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ON THE LAST FALL DEGREE OF WEIL DESCENT POLYNOMIAL
SYSTEMS

MING-DEH A. HUANG (USC, MDHUANG@QUSC.EDU)

ABSTRACT. Given a polynomial system F over a finite field k& which is not necessarily of
dimension zero, we consider the Weil descent F’ of F over a subfield k’. We prove a theorem
which relates the last fall degrees of F; and Fj, where the zero set of Fi corresponds
bijectively to the set of k-rational points of F, and the zero set of F7 is the set of k’-rational
points of the Weil descent F'. As an application we derive upper bounds on the last fall
degree of Fi in the case where F is a set of linearized polynomials.

1. INTRODUCTION

Let k be a field and let F C R = k[Xy,...,X,n,—1] be a finite subset which generates an
ideal. Let R<; be the set of polynomials in R of degree at most i.
For i € Z>¢, we let Vr; be the smallest k-vector space of R<; such that

(1) {f € F: deg(f) < i} C Vi
(2) if g € Vr; and if h € R with deg(hg) < i, then hg € Vz .

We write f =; g (mod F), for f,g € R, if f —g € Vr,.

The last fall degree as defined in [6] (see also [7]) is the largest d such that Vr 4N R<q_1 #
Vr a—1. We denote the last fall degree of F by dr.

As shown in [0, [7] the last fall degree is intrinsic to a polynomial system, independent of
the choice of a monomial order, always bounded by the degree of regularity, and invariant
under linear change of variables and linear change of equations. In [0 [7] complexity bounds
on solving zero dimensional polynomial systems were proven based on the last fall degree.
It was shown in [6] that the polynomial systems arising from the Hidden Field Equations
(HFE) public key crypto-system [Il, 2] have bounded last fall degree if the degree of the
defining polynomial and the cardinality of the base field are fixed (the bound was improved
in [4]), and it follows that the HFE polynomials systems can be solved unconditionally in
polynomial time.

For F C R = k[Xo,...,Xm-1], let Zy(F) denote the set of solutions of F over k; let
Z(F) denote the set of solutions of F over k, where k is an algebraic closure of k. If F is
zero-dimensional then determining Z(F) reduces to computing Vr yax(dyr,e) Where e is the
cardinality of Z(F) [7].

Suppose k is a finite field of cardinality ¢" with subfield & of cardinality q. The Weil descent
system of F to k' is a polynomial system obtained when one expresses all equation with the
help of a basis of k'/k. Let «ap,...,a,—1 be a basis of k/k’. For f € Fand j =0,...,n—1,
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n—1 n—1 n—1
f E a; Xoj, - -, E ajXm-1j | = E fiaj
Jj=0 Jj=0 Jj=0

We note that deg f; < deg f. The system
F' Zi{j} s feF = 0,...,n/—-1}

is called the Weil descent system of F with respect to ag,...,q,_1.
There is a bijection between Zy(F) and Zy (F') = Z(F}), where Fj is F' together with
the field equations of &, that is,

]{ =F LJ{)(%~_')(U3i =0,....m—1,j ::07---7n/__1}'

The HFE polynomial system is constructed by forming the Weil descent of some F con-
sisting of a single univariate polynomial, followed by linear change of variables and linear
change of equations [6]. Multivariate-HFE systems can be constructed similarly except F is
replaced by a finite set of multivariate polynomials of dimension zero. In [7] upper bounds
on the last fall degree degree of F| were proven in terms of ¢, m, the last fall degree of F,
the degree of F and the number of solutions of F, but not on n. The result implies that
multi-HFE cryptosystems giving rise to multi-HFE polynomial systems as described above
are vulnerable to attack as well.

In this paper we consider the situation where F is not necessarily zero-dimensional.

Let

Fi=FUu{X!-Yas,....Y ,-Yi, 1,V | —X;:i=0,...,m—1}

(2 (2

Ck[X:,Yy:i=0,....m—1;j=1,...,n—1].

We observe that Zj(F) can easily be identified with Z(F7). So there is a bijection between
Z(F1) and Z(F7). Note also that the ideals generated by F; and F] are radical ideals.
The following theorem relates the last fall degrees of F; and Fj.

Theorem 1.1. max(dr,,qdeg F) = max(dz;,qdeg F).

Theorem [Tl is closely related to Proposition 2 of [6] and Proposition 4.1 of [7]. In com-
parison, the bound established in Theorem [[.1]is a bit weaker. However the set F; stated in
the theorem directly contains F as a subset. This makes it easier to apply the theorem both
conceptually and technically. When F consists of a univariate polynomial or more generally
when Z(F) is finite, it is not hard to bound dz,. From this an easier and more conceptual
proof of the theorems in [0, [7] can be constructed based on Theorem [Tl However in this
paper we will focus on applying the theorem to the situation where F is not zero-dimensional,
especially when F consists of linearized polynomials.

1.1. Proof of Theorem 1.1l For non-negative integers 7, let o; denote the automorphism of
k over k' such that o;(x) = 27 for x € k. For every multivariate polynomial h with coefficients
from k, let h% denote the polynomial obtained from h by acting on each coefficient of h by
;.

Let I' be the n by n matrix with rows and columns indexed by 0,...,n — 1, so that a;-” is
the (i, 7)-th entry of I for 4,5 =0,...,n — 1.



Let
n—1 n—1 n—1
gf:f Zanoj,...,Zanm_lj :ijozj
j=0 Jj=0 Jj=0

where f; € ¥'[X;5,i=0,...,m—1,7=0,...,n—1].

fo
Let f = be the column vector with f; as the i-th entry for i =0,...,n — 1.
fam
97°
Then g7 = Z;-L;Ol fiaft, and If = . Let G = {g;'co,...,g;"’l . f € F} and
go';bfl

Gi=6gu {ij - Xi5,i=0,...,m—1,7=0,...,n—1}. Since I is invertible, it follows from
Proposition 2.6 (part v) of [7] that dg = dz, and dg, = d,.

Let Z;j, 1 = 0,...,m —1 and j = 0,...,n — 1, be defined by the following change of
coordinates:

X; Z;
Y Z;
=T
Y;' n—1 Zz n—1

Under the change of coordinates, F; becomes Go where

n—1 n—1
gg = {f(zajZij--wZajZm—l j) : f E./."}U{ij —Zij : i,j :O,...,n— 1}

§j=0 §=0

= {gf(Z(]l,...,Zm’n_l)IfE]:}U{Zgj—ZZ‘jZi,jZO,...,n—l},

which we identify as a subset of G;. Since g;{ = g7 mod I where I is the deal generated by
X%—X,-j, 1=0,....m—1,7=0,...,n—1, we see that g}‘ € Vg,,qd where d = deg F > deg g;.
It follows inductively that g}'i € Vg, ,qa for all 7, hence G; C Vg, 4. Hence Vg, ; = Vg, ; for
i > qd. Therefore max(dg,,qd) = max(dg,, qd). Since dg, = dz; and dr, = dg,, we conclude
that max(dr, , qd) = max(dz,,qd). Theorem [IT] follows.

2. SYSTEMS OF LINEARIZED POLYNOMIALS

A k’—linearized polynomial in R = k[xg...Z,—1] is an element of the k-submodule of R
generated by x?ﬂ where ¢ = |k/|, i =0...m — 1 and j > 0. As before let n = [k : k/]. Let
Q:{:E?n—:ni:izo...m—l}.

For g = Z?:O a;x' € k[z], let L(g) = Z?:o a;z? . More generally we consider the k-linear

q!
7

map from @ k[x;] onto the k-module of k'-linearized polynomials such that L(:Ef ) ==

fori=0,...,m—1and j > 0.

Let S =k[z;;:i=0...m—1,7=0,...,n—1]. We also write S =k[Z;:i=0,...,m—1].
where #; = w0,...,7; n—1. Let S C S be the k-module of linear forms over z;;, i =
0...m—1,7=0,...,n—1.



For g € k[ ] and h € klz;], let g o h € klz;] be defined as (g o h)(z;) = g(h(x;)). For
f= zl o fi € @ kla] with f; € Elxy], let gof € @7, klzi] be defined as go f =
St go fio Hence (go f) (o, Tm_1) = Sors" g(fi(z)). Note also that L(g) o L(f) is a
K'-linearized polynomial in k[zg, ..., Zm_1].

Similarly for g € klz] and f = Z” fij € D%, @7 "o k[zij] with fij € k[zy], let go f €
b, EB;L &k[xu] be defined as g of = Z”g f”

Cons1der the map ¢ from ., @? (}k[ 7] to Sy such that £(z)) = a;;.

Let Q = {:E;-]j—llti j41:9=0...m—1,7=0...n—1} where j+1is taken mod n. Consider

the k-algebra isomorphism from R/(Q) to S/(Q Q) sending xqj to x;; for i = 0,...,m — 1,

j=0,...,n—1. (Note that a:gﬁl — (z7')7 maps to % and z{; = x; j4+1 mod Q.)

For f € R where the degree of f in x; is less than ¢" for all 4, let f € S denote the image of
fin S/(Q _> under the isomorphism. We note that elements of Sl are all distinct mod Q. Let
F=>m" 0 i(x;) with deg f; < n for all i. Let f; = Z;L Olaww’ Then L(f) € R corresponds
to £(f). If we identify with z; € R with z;p € S for i = 0,. — 1. Then L(f) =4 £(f)
(mod Q) where d = deg L(f).

Suppose F is a finite set of k’-linearized polynomials of maximum degree d = ¢¢ for some
¢ > 0. We may identify z; € R with x;0 € S and consider F C S. Let F' be the Weil
descent system of (F') with respect to a k/k" basis. We are interested in the last fall degree of
Fi :}"U{xgj—wij 2i=0,...,m—1,7=0,...,n—1}. Let G = FUQ C S. By Theorem(.T]
max(dg, ¢ deg F) = max(dz;, g deg F).

Recall that Z(F]) = Z/(F'), which corresponds to Zy(F) = Z(FUQ), the set of k-rational
points of Z(F). In what follows we consider a more general situation where instead of Zj(F)
we are interested in Zy (F) = Z(F) N W™ where W is a 7-invariant subspace of k and 7 is
the Frobenius map over k’: @ — 29 for all x € k. Note that every 7T-invariant subspace W of
k is of of the form Z(L(fw)) where fir divides 2™ — 1. In fact W is the kernel of fy (), and
fw is the characteristic polynomial of 7 as a linear map on W. In particular fir = 2™ — 1
corresponds to W = k and fiy =  — 1 corresponds to W = k/ . Suppose dy = deg fi.

In this more general situation we let S = kfz;; : i = 0. —-1,7=0,...,dw — 1] We
also write S = k[Z; : i = 0,...,m — 1]. where &; = z0,...,%; 4, —1. Let f > 0 i(x;)
with deg f; < dw for all ¢. Suppose f; = Z?Zo_l aijzl. Then L(f) = E:’ill L(f;) where

L(f) = S aged” and () = S () where £(f) = T2 ayja.
Below we fix W and let n’ = dy,. Write fi(z) = 2" — gy (x) with deggw < n’. Let
Q = {azgn — L(gw(z;)) : i = 0,...,m — 1}, and correspondlngly we let Q = {x7 -

K(QW(xi)),xgj — i j41:1=0,...,m 1 ,j =0,...,n" —2}. Then we have an 1somorphlsm
from R/{Q) to S/(Q) sending xgj to z;; fori =0,...,m—1,5=0,...,n  —1. Let S; C S
be the k-module of linear forms over z;;, i = 0...m —1,j = 0,...,n' — 1. We note that
elements of Sy are all distinct mod Q).

For f € R, we have f =4 fi1 (mod @) where d = deg f and the degree of f; in z; is less
than ¢ for all i. Let f € S denote the image of f; in S/(Q) under the isomorphism. Let
f="00 filw;) with deg fi < n/ for all 4. Then L(f) = £(f). If we identify with z; € R
with 2;0 € S for i = 0,...,m — 1. Then L(f) =4 £(f) (mod Q) where d = deg L(f).

Lemma 2.1. Suppose f = z a;jxi; € St with a;; € k. Then with respect to Q, =, fin
(mod Q), for i >0 where f = f(] and f; € Sy fori > 0.



Proof For r > 0, we have inductively f, = > bj;z;; € S1. Now f! = > bfj 3], and since
for all 7, :E;]j =q Ti j+1 (mod Q) for j =0,...,n =2, and 2 , | =, {(g(z;)), it follows that
fT(’] =q fr-i—l (mOd Q) with fr—i—l € Sl' O

Lemma 2.2. Let H be a finite set of S and suppose Q C H. Suppose f € S1 and f =; 0
(mod H) for some i > 0. Let g € k[x]. Then L( Yo f — f € (Q) for some f' € Sy, where
(Q) denotes the ideal generated by Q, and f' =, 0 (mod H) where r = max(i, q).

Proof The lemma follows by applying Lemma 2] inductively. More specifically assume
inductively L(z%) o f =4 f/ (mod Q) with f/ € Sy, then L(z™!) o f =, f'? =, f.,; (mod Q)
for some f/,; € Si. From this the lemma easily follows. [J

For feF, f=qf (mod Q) with f € S;. Let F consist of all such f € Sy with f € F.
Let G = FUQ. ThenQCng andQCVg

Let S1; = S1Nklzj:j=14,...,m—1], that is , the submodule containing all k-linear forms
inwy,t=14....m—1,75= O,...,n/ —1. In partlcular Sp = S10. Let Q. = QNk[Z; i =
ry...,m—1]forr=1,...,m—1.

Lemma 2.3. Consider a K -linearized polynomial of the form L(f) with f = > ", 0 i and
fi € k[x;] of degree less than n', for i = 0,...,m — 1. Suppose ((f) € Vg, and the GCD
of fo and fw is 1. Then xog — ly € Va4 for some linear form £y € Si1. Moreover for
i=1,...,n =1, 9 — ¥ € Vg.q for some linear form {; € S11, and 0! =4; (mod Q).

Proof Since the GCD of fy and fw is 1, A(z) fo(x) + B(z)fw(z) = 1 for some A(x), B(x) €
k[x] where deg A < n and deg B < deg fp. Now

L(A(z)) o L(fo(zo)) + L(B(x)) o L(fw (o)) = o

m—1
L(A(z)) o LY filw:)) = L(g)
=1

m

for some g = "' g; where g; € k[z;]. So
L(A(z)) o L(f) + L(B(z)) o L(fw) = zo + L(g).
We have
L(A(z)) 0 £(f) = 00 + £(g) (mod (Q)).

Note that E(g) € S11. By Lemma 22 there is some f’ € S such that L(A) o ¢(f) — f' € (Q)
and f' =, 0 (mod G). So put ¢y = —(g). Then f = xoo — ly (mod (G)), and since f’ and
Too — o are both in Si, we have f' = xgy — fo. Let ¢; € Sy such that £ =, ¢; (mod Q1).
Then zo1 =4 2y =¢ €4 =¢ ¢1 (mod G), and inductively we have xg; =, ¢; for some linear
form ¢; € Sy, with £1 | =, ¢; (mod @Q1). O

When the condition in Lemma [2.3]is satisfied, zo; =4 ¢; for some ¢; € S;;. Substituting he
variable xg; by ¢;, for j = 0,...,n' — 1, gives reduction from S; N Vg4 to SunVg,. More
explicitly, for g € Sy, write g = go + g1 where gg is a linear form in xqg, ..., g n/—1, and
g1 € S11. Then g = ¢’ where ¢’ = go({o, - - -, €nr—1)+g1 € S11. Therefore for all g € S1NV;
there is some g’ € S1; such that 0 =, g =1 ¢’ (mod G). A similar condition will give reduction
from S11 NVg , to S12N Vg ,, and so on. This leads to the following definition.



We say that F is reducible for W if for i = 0,...,m —2, either Vg N S1; = V5 N S1iy1, or
else there is a k’-linearized polynomial of the form L(f;) with f; = Z;’;l Gij, 9ij € k[z;] of
degree less than n/, for j =4,...,m — 1, and £(f;) € Vg, N S1; and the GCD of g;; and f(;)
is 1.

In particular if fy is irreducible over k' then the GCD of every nonzero polynomial of
degree less than n’ = deg fy is relatively prime to fy. Therefore we have the following:

Lemma 2.4. If fy is irreducible over k' then F is reducible for W.

Theorem 2.5. Suppose F is a finite set of k'-linearized polynomials, and W is a T-invariant
subspace of k where T is the Frobenius map over k'. Let G = FUQ. If F is reducible for W,
then dg < (q — 1)m + 1. Moreover a basis of Zw (F) can be constructed in time (n'm)°@
where n' = deg fyy .

Theorem 2.6. Suppose F is a finite set of k'-linearized polynomials of mazimum degree
d = q° for some ¢ > 0. Let F' be the Weil descent system of F with respect to a k/k" basis,
and F| = ]-"’U{xgj —2j:1=0,....m—1,j=0,...,n—1}. If F is reducible for k, then
dr; < max((qg — 1)m +1,qd).

Example Consider the case where F consists of a bivariate linearized polynomial

F(z,y) = az® 4+ bx? + cx + uyq2 + vy? + wy
L{az® 4+ bz + ¢) + L(uy® + vy + w),
with a,b, ¢, u,v,w € k = Fyn. By Lemma 3] (with f = az? + bz + ¢+ uy? + vy +w), if either
GCD(ax? + bz +¢,z™ — 1) = 1 or GCD(uy® + vy + w,y™ — 1) = 1, then F is reducible for
k. By Theorem .6, dr; < 2¢. O
Since G C Vg4, Theorem follows from Theorem [[.Tl and Theorem The rest of this
section is devoted to the proof of Theorem

2.1. Proof of Theorem

Lemma 2.7. Suppose F is reducible for W. Fori1=0,...,m—2, if Vg ,NS1; # Vg ,NS1it1,
then x;; =4 Vij (moc_l G) for some linear form ~;; € Sy m—1, for j =0,...,n' — 1; moreover
fyfj =% j+1 (mod Qp—1) for j=0,...,n" —2.

Proof Fori=0,...,m—2,if V; ,NS1; # Vg ,NS1i+1, then there is a k'-linearized polynomial
of the form L(f;) with f; = ZT’:_ZI gij, where g;; € k[z;] of degree less than n', for j =
iy...,m—1,4(f;) € Vg, N S1i and the GCD of g;; and f(x;) is 1.

By Lemma [2.3] we have the following: for j = 0,...,n — 1, x;; =, 4;; (mod G) for some
linear form /¢;; € Sy j41, moreover ng =, i j+1 (mod Qi+1). From this it is easy to see
by induction (proceeding from ¢ = m — 2 to i = 0) that z;; =, v;; for some linear form
Yij € S1 m—1, moreover ’yfj =, 7% j+1 (mod Qm-1) fori=0,...,m—1,7=0,...,n' —2. 0

Lemma 2.8. Let N ={i € {0,...,m — 2} : Vo.a NSt # Vg N Stiv1}. Let T = {xjj —vij :
Yij € S1m—1,Tij =¢ Vij (mod G),i € N,j =0,...,n" —1}. Let Hr = {{(hy) : f € F}.
Then there exist Hy = {{(hij) :i=0,...,m — 2,5 =0,...,n" — 1} where hj;j € k[z,, 1] with
deghij < n' such that letting H = Hz U Hy, then TUH C Vg ,, G =FUQ C Vg, ,urg
(G)=(HUQp_1UT).



Proof By Lemma 27 I' C V5 .. For f € F C Sy, let f' € Sy ;1 be obtained from f by
substituting x;; with ~;; for i =0,...,m —2, 7=0,...,n' — 1. Then f' = f (mod T'), and
f' = {(hy) for some hy € k[zpy—1]. We have £(hy) € V1 C Vg and f € Vyur1 where
Hz = {l(hg): f € F}. )

Fori =0,....m—2and j =0,...,n — 2, :E?j — ; j4+1 € Q. Lemma 27 implies that
a:gj — T j+1 =g 'yfj — % j+1 =¢ L(hij) (mod T'U Qp,—1) for some h;; € klxm—_1].

Fori=0,...,m—2,z! ,  —lgw(z;)) € Q. Let {(gw (x;)) = Z?:_ol a;jri; with a;; € k
Lemma [2.7] implies that

n'—1

Since v 1 5 =q Vi =1 (mod Qm—1), we have

n'—1

Wooa— > aigvij =¢ (hi w-1) (mod Q1)

with h; 1 € k[x;,—1] of degree less than n'.
To summarize, we have

vd =i 11 =q L(hij)  (mod T'U Q1)

fori=0,...,m—2and j=0,...,n — 2, and
i oy — Uow (i) =q £(hi w—1) (mod I'U Q1)

for i =0,...,m —2. Let H = {l(hyj) :i=0,....,m—2,5 =0,...,n — 1}. It follows
that @ C Vi,urug,, ., and on the other hand Hy C Vg4, and since I' C Vg ., we have
H, C ng.

Let H = H7 U Hy. Then we conclude that I' U H C Vg-7q, and on the other hand G =
FUQ CVyig, _,ure In particular, we have (G) = (H U Q1 UT). O

Note that H U Q1 C k[#m_1] where &1 = Tm-—1 05+, Tm-1 n'—1-
Lemma 2.9. Let H be as in Lemma [2.8. Suppose H = {{(h;) : i = 1,...,s} and let
ho = fw(xm-1). Let g be the GCD of h;, i = 0,...,s. Then (G) = (L' U{l(g)} U Qm-1),
moreover I' U{€(g)} U Qm-1 C Vg ,-

Proof We have g = Y7 a;h; with a; € k[zp,—1], so
= L(a;) o L(h

So
lg) = ZL(ai) o/l(h;) mod Q1.

Apply Lemma to HU Qm-1 C k[Zp—1] it follows that there is b} € S -1 such that
hi; =40 (mod H U Qy,—1) and L(a;) o £(h;) = h} (mod (Qm-1)). So

= Zh; =,0 (mod HU Q1)
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Since ¢(g) and h are all in Sy ,,,—1, we have

lg) = Zh; =,0 (mod HUQp-1),

in particular, £(g) =, 0 (mod G). It follows that
L(fw) = L(ho) € ({L(hi) : 1 =0,...,s}) = (L(g))-

Under the isomorphism from k[Z,,_1]/(Qm-1) = k[zm_1]/{(LGw (xm_1))), £(h;) corresponds
to L(h;), hence the ideal generated by H UQ,,_1 corresponds to the ideal generated by L(g).

Since by Lemma 2.8, (G) = (' UH U Q,,_1), it follows that (G) = (T U {£(g)} U Qm_1).
Moreover from the discussion above we have I' U {£(g)} U Q-1 C Vg ,. O

Under the isomorphism from k[Zo,. .., 2m-1]/(Q) — k[xo,...,Tm-1]/(Q), Tio — Yio cor-
responds to z; — L(g;) where {(g;) = 7 for i € N. Under the isomorphism the ideal
determined by G corresponds to the ideal determined by F U Q. Since, by Lemma 2.9,
(G) = T U{l(9)} UQm-1) and g|fw, it follows that (F U Q) is generated by L(g) and
z; — L(g;) where i € N'. By Lemma 2T U{£(g)} UQp—1 C Vg, it follows from Proposition

2.3 of [7] that £(g) and v, hence L(g) and 2; — L(g;) can be constructed in time (mn’)?(@
time. From this a basis of Zy (F) over k' can be easily written down.

It is easy to see that if f € k[Zn,—1] and f € ({£(9)} U Qm—1) then f =qeq r+1 £(9)f1
(mod Q1) for some fi € k[&,,—1]. Suppose f € (G). Then f =4ee r f1 (mod Q) where the
degree of x;; in fy is less than ¢ for all 4, j. Using x;; = 7;; (mod I'), we have fi =gegp, b
(mod ' U Qpy—1) where h € k[Z,—1]. It follows that h € ({¢(g)} U Qm—1), hence h =gegnt1
£(g)h1 (mod Qm-1), 80 h =Zaegn+1 0 (mod {£(g)}UQm—1). If deg f > (¢—1)m, then deg f >
deg f1, and since I' U {{(g)} U Qm-1 C Vg 4, we conclude that f € Vg g, ;- Therefore dg <
(¢ — 1)m + 1. Theorem 2.5 follows.

REFERENCES

[1] BETTALE, L., FAUGERE, J.-C., AND PERRET, L. Cryptanalysis of HFE, multi-HFE and variants for odd
and even characteristic. Des. Codes Cryptogr. 69, 1 (2013), 1-52.

[2] DiNg, J., AND HoDGES, T. J. Inverting HFE systems is quasi-polynomial for all fields. In Advances
in cryptology—CRYPTO 2011, vol. 6841 of Lecture Notes in Comput. Sci. Springer, Heidelberg, 2011,
pp. 724-742.

[3] FAUGERE, J.-C., AND JouX, A. Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems
using Grobner bases. In Advances in cryptology—CRYPTO 2003, vol. 2729 of Lecture Notes in Comput.
Sci. Springer, Berlin, 2003, pp. 44-60.

[4] GorLA E., MULLER D. AND PETIT C. Stronger bounds on the cost of computing Grobner bases for HFE
systems. J. Symbolic Computation, to appear.

[5] GRANBOULAN, L., JoUux, A., AND STERN, J. Inverting hfe is quasipolynomial. In Advances in Cryptology
- CRYPTO 2006, 26th Annual International Cryptology Conference (2006), vol. 4117 of Lecture Notes in
Computer Science, Springer, pp. 345-356.

[6] HuaNG, M.-D. A., KOSTERS, M., AND YEO, S. L. Last fall degree, HFE, and Weil descent attacks on
ECDLP Cryptology ePrint Archive, Report 2015/578, 2015

[7] Huang, M.-D. A., KOSTERS, M., YANG, Y., AND YEO, S. L. On the last fall degree of zero-dimensional
Weil descent systems J. Symbolic Computation, Volume 87, 2018, pp. 207-222

[8] PETIT, C., AND QUISQUATER, J.-J. On polynomial systems arising from a Weil descent. In Advances in
cryptology—ASIACRYPT 2012, vol. 7658 of Lecture Notes in Comput. Sci. Springer, Heidelberg, 2012,
pp. 451-466.

COMPUTER SCIENCE DEPARTMENT,UNIVERSITY OF SOUTHERN CALIFORNIA, U.S.A.
Email address: mdhuang@usc.edu



	1. Introduction
	1.1. Proof of Theorem 1.1

	2. Systems of linearized polynomials
	2.1. Proof of Theorem 2.5

	References

