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ON THE LAST FALL DEGREE OF WEIL DESCENT POLYNOMIAL

SYSTEMS

MING-DEH A. HUANG (USC, MDHUANG@USC.EDU)

Abstract. Given a polynomial system F over a finite field k which is not necessarily of
dimension zero, we consider the Weil descent F ′ of F over a subfield k

′. We prove a theorem
which relates the last fall degrees of F1 and F

′

1, where the zero set of F1 corresponds
bijectively to the set of k-rational points of F , and the zero set of F ′

1 is the set of k′-rational
points of the Weil descent F

′. As an application we derive upper bounds on the last fall
degree of F ′

1 in the case where F is a set of linearized polynomials.

1. Introduction

Let k be a field and let F ⊂ R = k[X0, . . . ,Xm−1] be a finite subset which generates an
ideal. Let R≤i be the set of polynomials in R of degree at most i.

For i ∈ Z≥0, we let VF ,i be the smallest k-vector space of R≤i such that

(1) {f ∈ F : deg(f) ≤ i} ⊆ VF ,i;
(2) if g ∈ VF ,i and if h ∈ R with deg(hg) ≤ i, then hg ∈ VF ,i.

We write f ≡i g (mod F), for f, g ∈ R, if f − g ∈ VF ,i.
The last fall degree as defined in [6] (see also [7]) is the largest d such that VF ,d ∩R≤d−1 6=

VF ,d−1. We denote the last fall degree of F by dF .
As shown in [6, 7] the last fall degree is intrinsic to a polynomial system, independent of

the choice of a monomial order, always bounded by the degree of regularity, and invariant
under linear change of variables and linear change of equations. In [6, 7] complexity bounds
on solving zero dimensional polynomial systems were proven based on the last fall degree.
It was shown in [6] that the polynomial systems arising from the Hidden Field Equations
(HFE) public key crypto-system [1, 2] have bounded last fall degree if the degree of the
defining polynomial and the cardinality of the base field are fixed (the bound was improved
in [4]), and it follows that the HFE polynomials systems can be solved unconditionally in
polynomial time.

For F ⊂ R = k[X0, . . . ,Xm−1], let Zk(F) denote the set of solutions of F over k; let
Z(F) denote the set of solutions of F over k, where k is an algebraic closure of k. If F is
zero-dimensional then determining Z(F) reduces to computing VF ,max(dF ,e) where e is the
cardinality of Z(F) [7].

Suppose k is a finite field of cardinality qn with subfield k′ of cardinality q. TheWeil descent
system of F to k′ is a polynomial system obtained when one expresses all equation with the
help of a basis of k′/k. Let α0, . . . , αn−1 be a basis of k/k′. For f ∈ F and j = 0, . . . , n − 1,

Date: March 15, 2021.
2010 Mathematics Subject Classification. 13P10, 13P15.
Key words and phrases. polynomial system, last fall degree, Weil descent.

1

http://arxiv.org/abs/2103.07282v1


2

we define fj ∈ k′[Xij , i = 0, . . . ,m− 1, j = 0, . . . , n− 1] by

f





n−1
∑

j=0

αjX0j , . . . ,
n−1
∑

j=0

αjXm−1 j



 =
n−1
∑

j=0

fjαj .

We note that deg fj ≤ deg f . The system

F ′ = {fj : f ∈ F , j = 0, . . . , n− 1}

is called the Weil descent system of F with respect to α0, . . . , αn−1.
There is a bijection between Zk(F) and Zk′(F

′) = Z(F ′
1), where F ′

1 is F ′ together with
the field equations of k′, that is,

F ′
1 = F ′ ∪ {Xq

ij −Xij , i = 0, . . . ,m− 1, j = 0, . . . , n − 1}.

The HFE polynomial system is constructed by forming the Weil descent of some F con-
sisting of a single univariate polynomial, followed by linear change of variables and linear
change of equations [6]. Multivariate-HFE systems can be constructed similarly except F is
replaced by a finite set of multivariate polynomials of dimension zero. In [7] upper bounds
on the last fall degree degree of F ′

1 were proven in terms of q, m, the last fall degree of F ,
the degree of F and the number of solutions of F , but not on n. The result implies that
multi-HFE cryptosystems giving rise to multi-HFE polynomial systems as described above
are vulnerable to attack as well.

In this paper we consider the situation where F is not necessarily zero-dimensional.
Let

F1 = F ∪ {Xq
i − Yi1, . . . , Y

q
i n−2 − Yi n−1, Y

q
i n−1 −Xi : i = 0, . . . ,m− 1}

⊂ k[Xi, Yij : i = 0, . . . ,m− 1; j = 1, . . . , n− 1].

We observe that Zk(F) can easily be identified with Z(F1). So there is a bijection between
Z(F1) and Z(F ′

1). Note also that the ideals generated by F1 and F ′
1 are radical ideals.

The following theorem relates the last fall degrees of F1 and F ′
1.

Theorem 1.1. max(dF1
, q degF) = max(dF ′

1
, q degF).

Theorem 1.1 is closely related to Proposition 2 of [6] and Proposition 4.1 of [7]. In com-
parison, the bound established in Theorem 1.1 is a bit weaker. However the set F1 stated in
the theorem directly contains F as a subset. This makes it easier to apply the theorem both
conceptually and technically. When F consists of a univariate polynomial or more generally
when Z(F) is finite, it is not hard to bound dF1

. From this an easier and more conceptual
proof of the theorems in [6, 7] can be constructed based on Theorem 1.1. However in this
paper we will focus on applying the theorem to the situation where F is not zero-dimensional,
especially when F consists of linearized polynomials.

1.1. Proof of Theorem 1.1. For non-negative integers i, let σi denote the automorphism of

k over k′ such that σi(x) = xq
i

for x ∈ k. For every multivariate polynomial h with coefficients
from k, let hσi denote the polynomial obtained from h by acting on each coefficient of h by
σi.

Let Γ be the n by n matrix with rows and columns indexed by 0, . . . , n− 1, so that ασi

j is

the (i, j)-th entry of Γ for i, j = 0, . . . , n− 1.
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Let

gf = f





n−1
∑

j=0

αjX0j , . . . ,

n−1
∑

j=0

αjXm−1 j



 =

n−1
∑

j=0

fjαj

where fj ∈ k′[Xij , i = 0, . . . ,m− 1, j = 0, . . . , n− 1].

Let f̂ =













f0
.
.
.

fn−1













be the column vector with fi as the i-th entry for i = 0, . . . , n− 1.

Then gσi

f =
∑n−1

j=0 fjα
σi

j , and Γf̂ =













gσ0

f

.

.

.
g
σn−1

f













. Let G = {gσ0

f , . . . , g
σn−1

f : f ∈ F} and

G1 = G ∪ {Xq
ij −Xij, i = 0, . . . ,m− 1, j = 0, . . . , n− 1}. Since Γ is invertible, it follows from

Proposition 2.6 (part v) of [7] that dG = dF ′ , and dG1
= dF ′

1
.

Let Zij , i = 0, . . . ,m − 1 and j = 0, . . . , n − 1, be defined by the following change of
coordinates:













Xi

Yi1

.

.
Yi n−1













= Γ













Zi0

Zi1

.

.
Zi n−1













.

Under the change of coordinates, F1 becomes G2 where

G2 = {f(
n−1
∑

j=0

αjZ0j , . . . ,

n−1
∑

j=0

αjZm−1 j) : f ∈ F} ∪ {Zq
ij − Zij : i, j = 0, . . . , n − 1}

= {gf (Z01, . . . , Zm,n−1) : f ∈ F} ∪ {Zq
ij − Zij : i, j = 0, . . . , n− 1},

which we identify as a subset of G1. Since gqf ≡ gσf mod I where I is the deal generated by

Xq
ij−Xij, i = 0, . . . ,m−1, j = 0, . . . , n−1, we see that gσf ∈ VG2,qd where d = degF ≥ deg gf .

It follows inductively that gσi

f ∈ VG2,qd for all i, hence G1 ⊂ VG2,qd. Hence VG1,i = VG2,i for

i ≥ qd. Therefore max(dG1
, qd) = max(dG2

, qd). Since dG1
= dF ′

1
and dF1

= dG2
, we conclude

that max(dF1
, qd) = max(dF ′

1
, qd). Theorem 1.1 follows.

2. Systems of linearized polynomials

A k′-linearized polynomial in R = k[x0 . . . xm−1] is an element of the k-submodule of R

generated by xq
j

i where q = |k′|, i = 0 . . . m − 1 and j ≥ 0. As before let n = [k : k′]. Let

Q = {xq
n

i − xi : i = 0 . . . m− 1}.

For g =
∑d

i=0 aix
i ∈ k[x], let L(g) =

∑d
i=0 aix

qi . More generally we consider the k-linear

map from ⊕m−1
i=0 k[xi] onto the k-module of k′-linearized polynomials such that L(xji ) = xq

j

i

for i = 0, . . . ,m− 1 and j ≥ 0.
Let S = k[xij : i = 0 . . . m− 1, j = 0, . . . , n− 1]. We also write S = k[x̂i : i = 0, . . . ,m− 1].

where x̂i = xi0, . . . , xi n−1. Let S1 ⊂ S be the k-module of linear forms over xij , i =
0 . . . m− 1, j = 0, . . . , n− 1.
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For g ∈ k[x] and h ∈ k[xi], let g ◦ h ∈ k[xi] be defined as (g ◦ h)(xi) = g(h(xi)). For

f =
∑m−1

i=0 fi ∈
⊕m−1

i=0 k[xi] with fi ∈ k[xi], let g ◦ f ∈
⊕m−1

i=0 k[xi] be defined as g ◦ f =
∑m−1

i=0 g ◦ fi. Hence (g ◦ f)(x0, . . . , xm−1) =
∑m−1

i=0 g(fi(xi)). Note also that L(g) ◦ L(f) is a
k′-linearized polynomial in k[x0, . . . , xm−1].

Similarly for g ∈ k[x] and f =
∑

i,j fij ∈
⊕m−1

i=0

⊕n−1
j=0 k[xij ] with fij ∈ k[xij ], let g ◦ f ∈

⊕m−1
i=0

⊕n−1
j=0 k[xij ] be defined as g ◦ f =

∑

i,j g ◦ fij.

Consider the map ℓ from
⊕m−1

i=0

⊕n−1
j=0 k[x

j
i ] to S1 such that ℓ(xji ) = xij .

Let Q̄ = {xqij−xi j+1 : i = 0 . . . m−1, j = 0 . . . n−1} where j+1 is taken mod n. Consider

the k-algebra isomorphism from R/〈Q〉 to S/〈Q̄〉 sending xq
j

i to xij for i = 0, . . . ,m − 1,

j = 0, . . . , n− 1. (Note that xq
j+1

i = (xq
j

i )q maps to xqij and xqij ≡ xi j+1 mod Q̄.)

For f ∈ R where the degree of f in xi is less than qn for all i, let f̄ ∈ S denote the image of
f in S/〈Q̄〉 under the isomorphism. We note that elements of S1 are all distinct mod Q̄. Let

f =
∑m−1

i=0 fi(xi) with deg fi < n for all i. Let fi =
∑n−1

j=0 aijx
j
i . Then L(f) ∈ R corresponds

to ℓ(f). If we identify with xi ∈ R with xi0 ∈ S for i = 0, . . . ,m − 1. Then L(f) ≡d ℓ(f)
(mod Q̄) where d = degL(f).

Suppose F is a finite set of k′-linearized polynomials of maximum degree d = qc for some
c > 0. We may identify xi ∈ R with xi0 ∈ S and consider F ⊂ S. Let F ′ be the Weil
descent system of (F ) with respect to a k/k′ basis. We are interested in the last fall degree of
F ′
1 = F ′∪{xqij−xij : i = 0, . . . ,m−1, j = 0, . . . , n−1}. Let G = F ∪ Q̄ ⊂ S. By Theorem1.1,

max(dG , q degF) = max(dF ′
1
, q degF).

Recall that Z(F ′
1) = Zk′(F

′), which corresponds to Zk(F) = Z(F∪Q), the set of k-rational
points of Z(F). In what follows we consider a more general situation where instead of Zk(F)
we are interested in ZW (F) = Z(F) ∩Wm where W is a τ -invariant subspace of k and τ is
the Frobenius map over k′: x → xq for all x ∈ k. Note that every τ -invariant subspace W of
k is of of the form Z(L(fW )) where fW divides xn − 1. In fact W is the kernel of fW (τ), and
fW is the characteristic polynomial of τ as a linear map on W . In particular fW = xn − 1
corresponds to W = k and fW = x− 1 corresponds to W = k′. Suppose dW = deg fW .

In this more general situation we let S = k[xij : i = 0 . . . m − 1, j = 0, . . . , dW − 1]. We

also write S = k[x̂i : i = 0, . . . ,m − 1]. where x̂i = xi0, . . . , xi dW−1. Let f =
∑m−1

i=0 fi(xi)

with deg fi < dW for all i. Suppose fi =
∑dW−1

j=0 aijx
j
i . Then L(f) =

∑m−1
i=1 L(fi) where

L(fi) =
∑dW−1

j=0 aijx
qj

i and ℓ(f) =
∑m−1

i=0 ℓ(fi) where ℓ(fi) =
∑dW−1

j=0 aijxij.

Below we fix W and let n′ = dW . Write fW (x) = xn
′

− gW (x) with deg gW < n′. Let

Q = {xq
n′

i − L(gW (xi)) : i = 0, . . . ,m − 1}, and correspondingly we let Q̄ = {xqi n′−1 −

ℓ(gW (xi)), x
q
ij − xi j+1 : i = 0, . . . ,m − 1, j = 0, . . . , n′ − 2}. Then we have an isomorphism

from R/〈Q〉 to S/〈Q̄〉 sending xq
j

i to xij for i = 0, . . . ,m − 1, j = 0, . . . , n′ − 1. Let S1 ⊂ S
be the k-module of linear forms over xij , i = 0 . . . m − 1, j = 0, . . . , n′ − 1. We note that
elements of S1 are all distinct mod Q̄.

For f ∈ R, we have f ≡d f1 (mod Q) where d = deg f and the degree of f1 in xi is less
than qdW for all i. Let f̄ ∈ S denote the image of f1 in S/〈Q̄〉 under the isomorphism. Let

f =
∑m−1

i=0 fi(xi) with deg fi < n′ for all i. Then L(f) = ℓ(f). If we identify with xi ∈ R
with xi0 ∈ S for i = 0, . . . ,m− 1. Then L(f) ≡d ℓ(f) (mod Q̄) where d = degL(f).

Lemma 2.1. Suppose f =
∑

i,j aijxij ∈ S1 with aij ∈ k. Then with respect to Q̄, f q
i ≡q fi+1

(mod Q̄), for i ≥ 0 where f = f0 and fi ∈ S1 for i ≥ 0.
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Proof For r ≥ 0, we have inductively fr =
∑

bijxij ∈ S1. Now f q
r =

∑

ij b
q
ijx

q
ij , and since

for all i, xqij ≡q xi j+1 (mod Q̄) for j = 0, . . . , n′ − 2, and xqi n′−1 ≡q ℓ(g(xi)), it follows that

f q
r ≡q fr+1 (mod Q̄) with fr+1 ∈ S1. �

Lemma 2.2. Let H be a finite set of S and suppose Q̄ ⊂ H. Suppose f ∈ S1 and f ≡i 0
(mod H) for some i > 0. Let g ∈ k[x]. Then L(g) ◦ f − f ′ ∈ 〈Q̄〉 for some f ′ ∈ S1, where

〈Q̄〉 denotes the ideal generated by Q̄, and f ′ ≡r 0 (mod H) where r = max(i, q).

Proof The lemma follows by applying Lemma 2.1 inductively. More specifically assume
inductively L(xi) ◦ f ≡q f

′
i (mod Q̄) with f ′

i ∈ S1, then L(xi+1) ◦ f ≡q f
′q
i ≡q f

′
i+1 (mod Q̄)

for some f ′
i+1 ∈ S1. From this the lemma easily follows. �

For f ∈ F , f ≡d f̄ (mod Q̄) with f̄ ∈ S1. Let F̄ consist of all such f̄ ∈ S1 with f ∈ F .
Let Ḡ = F̄ ∪ Q̄. Then Ḡ ⊂ VG,d and Ḡ ⊂ VḠ,q.

Let S1i = S1∩k[x̂j : j = i, . . . ,m−1], that is , the submodule containing all k-linear forms
in xij, i = i, . . . ,m − 1, j = 0, . . . , n′ − 1. In particular S1 = S10. Let Q̄r = Q̄ ∩ k[x̂i : i =
r, . . . ,m− 1] for r = 1, . . . ,m− 1.

Lemma 2.3. Consider a k′-linearized polynomial of the form L(f) with f =
∑m−1

i=0 fi and
fi ∈ k[xi] of degree less than n′, for i = 0, . . . ,m − 1. Suppose ℓ(f) ∈ VḠ,q and the GCD

of f0 and fW is 1. Then x00 − ℓ0 ∈ VḠ,q for some linear form ℓ0 ∈ S11. Moreover for

i = 1, . . . , n′ − 1, x0i − ℓi ∈ VḠ,q for some linear form ℓi ∈ S11, and ℓqi−1 ≡ ℓi (mod Q̄1).

Proof Since the GCD of f0 and fW is 1, A(x)f0(x) +B(x)fW (x) = 1 for some A(x), B(x) ∈
k[x] where degA < n and degB < deg f0. Now

L(A(x)) ◦ L(f0(x0)) + L(B(x)) ◦ L(fW (x0)) = x0

L(A(x)) ◦ L(
m−1
∑

i=1

fi(xi)) = L(g)

for some g =
∑m−1

i=1 gi where gi ∈ k[xi]. So

L(A(x)) ◦ L(f) + L(B(x)) ◦ L(fW ) = x0 + L(g).

We have

L(A(x)) ◦ ℓ(f) ≡ x00 + ℓ(g) (mod 〈Q̄〉).

Note that ℓ(g) ∈ S11. By Lemma 2.2 there is some f ′ ∈ S1 such that L(A) ◦ ℓ(f)− f ′ ∈ 〈Q̄〉
and f ′ ≡q 0 (mod G). So put ℓ0 = −ℓ(g). Then f ′ ≡ x00 − ℓ0 (mod 〈G〉), and since f ′ and
x00 − ℓ0 are both in S1, we have f ′ = x00 − ℓ0. Let ℓ1 ∈ S11 such that ℓq0 ≡q ℓ1 (mod Q̄1).
Then x01 ≡q xq00 ≡q ℓq0 ≡q ℓ1 (mod Ḡ), and inductively we have x0i ≡q ℓi for some linear
form ℓi ∈ S11, with ℓqi−1 ≡q ℓi (mod Q̄1). �

When the condition in Lemma 2.3 is satisfied, x0i ≡q ℓi for some ℓi ∈ S11. Substituting he
variable x0j by ℓj, for j = 0, . . . , n′ − 1, gives reduction from S1 ∩ VḠ,q to S11 ∩ VḠ,q. More
explicitly, for g ∈ S1, write g = g0 + g1 where g0 is a linear form in x00, ..., x0 n′−1, and
g1 ∈ S11. Then g ≡1 g

′ where g′ = g0(ℓ0, . . . , ℓn′−1)+g1 ∈ S11. Therefore for all g ∈ S1∩VḠ,q,

there is some g′ ∈ S11 such that 0 ≡q g ≡1 g
′ (mod Ḡ). A similar condition will give reduction

from S11 ∩ VḠ,q to S12 ∩ VḠ,q, and so on. This leads to the following definition.
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We say that F is reducible for W if for i = 0, . . . ,m− 2, either VḠ,q ∩S1i = VḠ,q ∩S1i+1, or

else there is a k′-linearized polynomial of the form L(fi) with fi =
∑m−1

j=i gij , gij ∈ k[xj ] of

degree less than n′, for j = i, . . . ,m− 1, and ℓ(fi) ∈ VḠ,q ∩ S1i and the GCD of gii and f(xi)
is 1.

In particular if fW is irreducible over k′ then the GCD of every nonzero polynomial of
degree less than n′ = deg fW is relatively prime to fW . Therefore we have the following:

Lemma 2.4. If fW is irreducible over k′ then F is reducible for W .

Theorem 2.5. Suppose F is a finite set of k′-linearized polynomials, and W is a τ -invariant
subspace of k where τ is the Frobenius map over k′. Let Ḡ = F̄ ∪ Q̄. If F is reducible for W ,

then dḠ ≤ (q − 1)m + 1. Moreover a basis of ZW (F) can be constructed in time (n′m)O(q)

where n′ = deg fW .

Theorem 2.6. Suppose F is a finite set of k′-linearized polynomials of maximum degree

d = qc for some c > 0. Let F ′ be the Weil descent system of F with respect to a k/k′ basis,
and F ′

1 = F ′ ∪ {xqij − xij : i = 0, . . . ,m − 1, j = 0, . . . , n − 1}. If F is reducible for k, then

dF ′
1
≤ max((q − 1)m+ 1, qd).

Example Consider the case where F consists of a bivariate linearized polynomial

F (x, y) = axq
2

+ bxq + cx+ uyq
2

+ vyq + wy

= L(ax2 + bx+ c) + L(uy2 + vy + w),

with a, b, c, u, v, w ∈ k = Fqn . By Lemma 2.3 (with f = ax2+ bx+ c+uy2+ vy+w), if either
GCD(ax2 + bx + c, xn − 1) = 1 or GCD(uy2 + vy + w, yn − 1) = 1, then F is reducible for
k. By Theorem 2.6, dF ′

1
≤ 2q. �

Since Ḡ ⊂ VG,d, Theorem 2.6 follows from Theorem 1.1 and Theorem 2.5. The rest of this
section is devoted to the proof of Theorem 2.5.

2.1. Proof of Theorem 2.5.

Lemma 2.7. Suppose F is reducible for W . For i = 0, . . . ,m−2, if VḠ,q∩S1i 6= VḠ,q∩S1i+1,

then xij ≡q γij (mod Ḡ) for some linear form γij ∈ S1 m−1, for j = 0, . . . , n′ − 1; moreover

γqij ≡q γi j+1 (mod Q̄m−1) for j = 0, . . . , n′ − 2.

Proof For i = 0, . . . ,m−2, if VḠ,q∩S1i 6= VḠ,q∩S1i+1, then there is a k′-linearized polynomial

of the form L(fi) with fi =
∑m−1

j=i gij , where gij ∈ k[xj ] of degree less than n′, for j =

i, . . . ,m− 1, ℓ(fi) ∈ VḠ,q ∩ S1i and the GCD of gii and f(xi) is 1.

By Lemma 2.3 we have the following: for j = 0, . . . , n′ − 1, xij ≡q ℓij (mod Ḡ) for some
linear form ℓij ∈ S1 i+1, moreover ℓqij ≡q ℓi j+1 (mod Q̄i+1). From this it is easy to see

by induction (proceeding from i = m − 2 to i = 0) that xij ≡q γij for some linear form
γij ∈ S1 m−1, moreover γqij ≡q γi j+1 (mod Q̄m−1) for i = 0, . . . ,m− 1, j = 0, . . . , n′ − 2. �

Lemma 2.8. Let N = {i ∈ {0, . . . ,m − 2} : VḠ,q ∩ S1i 6= VḠ,q ∩ S1i+1}. Let Γ = {xij − γij :

γij ∈ S1 m−1, xij ≡q γij (mod Ḡ), i ∈ N , j = 0, . . . , n′ − 1}. Let HF̄ = {ℓ(hf ) : f ∈ F̄}.
Then there exist H1 = {ℓ(hij) : i = 0, . . . ,m− 2, j = 0, . . . , n′ − 1} where hij ∈ k[xm−1] with
deg hij < n′ such that letting H = HF̄ ∪H1, then Γ ∪H ⊂ VḠ,q, Ḡ = F̄ ∪ Q̄ ⊂ VH∪Q̄m−1∪Γ,q,

〈Ḡ〉 = 〈H ∪ Q̄m−1 ∪ Γ〉.
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Proof By Lemma 2.7, Γ ⊂ VḠ,q. For f ∈ F̄ ⊂ S1, let f ′ ∈ S1 m−1 be obtained from f by

substituting xij with γij for i = 0, . . . ,m− 2, j = 0, . . . , n′ − 1. Then f ′ ≡1 f (mod Γ), and
f ′ = ℓ(hf ) for some hf ∈ k[xm−1]. We have ℓ(hf ) ∈ VΓ,1 ⊂ VḠ,q, and f ∈ VH

F̄
∪Γ,1 where

HF̄ = {ℓ(hf ) : f ∈ F̄}.
For i = 0, . . . ,m − 2 and j = 0, . . . , n′ − 2, xqij − xi j+1 ∈ Q̄. Lemma 2.7 implies that

xqij − xi j+1 ≡q γ
q
ij − γi j+1 ≡q ℓ(hij) (mod Γ ∪ Q̄m−1) for some hij ∈ k[xm−1].

For i = 0, . . . ,m− 2, xqi n′−1 − ℓ(gW (xi)) ∈ Q̄. Let ℓ(gW (xi)) =
∑n′−1

j=0 aijxij with aij ∈ k
Lemma 2.7 implies that

xqi n′−1 − ℓ(gW (xi)) ≡q γ
q
i n′−2 −

n′−1
∑

j=0

aijγij (mod Γ).

Since γqi n′−2 ≡q γi n′−1 (mod Q̄m−1), we have

γqi n′−2 −
n′−1
∑

j=0

aijγij ≡q ℓ(hi n′−1) (mod Q̄m−1)

with hi n′−1 ∈ k[xm−1] of degree less than n′.
To summarize, we have

xqij − xi j+1 ≡q ℓ(hij) (mod Γ ∪ Q̄m−1)

for i = 0, . . . ,m− 2 and j = 0, . . . , n′ − 2, and

xqi n′−1 − ℓ(gW (xi)) ≡q ℓ(hi n′−1) (mod Γ ∪ Q̄m−1)

for i = 0, . . . ,m − 2. Let H1 = {ℓ(hij) : i = 0, . . . ,m − 2, j = 0, . . . , n′ − 1}. It follows
that Q̄ ⊂ VH1∪Γ∪Q̄m−1,q

and on the other hand H1 ⊂ VQ̄∪Γ,q, and since Γ ⊂ VḠ,q, we have
H1 ⊂ VḠ,q.

Let H = HF̄ ∪ H1. Then we conclude that Γ ∪ H ⊂ VḠ,q, and on the other hand Ḡ =

F̄ ∪ Q̄ ⊂ VH∪Q̄m−1∪Γ,q. In particular, we have 〈Ḡ〉 = 〈H ∪ Q̄m−1 ∪ Γ〉. �

Note that H ∪ Q̄m−1 ⊂ k[x̂m−1] where x̂m−1 = xm−1 0, . . . , xm−1 n′−1.

Lemma 2.9. Let H be as in Lemma 2.8. Suppose H = {ℓ(hi) : i = 1, . . . , s} and let

h0 = fW (xm−1). Let g be the GCD of hi, i = 0, . . . , s. Then 〈Ḡ〉 = 〈Γ ∪ {ℓ(g)} ∪ Q̄m−1〉,
moreover Γ ∪ {ℓ(g)} ∪ Q̄m−1 ⊂ VḠ,q.

Proof We have g =
∑s

i=0 aihi with ai ∈ k[xm−1], so

L(g) =
∑

i

L(ai) ◦ L(hi).

So

ℓ(g) ≡
∑

i

L(ai) ◦ ℓ(hi) mod Q̄m−1.

Apply Lemma 2.2 to H ∪ Q̄m−1 ⊂ k[x̂m−1] it follows that there is h′i ∈ S1 m−1 such that
h′i ≡q 0 (mod H ∪ Q̄m−1) and L(ai) ◦ ℓ(hi) ≡ h′i (mod 〈Q̄m−1〉). So

ℓ(g) ≡
∑

i

h′i ≡q 0 (mod H ∪ Q̄m−1).
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Since ℓ(g) and h′i are all in S1 m−1, we have

ℓ(g) =
∑

i

h′i ≡q 0 (mod H ∪ Q̄m−1),

in particular, ℓ(g) ≡q 0 (mod Ḡ). It follows that

L(fW ) = L(h0) ∈ 〈{L(hi) : i = 0, . . . , s}〉 = 〈L(g)〉.

Under the isomorphism from k[x̂m−1]/〈Q̄m−1〉 → k[xm−1]/〈L(fW (xm−1))〉, ℓ(hi) corresponds
to L(hi), hence the ideal generated by H ∪ Q̄m−1 corresponds to the ideal generated by L(g).

Since by Lemma 2.8, 〈Ḡ〉 = 〈Γ ∪H ∪ Q̄m−1〉, it follows that 〈Ḡ〉 = 〈Γ ∪ {ℓ(g)} ∪ Q̄m−1〉.
Moreover from the discussion above we have Γ ∪ {ℓ(g)} ∪ Q̄m−1 ⊂ VḠ,q. �

Under the isomorphism from k[x̂0, . . . , x̂m−1]/〈Q̄〉 → k[x0, . . . , xm−1]/〈Q〉, xi0 − γi0 cor-
responds to xi − L(gi) where ℓ(gi) = γi0 for i ∈ N . Under the isomorphism the ideal
determined by Ḡ corresponds to the ideal determined by F ∪ Q. Since, by Lemma 2.9,
〈Ḡ〉 = 〈Γ ∪ {ℓ(g)} ∪ Q̄m−1〉 and g|fW , it follows that 〈F ∪ Q〉 is generated by L(g) and
xi−L(gi) where i ∈ N . By Lemma 2.9 Γ∪{ℓ(g)}∪ Q̄m−1 ⊂ VḠ,q, it follows from Proposition

2.3 of [7] that ℓ(g) and γi0, hence L(g) and xi − L(gi) can be constructed in time (mn′)O(q)

time. From this a basis of ZW (F) over k′ can be easily written down.
It is easy to see that if f ∈ k[x̂m−1] and f ∈ 〈{ℓ(g)} ∪ Q̄m−1〉 then f ≡deg f+1 ℓ(g)f1

(mod Q̄m−1) for some f1 ∈ k[x̂m−1]. Suppose f ∈ 〈Ḡ〉. Then f ≡deg f f1 (mod Q̄) where the
degree of xij in f1 is less than q for all i, j. Using xij ≡ γij (mod Γ), we have f1 ≡deg f1 h
(mod Γ ∪ Q̄m−1) where h ∈ k[x̂m−1]. It follows that h ∈ 〈{ℓ(g)} ∪ Q̄m−1〉, hence h ≡deg h+1

ℓ(g)h1 (mod Q̄m−1), so h ≡deg h+1 0 (mod {ℓ(g)}∪Q̄m−1). If deg f > (q−1)m, then deg f >
deg f1, and since Γ ∪ {ℓ(g)} ∪ Q̄m−1 ⊂ VḠ,q, we conclude that f ∈ VḠ,deg f . Therefore dḠ ≤
(q − 1)m+ 1. Theorem 2.5 follows.
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