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On the isotopism classes of the Budaghyan-Helleseth commutative

semifields
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Abstract

In this paper, we completely determine the isotopism classes of the Budaghyan-Helleseth commutative
semifields constructed in [L. Budaghyan, T. Helleseth, New commutative semifields defined by PN
multinomials, Crypto. Comm. 3 (1), 2011, p. 1-16].

Keyword: commutative semifield, Budaghya-Hellsseth family, isotopism, strong isotopism.

1. Introduction

A finite presemifield S is a finite ring with no zero-divisors such that both the left and right
distributive laws hold. If it further contains a multiplicative identity, then we call S a semifield. A
semifield is not necessarily commutative or associative, but by Wedderburn’s Theorem [11], associa-
tivity necessarily implies commutativity in the finite case. The study of semifields was initiated by
Dickson [7] in the study of division algebras. Knuth [8] showed that the additive group of a semifield
S is an elementary abelian group. Hence, any finite presemifield can be represented by (Fpn, +, ∗),
where (Fpn, +) is the additive group of the finite field Fpn with pn elements and x ∗ y = ϕ(x, y) with
ϕ a bilinear function from Fpn × Fpn to Fpn. For a recent survey on finite semifields, please refer to
[9]. In this paper, we are concerned with commutative presemifields with odd characteristic. Such
presemifields can be equivalently described by planar polynomials of Dembowski-Ostrom type, cf.
[5, 6].

Let S1 = (Fpn,+, ∗) and S2 = (Fpn, +, ∗′) be two presemifields. They are isotopic if there exist
three linear permutations L, M, N over Fpn such that L(x∗y) = M(x)∗′N(y) for all x, y ∈ Fpn , and
we say that (M, N, L) is an isotopism between S1 and S2. If there is an isotopism (N, N, L) between
the presemifields S1 and S2, then it is a strong isotopism and S1 and S2 are strongly isotopic. In the
particular case S1 = S2, a (strong) isotopism is called a (strong) autotopism. Both isotopism and
strong isotopism define an equivalence relation on the finite presemifields, and the equivalence classes
are called isotopism classes and strong isotopism classes respectively. Two isotopic presemifields are
called isotopes of each other. For a presemifield S = (Fpn,+, ∗) and its nonzero element e, we define
a new multiplication ⋆ by (x∗ e) ⋆ (e∗ y) = x∗ y. Then S

′ = (Fpn,+, ⋆) is a semifield with an identity
e ∗ e, which is strongly isotopic to S.

In [3, 4], Budaghyan and Hellsseth constructed two families of commutative presemifileds of order
p2k from certain planar functions of Dembowski-Ostrom type over Fp2k , where p is an odd prime.
They established that the first family is non-isotopic to previously known semifields for p 6= 3 and
k odd, and determined the middle nuclei in some special cases. Later on, Bierbrauer [1] observed
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that the two families are in fact the same and have been also independently discovered in [14]. This
family of semifields is now commonly called the Budaghyan-Hellsseth family in the literature. In the
same paper, Bierbrauer gave a generalization of the Budaghyan-Hellsseth family which also contains
the LMPT-construction [10]. The new semifields sometimes are called the LMPTB family, and it
is not isotopic to any previously known commutative semifields with the possible exception of the
Budaghyan-Hellsseth family as shown in [1]. However, Marino and Polverino proved that the LMPTB
family is contained in the Budaghyan-Hellsseth family in [13], and they determined the nuclei and
middle nuclei of the Budaghyan-Hellsseth semifields in [13].

In this paper, we completely determine the isotopism classes of the Budaghyan-Hellsseth presemi-
fields. In Section 2, we introduce some background and preliminary results. We determine the strong
isotopism classes of the Budaghyan-Hellsseth presemifields in Section 3, and completely determine
the isotopism classes in Section 4. For odd q, with the center size q and semifield order q2l fixed, the
number of isotopism classes in the Budaghyan-Hellsseth family is equal to

(i) φ(l)/2 in the case q ≡ 1 (mod 4) and l > 2 is even;

(ii) φ(l) in the case q ≡ 3 (mod 4) and l > 2 is even;

(iii) φ(l)/2 in the case l is odd;

Here, φ is the Euler totient function. In the case l = 2, it is isotopic to a Dickson semifield.

2. Preliminaries

We start by introducing some notation that we shall use throughout the paper. Let p be an odd
prime, and let l, h, d be positive integers such that

1 < l, 1 ≤ d ≤ 2lh− 1, gcd(l, d) = 1, and l + d is odd.

Set q = ph, and fix a nonsquare β of Fq2l and a nonzero element ω ∈ Fq2l such that ω + ωql = 0. Let

Tr : Fq2l → Fql be the trace function Tr(x) = x+ xql. We define the following multiplication

x ∗(d,β) y = xqly + xyq
l

+
(

β(xqdy + xyq
d

) + βql(xqdy + xyq
d

)q
l
)

ω. (2.1)

Then (Fq2l, +, ∗(d,β)) is a presemifield in the Budaghyan-Helleseth family. This is the simplified
version as found in [12]. It is clear that different choices of ω lead to strongly isotopic presemifields.
We now show that different choices of β also lead to strongly isotopic presemifields.

Lemma 2.1. Let β and β ′ be two nonsquares in Fq2l , and let d be an integer such that gcd(d, l) = 1
and l + d is odd. Then gcd(qd + 1, ql + 1) = 2, and there exists nonzero elements b0, b1 ∈ Fq2l such
that

β ′β−1bq
d+1

0 ∈ Fql, β1−q2l−d

bq
2l−d+1

1 ∈ Fql.

Proof. The fact gcd(qd + 1, ql + 1) = 2 has been already proved in Lemma 3.1 (ii) of [12]. We fix a
primitive element γ of Fq2l and write log(γi) := i (mod q2l − 1). The conditions translate to

log(β ′)− log(β) + (qd + 1) log(b0) ≡ 0 (mod ql + 1),

(1− q2l−d) log(β) + (q2l−d + 1) log(b1) ≡ 0 (mod ql + 1).

Since log(β ′) and log(β) are both odd, the existence of the desired b0 and b1 follows.
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Take β, β ′, b0 and b1 as in Lemma 2.1. Set N0(x) = b0x, N1(x) = b1x, and

L0(x) =
1

2
bq

l+1
0 (x+ xql) +

1

2
β ′β−1bq

d+1
0 (x− xql),

L1(x) =
1

2
bq

l+1
1 (x+ xql) +

1

2
β1−q2l−d

bq
2l−d+1

1 ω1−ql−d

(x− xql)q
l−d

.

It is straightforward to check that

L0(x ∗(d,β) y) =bq
l+1

0 Tr(xqly) + β ′β−1bq
d+1

0 Tr(β(xqdy + xyq
d

))ω

=bq
l+1

0 Tr(xqly) + Tr(β ′bq
d+1

0 (xqdy + xyq
d

))ω

=N0(x) ∗(d,β′) N0(y).

Therefore, in the multiplication (2.1) different choices of β lead to strongly isotropic presemifields. We
thus fix a nonsquare β, write ∗d instead of ∗(d, β), and use the notation BH(q, l, d) for (Fq2l, +, ∗d).
If q and l are fixed and clear from the context, we shall write Sd := (Fq2l , +, ⋆d) for the corresponding
semifield with multiplication

(1 ∗d x) ⋆d (1 ∗d y) = x ∗d y. (2.2)

Lemma 2.2. For 0 < d < 2lh − 1 such that gcd(l, d) = 1 and l + d is odd, the presemifields
BH(q, l, d) and BH(q, l, 2l − d) are in the same strong isotopism class.

Proof. From ω + ωql = 0 we deduce that ω1−ql−d

∈ Fql. With L1 and N1 as defined above,

L1(x ∗d y) =bq
l+1

1 Tr(xqly) + β1−q2l−d

bq
2l−d+1

1 ω1−ql−d

Tr
(

βq2l−d

(xql+d

yq
l

+ xqlyq
l+d

)q
l−d)

ωql−d

=bq
l+1

1 Tr(xqly) + Tr
(

βbq
2l−d+1

1 (xyq
2l−d

+ xq2l−d

y)
)

ω

=N1(x) ∗2l−d N1(y).

The triple (N1, N1, L1) is the desired strong isotopism.

Let S = (Fpn,+, ⋆) be a commutative semifield. Its left nucleus Nl(S) and middle nucleus Nm(S)
are defined as follows:

Nl(S) = {a ∈ Fpn : (a ⋆ x) ⋆ y = a ⋆ (x ⋆ y) for all x, y ∈ Fpn},

Nm(S) = {a ∈ Fpn : (x ⋆ a) ⋆ y = x ⋆ (a ⋆ y) for all x, y ∈ Fpn}.

They are both finite fields, andNl(S) is also called the center of S since for a commutative semifield the
center and left nucleus coincide. Their sizes are invariants under isotopism. The explicit expressions of
the nucleus and middle nucleus of the semifield Sd corresponding to BH(q, l, d) have been determined
in [13, Theorem 4].

Theorem 2.3. [13] Let Sd := (Fq2l, +, ⋆d) be the semifield with multiplication (2.2). Then its center
has size q, and its middle nucleus has size q2. For each α ∈ Nm(Sd), there exist a, b ∈ Fq such that

(x ∗d 1) ⋆d α = (ax+ bξxql) ∗d 1 for all x ∈ Fq2l, where ξ is a constant such that β1−ql = ξq
l+d

−1.

Throughout the paper, we shall write α = κ(a, b), where α, a, b are defined as in Theorem 2.3.

Lemma 2.4. Take the same notation as in Theorem 2.3. Then ξq
l+1 is a nonsquare in F

∗

q. For

a, b ∈ Fq, the element α = κ(a, b) is a nonsquare in Nm(Sd) if and only if a2− b2ξq
l+1 is a nonsquare

in Fq. In particular, if α is nonsquare, then b 6= 0.
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Proof. From β1−ql = ξq
l+d

−1, we deduce that ξ(q
l+1)(ql+d

−1) = 1. Since gcd(ql+d−1, ql−1) = qgcd(l+d,l)−
1 = q − 1, it follows that ξq

l+1 is in Fq. Moreover, since β is a nonsquare and l + d is odd,

−1 = ξ(q
l+1)(ql+d

−1)/2 =
(

ξ(q
l+1)(q−1)/2

)(ql+d
−1)/(q−1)

= ξ(q
l+1)(q−1)/2.

It follows that ξq
l+1 is a nonsquare in Fq. This proves the first claim.

For α = κ(a, b) in Nm(Sd), if there exists γ = κ(a1, b1) ∈ Nm(Sd) such that α = γ ⋆d γ, then by
Theorem 2.3 ((x ∗d 1) ⋆d α) = ((x ∗d 1) ⋆d γ) ⋆d γ for all x ∈ Fq2l. We deduce that

(ax+ bξxql) ∗d 1 =
(

(a1x+ b1ξx
ql) ∗d 1

)

⋆d γ

=
(

a1(a1x+ b1ξx
ql) + b1ξ(a1x+ b1ξx

ql)q
l
)

∗d 1

=
(

(a21 + b21ξ
ql+1)x+ 2a1b1ξx

ql
)

∗d 1.

It follows that a = a21+ b21ξ
ql+1 and b = 2a1b1. Therefore, α = κ(a, b) is a nonsquare in Nm(Sd) if and

only if X2 + Y 2ξq
l+1 = a, 2XY = b have no solutions in Fq × Fq.

If b = 0, then there is always a solution since ξq
l+1 is a nonsquare. Now suppose that b 6= 0. We

cancel out the variable Y by using Y = b/(2X) and get a quartic equation in X : 4X4 − 4aX2 +
b2ξq

l+1 = 0. Set D := a2 − b2ξq
l+1. We consider two cases.

(i) If D is a nonsquare in Fq, then the equation does not have a solution in Fq.

(ii) If D is a square in Fq, then 4T 2 − 4aT + b2ξq
l+1 = 0 has two solutions in Fq whose product is

a nonsquare 1
4
b2ξq

l+1 in Fq. One of the solutions is thus a square.

This completes the proof.

We recall the following characterization of Dickson semifields.

Theorem 2.5. [2, Theorem 1.1] Let S = (Fq2n ,+, ∗) be a commutative semifield with center Fq and
middle nucleus Fqn, q odd. If q ≥ 4n2 − 8n+ 2, then S is either a Dickson semifield or a field.

Applying it to the case n = 2, we deduce that the presemifield BH(q, 2, 1) must be isotopic to
a Dickson semifield.The consequence have been already considered in Corollary 3 of [13]. Therefore,
we shall only consider the case l > 2 below. Also, by Lemma 2.2, we assume without loss of
generality that 0 < d < l.

3. Strong isotopisms among the Budaghyan-Hellsseth presemifields

In this section, we consider the strong isotopisms among the presemifield BH(q, l, d)’s. The main
result of this section is as follows.

Theorem 3.1. If 0 < d, d′ ≤ l − 1, then BH(q, l, d) and BH(q, l, d′) are strongly isotopic if and
only if d = d′. Moreover, the strong autotopism group of BH(q, l, d) has order 4lh(ql − 1).

We split the proof into several lemmas. Assume that BH(q, l, d) and BH(q, l, d′) are strongly
isotopic, where 0 < d, d′ ≤ l − 1. Then there exists linearized permutations L(x), N(x) such that

L(x ∗d y) = N(x) ∗d′ N(y). (3.1)
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Write L(x) =
2lh−1
∑

i=0

aix
pi and N(x) =

2lh−1
∑

i=1

bix
pi, with all coefficients in Fq2l . Recall that q = ph. We

shall do addition and substraction in the subscripts of ai’s and bi’s, and in that case we understand
that the subscripts are read modulo 2lh. Let CL (resp. CR) be the left (resp. right) hand side of
Eqn. (3.1). Then we have

CL = L
(

Tr(xqly) + Tr
(

β(xqdy + xyq
d

)
)

ω
)

,

and
CR = Tr

(

N(x)q
l

N(y)
)

+ Tr
(

β(N(x)q
d′

N(y) +N(x)N(y)q
d′

)
)

ω.

We deduce that

CL + Cql

L = 2N(x)q
l

N(y) + 2N(x)N(y)q
l

, (3.2)

CL − Cql

L = 2Tr
(

β
(

N(x)q
d′

N(y) +N(x)N(y)q
d′)

)

ω. (3.3)

These two equations hold for all x, y ∈ Fq2l. Therefore, we regard them as polynomial identities in

the quotient ring Fq2l[X, Y ]/(Xq2l − X, Y q2l − Y ). In the sequel, we will understand that x = X ,

y = Y and Tr(xpiyp
j

) = X
pi

Y
pj

+X
piql

Y
pjql

, so it makes sense to talk about the coefficients of the
monomials xuyv, 0 ≤ u, v ≤ q2l−1. A key observation is that if j−i (mod 2lh) 6∈ {lh, d′h, (2l−d′)h},
then xpiyp

j

has zero coefficients on the left hand sides of Eqns. (3.2), (3.3).

Lemma 3.2. Suppose that bi 6= 0. Then bj = 0 and bj+(l−d′)h = 0 if j − i (mod 2lh) 6∈ {0, (l +
d)h, (l − d)h}.

Proof. We compare the coefficients of xpiyp
i

in Eqns. (3.2), (3.3) and get

4bib
ql

i+lh = 0, βbq
d′

i−d′hbi + βqlbq
d′+l

i+(l−d′)h b
ql

i+lh = 0.

It follows easily that bi+lh = 0 and bi−d′h = 0. Let j be an integer as in the statement of the lemma.

Comparing the coefficients of xpiyp
j+lh

in Eqns. (3.2), (3.3), we get bib
ql

j = 0 and βbib
qd

′

j+(l−d′)h +

βqlbq
l+d′

i+(l−d′)hb
ql

j = 0. It follows that bj = 0 and bj+(l−d′)h = 0. This completes the proof.

Lemma 3.3. We have N(x) = bix
pi + bjx

pj for some integers i, j such that j − i (mod 2lh) ∈
{(l + d)h, (l − d)h}.

Proof. Assume that bi 6= 0. By Lemma 3.2, bj 6= 0 only if j − i (mod 2lh) ∈ {0, lh + dh, lh− dh}.
It is straightforward to check that (i+ lh+ dh)− (i+ lh− dh) = 2dh 6∈ {0, lh+ dh, lh− dh} by the
fact that gcd(l, d) = 1 and l+ d is odd. Hence bi+(l+d)h and bi+(l−d)h can not both be nonzero by the
same lemma. This completes the proof.

Lemma 3.4. We have d = d′, and N(x) is a monomial.

Proof. If d′ 6= d, then d′h 6∈ {lh, dh, (2l − d)h}, and by examining the coefficients of xpiqd
′

yp
i

and

xpjqd
′

yp
j

in Eqn. (3.3) we see that βbq
d′+1

i = βbq
d′+1

j = 0, so bi = bj = 0 and N(x) ≡ 0: a
contradiction. This proves that d′ = d. By interchanging i, j if necessary, we assume that j =
i+(d+ l)h (mod 2lh) without loss of generality. As before, we can check that j+ dh− i = (2d+ l)h

(mod 2lh) 6∈ {lh, dh, (2l− d)h}, and the coefficients of xpj+dh

yp
i

in Eqn. (3.3) yields that βbq
d

j bi = 0.
Hence N(x) is a monomial.
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Here we are in position to complete the proof. Assume that N(x) = bxpi , 0 ≤ i ≤ 2lh − 1. By
expanding (3.1), we have

L(Tr(xqly)) + L(Tr(β(xqdy + xyq
d

))ω) = bq
l+1Tr(xqly) + Tr(βbq

d+1(xqdy + xyq
d

))ω.

By comparing the coefficients, we see that it holds if and only if

aj + aj+lh =







bq
l+1, if j = i,

bq
l+1, if j = i+ lh,

0, otherwise.

aj − aj+lh =







bq
d+1, if j = i,

−bq
d+l+ql if j = i+ lh,

0, otherwise.

It follows that aj = aj+lh = 0 for j 6= i (mod lh), bq
d+1 = bq

d+l+ql ,i.e. b(q
d+1)(ql−1) = 1, and

L(x) =
1

2
bq

l+1(x+ xql)p
i

+
1

2
bq

d+1(x− xql)p
i

.

Since gcd(qd + 1, ql + 1) = 2 by Lemma 2.1, we have b2 ∈ Fql. Recall that ω
ql = −ω, we deduce that

b ∈ F
∗

ql
∪ F

∗

ql
ω. Then the map x 7→ N(x) is a permutation of Fq2l , and x 7→ L(x) is automatically a

permutation since Eqn. (3.1) holds. Therefore, we get all the desired strong isotopism (N, N, L)’s
in this way. This completes the proof of Theorem 3.1.

4. Isotopism calsses of the Budaghyan-Hellsseth presemifields

This section is devoted to the proof of the following main theorem.

Theorem 4.1. If 0 < d, d′ < l, then the presemifields BH(q, l, d) and BH(q, l, d′) are isotopic if
and only either (i) d′ = d, or (ii) q ≡ 1 (mod 4), d′ = l − d and l is even.

We again split the proof into several lemmas. First we introduce the notation that we shall use
throughout this section. Let Sd = (Fq2l ,+, ⋆d) be the semifield isotope of BH(q, l, d) with ⋆d as
defined in Eqn. (2.2). For x ∈ Fq2l , define Kd(x) = x ∗d 1. Let ∗d′ , ⋆d′ and Sd′ and Kd′ be the
corresponding objects for BH(q, l, d′). We recall the following result [5].

Theorem 4.2. [5, Theorem 2.5] Let S1 = (Fq, +, ⋆1) and S2 = (Fq, +, ⋆2) be isotopic commutative
semifields. Then there exists an isotopism (M, N, L) between S1 and S2 such that either

(i) M = N , or

(ii) M(x) ≡ α ⋆1 N(x) mod (Xq −X), where α ∈ Nm(S1) can not be written as the product of an
element of N(S1) and a square of Nm(S1).

Assume that the two presemifields BH(q, l, d) and BH(q, l, d′) are isotopic, so that Sd and Sd′

are isotopic semifields. If they are strongly isotopic, then we must have d = d′ by Theorem 3.1.
Now assume that the two presemifields are isotopic but not strongly isotopic. By Theorem 4.2,
there exists linearized permutations L(x), N(x) over Fq2l and a nonsquare α in Nm(Sd) such that
(N(x) ⋆d α) ⋆d N(y) = L(x ⋆d′ y) for all x, y ∈ Fq2l. By a change of variables, we can rewrite it as

(Kd(x) ⋆d α) ⋆d Kd(y) = L
(

N−1(Kd(x)) ⋆d′ N
−1(Kd(y))

)

(4.1)

Recall that Kd′(x) ⋆d′ Kd′(y) = x ∗d′ y, the right hand side of Eqn. (4.1) is equal to

L
(

K−1
d′

(

N−1(Kd(x))
)

∗d′ K
−1
d′

(

N−1(Kd(y))
))

.
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Then with L′ := L−1 and N ′ := K−1
d′ N

−1Kd, the equation now takes the form

L′
(

(Kd(x) ⋆d α) ⋆d Kd(y)
)

= N ′(x) ∗d′ N
′(y).

By Theorem 2.3, there exists a, b ∈ Fq such that α = κ(a, b) and Kd(x) ⋆d α = Kd(ax + bξxql),

where ξ is a constant such that ξq
l+d

−1 = β1−ql. By Lemma 2.4, b 6= 0. Plugging this into the above
equation, we get

L′(a · x ∗d y) + L′(b · (ξxql) ∗d y) = N ′(x) ∗d′ N
′(y) (4.2)

We denote the left (resp. right) hand side of Eqn. (4.2) by CL (resp. CR). By expanding we get the
expression for CL as follows:

L′

(

aTr(xqly)
)

+ L′

(

bTr(ξq
l

xy)
)

+ L′

(

aTr
(

β(xqdy + xyq
d)

ω
)

+ L′

(

bTr
(

βξ(xqdyq
l

+ xqlyq
d

)
)

ω
)

.

In the last term, we have used the fact that ξq
l+d

−1 = β1−ql. By the definition of ∗d′,

CR = Tr
(

N ′(x)N ′(y)q
l
)

+ Tr
(

β(N ′(x)q
d′

N ′(y) +N ′(x)N ′(y)q
d′

)
)

ω.

From these expressions we compute that

CL + Cql

L = 2N ′(x)q
l

N ′(y) + 2N ′(x)N ′(y)q
l

, (4.3)

CL − Cql

L = 2Tr
(

β(N ′(x)q
d′

N ′(y) +N ′(x)N ′(y)q
d′

)
)

ω. (4.4)

Since L′ and N ′ are linearized, we have

L′(x) =

2lh−1
∑

i=0

aix
pi , N ′(x) =

2lh−1
∑

i=0

bix
pi,

for some constants ai’s and bi’s in Fq2l . And the subscripts of ai’s and bi’s are read modulo 2lh as in
Section 3. By equating the coefficients of chosen monomials on both sides of Eqns. (4.3), (4.4), we
can deduce restrictions on the coefficients of L′ and N ′.

Lemma 4.3. The integer l is even, and d, d′ are both odd. If bi 6= 0 for some i, then there exists

γi ∈ F
∗

ql such that γp−i

i is a root of the quadratic polynomial ξq
l+1X2 − 2(ab−1)X + 1 ∈ Fq[X ] and

bi+lh = biξ
piγi 6= 0 .

Proof. Since N ′ is a permutation, at least one of its coefficient is nonzero. Assume that bi 6= 0,
0 ≤ i ≤ 2lh − 1. We compare the coefficients of xpiyp

i

, xpiqlyp
i

and xpiqlyp
iql respectively, on both

sides of Eqn. (4.3), and get

Tr(ai + ai+lh) (bξ
ql)p

i

= 4bq
l

i+lhbi (4.5)

Tr(ai + ai+lh) a
pi = 2bq

l+1
i + 2bq

l+1
i+lh (4.6)

Tr(ai + ai+lh) (bξ)
pi = 4bq

l

i bi+lh. (4.7)

The right hand sides can not all be zero, so Tr(ai + ai+lh) 6= 0. Since b 6= 0 by Lemma 2.4, Eqns.
(4.5) (4.7) show that bi+lh 6= 0 and bi+lh = biξ

piγi for some γi ∈ F
∗

ql
. This proves the second claim.

From Eqns. (4.5)-(4.7) we deduce that b
−(ql+1)
i Tr(ai+ai+lh) is equal to both 4b−piγi and 2a−pi(1+

ξp
i(ql+1)γ2

i ). Therefore, 4b
−piγi = 2a−pi(1 + ξp

i(ql+1)γ2
i ), which simplifies to ξq

l+1(γp−i

i )2 − 2ab−1γp−i

i +
1 = 0. The equation ξq

l+1X2−2ab−1X+1 = 0 has coefficients in Fq, and its determinant 4((ab−1)2−

ξq
l+1) is a nonsquare in Fq by Lemma 2.4. Since γp−i

i is a solution, we have γi ∈ Fq2 \ Fq. Since
γi ∈ F

∗

ql, l must be even. Recall that l + d and l + d′ are odd, so both d and d′ are odd.
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Observe that if xpiyp
j

(0 ≤ i, j ≤ 2lh−1) has a nonzero coefficient in CL, then i−j (mod 2lh) must
lie in the set {0, lh, dh, 2lh−dh, dh+ lh, lh−dh}, or equivalently, i−j (mod lh) ∈ {0, dh, lh−dh}.

The same is true for Cql

L . Therefore, if i − j (mod lh) 6∈ {0, dh, lh − dh}, then the coefficients of
xpiyp

j

on the right hand sides of Eqns. (4.3), (4.4) are zero. That is

bq
l

i+lhbj + bib
ql

j+lh = 0, (4.8)

β(bq
d′

i−d′hbj + bib
qd

′

j−d′h) + βql(bq
d′

i−d′h+lhbj+lh + bi+lhb
qd

′

j−d′h+lh)
ql = 0. (4.9)

Lemma 4.4. Let (i, j) be a pair such that

0 ≤ i, j ≤ 2lh− 1, i− j (mod lh) 6∈ {0, dh, lh− dh}. (4.10)

If bi 6= 0, then bj = 0.

Proof. By the argument preceding this lemma, Eqn. (4.8) holds for this pair (i, j). Write i′ = i+ lh
(mod 2lh). Since the pair (i′, j) also satisfies the condition (4.10), it holds that

bq
l

i bj + bi+lhb
ql

j+lh = 0. (4.11)

Assume that bj 6= 0. By Lemma 4.3, there exist γi, γj in Fq2 \ Fq such that bi+lh = biξ
piγi and

bj+lh = bjξ
pjγj. We plug them into Eqns. (4.8) and (4.11) respectively and get

bq
l

i bjξ
piqlγi = −bib

ql

j ξ
pjqlγj, bq

l

i bj = −bib
ql

j ξ
pi+pjqlγiγj .

It follows that (bib
−1
j )q

l
−1 is equal to both −ξp

jql−piqlγjγ
−1
i and −ξp

i+pjqlγiγj . By equating the two

quantities and simplifying, we deduce that ξq
l+1γ2p−i

i −1 = 0. Meanwhile, ξq
l+1γ2p−i

i −2ab−1γp−i

i +1 =

0 by Lemma 4.3. It follows that ab−1γp−i

i = 1, so a 6= 0 and γp−i

i ∈ Fq. This contradicts the fact that
γi is in Fq2 \ Fq. Therefore, bj must be zero.

Let Λ be the set {0 ≤ i ≤ 2lh− 1 : bi 6= 0}. By Lemma 4.3, i ∈ Λ if and only i+ lh (mod 2lh)
is in Λ. For any two distinct elements of Λ, their difference modulo lh is in {0, dh, lh − dh} by
Lemma 4.4. We claim that the set {i (mod lh) : i ∈ Λ} has size at most two. Otherwise, it contains
a three-term arithmetic progression modulo 2lh with common difference dh. The difference between
the two nonadjacent terms is 2dh (mod lh) and it should be in the set {0, dh, lh− dh}. This is the
case only if lh divides 2dh or 3dh. Since l is even and d is odd by Lemma 4.3, we must have l = 2d.
However, it follows from gcd(l, d) = 1 that l = 2 and d = 1, contradicting the assumption that l > 2.
This proves the claim.

Let i be the minimal element of Λ. Then Λ ⊆ {i, i+ dh, i+ lh, i+ dh+ lh}, and

N ′(x) = bix
pi + bi+lhx

pi+lh

+ bi+dhx
pi+dh

+ bi+dh+lhx
pi+dh+lh

. (4.12)

Moreover, there exists γj ∈ Fq2 \ Fq such that bj+lh = bjξ
pjγj and γq+1

j = ξ−pj(ql+1) for j ∈ Λ by
Lemma 4.3. We start with a technical lemma.

Lemma 4.5. There does not exist an odd integer k such that

βbq
k+1

i + βqlb
(qk+1)ql

i+lh = 0, βbq
k

i bi+lh + βqlbq
k+l

i+lhb
ql

i = 0. (4.13)
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Proof. We plug bi+lh = biξ
piγi into the above equations and simplify them to get

(βbq
k+1

i )q
l
−1ξp

i(qk+l+ql)γq+1
i = −1, (βbq

k+1
i )q

l
−1ξp

i(qk+l
−1)γq−1

i = −1.

Taking quotient, we get γ2
i = ξ−pi(ql−1). Together with γq+1

i = ξ−pi(ql+1), we deduce that γq−1
i = 1,

contradicting the fact that γi /∈ Fq. This completes the proof.

Lemma 4.6. We have d′ = d or d′ = l − d.

Proof. Suppose to the contrary that d′ 6= d, l− d. Then i+ d′h 6∈ {i, i+ dh, i+ lh, i+ dh+ lh}, and
so bi+d′h = bi+d′h+lh = 0. The pairs (i + d′h, i), (i+ d′h, i+ lh), with each entry taken modulo 2lh,
satisfy the condition (4.10), and Eqn. (4.9) now takes the form as in Eqn. (4.13) with k = d′. This
is impossible by Lemma 4.5.

Lemma 4.7. We have bi+dh = bi+dh+lh = 0, so N ′(x) = bix
pi + bi+lhx

pi+lh

.

Proof. By Lemma 4.3, we just need to show that bi+dh = 0. Suppose to the contrary that bi+dh 6= 0.
We have i+2dh 6∈ {i, i+ lh, i+ dh, i+ dh+ lh}, so bi+2dh = bi+2dh+lh = 0. The proof is very similar
to that of Lemma 4.6, and we need to split into two cases.

Case 1: d′ = d. The pairs (i+2dh, i), (i+2dh, i+lh) with each entry taken modulo 2lh, satisfy the

condition (4.10) and Eqn. (4.9) read as βbq
d

i+dhbi+βqlbq
d+l

i+dh+lhb
ql

i+lh = 0, βbq
d

i+dhbi+lh+βqlbq
d+l

i+dh+lhb
ql

i = 0.
As in the proof of Lemma 4.6, we deduce that

(βbq
d

i+dhbi)
ql−1γiγ

q
i+dhξ

pi(ql+2d+ql) = −1, (βbq
d

i+dhbi)
ql−1γ−1

i γq
i+dhξ

pi(ql+2d
−1) = −1

The rest of the argument is the same as in that of Lemma 4.6.
Case 2: d′ = l−d. In this case, by considering the pairs (i+d′h, i+dh) and (i+d′h, i+dh+ lh),

the same argument exactly leads to the contradiction that γi+dh ∈ Fq, while it should be that
γi+dh ∈ Fq2 \ Fq. This completes the proof.

Lemma 4.8. We have d′ = l − d.

Proof. Assume to the contrary that d = d′. We compare the coefficients of xpi+dh

yp
i

and xpi+dh

yp
i+lh

in Eqn.(4.2) and get the equations

(ai − ai+lh) (aβω)
pi = (βbq

d+1
i + βqlbq

d+l+ql

i+lh ) ω,

(ai − ai+lh) (bβξω)
pi = (βbq

d

i bi+lh + βqlbq
d+l

i+lhb
ql

i ) ω.

If ai = ai+lh, the we would get a contradiction to Lemma 4.5 with k = d. Hence ai − ai+lh 6= 0.
We now take quotient of both sides and plug in bi+h = biξ

piγi to get

(ab−1ξ−1)p
i

=
1 + (βbq

d+1
i )q

l
−1ξp

i(qd+l
−1)

ξpiγi + (βbq
d+1

i )ql−1ξpiqd+lγq
i

.

Here we have used the fact that γq+1
i = ξ−pi(ql+1). With t := (βbq

d+1
i )q

l
−1ξp

i(ql+d
−1), we can rewrite it

as ((ab−1)p
i

γq
i − 1) t = −(ab−1)p

i

γi + 1. Recall that ξq
l+1 ∈ Fq, γi ∈ Fq2 \ Fq and l is even. Raising

both sides to the (ql+1)-st power, we deduce that (1−γq
i (ab

−1)p
i

)2− (1−γi(ab
−1)p

i

)2 = 0. It follows
that (ab−1)p

i

(2− (ab−1)p
i

(γi + γq
i )) = 0.

By Lemma 4.3, we have γi + γq
i = 2(ab−1)p

i

ξ−pi(ql+1), so

2− (ab−1)p
i

(γi + γq
i ) = 2− 2(ab−1)2p

i

ξ−pi(ql+1) = −2b−2piξ−pi(ql+1)(a2 − b2ξq
l+1)p

i

.
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It is nonzero since a2− b2ξq
l+1 is a nonsquare in Fq. We thus must have a = 0, and so t = −1. Recall

that βql−1 = ξ1−ql+d

, so it gives that b
(qd+1)(ql−1)
i ξ(p

i
−1)(ql+d

−1) = −1. Raising it to ql+1
2

-th power, the

left hand side yields 1. Since l is even, we have ql ≡ 1 (mod 4) and ql+1
2

is odd, so the right hand
side remains −1: a contradiction. This completes the proof.

We are now in a position to complete the proof. By comparing the coefficients of xpiql−d

yp
iql and

xpiq2l−d

yp
iql in Eqn. (4.2), we get

(ai+lh−dh − ai+2lh−dh) (aβω)
piql−d

= (βbq
l−d

i bi+lh + βqlbq
2l−d

i+lh bq
l

i ) ω,

(ai+lh−dh − ai+2lh−dh) (bβξω)
piql−d

= (βbq
l−d+1

i+lh + βqlbq
2l−d+ql

i ) ω.

By exactly the same argument as in the proof of Lemma 4.8, we deduce that a = 0. The fact
a2 − b2ξq

l+1 is a nonsquare in Fq gives that (−ξq
l+1)(q−1)/2 = −1, i.e., ξ(q

l+1)(q−1)/2 = (−1)(q+1)/2.

Recall that ξq
l+d

−1 = β1−ql, β is a nonsquare in Fq2l, so

−1 = β(q2l−1)/2 = ξ(q
l+1)(ql+d

−1)/2 = (−1)(q+1)(l+d)/2 = (−1)(q+1)/2.

Here we have used the fact that l + d is odd. We thus conclude that q ≡ 1 (mod 4).
We now explicitly construct an isotopism of the desired form between BH(q, l, d) andBH(q, l, l−

d) in the case q ≡ 1 (mod 4) and l is an even integer larger than 2. In this case, ω is a nonsquare in
Fq2l , where ω is as in Eqn. (2.1) with ω+ωql = 0. By Lemma 2.2, we set β := w−1 without changing

the isotopism class. Take ξ ∈ F
∗

q2 such that ξq + ξ = 0. Then βql−1 = ξ1−ql+d

= −1. We now set
a = 0, b = 1, α = κ(a, b), and

L′(x) = ξ(q−3)/2(x+ xql) + ξ−1(x− xql)q
l−d

, N ′(x) = x+ ξ(q−1)/2xql

It is straightforward to check that L′ and N ′ are both permutations over Fq2l, a
2−b2ξq

l+1 = −ξq
l+1 is

a nonsquare of Fq, and Eqn. (4.2) holds. From L′ = L−1 and N ′ = K−1
d′ N

−1Kd we can reconstruct L
and N such that (N, α ⋆d N, L) is an isotopism between the semifields Sd and Sl−d. This completes
the proof of Theorem 4.1.

Since the autotopisms of BH(q, l, d) must be strong autotopism by the proof of Theorem 4.1, we
deduce from Theorem 2.3 and Theorem 3.1 that the autotopism group of the presemifield BH(q, l, d)
has order 2lh(ql−1)(q2−1). It also follows from Theorem 4.1 that, for fixed q and l > 2, the number of
isotopism classes in the Budaghyan-Helleseth family is a half of the size of {0 < d < l : gcd(l, d) = 1}
in the case q ≡ 1 (mod 4) and l is even, and is equal to the size of

{0 < d < l : gcd(l, d) = 1, l + d is odd}

in all the other cases. That is,

(1) in the case q ≡ 1 (mod 4) and l is even, the number is φ(l)/2;

(2) in the case q ≡ 3 (mod 4) and l is even, the number is φ(l);

(3) in the case l is odd, the number is φ(l)/2, since exactly one of l − d and d is even.

Here, φ is the Euler totient function.
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