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Abstract—Multi-view clustering can explore consistent infor-
mation from different views to guide clustering. Most existing
works focus on pursuing shallow consistency in the feature
space and integrating the information of multiple views into
a unified representation for clustering. These methods did not
fully consider and explore the consistency in the semantic space.
To address this issue, we proposed a novel Multi-level Consis-
tency Collaborative learning framework (MCoCo) for multi-view
clustering. Specifically, MCoCo jointly learns cluster assignments
of multiple views in feature space and aligns semantic labels
of different views in semantic space by contrastive learning.
Further, we designed a multi-level consistency collaboration
strategy, which utilizes the consistent information of semantic
space as a self-supervised signal to collaborate with the cluster
assignments in feature space. Thus, different levels of spaces
collaborate with each other while achieving their own consistency
goals, which makes MCoCo fully mine the consistent information
of different views without fusion. Compared with state-of-the-
art methods, extensive experiments demonstrate the effective-
ness and superiority of our method. Our code is released on
https://github.com/YiyangZhou/MCoCo.

Index Terms—Multi-view clustering, Consistency collaborative,
Semantic consensus information.

I. INTRODUCTION

MLTI-VIEW data are collected by different collectors
and feature extractors, and different views show hetero-

geneity. Compared with the traditional single-view data, it is
informative and can provide a more comprehensive description
of objects [1]–[5]. Thanks to these advantages, multi-view
clustering (MVC) has attracted more and more attention in
recent years. Existing MVC methods can be roughly divided
into traditional methods and deep methods.

Traditional methods can be further divided into three sub-
categories: (1) Subspace-based clustering methods [2], [6]–
[11], where a shared low-dimensional representation that in-
tegrates multi-view information and a similarity matrix is
mined for clustering. (2) Clustering method based on non-
negative matrix decomposition [12]–[14], which decomposes
each view into a low-rank matrix for clustering. (3) Graph-
based clustering method [15]–[20], mining graph structure
information to guide multi-view clustering.

The deep neural network has shown excellent performance
in many fields in recent years [21]–[23]. In order to utilize
the ability of the deep network to capture nonlinear features
and deal with clustering tasks of large-scale data [24], [25],
many MVC methods based on the deep network have appeared
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Fig. 1. An illustrative example of our motivation. (a) Showing the mapping
between two views. (b) Taking view 1 as an example, it shows the collabora-
tive learning process of semantic labels and cluster assignments. If there are
three categories in the dataset, different categories are represented by different
colors, and same shapes represent samples with similar semantic information.

recently [1]–[3], [26]–[28]. Most of them focus on integrating
the information of multiple views into a comprehensive repre-
sentation and pursuing the consistency of different views only
in feature space, ignoring that the fusion of multiple views’
features may cause some views with fuzzy clustering structure
to interfere with the performance of the final representation,
which may decline the performance of the model with the
increase of the number of multi-view data views.

Aiming at these problems, some research on the non-fusion
MVC method appeared [25], [26], [29], [30]. In order to
obtain consistent cluster assignments of different views in
feature space for clustering, most of them align the cluster
assignments of different views to the cluster assignment of the
common feature. Compared with fusing multiple views into a
complete representation, the non-fusion model can avoid the
negative impact of the view with a fuzzy cluster structure.
As shown in Figure 1(a), the two separated views have clear
cluster assignment mapping in the global space, so view 2
with a clear cluster structure can guide the cluster separation
of view 1 by using the cluster assignments collaboration of dif-
ferent views. The existing non-fusion MVC methods basically
focus on the alignment of cluster assignments in feature space.
As shown at the top of Figure 1(b), although view 1 can be
separated into three clusters through collaborative training of
other views’ cluster assignments, it is difficult to separate some
overlapping areas in low-dimensional feature space because
the computational essence of cluster assignment is mapping
the distance between the low-dimensional features of views
and their respective cluster centers into pseudo-labels [24],
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Fig. 2. Overview of MCoCo. Given m views, each view X(m) is mapped to its feature space Z(m) by encoder Em and decoder Dm. Z(m) is utilized
to construct the cluster assignment Q(m) by Eq.9. Based on a shared semantic generator Gc, Z(m) is mapped into the semantic space S(m), where the
semantic labels {S(i)}mi=1 tend to be consistent by contrastive learning. Then, Q(m) and S(m) collaborate with each other to mine the multi-level consistent
information. The left part illustrates the influence of one view under multi-level collaborative learning: the gray arrow indicates that the cluster assignments
{Q(i)}mi=1 are jointly learned to make the sample closer to the cluster center, and the red arrow indicates the process of multi-level collaboration to correct
the misassigned samples, where the samples with similar semantic information are forced to be close to each other.

[31], [32].
To solve the problems in the above discussion, we present

a novel Multi-level Consistency Collaborative learning frame-
work (MCoCo). As illustrated in Figure 2, MCoCo consists of
two modules, namely, within-view reconstruction and multi-
level collaborative learning. We consider that the data of
different views describe the same object, which makes it
reasonable to exploit the consensus in the semantic space.
Further, in the multi-level collaborative learning module, a
well-designed multi-level consistency collaboration strategy
uses consistent semantic information to help the clustering
assignments in feature space in a self-supervised manner. As
shown in Figure 1(b), suppose that there are three categories
in the dataset. Different categories are represented by different
colors, and the same shape indicates that the samples with
similar semantic information. In feature space, we jointly
learn the cluster assignments of each view, while in semantic
space, the semantic labels of different views tend to be similar
through contrastive learning. Then, as shown in the middle of
Figure 1(b), under the collaboration of the semantic labels
the misassigned samples can be corrected. The consistent
information of different levels of spaces collaborate with each
other, which enables MCoCo to learn discriminating clustering
assignments and mine the multi-level consistent information in
multiple views.

The main contributions of the proposed method can be
summarized as follows:

• We introduce a novel Multi-level Consistency Collabo-
rative learning framework (MCoCo) for multi-view clus-

tering, which can mine multi-level consistent information
to guide clustering under the collaboration of consistent
information in different levels of spaces.

• We propose a brand-new multi-level consistency collab-
oration strategy that allows MCoCo to achieve the re-
spective consistency goals of feature space and semantic
space while realizing multi-level space collaboration.

• Extensive experiments are conducted on diverse bench-
mark datasets, and experimental results demonstrate its
state-of-the-art clustering performance.

II. RELATED WORK

1) Deep Single-view Clustering: The emergence of deep
neural networks has led to rapid development in various fields
of computer science, and deep networks have been used by
researchers to handle clustering tasks. The most representative
work in deep single-view clustering is [31], which is an end-
to-end learning method that can automatically learn feature
representations and cluster assignments for data. It maps data
to a low-dimensional feature space and iteratively optimizes a
clustering objective to achieve simultaneous learning of feature
representations and cluster assignments. Subsequently, many
variant versions emerged in the continuation of this work [33],
[34]. [35] is a new mechanism proposed for clustering using
GANs. This is achieved by sampling from a mixture of one-hot
encoded variables and continuous latent variables, and training
an inverse network which projects the data to the clustering
latent space. These methods have achieved impressive progress
in the field of deep single-view clustering. However, they can
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only handle individual views and cannot effectively leverage
the rich information provided by multi-view data to enhance
clustering performance.

2) Multi-view Clustering: Multi-view clustering is a chal-
lenging and important branch of multi-view learning research
that aims to explore the rich semantic information in multiple
views and use this information to guide clustering in low-
dimensional space [36], [37]. For multi-view clustering, the
key is to explore the consistency information among multi-
ple views. CCA-based methods [38]–[41] aim to maximize
the canonical correlation between different views to uncover
the consistent information among them. For two views, the
paradigm of CCA-based methods can be summarized as
follows:

min
β1,β2

−corr(f1(X
(1);β1),f2(X

(2);β2))+λreg(β1, β2), (1)

where f1(·;β1) and f2(·;β2) are two embedding strategies
with parameters β1 and β2. corr(·) and reg(·) indicate the
canonical correlation function and the regularization term
respectively. In [41] f1(·;β1) and f2(·;β2) are both deep
neural networks. As for [38] f1(·;β1) and f2(·;β2) are utilized
to learn bottleneck representations of two autoencoders. In
addition, some CCA-based methods [42]–[44] also consider
utilizing graph information to guide clustering.

More, [45] integrates low-dimensional embedding represen-
tations and applies low-rank tensor constraints on the subspace
representations of multiple views to construct a comprehensive
feature representation, incorporating rich information across
the views. [46] is capable of generating a unified multi-
view spectral representation through the introduction of an
orthogonal constraint and reformulation strategy that utilizes
Cholesky decomposition during the learning process. This
approach enables the model to effectively capture and ex-
ploit information across multiple views. [47] relies on the
information bottleneck principle to integrate shared represen-
tation among different views and view-specific representation
of each view, promoting a comprehensive representation of
multi-views and flexibly balancing the complementarity and
consistency among multiple views. [48] is a novel multi-
view clustering method that uses m sub-cluster centers to
reveal the sub-cluster structure in multi-view data, thereby
improving clustering performance. To fully utilize complemen-
tary information between different views, it uses a multi-view
combination weights strategy to automatically assign weights
and properly fuse information from different views to obtain an
optimally shared bipartite graph. [28] and [18] explored high-
order correlations and graph information in multiple views in a
shared representation space, respectively, and achieved equally
encouraging results.

Most existing methods focus on integrating multiple views
into a shared low-dimensional space for clustering, while
this paper differs from the majority of methods by utilizing
consistent information across different views at multiple levels
to guide learning of a discriminative clustering assignment.
The non-fusion strategy can avoid negative impacts from views
with ambiguous clustering assignments during fusion.

3) Contrastive Learning: Contrastive learning [49], [50]
is one of most effective unsupervised representation learning

TABLE I
MAIN SYMBOLS USED IN THIS PAPER.

Symbol Meaning

m The number of views.

N The number of samples.

X(i) The original feature representation in i view.

Z(i) The view-specific feature representation in i view.

S(i) The semantic label of the i-th view.

Q(i) The clustering allocation distribution of the i-th view.

DZ The dimensionality of Z(i)

Di The dimensionality of X(i)

paradigm that aims to minimize the spatial distance or maxi-
mize the similarity between positive pairs, while maximizing
the spatial distance between them and their corresponding
negative pairs. In recent years, contrastive learning has made
remarkable progress in representation learning and computer
vision, such as [51] and [52]. With the utilization of deep
networks in multi-view clustering, contrastive learning has
also been widely used in multi-view clustering work, such
as [27], [53]–[55]. [27] is base on information theory, which
maximizes the mutual information between different views
through contrastive learning, and solves the problem of view
missing through a bidirectional prediction network. A end to
end online image clustering method was proposed in [53],
where contrastive learning was used to explore the consistency
information between clustering space and instance space. A
multi-view representation learning method [56] is proposed
to apply contrastive learning for solving graph classification
problems. [26] optimizes the objectives of different feature
spaces separately through contrastive learning, and solves the
conflict between view reconstruction loss and consistency loss.

III. METHOD

In this section, we introduce the proposed method, termed
Multi-level Consistency Collaborative Multi-view Clustering
(MCoCo). A multi-view dataset {X(i)}mi=1 with m view, the
i-th view is denoted by X(i) ∈ RN×Di , where N denotes the
number of samples and Di represents the dimension of the
view. In order to be more clear and concise, we have listed
the main symbols used in this article in Table I. MVC aims
to partition the examples into k clusters.

A. Loss Function

The loss function of MCoCo can be formulated as follows:

L = LRe + LCo, (2)

where LRe is the loss of within-view reconstruction and LCo
denotes multi-level collaborative learning loss.

B. Within-view reconstruction

Generally, the dimensions and input forms of different views
of multi-view data are quite different, and at the same time,
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Algorithm 1 Optimization algorithm of MCoCo

Input: Multi-view dataset {X(i)}mi=1; Parameter τ ; Number
of categories k.

Output: Cluster assignment Y.
1: Initialize {θi, φi}mi=1 by minimizing Eq.5;
2: Initialize views’ cluster centroids {µ(i)}mi=1 by k-means.
3: while not converged do
4: Obtain the view-specific representation {Z(i)}mi=1

through Eq.3;
5: Obtain semantic labels {S(i)}mi=1;
6: Obtain cluster assignments {Q(i)}mi=1 and it’s target

distribution {P(i)}mi=1 through Eq.9 and Eq.10;
7: Obtain the target distribution {S′(i)}mi=1 of semantic

space through Eq.11;
8: Update {θi, φi}mi=1, ϕ and {µ(i)}mi=1 with Eq.2;
9: end while

there may be some redundant information in the original data.
To learn a reliable representation for each view, we map the
data of different views into a low-dimensional feature space
by inputting the data X(i) into the respective encoder Ei(·; θi)
with parameter θi:

Z
(i)
j = Ei(X

(i)
j ; θi), (3)

where X
(i)
j is the j-th sample of X(i) and Z

(i)
j ∈ RDZ

denotes the representation in the DZ-dimensional feature
space. Then we input this low-dimensional feature into the
decoder Di(·;φi) with parameter φi for reconstruction:

X̂
(i)
j = Di(Z

(i)
j ;φi), (4)

where X̂
(i)
j is the reconstructed sample. By minimizing the

flowing reconstruction loss LRe, we can transform the input
X(i) into the representation Z(i):

LRe =
m∑
i=1

N∑
j=1

||X(i)
j −Di(Ei(X

(i)
j ; θi);φi)||22. (5)

C. Multi-level Collaborative Learning

Based on the within-view reconstruction, we can obtain the
low-dimensional representations {Z(i)}mi=1 of different views.
In order to use the multi-level consistency information of
multi-view data to guide clustering, MCoCo achieves respec-
tive consistency goals in semantic and feature space, and
makes multi-level spaces collaborate with each other.

Overall, the loss function LCo of this section consists of
two parts:

LCo = λ1LSe + λ2LMl, (6)

where LSe is the loss of semantic consistency, LMl indicates
the multi-level consistency loss. Regarding λ1 and λ2, they
are two trade-off parameters.
Contrastive learning of semantic consistency

Because the data of different views describe the same object,
different views should have similar semantic labels. Then the
aligned semantic labels can be used as a self-supervised signal
to modify the cluster assignments in feature space, which

makes the obtained cluster assignments more discriminating.
In this section, we explain how to obtain consistent semantic
labels. Specifically, We obtain the semantic labels of each
view {S(i) ∈ RN×k}mi=1 by inputing {Z(i)}mi=1 into a shared
semantic generator Gc(·;ϕ) with the parameter ϕ, which is
constructed by fully connected neural networks. The S

(m)
ij

represents the probability that the i-th sample in view m
belongs to the j-th class. To effectively excavate the variable
semantic consensus information in semantic space and make
semantic labels of different views tend to be consistent, the
contrastive learning of semantic consistency is introduced
here. For S

(m)
·j , there are (mk − 1) column vector pairs

{S(m)
·j ,S

(w)
·c }w=1,...,m

c=1,...,k , of which {S(m)
·j ,S

(w)
·j }w 6=m can form

(m− 1) positive pairs and the remaining m(k− 1) pairs form
negative pairs. The cosine similarity is utilized to measure the
similarity between two semantic column vectors:

d(S
(i)
·j ,S

(j)
·c ) =

S
(i)
·i · S

(j)
·c

||S(i)
·i ||||S

(j)
·c ||

. (7)

We define the semantic consistency loss l(i, j) between S(i)

and S(j) as:

− 1

k

k∑
c=1

log
ed(S

(i)
·c ,S

(j)
·c )/τ

(
∑k
w=1(e

d(S
(i)
·c ,S

(i)
·w )/τ + ed(S

(i)
·c ,S

(j)
·w )/τ )− e 1

τ

,

where τ is the temperature parameter. The complete con-
trastive learning loss of semantic consistency can be formu-
lated as follows:

LSe =
1

2

m∑
i=1

m∑
j=1,j 6=i

l(i, j)

+

m∑
i=1

k∑
c=1

(
1

N

N∑
j=1

S
(i)
jc log

1

N

N∑
j=1

S
(i)
jc ).

(8)

The second part of Eq.8 is a regularization term, which can
avoid grouping all samples into the same cluster.
Multi-level consistency collaboration

In order to obtain the clustering assignments of each view in
feature space, we initialize the learnable parameters {µ(i)

j ∈
RDZ}kj=1 by k-means [31], where µ

(i)
j represents the j-th

cluster centroid of the i-th view. According to [24], [29],
[31], we use Student’s t-distribution to generate soft cluster
assignments, which can be described as:

Q
(m)
ij =

(1 + ||Z(m)
i − µ(m)

j ||2)−1∑
j(1 + ||Z

(m)
i − µ(m)

j ||2)−1
, (9)

where Q
(m)
ij is treated as the pseudo label that represents the

probability of assigning the i-th sample of the m-th view
to the j-th category. The higher probability of pseudo label
means that the high probability components of pseudo label
has higher confidence. In order to increase the discrimination
ability of pseudo label with higher confidence, we enhance
Q

(m)
ij to an auxiliary target distribution P(m) with the opera-

tion of square and normalization:

P
(m)
ij =

(Q
(m)
ij )2/

∑
iQ

(m)
ij∑

j((Q
(m)
ij )2/

∑
iQ

(m)
ij )

. (10)
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TABLE II
THE INFORMATION OF THE DATASETS IN OUR EXPERIMENTS.

Dataset #Sample #Cluster #View #Dimensionality of features

MNIST-USPS 5000 10 2 {784, 784}
Multi-COIL-20 1440 20 3 {1024, 1024, 1024}
BDGP 2500 5 2 {1750, 79}
Multi-MNIST 70000 10 2 {1024, 1024}
Multi-Fashion 10000 10 3 {784, 784, 784}
Noisy-MNIST 50000 10 2 {1024, 1024}
Caltech-2V 1400 7 2 {40, 254}
Caltech-3V 1400 7 3 {40, 254, 928}
Caltech-4V 1400 7 4 {40, 254, 928, 512}
Caltech-5V 1400 7 5 {40, 254, 928, 512, 1984}

In order to make multi-views collaborate with each other
to get consistent cluster assignments and, at the same time,
make use of the aligned semantic labels to weakly supervise
the cluster assignments in feature space, we propose a brand-
new multi-level consistency collaboration strategy, which can
achieve multi-level collaboration. Specifically, we enhance the
semantic labels of each view according to Eq.10 to get the
target distribution of semantic space:

S
′(m)
ij =

(S
(m)
ij )2/

∑
iS

(m)
ij∑

j((S
(m)
ij )2/

∑
iS

(m)
ij )

. (11)

As thus, the multi-level consistency loss LMl is defined as:

LMl =

m∑
k=1

(

m∑
c=1

(Dkl(P
(c)||Q(k))) +Dkl(S

′(k)||Q(k)))

=

m∑
k=1

N∑
i=1

k∑
j=1

(

m∑
c=1

(P
(c)
ij log

P
(c)
ij

Q
(k)
ij

) + S
′(k)
ij log

S
′(k)
ij

Q
(k)
ij

),

(12)

where Dkl indicates the Kullback-Leibler divergence. By opti-
mizing Eq.12, different views jointly learned with each other
in the feature space, and the samples with similar semantic
information attract each other. In this way, MCoCo can mine
multi-level consistency information to learn discriminating
clustering assignments.

MCoCo’s multi-level consistency collaboration strategy en-
ables it to obtain the consistent cluster assignments of multiple
views. In order to avoid the interference of a few false
predictions and realize clear cluster assignments with high
confidence, the final cluster assignment is calculated as fol-
lows:

Yi = argmax
j

(
1

m

m∑
k=1

Q
(k)
ij ). (13)

For clarification, the optimization procedure of MCoCo is
summarized in Algorithm 1.

IV. EXPERIMENTS

To verify the effectiveness of our method, extensive exper-
iments are conducted in this section. Furthermore, detailed
discussions of our method are provided as well.

A. Experiments Setup

Datasets. The benchmark datasets we used in our experiments
are shown in Table II:

1) MNIST-USPS [17]: It is a two-view dataset that contains
5000 handwritten digital image samples from numbers 0 to 9.

2) Multi-COIL-20 [57]: It is a three-view dataset containing
1440 pictures of 20 categories, and different views represent
different poses of the same object.

3) BDGP [58]: It is a two-view dataset containing 2500
images of drosophila embryos belonging to 5 categories, each
with visual and textual features.

4) Multi-MNIST [25]: It contains 70000 handwritten digital
images belonging to 10 classes, which have two views, and
different views imply the same digit written by different
people.

5) Multi-Fashion [59]: It has 10000 images collected from
10 categories about fashion products and has three views. We
use the same data set as [29], which randomly selects a sample
with the same label from this set to construct the second and
third view.

6) Noisy-MNIST [27]: It uses the original 70000 MNIST
images as the first view and randomly selects within-class
images with white Gaussian noise as the second view. We
followed the setting of article [22] and used a subset of Noisy-
MNIST containing 50000 samples.

7) Caltech-nV [60]: It is an RGB image dataset with
multiple views, which contains 1400 images belonging to 7
categories and have five views. Four sub-datasets, namely
Caltech-2V, Caltech-3V, Caltech-4V, and Caltech-5V, with
different numbers of views, are built for evaluating the ro-
bustness of the comparison methods in terms of the number
of views. Specifically, Caltech-2V uses WM and CENTRISTT;
Caltech-3V uses WM, CENTRIST, and LBP; Caltech-4V uses
WM, CENTRIST, LBP, and GIST; Caltech-5V uses WM,
CENTRIST, LBP, GIST, and HOG.
Evaluation metrics. Four metrics are utilized to evaluate the
clustering quality, i.e., Accuracy (ACC), Normalized Mutual
Information (NMI), Rand Index (RI), and Fscore. To elimi-
nate the randomness and make the experimental results more
reliable, we take ten trials for all experiments.
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TABLE III
CLUSTERING RESULTS ON SMALL-SCALE DATASETS. THE BEST AND SECOND BEST RESULTS HAVE BEEN MARKED IN BOLD AND UNDERLINED

RESPECTIVELY.

Datasets MNIST-USPS Multi-COIL-20 BDGP

Metrics ACC NMI Fscore RI ACC NMI Fscore RI ACC NMI Fscore RI

LMSC(2017) 0.373 0.433 0.404 0.771 0.683 0.766 0.613 0.954 0.524 0.432 0.556 0.604
AE2-Nets(2019) 0.626 0.623 0.567 0.903 0.740 0.862 0.771 0.964 0.552 0.406 0.501 0.661
DEMVC(2021) 0.901 0.930 0.897 0.979 0.825 0.935 0.871 0.980 0.609 0.529 0.557 0.818

DUA-Nets(2021) 0.751 0.689 0.930 0.660 0.602 0.711 0.597 0.946 0.603 0.406 0.539 0.762
DCP(2022) 0.891 0.941 0.928 0.976 0.690 0.887 0.621 0.958 0.438 0.385 0.534 0.542

SDMVC(2022) 0.937 0.943 0.913 0.983 0.809 0.905 0.823 0.981 0.965 0.909 0.934 0.961
CMRL(2023) 0.916 0.856 0.860 0.971 0.792 0.878 0.797 0.977 0.789 0.672 0.826 0.717

MCoCo(ours) 0.995 0.986 0.998 0.990 0.999 0.999 0.999 0.999 0.987 0.959 0.989 0.972

(a) Epoch 0 (b) Epoch 10 (c) Epoch 20 (d) Epoch 30 (e) Epoch 30(w/o Ml)

Fig. 3. The t-SNE visualization results of the BDGP dataset (view one) in Epoch 0, 10, 20, and 30. (e) showing the representation of view one learned by
MCoCo at epoch 30 without multi-level collaboration.

Comparison methods. The following state-of-the-art algo-
rithms are used for comparison:

1) LMSC [61]: It learns the latent unified representation by
mapping different views’ view-specific feature into a common
space and employing the low-rank subspace constraint.

2) AE2-Nets [3]: Nested autoencoders are used to learn the
compact unified representation by balancing the complemen-
tarity and consistency among multiple views.

3) DEMVC [22]: It proposed a non-fusion model of collab-
orative training among cluster assignments of multiple views.

4) DUA-Nets [1]: It presents the dynamic uncertainty-
aware networks for UMRL. By estimating and leveraging
the uncertainty of data, it achieves the noise-free multi-view
feature representation.

5) DCP [62]: It learns the unified multi-view representation
by maximizing the mutual information of different views via
contrastive learning in the feature space.

6) CMRL [45]: It introduces the orthogonal mapping
strategy and imposing the low-rank tensor constraint on the
subspace representations.

7) SDMVC [29]: It concatenates the features of multiple
views as global feature and uses global discriminative informa-
tion to supervise all views to learn more discriminative view-
specific features.
Implementation details. For all datasets, the ReLU [63]
activation function is used to implement autoencoders in
MCoCo. Adam optimizer [64] is employed for optimization.
Our method is implemented by PyTorch [65] on one NVIDIA
Geforce GTX 2080ti GPU with 11GB memory.

B. Experimental Result

We discuss the clustering performance of MCoCo compared
with other state-of-art algorithms on three different datasets:
small-scale datasets, large-scale datasets, and datasets with a
variable number of views. Generally speaking, the proposed
method can achieve the best performance in all cases.

The results on small-scale and large-scale datasets are
reported in Tables III and IV. We can observe that MCoCo
has achieved the best performance on all metrics, whether it is
a large-scale dataset or a small-scale dataset. Compared with
the second-best method, MCoCo’s ACC, NMI and Fscore are
all improved by more than 10% on Multi-COIL-20, Multi-
Fashion, and Noisy-MNIST. The main reason is that MCoCo
makes different levels of spaces collaborate with each other
while achieving their own consistency goals. In this way,
MCoCo can fully mine the multi-level consistent information
of different views, which is utilized to guide the process of
clustering. For Noisy-MNIST, the second view has a chaotic
clustering structure because of the white Gaussian noise. If
multiple views are fused or mapped to the same space, this
may cause the private information in the second view to have
a negative impact on the final clustering effect. Compared
with AE2-Nets, DCP, and DUA-Nets, which integrate multiple
views into a unified representation for clustering, MCoCo can
avoid the negative impact of private information of views with
white Gaussian noise. At the same time, it can be seen that
compared with traditional clustering methods based on matrix
decomposition, such as CMRL and LMSC, MCoCo has the
advantage of complexity in dealing with the clustering of
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TABLE IV
CLUSTERING RESULTS ON LARGE-SCALE DATASETS. DUE TO THE HIGH COMPLEXITY OF SOME METHODS, THE UNKNOWN VALUE IS REPRESENTED BY

”-”.

Datasets Multi-MNIST Multi-Fashion Noisy-MNIST

Metrics ACC NMI Fscore RI ACC NMI Fscore RI ACC NMI Fscore RI

LMSC(2017) - - - - 0.439 0.417 0.367 0.828 - - - -
AE2-Nets(2019) 0.737 0.645 0.624 0.924 0.729 0.763 0.716 0.935 0.220 0.098 0.162 0.813
DEMVC(2021) 0.996 0.997 0.996 0.996 0.720 0.848 0.778 0.926 0.589 0.714 0.633 0.900

DUA-Nets(2021) 0.795 0.742 0.713 0.943 0.772 0.761 0.727 0.945 0.179 0.066 0.145 0.808
DCP(2022) 0.793 0.905 0.747 0.952 0.757 0.862 0.822 0.948 0.786 0.883 0.740 0.921

SDMVC(2022) 0.998 0.996 0.998 0.998 0.860 0.876 0.845 0.965 0.557 0.527 0.460 0.887
CMRL(2023) - - - - 0.768 0.803 0.748 0.943 - - - -

MCoCo(ours) 0.999 0.998 0.999 0.999 0.991 0.977 0.996 0.982 0.994 0.981 0.998 0.988

(a) MNIST-USPS (b) Multi-COIL-20 (c) Multi-MNIST (d) Multi-Fashion (e) Noisy-MNIST

Fig. 4. The t-SNE visualization results of view one in MNIST-USPS, Multi-COIL-2O, Multi-MNIST, Multi-Fashion and Noisy-MNIST.

Fig. 5. Clustering results on Caltech-nV.

large-scale datasets.
In order to further verify our method, we conducted exper-

iments on datasets with a variable number of views. Figure
5 shows the clustering results on Caltech-nV with different
views. We can see that the clustering performance of MCoCo
grows steadily when the number of views increases. At the
same time, compared with AE2-Nets, CMRL, and LMSC,
which are methods that need to fuse different views, MCoCo
can effectively avoid the negative impact of views with chaotic
clustering structure on clustering results. All these indicate
that MCoCo can effectively mine different levels of consistent
information, and the way of non-fusion can reduce the negative
impact of unclear views on clustering.

C. Visualization Result

To vividly reveal the structure of the low-dimensional rep-
resentation Z(m), we visualize it achieved in Epoch 0, 10, 20,
and 30 of the MCoCo learning process based on the t-SNE.
The visualization results are shown in Figure 3. From Figure
3(d), we can see that the Z(m) with a promising structure can
be achieved by our method. As can be seen from Figure 3(e), if
the multi-level collaboration strategy is canceled, the clusters
in the overlapping area can’t be separated well.

To better demonstrate MCoCo’s ability to separate clusters
and obtain discriminative representations for each view on
multiple datasets, we present in Figure 4 the representations
obtained by MCoCo for the first view of the remaining datasets
in Table III and Table IV.

V. MODEL ANALYSIS

A. Ablation Studies

In order to verify the effectiveness of each part of our
method, we conduct ablation studies here. Consequently, we
discuss the learning process of our method with and without
LSe and LMl. Especially for canceling LMl, we mean cancel-
ing the second half of Eq.12, in other words, canceling multi-
level collaboration. We take the experiments on the BDGP
dataset as an example. The clustering results in metrics of
ACC and NMI are reported in Table V. From the experimental
results, we can find that: (1) In our proposed method, both LSe
and LMl can effectively improve the clustering performance;
(2) Compared with the original version, the ACC of the
complete MCoCo can be improved by 30%, which shows
that multi-level collaboration is very important for clustering
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(a) ACC in clustering task (b) NMI in clustering task (c) Sensitivity of τ

Fig. 6. Parameter sensitivity analysis of MCoCo on MNIST-USPS dataset.

Fig. 7. Convergence curve and clustering performance on MNIST-USPS
dataset. The X axis denotes training epochs, and the left and right Y axis
denote the evaluation metric value and corresponding loss value, respectively.

tasks; (3) According to the clustering performance of MCoCo
(view1) and MCoCo (view2), we can find that MCoCo can
align different views well.

More specifically, it can be seen from Figure 3: According
to Figure 3(a), it can be known that the different clusters in
the first view of the BDGP dataset overlap seriously, and
there are only two views in BDGP dataset. It is difficult
to collaboratively separate these overlapping clusters through
another view. If there is no collaboration of semantic labels
in semantic space, the result will be as shown in Figure
3(e). Different clusters in Figure 3(e) are difficult to separate,
resulting in poor clustering performance.

B. Parameter Sensitivity Analysis
To explore the sensitivity of MCoCo to hyper-parameters,

we first conducted an experiment on the MNIST-USPS dataset.
In the experiment, we set different values to λ1 and λ2
in Eq.6 and explore their influence on the clustering task
in the metric of ACC and NMI. In order to eliminate the
randomness of the experiment and make the experimental
results more reliable, our final results are all averaged by ten
times clustering experiments. The final experimental results
are shown in Figure 6(a) and Figure 6(b). From the results,
we can see that MCoCo is insensitive to the hyper-parameters
λ1 and λ2. In order to ensure the uniformity of all experiments,
λ1 and λ2 are all fixed at 1 in other experiments in this paper.

TABLE V
ABLATION STUDY ON BDGP DATASET. IN WHICH (VIEW 1) OR (VIEW 2)

INDICATES THAT THE FINAL RESULT IS ONLY OBTAINED BY CLUSTER
ASSIGNMENTS OF VIEW1 OR CLUSTER ASSIGNMENTS OF VIEW2.

Method Components Metrics

LSe LMl ACC NMI

MCoCo(view 1) 0.9848 0.9484
MCoCo(view 2) X X 0.9800 0.9479

MCoCo 0.9872 0.9592

MCoCo(view 1) 0.8120 0.7821
MCoCo(view 2) X 0.8092 0.7839

MCoCo 0.8152 0.7984

MCoCo(view 1) 0.6716 0.6488
MCoCo(view 2) X 0.6696 0.6478

MCoCo 0.6840 0.6543

For another hyper-parameter τ in Eq.8, we set τ to
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0} respectively, and do the same ten
times for each clustering experiment to finally get the average
value of metric NMI. Figure 6(c) shows the experimental
results on the dataset MNIST-USPS. The results show that
MCoCo is also robust to τ . Actually, for all other experiments,
we fixed τ at 0.5.

C. Convergence Analysis

To show the convergence properties of MCoCo, we take
the experiment on the MNIST-USPS dataset and display the
experimental results in Figure 6. It can be observed that the
loss value drops rapidly in the first 15 epochs, with ACC, NMI,
and RI continuously increasing. For other datasets, similar
convergence properties can be achieved as well.

VI. CONCLUSION

In this paper, we propose a novel Multi-level Consistency
Collaborative learning framework (MCoCo) for multi-view
clustering, which can fully mine multi-level consistent infor-
mation to guide the process of clustering. While achieving
consistency goals in different spaces, MCoCo can realize
the collaboration between cluster assignments and consistent
semantic labels. Therefore, our method can get more dis-
criminating clustering assignments for clustering. Meanwhile,
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MCoCo is also robust to some views with unclear clustering
structure in a non-fusion manner. Experimental results on
several benchmark datasets verify the effectiveness of MCoCo
over other state-of-the-art methods.
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