

Figure 5: Rating Distribution

statistics to measure the number of times, on average, the actual and predicted rating labels
differ with ±K distance. For simplicity, we denoted this as HR@K, where HR@0 for any
rth rating label is the fraction of hits to the rth rating label in the prediction. As discussed,
this statistic is more useful in discrete ordinal rating prediction. It is always better to predict
‘2’ than ‘5’ if the actual label is ‘1’, unlike the multi-class classification setting where all
mistakes are equal. The proposed augmentation strategy leads to a more balanced dataset
and improves individual label prediction accuracy.
We next evaluated the performance of each baseline algorithm with the augmented training
set. After each round of the augmentation process, the baseline models are retrained, and
their performance over the test set is recorded. Figure 6 reports the results related to
this experiment. It can be seen that the process of data augmentation brings substantial
improvements to the performance of each baseline algorithm. Furthermore, it can also be
seen that the performance of several baseline algorithms starts decreasing after a few rounds
of augmentation. The reason is that test sets are created before the augmentation process
begins. Hence, the proportion of the rating label in the test set nearly follows the same
initial rating distribution. After several rounds of the augmentation process, the rating
distribution in the training set becomes more balanced. In contrast, the rating distribution
in the test set remains unchanged, leading to decreased performance over the test set. This
result prompts a new line of future research of deciding the maximum tolerable percentage
of ratings that can be imputed to the rating matrix.
We also experiment to validate that the proposed rating augmentation process satisfies
certain desirable properties such as monotonicity and invariance. By monotonicity, we
mean that the proposed augmentation process exhibits significant overlap among the ratings
predicted with high confidence across iterations. In other words, The entries that satisfy
Equation (12) in an iteration continue to be of high confidence in subsequent iterations. The
augmentation process is said to be decision invariant if the percentage of ratings predicted
with high confidence increases in each subsequent iteration. We have reported the output
of the first five runs of ST-MMMF on MovieLens 100K in Table 4. It can be seen from the
table that our proposed approach satisfies both the crucial properties of the augmentation
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(a) MAE for MovieLens 100K (b) MAE for MovieLens 1M

(c) RMSE for MovieLens 100K (d) RMSE for MovieLens 1M

Figure 6: Performance of baseline algorithms on MovieLens 100K dataset

Table 4: Effect of data augmentation

# Iteration # Observed
entries

# Unobserved
entries

# Unobserved en-
tries predicted with
high-confidence

# Ratings
augmented

# Overlap between
the ratings pre-
dicted with high
confidence

1 80000 1506126 395851 5000 NA
2 85000 1501126 485458 5000 374637
3 90000 1496126 538751 5000 467698
4 95000 1491126 565265 5000 519462
5 100000 1486126 604835 5000 552333
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process. We have observed similar performance in the refinement process.

6. Conclusions and Future Work

This paper presented a novel self-training-based semi-supervised approach, ST-MMMF,
for rating augmentation and refinement that uses maximum-margin matrix factorization
(MMMF) as the base learner. The proposed rating augmentation and refinement process
exploits the geometrical interpretation of MMMF. The proposed approach is an iterative
scheme that uses some of the ratings predicted with high confidence in every iteration to
augment the training set. The ratings predicted with low confidence are removed from the
training set in the refinement phase. Extensive experimental studies performed over the
two highly imbalanced real-world rating datasets corroborate our claim that the proposed
approach significantly reduces the prediction bias of MMMF toward rating labels of high
samples. Furthermore, we also evaluated the performance of several state-of-the-art algo-
rithms to validate that the proposed rating augmentation strategy is likely to reduce or
alleviate the data sparsity problem.

There are numerous avenues for future research, addressing several issues with the pro-
posed approach and possible modeling extension to different application areas. It is inter-
esting to see whether ST-MMMF can be further improved by considering side information
from other auxiliary domains, thereby enabling a more robust and meaningful confidence
association with the predicted ratings. This line of research is more applicable to scenarios
such as route recommendations that require the incorporation of multi-modal transport and
locations of facilities/services (Zhang et al., 2011; Liao et al., 2013). Extension of the pro-
posed approach to diverse applications, especially in scenarios where abundant information
is unavailable for the modeling, such as course (Parameswaran et al., 2011) and tourism des-
tination recommendations (Lucas et al., 2013), presents a compelling direction for further
exploration. Furthermore, a significant issue worth exploring involves applying the proposed
approach in the problem area where the observed entries do not have any predefined order.
A comprehensive study in this direction is required where the objective function of the un-
derlying maximum margin matrix factorization algorithm needs to be carefully modified to
align with the principles of multi-class classification problems while preserving the maximum
margin property. We plan to investigate these aspects in the future.
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