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ON SOME DETERMINANTS INVOLVING JACOBI

SYMBOLS

DMITRY KRACHUN, FEDOR PETROV, ZHI-WEI SUN, MAXIM VSEMIRNOV

Abstract. In this paper we study some conjectures on determinants
with Jacobi symbol entries posed by Z.-W. Sun. For any positive integer
n ≡ 3 (mod 4), we show that

(6, 1)n = [6, 1]n = (3, 2)n = [3, 2]n = 0

and
(4, 2)n = (8, 8)n = (3, 3)n = (21, 112)n = 0

as conjectured by Sun, where

(c, d)n =

∣

∣

∣

∣

(

i2 + cij + dj2

n

) ∣

∣

∣

∣

16i,j6n−1

and

[c, d]n =

∣

∣

∣

∣

(

i2 + cij + dj2

n

) ∣

∣

∣

∣

06i,j6n−1

with ( ·

n
) the Jacobi symbol. We also prove that (10, 9)p = 0 for any

prime p ≡ 5 (mod 12), and [5, 5]p = 0 for any prime p ≡ 13, 17 (mod 20),
which were also conjectured by Sun. Our proofs involve character sums
over finite fields.

1. Introduction

For an n × n matrix [aij ]16i,j6n over a field, we simply denote its deter-
minant by |aij|16i,j6n. In this paper we study some conjectures on determi-
nants with Jacobi symbol entries posed by Z.-W. Sun [11].

Let p be an odd prime. In 2004, R. Chapman [2] determined the values
of

∣

∣

∣

∣

(

i+ j − 1

p

) ∣

∣

∣

∣

16i,j6(p−1)/2

=

(−1

p

) ∣

∣

∣

∣

(

i+ j

p

) ∣

∣

∣

∣

16i,j6(p−1)/2

and
∣

∣

∣

∣

(

i+ j − 1

p

) ∣

∣

∣

∣

16i,j6(p+1)/2

=

∣

∣

∣

∣

(

i+ j

p

) ∣

∣

∣

∣

06i,j6(p−1)/2

,
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where ( ·
p) denotes the Legendre symbol. Chapman’s conjecture on the eval-

uation of
∣

∣

∣

∣

(

j − i

p

) ∣

∣

∣

∣

06i,j6(p−1)/2

was confirmed by M. Vsemirnov [12, 13] via matrix decomposition. With
this background, Z.-W. Sun [11] studied some new kinds of determinants
with Legendre symbol or Jacobi symbol entries.

For any odd integer n > 1 and integers c and d, Sun [11] introduced the
notations

(c, d)n :=

∣

∣

∣

∣

(

i2 + cij + dj2

n

)
∣

∣

∣

∣

16i,j6n−1

(1.1)

and

[c, d]n :=

∣

∣

∣

∣

(

i2 + cij + dj2

n

)
∣

∣

∣

∣

06i,j6n−1

, (1.2)

where ( ·
n ) denotes the Jacobi symbol. He showed that

(

d

n

)

= −1 ⇒ (c, d)n = 0, (1.3)

and that for any odd prime p we have
(

d

p

)

= 1 ⇒ [c, d]p =

{

p−1
2 (c, d)p if p ∤ c2 − 4d,

1−p
p−2(c, d)p if p | c2 − 4d.

(1.4)

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . .} , if a is relatively prime to n and
x2 ≡ a (mod n) for some x ∈ Z, then a is called a quadratic residue modulo
n. If n is odd and a is a quadratic residue modulo n, then ( an) = 1 since a
is a quadratic residue modulo any prime divisor of n.

Now we state our first theorem.

Theorem 1.1. Let n > 1 be an odd integer.
(i) If −1 is not a quadratic residue modulo n, then

(6, 1)n = (3, 2)n = 0 and [6, 1]n = [3, 2]n = 0.

(ii) If −2 is not a quadratic residue modulo n, then

(4, 2)n = (8, 8)n = 0 and [4, 2]n = [8, 8]n = 0.

(iii) If −3 is not a quadratic residue modulo n, then

(3, 3)n = (6,−3)n = 0 and [3, 3]n = [6,−3]n = 0.

(iv) If −7 is not a quadratic residue modulo n, then

(21, 112)n = (42,−7)n = 0 and [21, 112]n = [42,−7]n = 0.

Combining Theorem 1.1 with (1.3), we immediately obtain the following
consequence which was conjectured by Sun [11, Conjecture 4.8(ii)].
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Corollary 1.1. For any positive integer n ≡ 3 (mod 4), we have

(6, 1)n = [6, 1]n = (3, 2)n = [3, 2]n = 0

and
(4, 2)n = (8, 8)n = (3, 3)n = (21, 112)n = 0.

Actually we deduce Theorem 1.1 from the following theorems.

Theorem 1.2. Let n be a positive odd integer which is squarefree. For any
c, d, i ∈ Z, we have

n−1
∑

j=0

(

j

n

)(

i2 + cij + dj2

n

)

=
n−1
∑

j=0

(−j

n

)(

i2 + 2cij + (c2 − 4d)j2

n

)

. (1.5)

Theorem 1.3. Let n be a positive odd integer which is squarefree, and let
i ∈ Z. Then

n−1
∑

j=0

(

j

n

)(

i2 + 3ij + 2j2

n

)

= 0 if − 1 R n fails, (1.6)

n−1
∑

j=0

(

j

n

)(

i2 + 4ij + 2j2

n

)

= 0 if − 2 R n fails, (1.7)

n−1
∑

j=0

(

j

n

)(

i2 + 3ij + 3j2

n

)

= 0 if − 3 R n fails, (1.8)

n−1
∑

j=0

(

j

n

)(

i2 + 21ij + 112j2

n

)

= 0 if − 7 R n fails, (1.9)

where the notation m R n means that m is a quadratic residue modulo n.

Our following result was originally conjectured by Sun [11, Conjecture
4.8(iv)].

Theorem 1.4. (i) (10, 9)p = 0 for any prime p ≡ 5 (mod 12).
(ii) [5, 5]p = 0 for any prime p ≡ 13, 17 (mod 20).

In fact, our proof of Theorem 1.4 yields a stronger result: For each integer
y, we have

p−1
∑

x=0

(

x5 + 10x3y + 9xy2

p

)

= 0

for any prime p ≡ 5 (mod 12), and

p−1
∑

x=0

(

x5 + 5x3y + 5xy2

p

)

= 0

for any prime p ≡ 13, 17 (mod 20).
We will prove Theorem 1.2, Theorems 1.3 and 1.1, and Theorem 1.4 in

Sections 2-4 respectively.
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Sun [11, Conjecture 4.8(iv)] also conjectured that (8, 18)p = [8, 18]p = 0
for any prime p ≡ 13, 17 (mod 24). Moreover, Sun [10] conjectured that

p−1
∑

x=0

(

x5 + 8x3y + 18xy2

p

)

= 0

for any prime p ≡ 13, 17 (mod 24) and integer y, and this was confirmed by
M. Stoll via two elliptic curves with complex multiplication by Z[

√
−6] (see

the answer in [10]).
For any prime p ≡ 1 (mod 4) and a, b, c ∈ Z, we provide in Section 5 a

sufficient condition for

p−1
∑

x=0

(

ax5 + bx3 + cx

p

)

= 2

(p−1)/2
∑

x=1

(

x

p

)(

a(x2)2 + bx2 + c

p

)

= 0.

2. Proof of Theorem 1.2

Lemma 2.1. Let p be an odd prime and let c, d, i ∈ Z with p ∤ c. Then

p−1
∑

j=0

(

j

p

)(

i2 + cij + dj2

p

)

≡ −
(

ci

p

) p−1
∑

k=0

(

4k

2k

)(

2k

k

)(

d

16c2

)k

(mod p).

(2.1)

Proof. If p | i, then both sides of the congruence (2.1) are zero.
Below we assume p ∤ i and let L denote the left-hand side of the congruence

(2.1). As {ir : r = 0, . . . , p− 1} is a complete system of residues modulo p,
we have

L =

p−1
∑

r=0

(

ir

p

)(

i2 + ci(ir) + d(ir)2

p

)

=

(

i3

p

) p−1
∑

r=0

(

r

p

)(

1 + cr + dr2

p

)

≡
(

i

p

) p−1
∑

r=1

r(p−1)/2(1 + cr + dr2)(p−1)/2

≡
(

i

p

) p−1
∑

r=1

(

r−1 + c+ dr
)(p−1)/2

(mod p).

We may write (x−1 + c + dx)(p−1)/2 =
∑(p−1)/2

s=−(p−1)/2 asx
s with as ∈ Z. For

any integer s, it is well known (cf. [4, p. 235]) that

p−1
∑

r=1

rs ≡
{

−1 (mod p) if p− 1 | s,
0 (mod p) otherwise.

(2.2)

Therefore,

p−1
∑

r=1

(

r−1 + c+ dr
)(p−1)/2

=

(p−1)/2
∑

s=−(p−1)/2

as

p−1
∑

r=1

rs ≡ −a0 (mod p).
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Clearly,

a0 =

(p−1)/2
∑

k=0

(

(p − 1)/2

2k

)(

2k

k

)

c(p−1)/2−2kdk

≡
(p−1)/2
∑

k=0

(−1/2

2k

)(

2k

k

)(

c

p

)(

d

c2

)k

=

(

c

p

) (p−1)/2
∑

k=0

(4k
2k

)(2k
k

)

(−4)2k

(

d

c2

)k

=

(

c

p

) p−1
∑

k=0

(

4k

2k

)(

2k

k

)(

d

16c2

)k

(mod p).

So, by the above, we finally obtain (2.1). �

Lemma 2.2. Let p be any odd prime. Then we have the congruence

p−1
∑

k=0

(

4k
2k

)(

2k
k

)

64k

(

xk −
(−2

p

)

(1− x)k
)

≡ 0 (mod p2−δp,3) (2.3)

in the ring Zp[x], where Zp is the ring of all p-adic integers, and δp,3 is 1 or
0 according as p = 3 or not.

Remark 2.1. For any prime p > 3, the congruence (2.3) is due to Sun [9,
(1.15)]. We can easily verify that (2.3) also holds for p = 3.

Proof of Theorem 1.2. Clearly both sides of (1.5) vanish if n = 1. Below we
assume n > 1 and distinguish three cases.

Case 1. n is an odd prime p.

Define

D :=

p−1
∑

j=0

(

j

p

)(

i2 + cij + dj2

p

)

−
p−1
∑

j=0

(−j

p

)(

i2 + 2cij + (c2 − 4d)j2

p

)

.

If p | c and p ≡ 3 (mod 4), then

D =

(p−1)/2
∑

j=1

((

j

p

)

+

(

p− j

p

))(

i2 + dj2

p

)

−
(p−1)/2
∑

j=1

((−j

p

)

+

(−(p− j)

p

))(

i2 − 4dj2

p

)

=0− 0 = 0.

When p | c and p ≡ 1 (mod 4), for q = ((p−1)/2)! we have q2 ≡ −1 (mod p)

and (2qp ) = 1 (cf. [11, Remark 1.1 and Lemma 2.3]), thus

D =

p−1
∑

j=1

(

j

p

)(

i2 + dj2

p

)

−
p−1
∑

j=1

(−j

p

)(

i2 − 4dj2

p

)
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=

p−1
∑

j=1

(

2qj

p

)(

i2 + d(2qj)2

p

)

−
p−1
∑

j=1

(

j

p

)(

i2 − 4dj2

p

)

= 0.

Now suppose that p ∤ c. By Lemma 2.2,

p−1
∑

k=0

(

4k

2k

)(

2k

k

)(

d

16c2

)k

=

p−1
∑

k=0

(4k
2k

)(2k
k

)

64k

(

4d

c2

)k

≡
(−2

p

) p−1
∑

k=0

(4k
2k

)(2k
k

)

64k

(

1− 4d

c2

)k

=

(−2

p

) p−1
∑

k=0

(

4k

2k

)(

2k

k

)(

c2 − 4d

16(2c)2

)k

(mod p2−δp,3).

Combining this with Lemma 2.1, we obtain that

p−1
∑

j=0

(

j

p

)(

i2 + cij + dj2

p

)

≡−
(−2ci

p

) p−1
∑

k=0

(

4k

2k

)(

2k

k

)(

c2 − 4d

16(2c)2

)k

≡
(−1

p

) p−1
∑

j=0

(

j

p

)(

i2 + 2cij + (c2 − 4d)j2

p

)

(mod p).

Thus D ≡ 0 (mod p). Clearly |D| < 2p.
If p | i, then

D =

p−1
∑

j=0

(

j

p

)(

dj2

p

)

−
p−1
∑

j=0

(−j

p

)(

(c2 − 4d)j2

p

)

=

((

d

p

)

−
(

4d− c2

p

)) p−1
∑

j=1

(

j

p

)

= 0.

Now assume that p ∤ i. If neither c2 − 4d nor (2c)2 − 4(c2 − 4d) = 16d is
divisible by p, then

|{1 6 j 6 p− 1 : i2 + cij + dj2 ≡ 0 (mod p)}| ∈ {0, 2}
and

|{1 6 j 6 p− 1 : i2 + 2cij + (c2 − 4d)j2 ≡ 0 (mod p)}| ∈ {0, 2},
hence D is even. When p | d, we also have 2 | D since

|{1 6 j 6 p− 1 : p | i(i+ cj)}| = |{1 6 j 6 p− 1 : p | i(i+ cj)2}| = 1.
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If p | c2 − 4d, then 2 | D since

|{1 6 j 6 p− 1 : p | i(i+ 2cj)}| = 1

and
∣

∣

∣

∣

{

1 6 j 6 p− 1 : i2 + cij + dj2 ≡
(

i+
c

2
j
)2

≡ 0 (mod p)

}
∣

∣

∣

∣

= 1.

So D is always even, and hence D = 0 as p | D and |D| < 2p.

Case 2. n = p1 . . . pr with r > 2, where p1, . . . , pr are distinct primes.

By the Chinese Remainder Theorem,

n−1
∑

j=0

(

j

n

)(

i2 + cij + dj2

n

)

=
n−1
∑

j=0

r
∏

s=1

(

j

ps

)(

i2 + cij + dj2

ps

)

=

p1−1
∑

j1=0

. . .

pr−1
∑

jr=0

r
∏

s=1

(

js
ps

)(

i2 + cijs + dj2s
ps

)

and hence

n−1
∑

j=0

(

j

n

)(

i2 + cij + dj2

n

)

=
r
∏

s=1

ps−1
∑

js=0

(

js
ps

)(

i2 + cijs + dj2s
ps

)

. (2.4)

Similarly,

n−1
∑

j=0

(−j

n

)(

i2 + 2cij + (c2 − 4d)j2

n

)

=

r
∏

s=1

ps−1
∑

js=0

(−js
ps

)(

i2 + 2cijs + (c2 − 4d)j2s
ps

)

.

Thus, (1.5) holds in view of Case 1. This concludes the proof. �

3. Proofs of Theorems 1.3 and 1.1

Lemma 3.1. Let p > 3 be a prime. If p ≡ 1, 3 (mod 8) and p = x2 + 2y2

with x, y ∈ Z and x ≡ 1 (mod 4), then

p−1
∑

k=0

(

4k
2k

)(

2k
k

)

128k
≡ (−1)⌊(p+5)/8⌋

(

2x− p

2x

)

(mod p2).

If (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8), then

p−1
∑

k=0

(

4k
2k

)(

2k
k

)

128k
≡ 0 (mod p2).
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Remark 3.1. The first assertion in Lemma 3.1 was conjectured by Z.-W.
Sun [8] and confirmed by his twin brother Z.-H. Sun [7, Theorem 4.3]. The
second assertion was proved by Z.-W. Sun [9, Corollary 1.3] as a consequence
of (2.3) with x = 1/2.

Lemma 3.2. Let p be an odd prime and let c, d, i ∈ Z with p ∤ d. Then

p−1
∑

j=0

(

j

p

)(

i2 + 3cij + dj2

p

)

=

(

i

p

) p−1
∑

x=0

(

x3 − (3c2 − d)x+ c(2c2 − d)

p

)

.

(3.1)

Proof. Both sides of (3.1) vanish if p | i. Below we assume p ∤ i.
Clearly,

p−1
∑

j=0

(

j

p

)(

i2 + 3cij + dj2

p

)

=

p−1
∑

j=0

(

dj

p

)(

di2 + 3ci(dj) + (dj)2

p

)

=

p−1
∑

k=0

(

k

p

)(

k2 + 3cik + di2

p

)

=

p−1
∑

r=0

(

ir

p

)(

(ir)2 + 3ci2r + di2

p

)

=

(

i

p

) p−1
∑

r=0

(

r

p

)(

r2 + 3cr + d

p

)

and

p−1
∑

r=0

(

r3 + 3cr2 + dr

p

)

=

p−1
∑

x=0

(

(x− c)3 + 3c(x − c)2 + d(x− c)

p

)

=

p−1
∑

x=0

(

x3 + (d− 3c2)x+ c(2c2 − d)

p

)

.

So (3.1) holds. �

Lemma 3.3. Let p be any odd prime and let i ∈ Z.
(i) We have

p−1
∑

j=0

(

j

p

)(

i2 + 4ij + 2j2

p

)

=

{

(−1)⌊(p−3)/8⌋( ip)2x if p = x2 + 2y2 (x, y ∈ Z & 4 | x− 1),

0 if (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8).

(3.2)
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(ii) We have

p−1
∑

j=0

(

j

p

)(

i2 + 3ij + 2j2

p

)

=

{

−(2ip )2x if p = x2 + 4y2 (x, y ∈ Z & 4 | x− 1),

0 if (−1
p ) = −1, i.e., p ≡ 3 (mod 4).

(3.3)

Also,
p−1
∑

j=0

(

j

p

)(

i2 + 3ij + 3j2

p

)

=

{

−(−i
p )2x if p = x2 + 3y2 (x, y ∈ Z & 3 | x− 1),

0 if (−3
p ) 6= 1, i.e., p ≡ 0, 2 (mod 3),

(3.4)

and
p−1
∑

j=0

(

j

p

)(

i2 + 21ij + 112j2

p

)

=

{

−( ip)2x if p = x2 + 7y2 (x, y ∈ Z & (x7 ) = 1),

0 if (−7
p ) 6= 1, i.e., p ≡ 0, 3, 5, 6 (mod 7).

(3.5)

Remark 3.2. It is well known that any prime p ≡ 1 (mod 4) can be written
as x2+4y2 with x, y ∈ Z. Also, for each m ∈ {2, 3, 7} any odd prime p with
(−m

p ) = 1 can be written x2 +my2 with x, y ∈ Z (cf. [3]).

Proof of Lemma 3.3. It is easy to verify that (3.2)-(3.5) hold for p = 3.
Below we assume p > 3.

(i) As 16 × 42/2 = 128, combining Lemma 2.1 and Lemma 3.1 we find
that

p−1
∑

j=0

(

j

p

)(

i2 + 4ij + 2j2

p

)

≡
{

(−1)⌊(p−3)/8⌋( ip)2x (mod p) if p = x2 + 2y2 (x, y ∈ Z & 4 | x− 1),

0 (mod p) if (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8).

Observe that

p−1
∑

j=0

(

j

p

)(

i2 + 4ij + 2j2

p

)

=

p−1
∑

j=1

(

j

p

)(

i2 + 4ij + 2j2

p

)

is even (since |{1 6 j 6 p − 1 : i2 + 4ij + 2j2 ≡ 0 (mod p)}| ∈ {0, 2}),
and its absolute value is smaller than p. If p = x2 + 2y2 with x, y ∈ Z and
x ≡ 1 (mod 4), then |2x| < 2

√
p < p. So (3.2) holds.
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(ii) In light of Lemma 3.2,

p−1
∑

j=0

(

j

p

)(

i2 + 3ij + 2j2

p

)

=

(

i

p

) p−1
∑

r=0

(

r3 − r

p

)

=

(

2i

p

) p−1
∑

r=0

(

2r

p

)(

4r2 − 4

p

)

=

(

2i

p

) p−1
∑

s=0

(

s3 − 4s

p

)

and

p−1
∑

j=0

(

j

p

)(

i2 + 3ij + 3j2

p

)

=

(

i

p

) p−1
∑

r=0

(

r3 − 1

p

)

=

(

2i

p

) p−1
∑

r=0

(

(2r)3 − 8

p

)

=

(

2i

p

) p−1
∑

s=0

(

s3 − 8

p

)

.

On the other hand, by [1, Theorem 6.2.9] and [1, pp. 195-196],

p−1
∑

s=0

(

s3 − 4s

p

)

=

{

−2x if p = x2 + 4y2 (x, y ∈ Z & 4 | x− 1),

0 if p ≡ 3 (mod 4),

and

p−1
∑

s=0

(

s3 − 8

p

)

=

{

−2x(−2
p ) if p = x2 + 3y2 (x, y ∈ Z & 3 | x− 1),

0 if p ≡ 2 (mod 3).

So we have (3.3) and (3.4).
Now we prove (3.5). Clearly, (3.5) is valid if p | i or p = 7. Below we

assume that p ∤ i and p 6= 7. Observe that

p−1
∑

j=0

(

j

p

)(

i2 + 21ij + 112j2

p

)

=

p−1
∑

r=0

(

112ir

p

)(

112i2 + 21i2(112r) + (112ir)2

p

)

=

(

i

p

) p−1
∑

s=0

(

s3 + 21s2 + 112s

p

)

.
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By a result of Rajwade [6],

p−1
∑

s=0

(

s3 + 21s2 + 112s

p

)

=

{

−2x if p = x2 + 7y2 (x, y ∈ Z & (x7 ) = 1),

0 if (−7
p ) = −1.

Therefore (3.5) holds.
The proof of Lemma 3.3 is now complete. �

Proof of Theorem 1.3. Write n = p1 . . . pr with p1, . . . , pr distinct primes.
In light of (2.4) and Lemma 3.3(i), if −2 R n fails (i.e., (−2

ps
) = −1 for some

s = 1, . . . , r) then

n−1
∑

j=0

(

j

n

)(

i2 + 4ij + 2j2

n

)

=
r
∏

s=1

ps−1
∑

j=0

(

js
ps

)(

i2 + 4ijs + 2j2s
ps

)

= 0,

Thus (1.7) holds. Note that if −2 R n then for each s = 1, . . . , r we may
write ps = x2s + 2y2s with xs, ys ∈ Z and xs ≡ 1 (mod 4) and hence

n−1
∑

j=0

(

j

n

)(

i2 + 4ij + 2j2

n

)

=

r
∏

s=1

(

−1)⌊(ps−3)/8⌋

(

i

ps

)

2xs

)

.

Similarly, (1.6), (1.8) and (1.9) also hold in view of (2.4) and Lemma
3.3(ii). This concludes our proof of Theorem 1.3. �

Proof of Theorem 1.1. Suppose that n =
∏r

s=1 p
as
s , where p1, . . . , pr are

distinct primes and a1, . . . , ar are positive integers. If at > 1 with 1 6 t 6 r,
then n/pt ≡ 0 (mod p1 . . . pr) and hence for any i ∈ Z we have

(

i2 + cij + dj2

n

)

=

r
∏

s=1

(

i2 + cij + dj2

ps

)as

=
r
∏

s=1

(

(i+ n/pt)
2 + c(i+ n/pt)j + dj2

ps

)as

=

(

(i+ n/pt)
2 + c(i+ n/pt)j + dj2

n

)

for all j = 0, . . . , n− 1. Therefore

(c, d)n = [c, d]n = 0.

Below we assume that n is squarefree. If −1 R n fails, then by Theorems
1.2 and 1.3 we have

n−1
∑

j=1

(

j

n

)(

i2 + 3ij + 2j2

n

)

= 0 =

n−1
∑

j=1

(

j

n

)(

i2 + 6ij + j2

n

)

for all i = 0, . . . , n − 1, hence (3, 2)n = (6, 1)n = 0 and [3, 2]n = [6, 1]n = 0.
This proves part (i) of Theorem 1.1. Similarly, parts (ii)-(iv) of Theorem
1.1 follow from Theorems 1.2 and 1.3. This ends the proof. �
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4. Proof of Theorem 1.4

Let q > 1 be a prime power and let Fq be the finite field of order q. A
multiplicative character χ on Fq is called trivial (or principal) if χ(a) = 1
for all a ∈ F∗

q = Fq \ {0}. For a polynomial P (x) =
∑n

s=0 csx
s ∈ Fq[x], we

define the homogenous polynomial

P ∗(x, y) =

n
∑

s=0

csx
n−sys = xnP

(y

x

)

. (4.1)

Fix a list of the elements of Fq. For a multiplicative character χ on Fq, we
introduce the matrices

M(P, χ) = [χ(P ∗(a, b))]a,b∈F∗
q
and M0(P, χ) = [χ(P ∗(a, b))]a,b∈Fq . (4.2)

Lemma 4.1. Let q > 1 be a prime power and let χ be a nontrivial multiplica-
tive character on Fq. Suppose that P (x) ∈ Fq[x] and

∑

x∈Fq
χ(xP (x)) = 0.

Then M(P, χ) is singular (i.e., detM(P, χ) = 0). If the character χn+1 is
nontrivial with n = degP , then the matrix M0(P, χ) is singular too.

Proof. We introduce the column vector v whose coordinates are vb = χ(b)
for b ∈ F∗

q. Let M = M(P, χ). Then, for any a ∈ F∗
q we have

(Mv)a =
∑

b∈F∗
q

χ
(

anP
(

a−1b
))

χ(b) = χ(an+1)
∑

b∈F∗
q

χ
(

a−1bP
(

a−1b
))

= 0.

Since v is a nonzero vector, the matrix M is singular.
Now suppose that the degree of P is n and the character χn+1 is nontrivial.

Let M0 = M0(P, χ) and introduce the vector v with coordinates vb = χ(b)
for b ∈ Fq. Then (M0v)a = 0 for all a ∈ F∗

q as before. Let cn be the leading
coefficient of the polynomial P (x). Then

(M0v)0 =
∑

b∈Fq

χ(cnb
n)χ(b) = χ(cn)

∑

b∈Fq

χn+1(b) = 0.

Therefore M0v is the zero vector and hence M0 is singular. �

Motivated by Lemma 4.1, we give the following more sophisticated lemma.

Lemma 4.2. Let q > 1 be an odd prime power. Suppose that g ∈ Fq is not a
square and χ is a nontrivial multiplicative character on Fq with χ(−1) = 1.
Assume that P (x) ∈ Fq[x] and

∑

x∈Fq

χ(xP (x2)) =
∑

x∈Fq

χ(xP (gx2)) = 0. (4.3)

(i) We have dim(Ker(M(P, χ))) > 2, in particular M(P, χ) is singular.
(ii) Assume that the character χ2n+1 with n = degP is nontrivial. Then

dim(Ker(M0(P, χ))) > 2.
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Proof. For a, b ∈ Fq, set

va,b :=

{

χ(c) = χ(
√
ab) if ab = c2 for some c ∈ Fq,

0 otherwise.

This is well defined since χ(±1) = 1, The matrix V = [va,b]a,b∈F∗
q
has rank

2; in fact, if b′ = bc2 for some c ∈ Fq then columns b and b′ in V are
proportional, but columns 1 and g are not proportional.

(i) Write M for M(P, χ). It suffices to show that MV is the zero matrix.
For a, b ∈ F∗

q, the (a, b)-entry of the matric MV is
∑

c∈Fq

χ(P ∗(a, c))vc,b =
∑

c∈Fq
bc is a square

χ
(

anP
(

a−1c
))

χ(
√
bc)

=
1

2

∑

d∈Fq

χ
(

anP
(

a−1bd2
))

χ(bd)

=
1

2
χ(anb)

∑

d∈Fq

χ (Pa−1b(d)) ,

where Pc(x) = xP (cx2) for any c ∈ Fq.
Now it remains to show for any c ∈ F∗

q the identity
∑

x∈Fq

χ(Pc(x)) = 0.

Clearly, c = c0d
2 for some c0 ∈ {1, g} and d ∈ F∗

q. Thus
∑

x∈Fq

χ(Pc(x)) =
∑

x∈Fq

χ(xP (c0d
2x2)) =

∑

y∈Fq

χ(d−1yP (c0y
2))

=χ(d)−1
∑

y∈Fq

χ(Pc0(y)) = 0.

This proves part (i) of Lemma 4.2.
(ii) Write M0 for M0(P, χ), and define V0 = [va,b]a,b∈Fq . (Note the slight

difference between V0 and V .) The rank of V0 is still equal to 2, so it suffices
to show that M0V0 is the zero matrix. Note that the (a, b)-entry of M0V0 is
trivially zero if b = 0 since vc,0 = 0 for all c ∈ Fq. For a, b 6= 0 we can repeat
the computation for MV verbatim. Let cn denote the leading coefficient of
P (x). If a = 0 and b 6= 0, then the (a, b)-entry of M0V0 is

∑

c∈Fq

χ(P ∗(0, c))vc,b =
∑

c∈Fq

bc is a square

χ(cnc
n)χ(

√
bc)

=
1

2

∑

d∈F∗
q

χ(cn(b
−1d2)nd) =

χ(b−1cn)

2

∑

d∈Fq

χ2n+1(d).

This is zero since χ2n+1 is nontrivial. We are done. �
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Theorem 4.1. Let q > 1 be an odd prime power and let m ∈ Z+ with
gcd(m, q − 1) = 1. Let χ be a nontrivial quadratic character on Fq, and let

Pm(x, a) =

m−1
∑

k=0

(

2m

2k + 1

)

akxm−1−k (4.4)

with a ∈ F∗
q = Fq \ {0}. Then

∑

x∈Fq

χ(xPm(gx2, a)) = 0 for all g ∈ F∗
q. (4.5)

If χ(−1) = 1, then both M(Pm(x, a), χ) and M0(Pm(x, a), χ) are singular,
and moreover either of them has a kernel of dimension at least two.

Proof. In view of Lemma 4.2, we only need to prove (4.5). As Pm(gx2, a) =
gm−1Pm(x2, ag−1) for all g ∈ F∗

q, it suffices to show that
∑

x∈Fq

χ(xPm(x2, a)) = 0 (4.6)

for any a ∈ F∗
q.

Clearly, m is odd since gcd(m, q − 1) = 1. Recall that χ2 is the trivial
character, and note that
∑

x∈Fq

χ(xPm(x2, a)) =
∑

x∈F∗
q

χ(ax−1Pm((ax−1)2, a))

=
∑

x∈F∗
q

χ

(m−1
∑

k=0

(

2m

2(m− 1− k) + 1

)

a2m−1−kx2k+1−2m

)

=
∑

x∈F∗
q

χ

(m−1
∑

j=0

(

2m

2j + 1

)

am+jx−1−2j

)

=
∑

x∈F∗
q

χ(amx−2mxPm(x2, a)) = χ(a)m
∑

x∈Fq

χ(xPm(x2, a)).

If a is not a square in Fq, then χ(a)m = (−1)m = −1 and hence (4.6) holds
by the above.

Now assume that a = b2 with b ∈ F∗
q. Since

∑

x∈Fq

χ(xPm(x2, a)) =
∑

x∈Fq

χ(b2m−2xPm((b−1x)2, 1)) = χ(b)2m−1
∑

y∈Fq

χ(yPm(y2, 1)),

it remains to show that
∑

x∈Fq
χ(xPm(x2, 1)) = 0. Since χ = χ−1 and

2xPm(x2, 1) = (x+1)2m−(x−1)2m = ((x+1)m+(x−1)m)((x+1)m−(x−1)m),

we have
∑

x∈Fq

χ(2xPm(x2, 1))
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=χ(22m) +
∑

x∈Fq\{1}

χ((x+ 1)m + (x− 1)m)χ−1((x+ 1)m − (x− 1)m)

=1 +
∑

x∈Fq\{1}

χ

(

(x+ 1)m + (x− 1)m

(x+ 1)m − (x− 1)m

)

=1 +
∑

x∈Fq\{1}

χ

(

(1 + 2/(x − 1))m + 1

(1 + 2/(x − 1))m − 1

)

=1 +
∑

y∈Fq\{1}

χ

(

ym + 1

ym − 1

)

= 1 +
∑

y∈Fq\{1}

χ

(

y + 1

y − 1

)

=1 +
∑

y∈Fq\{1}

χ

(

1 +
2

y − 1

)

= 1 +
∑

z∈Fq\{1}

χ(z) = 0

Thus
∑

x∈Fq
χ(xPm(x2, 1)) = 0 as desired.

The proof of Theorem 4.1 is now complete. �

Proof of Theorem 1.4(i). Let p be any prime with p ≡ 5 (mod 12), and let χ
be the quadratic character of Fp = Z/pZ with χ(x+pZ) = (xp ) for all x ∈ Z.

Note that χ(−1) = 1 since p ≡ 1 (mod 4). Clearly,

P3(x, 3) =

(

6

1

)

x2 +

(

6

3

)

3x+

(

6

5

)

32 = 6(x2 + 10x+ 9).

Applying Theorem 4.1, we obtain that

(10, 9)p = det

[(

i2 + 10ij + 9j2

p

)]

16i,j6p−1

= 0

and

[10, 9]p = det

[(

i2 + 10ij + 9j2

p

)]

06i,j6p−1

= 0.

Note that Sun stated in [S19, Remark 4.9] that (10, 9)p = 0 if and only if
[10, 9]p = 0. �

Let Fq be a finite field of order q. A polynomial P (x) ∈ Fq[x] is called
a permutation polynomial if P is bijective as a function on Fq. If χ is a
nontrivial multiplicative character on Fq and P (x) ∈ Fq[x] is a permutation
polynomial, then

∑

x∈Fq

χ(P (x)) =
∑

y∈Fq

χ(y) = 0,

and also
∑

x∈F∗
q

χ(P (x)) = 0

provided that P (0) = 0.
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Theorem 4.2. Let q > 1 be an odd prime power and let m ∈ Z+ with
gcd(m, q2−1) = 1. Let χ be a nontrivial multiplicative character on Fq with
χ(−1) = 1. For the polynomial

Qm(x, a) :=

(m−1)/2
∑

i=0

m

m− i

(

m− i

i

)

(−a)ix(m−1)/2−i (4.7)

with a ∈ F∗
q, we have

dim(Ker(M(Qm(x, a), χ))) > 2.

Moreover, if the character χm is nontrivial, then

dim(Ker(M0(Qm(x, a), χ))) > 2.

Proof. Let a ∈ Fq. It is a classical result (cf. [5, pp. 355-357]) that the
Dickson polynomial Dm(x, a) := xQm(x2, a) is a permutation polynomial on

Fq. For any g ∈ F∗
q, as Qm(gx2, a) = g(m−1)/2Qm(x2, ag−1), the polynomial

xQm(gx2, a) is also a permutation polynomial on Fq. Thus
∑

x∈Fq

χ(xQm(gx2, a)) = 0 for all g ∈ F∗
q. (4.8)

Combining this with Lemma 4.2, we immediately obtain the desired results.
�

Proof of Theorem 1.4(ii). Let p be any prime with p ≡ 13, 17 (mod 20).
Then gcd(5, p2 − 1) = 1. Let χ be the quadratic character of Fp = Z/pZ
with χ(x + pZ) = (xp ) for all x ∈ Z. Then χ(−1) = 1 since p ≡ 1 (mod 4).

Clearly χ5 = χ is nontrivial and Q5(x,−1) = x2+5x+5. Applying Theorem
4.2, we get that

[5, 5]p = det

[(

i2 + 5ij + 5j2

p

)]

06i,j6p−1

= 0.

This concludes the proof. �

Note that actually our method to prove Theorem 1.4 yields a stronger
result stated after Theorem 1.4 in Section 1.

5. A sufficient condition for
∑p−1

x=0(
ax5+bx3+cx

p ) = 0

For an odd prime power q > 1, we let χq denote the quadratic multiplica-
tive character on the finite field Fq.

Let p ≡ 1 (mod 4) be a prime and let a be a nonzero element of Fp. If
χp(a) = 1, then we define

√
a as an element α ∈ Fp with α2 = a. When

χp(a) = −1, the finite field Fp2
∼= Fp[x]/(x

2 − a) contains an element α with

α2 = a, and we denote such an α ∈ Fp2 by
√
a.
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Theorem 5.1. Let p ≡ 1 (mod 4) be a prime and let a, b, c be nonnzero
elements of the field Fp. Let q be p or p2 according as χp(ac) is 1 or −1,
and set

γ =
b+ 2

√
ac

16
√
ac

∈ Fq.

Let N be the number of Fq-points on the affine curve y2 = x4 + x2 + γ. If
N ≡ −1 (mod p), then

∑

x∈Fp

χp(ax
5 + bx3 + cx) = 0.

For the sake of convenience, for an odd prime p we introduce the following
two polynomials over Fp:

f(z) = 1 +

⌊(p−1)/8⌋
∑

k=1

k−1
∏

j=0

(8j + 1)(8j + 5)

4(j + 1)(4j + 3)
zk, (5.1)

and

g(z) = 1 +

⌊(p−1)/4⌋
∑

k=1

(4k − 1)!!

4k(k!)2
zk. (5.2)

Lemma 5.1. Let p be a prime with p ≡ 1 (mod 4), and let a, b, c ∈ Fp \{0}.
Define

Ap =
∑

x∈Fp

χp(ax
5 + bx3 + cx).

Viewing Ap (mod p) as an element of Fp, we have

Ap (mod p) = −
(

(p− 1)/2

(p− 1)/4

)

b(p−1)/4(a(p−1)/4 + c(p−1)/4)f
(ac

b2

)

.

Consequently, Ap = 0 if (a−1c)(p−1)/4 = −1 or f(ac/b2) = 0.

Proof. As Ap =
∑

x∈Fp\{0}
χp(ax

5 + bx3 + cx), we have |Ap| < p. So, the

second assertion in Lemma 5.1 follows from the first one.
Now we come to prove the first assertion. With the help of (2.2), in Fp

we have

Ap (mod p) =
∑

x∈Fp

(ax5 + bx3 + cx)(p−1)/2

=
∑

k5+k3+k1=(p−1)/2

((p − 1)/2)!

k5!k3!k1!
ak5bk3ck1

p−1
∑

x=0

x5k5+3k3+k1

=−
∑

k5+k3+k1=(p−1)/2
5k5+3k3+k1=p−1

((p − 1)/2)!

k5!k3!k1!
ak5bk3ck1

−
∑

k5+k3+k1=(p−1)/2
5k5+3k3+k1=2(p−1)

((p − 1)/2)!

k5!k3!k1!
ak5bk3ck1 .
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(Note that if k1, k3, k5 are nonnegative integers with k1+k3+k5 = (p−1)/2
then k1 + 3k3 + 5k5 6 5(k1 + k3 + k5) < 3(p − 1).) Thus,

Ap (mod p)

=−
∑

k5+k3+k1=(p−1)/2
k3+2k5=(p−1)/4

((p − 1)/2)!

k5!k3!k1!
ak5bk3ck1 −

∑

k5+k3+k1=(p−1)/2
k3+2k1=(p−1)/4

((p − 1)/2)!

k5!k3!k1!
ak5bk3ck1

=−
⌊(p−1)/8⌋

∑

k=0

((p − 1)/2)!

k!((p − 1)/4 − 2k)!((p − 1)/4 + k)!
akb(p−1)/4−2kc(p−1)/4+k

−
⌊(p−1)/8⌋

∑

k=0

((p − 1)/2)!

((p − 1)/4 + k)!((p − 1)/4 − 2k)!k!
a(p−1)/4+kb(p−1)/4−2kck

=−
(

(p − 1)/2

(p − 1)/4

)

b(p−1)/4(c(p−1)/4 + a(p−1)/4)

×
(

1 +

⌊(p−1)/8⌋
∑

k=1

2k−1
∏

i=0

(

p− 1

4
− i

)

·
k
∏

j=1

1

((p − 1)/4 + j)
· 1

k!

(ac

b2

)k
)

=−
(

(p − 1)/2

(p − 1)/4

)

b(p−1)/4(a(p−1)/4 + c(p−1)/4)f
(ac

b2

)

as desired.
�

Lemma 5.2. Let p be an odd prime and let q = pn with n ∈ Z+. For any
polynomial

H(x) =

2(p−1)
∑

k=0

ckx
k ∈ Fq[x],

we have
∑

x∈Fq

H(x)1+p+···+pn−1
= −c1+p+···+pn−1

p−1 − c1+p+···+pn−1

2(p−1) . (5.3)

Proof. As the multiplicative group Fq \ {0} is cyclic, similar to (2.2), for
each s = 0, 1, 2, . . . we have

∑

x∈Fq

xs =

{

−1 if s ∈ (q − 1)Z+,

0 otherwise,

where we treat 00 as 1 when s = 0. Note also that

H(x)p
i
=

2(p−1)
∑

k=0

cp
i

k xkp
i
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for all integers i > 0. Thus

∑

x∈Fq

H(x)1+p+···+pn−1
=

∑

x∈Fq

n−1
∏

i=0

(2(p−1)
∑

ki=0

cp
i

ki
xkip

i

)

= −
∑∗

k0,...,kn−1

n−1
∏

i=0

cp
i

ki

where
∑∗ means that the sum is taken over all k0, . . . , kn−1 ∈ {0, 1, . . . , 2p−

2} subject to the condition

k0 + k1p+ · · ·+ kn−1p
n−1 ∈ (q − 1)Z+. (5.4)

Write ki = p− 1 + ti, where −(p− 1) 6 ti 6 p− 1. Then

n−1
∑

i=0

kip
i = q − 1 +

n−1
∑

i=0

tip
i.

Note that
∣

∣

∣

∣

n−1
∑

i=0

tip
i

∣

∣

∣

∣

6 q − 1,

and the equality is possible only if t0 = · · · = tn−1 = p − 1 (i.e., k0 = · · · =
kn−1 = 2(p − 1)) or t0 = · · · = tn−1 = −(p − 1) (i.e., k0 + k1p + · · · +
kn−1p

n−1 = 0). Since |ti| < p, if
∑n−1

i=0 tip
i = 0 then we obtain step by step

that t0 = · · · = tn−1 = 0 (i.e., k0 = · · · = kn−1 = p− 1).
Combining the above, we finally obtain (5.3). �

Lemma 5.3. Let p be an odd prime and let q = pn with n ∈ Z+. Let
α, β, γ ∈ Fq \ {0} and set

Bq =
∑

x∈Fq

χq(αx
4 + βx2 + γ).

Viewing Bq (mod p) as an element of Fq, we have

Bq (mod p) = −χq(α)− χq(β)g

(

αγ

β2

)1+p+···+pn−1

. (5.5)

Proof. Write

H(x) := (αx4 + βx2 + γ)(p−1)/2 =

2(p−1)
∑

k=0

ckx
k.

In view of Lemma 5.2, we have

Bq (mod p) =
∑

x∈Fq

(αx4 + βx2 + γ)(q−1)/2 =
∑

x∈Fq

H(x)1+p+···+pn−1

=− c1+p+···+pn−1

p−1 − c1+p+···+pn−1

2(p−1) .

(5.6)

Clearly,

c1+p+···+pn−1

2(p−1) = α(q−1)/2 = χq(α). (5.7)



20 D. KRACHUN, F. PETROV, Z.-W. SUN, M. VSEMIRNOV

Note also that

cp−1 =
∑

k4+k2+k0=(p−1)/2
4k4+2k2=p−1

((p − 1)/2)!

k4!k2!k0!
αk4βk2γk0

=
∑

06k6(p−1)/4

((p − 1)/2)!

((p− 1)/2 − 2k)!(k!)2
αkβ((p−1)/2−2k)γk

=β(p−1)/2 + β(p−1)/2

⌊(p−1)/4⌋
∑

k=1

2k−1
∏

j=0

(

p− 1

2
− j

)

· 1

(k!)2

(

αγ

β2

)k

=β(p−1)/2g

(

αγ

β2

)

and hence

c1+p+···+pn−1

p−1 = χq(β)g

(

αγ

β2

)1+p+···+pn−1

. (5.8)

Combining (5.6) with (5.7) and (5.8), we immediately obtain the desired
(5.5). �

Now we study further properties of the polynomials f and g defined by
(5.1) and (5.2). They may be viewed as truncated versions of certain hyper-
geometric series.

Lemma 5.4. Let p be an odd prime and let q = pn with n ∈ Z+.
(i) A polynomial u ∈ Fq[z] with deg u 6 ⌊(p−1)/4⌋ satisfies the differential

equation
(4z − 16z2)u′′ + (4− 32z)u′ − 3u = 0 (5.9)

if and only if u = cg for some c ∈ Fq.
(ii) Suppose that p ≡ 1 (mod 4). Then a polynomial v ∈ Fq[z] with

deg v 6 ⌊(p − 1)/8⌋ satisfies the differential equation

(16z − 64z2)v′′ + (12− 112z)v′ − 5v = 0 (5.10)

if and only if v = cf for some c ∈ Fq.

Proof. It is straightforward to verify that u = g and v = f satisfy (5.9) and
(5.10) respectively. So, the “if” parts of (i) and (ii) are easy.

Now we prove the “only if” part of (i). If a polynomial u ∈ Fq[z] with
degu ≤ ⌊(p− 1)/4⌋ satisfies (5.9), then there is a constant c ∈ Fq such that
ũ = u− cg is a solution of (5.9) with deg ũ < ⌊(p−1)/4⌋. Thus, it suffices to
show that (5.9) has no nonzero solution u = cdz

d+ · · ·+c0 with deg u = d <
⌊(p− 1)/4⌋. In fact, the coefficient of zd in (4z− 16z2)u′′ + (4− 32z)u′ − 3u
is −(4d+ 1)(4d + 3)cd 6= 0 provided d < ⌊(p − 1)/4⌋.

Similarly, we can show the “only if” part of (ii). �

Lemma 5.5. Let p = 4n + 1 be a prime with n ∈ Z+. Then

−(2n)!(n!)2g(z) = (16z − 2)nf

(

1

(16z − 2)2

)

.
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Proof. Clearly, u = (16z − 2)nf((16z − 2)−2) is a polynomial of degree
n = (p− 1)/4 with the leading coefficient 1. A direct computation based on
(5.10) shows that u satisfies (5.9). Now we apply Lemma 5.4 and compare
the leading terms of both sides. Since

(p− 2)!!

4n(n!)2
=

(p− 1)!

2p−1(2n)!(n!)2
≡ − 1

(2n)!(n!)2
(mod p),

we immediately get the desired result. �

Proof of Theorem 5.1. Since

N =
∑

x∈Fq

(1 + χq(x
4 + x2 + γ)) = q +

∑

x∈Fq

χq(x
4 + x2 + γ),

the assumption N ≡ −1 (mod p), together with Lemma 5.3 in the case
α = β = 1, implies that g(γ) = 0. As (16γ − 2)−2 = ac/b2, we have
f(ac/b2) = 0 by Lemma 5.5. Applying Lemma 5.1 we obtain the desired
result. �
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