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Abstract

An f -subgroup is a linear recurring sequence subgroup, a multiplicative subgroup
of a field whose elements can be generated (without repetition) by a linear recurrence
relation, with characteristic polynomial f . It is called non-standard if it can be
generated in a non-cyclic way (that is, not in the order αi, αi+1, αi+2 . . . for a zero α

of f), and standard otherwise. We will show that a finite f -subgroup is necessarily
generated by a subset of the zeros of f . We use this result to improve on a recent
theorem of Brison and Nogueira. A old question by Brison and Nogueira asks if
there exist automatically non-standard f -subgroups, f -subgroups that cannot be
generated by a zero of f . We answer that question affirmatively by constructing
infinitely many examples.

Keywords— linear recurrence relation, linear recurring sequence, f -subgroup, linear recurring
sequence subgroup, non-standard sequence subgroup
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1 Introduction

A finite multiplicative subgroup of F∗, the nonzero elements in a commutative field F,
is necessarily cyclic (see, e.g. [22, Chapter 1, Lemma 1]), that is, of the form 〈α〉 =
{1, α, α2, . . .} for some field element α of finite order. In a sequence of papers [1, 3, 4,
5, 6, 7, 8], Brison and Nogueira have investigated presentations of such a subgroup in a
finite field by means of a (periodic) linear recurring sequence. Here, we say that a linear
recurring sequence s presents (or generates) a finite subgroup M if s has period |M |
and M = {s0, s1, . . . , s|M |−1}; moreover, if the linear recurrence relation satisfied by the
sequence s has characteristic polynomial f , then we refer to M as an f -subgroup and to
the generating sequence s as an f -sequence.

For example, consider the (Fibonacci-type) linear recurrence relation

sn = sn−1 + sn−2 (1)

with characteristic polynomial f(x) = x2−x−1. If α is a zero of f in some finite field Fq

of size q and characteristic p > 0 (so with q a power of the prime p), then the sequence s
with sn = αn for n ∈ Z obviously satisfies the recurrence relation (1), so if α has order m,
then M = {1, α, . . . , αm−1} is a presentation of M by s, and hence M is an f -subgroup.
Usually, this is essentially the only way to present M , and then we refer to M as a
standard f -subgroup. However, it sometimes happens that there is another, essentially
different way to present M . When p ≡ ±2 mod 5, the polynomial f is irreducible and
q = p2; by combining results from [1] and [3], it can be shown that the subgroup M ≤ F

∗
q

generated by a zero of f is a standard f -subgroup except when p = 3, q = 9: in that case,
if ω ∈ F9 \ F3, the sequence

s = . . . , 1, ω, 1 + ω, 1− ω,−1,−ω,−1− ω,−1 + ω, 1, ω, . . .

satisfies the recursion (1) and has period 8, so this f -sequence s presents M = F
∗
9. This

gives 6 presentations for M but f has at most two zeros, and so 4 of these presentations
are non-standard . We now refer to M = F∗

9 as a non-standard f -subgroup. (In the
remaining cases where p = 5 or p ≡ ±1 mod 5, both zeros a, b of x2 − x− 1 are in Fp, so
q = p; later in this paper we show that M = 〈a, b〉 is in fact the only possible non-standard
f -subgroup, but we do not know if this possibility ever occurs.)

As the above example suggests, non-standard f -subgroups tend to be rare (at least
when we put some restrictions on f , see Section 6). In the case where f(x) ∈ Fq[x] is
irreducible, it is known that an f -subgroup is necessarily generated by a zero of f . The
cases where f is irreducible of degree 2 have been fully classified, first when q is prime in
[3], then for general q in [12], using a result from [6]. Interestingly, it turns out that for
irreducible polynomials f , non-standardness occurs precisely when the irreducible cyclic
code related to f has extra automorphisms, for more details we again refer to [12]. Various
types of non-standard irreducible cases have been identified, and we may well know them
all.
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In the general case, a clear understanding of the relation between the zeros of a poly-
nomial f and an f -subgroup was still missing. This relation is investigated in Section 3.
The main result in this section states that an f -subgroup presented by a periodic se-
quence s is equal to the group generated by the zeros of the minimal polynomial fs of s,
hence is generated by some subset of the zeros of f . Note that this generalizes the result
for irreducible polynomials mentioned earlier. We use our results to remove the degree
condition “k ≤ p” in [8, Theorem 2.3].

Then in Section 4, we define a class of non-standard f -subgroups that we named
automatically non-standard . These are subgroups M of F∗ presented by a periodic f -
sequence s where no zero of f generates M . Note that if sn+1/sn = α for all n, then
f(α) = 0 would follow from the recurrence relation; so the non-standardness of such an
f -subgroup is inherent from the definition. This class is interesting since, as we show in
this section, it turns out to be nonempty! We describe infinitely many examples, and
we also prove an extension result. In [3, end of Observation 1.5], the authors state ”
. . . if f is irreducible [with zero ξ] then any f -subgroup has the form 〈ξ〉 (considered as
group), but we have no proof that this must occur in general.” So our examples answer
the implicit question here in the negative. In [2], automatically non-standard f -subgroups
in the complex field where named non-standard of the second type. The authors informed
us that they also knew examples in finite fields already in 2015.

To make the paper self-contained, in Section 2 we establish some notation and we
quickly sketch a proof of most of the basic results concerning linear recurrence relations
that are needed here. We basically follow the elegant approach in [9], but some of our
proofs may be new and our method may be of independent interest.

Finally, in Section 6 we suggest some directions for further research and we discuss
some open problems.

Part of this work is based on ideas obtained during a visit of the first author to Brison
and Nogueira in 2013 and on later work by the second author [23, 24].

2 Preliminaries

In this section, we quickly sketch the required background on linear recurrence relations
and linear recurring sequences. To describe the results, we will basically use the framework
from [9]. While all the results in this section are known, parts of our approach may be
new. For an element α 6= 0 in a field F, we write 〈α〉 to denote the group {1, α, α2, . . .}
generated by α. We will write K ≤ G to denote that K is a subgroup of a group G. For
other references for this material, see, for example, [14], [15], [16], [25].

Let F be an arbitrary field. A (two-way infinite) sequence s = {sn}n∈Z with sn ∈ F for
all n ∈ Z is called a (kth-order) linear recurring sequence over F if there exist c0, . . . , ck−1

in F, where c0 6= 0 if k > 0, such that

sn = ck−1sn−1 + ck−2sn−2 + · · ·+ c1sn−k−1 + c0sn−k (2)
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for all n ∈ Z. A relation of the form (2) is called a (kth-order) linear recurrence relation.
The polynomial

f(x) = xk − ck−1x
k−1 + · · · − c1x− c0

in F[x] is referred to as the characteristic polynomial of (2). We will say that the sequence s
satisfies the recursion f , or that s is an f -sequence, if (2) holds for all n ∈ Z, and we will
write LF(f) to denote the collection of all f -sequences s over F. We say that a sequence
satisfies a recursion f where f(x) = cxk + · · · has leading coefficient c 6= 0 if s satisfies
c−1f . A sequence s is called cyclic if there exists α ∈ F such that sn+1/sn = α for all
n ∈ Z. Note that such a sequence is an f -sequence if and only if f(α) = 0.

Remark 2.1 Requiring instead that the coefficients c0, . . . , ck−1 in (2) are contained in
some extension field E of F would not have widened the notion of a linear recurring
sequence over F. That is, if a sequence s with sn ∈ F for all n ∈ Z satisfies some
linear recurrence relation, then it also satisfies one where all coefficients are in F. For
periodic sequences, this follows from Theorem 2.8 below. In general, this follows from the
existence of Berlekamp-Massey-type algorithms to compute the minimal polynomial, see,
e.g., [17, 18, 20].

The collection LF of all sequences over F forms a vector space under point-wise addition
and scalar multiplication, defined by (s + t)n = sn + tn and (λs)n = λsn for n ∈ Z and
λ ∈ F. The (left) shift operator σ operates on this vector space as σ(s) = t, where
tn = sn+1 for n ∈ Z. Let σk denote σ composed with itself k times, and define (aσk +
bσl)(s) = aσk(s)+ bσl(s) for a, b ∈ F. The next proposition collects some basic results for
this set-up.

Proposition 2.2
(i) The set of all operators f(σ) for f(x) ∈ F[x], under addition and composition, is
isomorphic to the polynomial ring F[σ], and the above defines a ring-action of F[σ] on the
vector space LF (in technical terms, LF is a left F[σ]-module).
(ii) A sequence s ∈ LF is an f -sequence if and only if f(σ)s = 0.
(iii) If s is an f -sequence and t is a g-sequence, then s + t is a h-sequence whenever
both f, g divide h.
(iv) If f(x) has degree k, then the collection LF(f) of s ∈ LF for which f(σ)s = 0 is a
k-dimensional subspace of LF.
(v) For every s ∈ LF, the collection IF(s) of polynomials f(x) ∈ F[x] for which f(σ)s = 0
is an ideal in F[x], and so there is a unique monic polynomial fs(x) such that f(σ)s = 0
if and only if fs(x) divides f(x).
(vi) If (f, g) = 1, then LF(f) ∩ LF(g) = LF(1) = {0}.

Proof: (Sketch) (i) – (iii) are easy; for (i), remark that indeed f(σ)(g(σ)s) = (f(σ)g(σ))s
for all f(x), g(x) ∈ F[x]. Part (iv) follows from the observation that a sequence s ∈ LF

satisfying a polynomial f(σ) of degree k is completely determined by (s0, . . . , sk−1). The
polynomial fs(σ) in (v) is easily seen to be the monic polynomial with smallest degree
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in IF(s). Finally, to see (vi), note that if (f, g) = 1 in F[x], then there are a(x), b(x) ∈ F[x]
for which a(x)f(x)+ b(x)g(x) = 1. Now if s is both an f -sequence and a g-sequence, then
by (ii) s is also a 1-sequence, hence s = 0. ✷

We will refer to the polynomial fs in (v) above as the minimal polynomial or the minimal
recursion for s. In view of (i), in what follows we will identify F[x] and F[σ], and we will
use x instead of σ to denote the left shift operator.

Next, we will describe the general solution of a linear recurrence relation. To this
end, as in [19] we define the binomial coefficients

(

n
j

)

for n, j ∈ Z by the relations
(

n
j

)

=
(

n−1
j

)

+
(

n−1
j−1

)

and
(

n+j−1
j

)

= (−1)j
(

−n
j

)

for n, j = 1, 2, 3, . . . and in addition,
(

n
0

)

= 1 for

n ∈ Z and
(

0
j

)

= 0 for j ∈ Z, j 6= 0. It follows that
(

n
−j

)

= 0 for n ∈ Z, j = 1, 2, . . . and
(

n
n+j

)

= 0 for n = 0, 1, 2, . . . , j = 1, 2, . . .. We sketch a proof of the following.

Theorem 2.3 Suppose that f(x) ∈ F[x] has degree m and factors completely over an
extension E of F. If f has t distinct zeros α1, . . . , αt 6= 0 in E, where αi has multiplicity ei
(1 ≤ i ≤ t), then the collection LE(f) of f -sequences over E consists of the sequences
s = {sn}n∈Z for which

sn =

t
∑

i=1

αn
i

ei−1
∑

j=0

ci,j

(

n

j

)

(n ∈ Z)

for suitable ci,j ∈ E.

Proof: By Proposition 2.2, part (iv), the vector space LE(f) of f -sequences over E has
dimension m = e1+· · ·+et, so we need to find m independent solutions. As a consequence
of Proposition 2.2, part (vi), it is sufficient to prove the theorem for f(x) = (x − α)m

with α 6= 0, which follows if we show that the m sequences s(j) with s
(0)
n = 1, s

(1)
n =

(

n
1

)

, . . . , s
(m−1)
n =

(

n
m−1

)

for n ∈ Z constitute m independent solutions for the recursion
f(x) = (x− 1)m.

Since (s
(j)
0 , . . . , s

(j)
m−1) has the first nonzero entry equal to a 1, in position j, it is evident

that the sequences s(j) for j = 0, . . . , m− 1 are independent. To complete the proof, we
have to show that each sequence s(j) with 0 ≤ j < m satisfies the recurrence relation
sn −

(

m
1

)

sn−1 + · · ·+ (−1)m−1
(

m
m−1

)

sn−m+1 + (−1)msn−m = 0, that is, we must show that

S(n, j) =
∑m

i=0(−1)i
(

m
i

)(

n−i
j

)

= 0 for j = 0, . . . , m− 1 and for n ≥ m.
In fact,

S(n, j) =

{

0, if 0 ≤ j ≤ m− 1;
(

n−m
j−m

)

, if j ≥ m.
,

Indeed, this is [19, Chapter 1, (5a)], or it follows from

∑

j≥0

S(n, j)xj = (1 + x)n(1− 1/(x+ 1))m = (1 + x)n−mxm =
∑

j≥m

(

n−m

j −m

)

xj .

✷
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Remark 2.4 The advantage of describing the solutions in terms of binomial coefficient
sequences

(

n
j

)

instead of the conventional nj is that the binomial solutions also work over

fields with finite characteristic p when ei > p, cf. [15, Remark 8.23].

For completeness’ sake, we also mention the following result.

Theorem 2.5 ([15, Theorem 8.27]) Let f(x) ∈ F[x] with f(0) 6= 0, where char(F) =
p > 0. Then every f -sequence s satisfies per(s)|ord(f).

Finally, we need an expression for the minimal recursion fs of a periodic sequence s.
Let u(m) be the periodic sequence with period m for which (u

(m)
0 , . . . , u

(m)
m−1) = (0, . . . , 0, 1).

First we show the following.

Lemma 2.6 The sequence u(m) has minimal recursion xm − 1.

Proof: Since (xm−1)u(m) = 0, the minimal recursion divides xm−1. Conversely, from (2)
we immediately see that any recursion for u(m) must have order k ≥ m. ✷

Lemma 2.7 The sequence s is periodic with period m if and only if s = s̃(x)u(m) with
s̃(x) = s0x

m−1 + · · ·+ sm−2x+ sm−1.

Proof: Obvious from the definition of u(m). ✷

The next theorem can also be derived using the approach in [15, Theorem 8.25].

Theorem 2.8 Let s be periodic with period m over F. Then

fs(x) = (xm − 1)/(xm − 1, s̃(x)), (3)

where s̃(x) is defined as in Lemma 2.7; in particular, fs(x) ∈ F[x].

Proof: By Lemma 2.7 we have that s = s̃(x)u(m); then using Lemma 2.6, we conclude
that f(x)s = 0 if and only if xm − 1 divides f(x)s̃(x). The latter condition holds if and
only if every zero of xm−1 with multiplicity e that occurs with multiplicity h < e in s̃(x)
occurs in f(x) with multiplicity at least e − h. This is the case precisely when the right
hand side of (3) divides f(x); now (3) follows from Proposition 2.2, part (v). Finally, note
that the polynomial fs(x) defined by (3) is automatically contained in F[x]. ✷

The following basic result on periodic sequences can be obtained by combining various
known results, but we prefer to give a simple direct proof.

Theorem 2.9 Let f(x) =
∏t

i=1(x− αi)
ei be a polynomial in a field F with p = char(F),

with distinct zeros α1, . . . , αt 6= 0 in some extension E of F, and let s = {sn}n∈Z be a
nonzero f -sequence of period m in F, for which (m, p) = 1 if p > 0. Define J = {i ∈
{1, . . . , t} | αm

i = 1}. Then the following hold.
(i) The sequence s has minimal recursion fs, where fs is as defined in Theorem 2.8. In
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particular, fs divides f and fs has no multiple zeros.
(ii) There are ci ∈ E (i ∈ J) such that

sn =
∑

i∈J

ciα
n
i (n ∈ Z); (4)

moreover, fs(x) =
∏

{i|ci 6=0}(x− αi).

(iii) m = lcm(ord(αi) | i ∈ J} = lcm(ord(αi) | αi is zero of fs}.

Proof: (i) Under the conditions on m, the polynomial xm − 1 has no multiple zeros,
hence the claim is a direct consequence of Proposition 2.2, part (v) and Theorem 2.8.
(ii) Since fs divides f and fs(x)|x

m − 1 (see part (i)), we conclude that every zero of fs
is of the form αi with i ∈ J . Since s is an fs-sequence, the expression (4) follows from
Theorem 2.3. Finally, again by Theorem 2.3, a sequence s of the form (4) satisfies the
recurrence

∏

{i|ci 6=0}(x− αi) but not one of smaller degree.

(iii) Let r = lcm(ord(αi) | i ∈ J) and r′ = lcm(ord(αi) | αi is zero of fs}. By part (ii),
by (4), and by the definition of fs, every αi actually occurring in the expression (4) for sn
is in fact a zero of fs, hence r′ is a period of s, and as a consequence m|r′. Conversely,
since αm

i = 1 for every i ∈ J , we have ord(αi)|m for i ∈ J , hence r′|r|m. We conclude
that r = m. ✷

3 General results for f-subgroups

We now investigate the relation between the characteristic polynomial f of a recurrence
relation and the period of an f -sequence presenting an f -subgroup. The following fun-
damental result may be considered as a generalization of [5, Lemma 2.1] and [8, Lemma
2.2].

Theorem 3.1 Let f(x) ∈ F[x] and let M be a finite f -subgroup of size m in some
extension of F, presented by an f -sequence s with minimal recursion fs. Then fs has no
multiple zeros and M is the group generated by the zeros of fs, and hence is generated
by a subset of the zeros of f .

Proof: If s presents M , where M has size m, then s is periodic with smallest period m,
and (|M |, char(F)) = 1 if char(F) > 0. Now the claims follow from Theorem 2.9. ✷

Example 1: Here we show how the above can be used to investigate f -subgroups
where f ∈ F[x] has degree 2. Suppose that f has two distinct zeros a, b ∈ F (for the
case a = b, see Theorem 3.3 below). By Theorem 3.1, an f -subgroup is one of 〈a, b〉, 〈a〉,
or 〈b〉. Moreover, if the f -subgroup is smaller than 〈a, b〉, then by the same theorem, any
f -sequence presenting it must have a minimal recursion of degree 1, so is cyclic; hence
the f -subgroup is standard. We conclude that 〈a, b〉 is the only candidate to be a non-
standard f -subgroup. ✷
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Remark 3.2 Let p be a prime. Suppose that h > νp(j!), where νp(n) denotes the largest
power of p dviding n. Then for every integer u we have that

(

phu+ n

j

)

=
(phu+ n)(phu+ n− 1) · · · (phu+ n− j + 1)

j!
≡

(

n

j

)

mod p. (5)

As a consequence, if every zero αi of the minimal polynomial fs(x) of a sequence s
satisfies αm

i = 1, then (m, p) = 1 and by Theorem 2.3 the sequence s has a period phm
(this need not be the minimal period). This fact can be used for an alternative approach
to Theorem 2.9, along the lines of [24, Theorem 3.2.1.]. Note that (5) and Theorem 2.9
together show that a linear recurring sequence is periodic in characteristic p precisely
when either p > 0 or when p = 0 and every zero of its minimal recursion has finite order
and multiplicity 1.

For completeness’ sake, we remark that a much more precise result is available. Indeed,
[21, Lemma 1] (see also [10, Section 4]) implies that if pr−1 ≤ j < pr, then the sequence s(j)

in Fp with s
(j)
n =

(

n
j

)

for n ∈ Z has minimal period pr. As a consequence, we can obtain

an alternative proof for Theorem 2.5. To this end, note that if q = ps and f(x) ∈ Fq[x]
has per(f) = n = n0p

r with (n0, p) = 1, then the general expression for an f -sequence s
in Theorem 2.3 immediately implies that such a sequence has n0p

r = n = ord(f) as a
period: indeed, f(x)|xn − 1 = (xn0 − 1)p

r

, hence n0 is a period of all the αi, and pr is a
period of all the binomial coefficients that occur.

We now present an application of the above results. In [8, Theorem 2.3], the authors
showed that an f subgroup for f(x) = (x − a)k ∈ Fpe is standard provided that k ≤ p.
We will use the above results to eliminate the extra condition on k and to simplify the
proof.

Theorem 3.3 Let a ∈ F
∗
q, where q = pe with p a prime, and let f(x) = (x− a)k ∈ Fq[x]

with k ≥ 1. Then an f -subgroup M is necessarily of the form M = 〈a〉 and is standard
as an f -subgroup.

Proof: Suppose that s is an f -sequence with smallest period m such that M = {s0 =
1, . . . , sm−1} has size m and is an f -subgroup in some extension E of Fq. Then we may
assume that |E| is finite, and since m divides |E| − 1, we have (m, p) = 1. The minimal
polynomial fs(x) of s divides f(x), hence is of the form (x− a)e, and by Theorem 2.9, we
have e = 1, hence s is cyclic with sn+1/sn = a (n ∈ Z) and M = 〈a〉 is standard. ✷

4 Automatically non-standard f-subgroups

In this section, we answer a question that was implicitly raised in [3], Observation 1.5,
namely whether it is always true that an f -subgroup is generated by a zero of f . We need
some preparation.
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For positive integers m, define the mth cyclotomic polynomial φm(x) inductively by
letting

xm − 1 =
∏

d|m

φd(x). (6)

So, for example, φ1(x) = x − 1, φ2(x) = x + 1, φ3(x) = x2 + x + 1, and φ4(x) = x2 + 1.
It is well-known and not difficult to prove(see, e.g., [11]) that in fact every φm(x) is a
polynomial with integer coefficients, that is, φm(x) ∈ Z[x], and deg(φm) = ϕ(m), where
ϕ is the Euler function defined by ϕ(m) = |Z∗

m|, the number of integers k with 1 ≤ k < m
for which (k,m) = 1.

Now let F be a field with char(F) = p, and let m be a positive integer with (m, p) = 1
if p > 0, so that xm−1 has no multiple zeros. The mth cyclotomic polynomial φp,m over F
is the polynomial φm, reduced modulo p if p > 0. By its definition, φp,m has as its zeros
precisely those mth roots of unity that have order m, that is, the primitive mth roots
of unity . Indeed, let α be a zero of φp,m in a suitable extension of F. By assumption,
(m, p) = 1, so α has order m. Then the zeros of xm − 1 are αk (0 ≤ k < m), and αk is a
primitive root of unity precisely when (k,m) = 1. As a consequence,

φp,m(x) =
∏

k∈Z∗

m

(x− αk),

where the product is over all integers k with 1 ≤ k < m for which (k,m) = 1.
Now assume that f(x) ∈ F[x], where p = char(F), and that M is an f -subgroup

of (finite) size m, that is, there exists an f -sequence s of minimal period m in some
finite extension E of F such that M = {s0, . . . , sm−1}. Then (m, p) = 1 if p > 0, and
Theorem 2.9 applies: the sequence s has a minimal polynomial fs(x) in F[x] that has no
multiple zeros, where fs divides f and M is generated by the zeros of fs. Now if s is
cyclic, say sn+1/sn = α (n ∈ Z), then M = 〈α〉, so α has order m, and since s satisfies fs
we see from (2) that fs(α) = 0, and hence f(α) = 0. But this cannot happen if f does not
have a primitive mth root of unity as a zero. Observe also that since M = {s0, . . . , sm−1}
is a group, we have that s0 + · · · + sm−1 = 0, hence x − 1|s̃(x) (with s̃(x) as defined in
Lemma 2.7). With Theorem 2.8 in mind, this motivates the following definition.

Definition 4.1 Let F be a field with p = char(F), and let m > 1 be an integer satisfying
(m, p) = 1 if p > 0.
(i) If the polynomial f(x) in F[x] divides (xm−1)/(x−1)φp,m(x) and if s is an f -sequence
for which M = {s0, s1, . . . , sm−1} is a subgroup of size m in some extension of F, then we
refer to M as an automatically non-standard f -subgroup.
(ii) If s0, . . . , sm−1 are such that M = {s0, . . . , sm−1} is a subgroup of size m in some
extension of F and if φp,m(x) divides s̃(x) = sm−1 + sm−2x + · · · + s0x

m−1, then we say
that the subgroup M is automatically non-standard .

By the discussion preceding this definition, the following should come as no surprise.
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Theorem 4.2 (i) An automatically non-standard subgroup M = {s0, . . . , sm−1} is auto-
matically non-standard f -subgroup with f(x) = (xm − 1)/(xm − 1, s̃(x)).
(ii) An automatically non-standard f -subgroup is a non-standard f -subgroup.

Proof: (i) The periodic sequence s with period m defined by s0, . . . , sm−1 generates M
and has minimal polynomial fs(x) = f(x) by Theorem 2.8. By definition, φp,m|s̃(x), and
since M is a group also s0+ · · ·+ sm−1 = 0 and x− 1|s̃(x); since m > 1, we conclude that
f(x)|(xm − 1)/(x− 1)φp,m(x) so M is automatically non-standard f -subgroup.
(ii) Let the automatically non-standard f -subgroup M have order m > 1. By the defini-
tion of φp,m, no zero of (xm − 1)/(x− 1)φp,m(x), hence no zero of f , generates M . Hence
M cannot be generated by a cyclic f -sequence, so must be non-standard. (See [7, Lemma
1.3 (b)] for more details.) ✷

A priori, it is not evident that automatically non-standard objects even exist. Moreover,
we have the following simple negative result.

Theorem 4.3 A subgroup M with |M | = re with r prime is never automatically non-
standard.

Proof: Let M be an f -subgroup, for some polynomial f . By Theorem 2.9, we may
assume that f has distinct zeros α1, . . . , αk and that M = 〈α1, . . . , αk〉. Every αi has
order rh for some integer h ≤ e, hence M can only be generated by the αi if some αi has
order re, that is, if it generates M . ✷

As a consequence, there are no automatically non-standard subgroups of sizes
2, 3, 4, 5, 7, 8, 9, 11, 13, 16 and 17, but there could be automatically non-standard subgroups
of size 6, 10, 12, 14, and 15.

Example 2: Suppose that M is an automatically non-standard multiplicative sub-
group of size 6 in some finite field Fq of characteristic p (so with p 6= 2, 3). Let
M = {s0 = 1, . . . , s5}, where s̃(x) = x5 + s1x

4 + · · · + s5 is a multiple of the polyno-
mial φ6(x) = x2 − x + 1 containing all primitive 6th roots of unity. With α2 = α − 1
we have α3 = −1, α4 = −α, α5 = −α + 1, and so M = {1, α, α − 1,−1,−α,−α + 1};
moreover, s̃(x) ≡ 0 mod x2−x+1 and s̃(x) ≡ 0 mod x−1 (since M is a subgroup), hence

(−x+ 1) + s1(−x) + s2(−1) + s3(x− 1) + s4x+ s5 = 0,

or equivalently,
1− s2 − s3 + s5 = 0, −1− s1 + s3 + s4 = 0,

and
1 + s1 + s2 + s3 + s4 + s5 = 0.

By a careful examination of all possibilities, it can be shown [24] that necessarily the
characteristic p of the field satisfies p = 7, with M = F

∗
7 and s = (1, 3, 4, 6, 5, 2) (or one

of the other 5 sequences such as (1, 5, 3, 4, 2, 6) obtained from this one by multiplying
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by s−1
i and shifting); the first sequence s has s̃(x) = x5 + 3x4 + 4x3 + 6x2 + 5x + 2 =

(x3−2x2+2x−1)(x2+5x+5) and (x2+5x+5, x6−1) = 1; hence this s is an f -sequence
with f(x) = (x + 1)(x2 + x + 1) = x3 + 2x2 + 2x + 1 and generates the automatically
non-standard f -subgroup F

∗
7. ✷

The above example can be generalized as follows.

Theorem 4.4 Let m = p − 1 = 2r with r ≥ 3 odd and p prime (that is, p prime,
p ≡ 3 mod 4 with p ≥ 7). Then the subgroup M = F

∗
p is automatically non-standard

with respect to the polynomial f(x) = (x+ 1)(xr − 1)/(x− 1).

Proof: Let m = p − 1 = 2r with r ≥ 3 odd, and let s be the sequence with period
m = p− 1 = 2r defined by

s0, . . . , sm−1 = 1,−2, 3,−4, . . . ,−(r − 1), r,−r, r − 1,−(r − 2), . . . , 2,−1.

Then

s̃(x) = x2r−1 − 2x2r−2 + · · · − (r − 1)xr+1 + rxr − rxr−1 + (r − 1)xr−2 + · · ·+ 2x− 1.

Let
a(x) = 1− 2x+ 3x2 − · · · − (r − 1)xr−2 + rxr−1.

Then a(x) = b′(x) with

b(x) = x− x2 + x3 − · · · − xr−1 + xr = x(xr + 1)/(x+ 1) = (xr+1 + x)/(x+ 1),

hence

a(x) = ((r+1)xr +1)(x+1)− (xr+1 + x) · 1)/(x+1)2 = (rxr+1 + (r+1)xr +1)/(x+1)2.

and

s̃(x) = −a(x) + x2r−1a(x−1)

= ((−rxr+1 − (r + 1)xr − 1) + (rxr + (r + 1)xr+1 + x2r+1))/(x+ 1)2

= (x2r+1 + xr+1 − xr − 1)/(x+ 1)2 = (xr+1 − 1)(xr + 1)/(x+ 1)2.

Now if ξ is a primitive mth root of unity in Fp, then ξ2r = 1 but ξr 6= 1 (since r ≥ 3) and
ξ2 6= 1, so ξr = −1 and ξ is a zero of (xr +1)/(x+1). As a consequence, s̃(x) contains all
primitive mth roots of unity and M = {s0, . . . , sm−1} = F

∗
p is automatically non-standard

in Fp.
Since r is odd, we have that

(x2r − 1, s̃(x)) = (x2r − 1, (xr+1 − 1)(xr + 1)/(x+ 1)2)

= ((x+ 1)(xr − 1), (xr+1 − 1)/(x+ 1))(xr + 1)/(x+ 1)

= (x− 1)(xr + 1)/(x+ 1),
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hence by Theorem 2.8, the minimal polynomial for the sequence s is

fs(x) = (x2r − 1)/(x2r − 1, s̃(x)) = (x+ 1)(xr − 1)/(x− 1).

✷

Example 3: There is another way to show that for m = p − 1 = 2r with r ≥ 3 odd
the group F

∗
p is automatically non-standard. Indeed, let s be the sequence with period

m = p− 1 defined by

s0, . . . , sm−1 = 1,−1, 3,−3, . . . , r − 2,−(r − 2); r; 2,−2, 4,−4, . . . , r − 1,−(r − 1); r + 1.

Then

s̃(x) = x2r−1 − 2x2r−2 + · · · − (r − 1)xr+1 + rxr − rxr−1 + (r − 1)xr−2 + · · ·+ 2x− 1.

In [24] it is shown that in fact

s̃(x) = [(x+ 1)(xr−2 + 3xr−4 + 5xr−6 + · · ·+ (r − 2)x) + r](x− 1)(xr + 1)/(x+ 1)

= a(x)(x − 1)(xr + 1)/(x+ 1)

with a(x) = (x + 1)(xr−2 + 3xr−4 + 5xr−6 + · · ·+ (r − 2)x) + r (it is not too difficult to
check this directly). Note that a primitive (2r)th root of unity ξ satisfies ξr = −1 and
ξ 6= −1 for r ≥ 3, hence every generator of M = F

∗
p is a zero of s̃(x); as a consequence,

F
∗
p is automatically non-standard. In order to compute the minimal polynomial fs(x) for

the sequence s, we use Theorem 2.8. We have that

(x2r − 1, s̃(x)) = ((x− 1)(xr + 1)/(x+ 1))((x+ 1)(xr − 1)/(x− 1), a(x)).

Now (x+ 1, a(x)) = (x+ 1, r) = 1, and it is not difficult to verify [24] that

(x2 − 1)a(x)− (x2 + 1)(xr − 1)/(x− 1) = −(r − 1)x− (r + 1) = −(r − 1)(x− 1/3).

Hence
((x+ 1)(xr − 1)/(x− 1), a(x)) = (xr − 1, x− 1/3).

Now 1/3 is zero of xr−1 when 3r = 3(p−1)/2 = 1 in Fp, that is, when 3 is a (nonzero) square
in Fp. If p 6= 2, 3, then by quadratic reciprocity, see, e.g., [13], this happens precisely when
p ≡ ±1 mod 12. In our case, p ≡ 3 mod 4 and p ≥ 7, so p 6≡ 1 mod 12 (and certainly not
p ≡ 3 mod 12) and we have that

fs(x) =

{

(x+ 1)(xr − 1)/(x− 1), if p ≡ 7 mod 12;
(x+ 1)(xr − 1)/(x− 1)(x− 1/3), if p ≡ 11 mod 12.

✷
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5 Extension for automatically non-standard sub-

groups

In this section, we will prove the following extension theory.

Theorem 5.1 If M is an automatically non-standard f -subgroup in some field E, then
every finite multiplicative subgroup of E that contains M is again automatically non-
standard, with respect to the polynomial g(x) = f(xk).

Proof: By our assumptions on M , there exists an f -sequence s with period m = |M |
over E such that M = {s0, . . . , sm−1}, where f(x)|(xm − 1)/((x − 1)φp,m(x). Since the
minimal recursion fs for s satisfies fs(x)|f(x), we conclude from Theorem 2.8 that (x −
1)φp,m(x)|s̃(x), where s̃(x) is the polynomial associated with the sequence s. Now let L be
a subgroup with M ≤ L and |L| = k|M |, say. Suppose that e0, e1, . . . , ek−1 are a system
of distinct coset representatives of L/M . Now consider the presentation for L as

e0s0, e1s0, . . . , ek−1s0, e0s1, . . . , e0sm−1, . . . , ek−1sm−1,

that is, L = {t0, . . . , tkm−1} with tkj+i = eisj for 0 ≤ i < k, 0 ≤ j < m. For the associated
polynomial t̃(x) of the sequence t (extended with period km) we now find

t̃(x) =
km−1
∑

u=0

tux
km−1−u =

k−1
∑

i=0

m−1
∑

j=0

eisjx
mk−1−jk−i

=
k−1
∑

i=0

eix
k−1−i

m−1
∑

j=0

sjx
k(m−1−j) = ẽ(x)s̃(xk),

where ẽ(x) =
∑k−1

i=0 eix
k−1−i. Now since s̃(xk)|t̃(x) and φp,km(x)|φp,m(x

k)|s̃(xk), we con-
clude from Theorem 2.8 that ft(x)|fs(x

k), hence ft(x)|f(x
k). Finally, using again that

φp,km(x)|φp,m(x
k), we have that f(xk)|(xkm − 1)/(xk − 1)φp,m(x

k)|(xkm − 1)/(x− 1)φp,km.
So with g(x) = f(xk), the subgroup L is presented by the g-sequence t, hence L is an
automatically non-standard g-subgroup. ✷

Remark 5.2 So far, we have only constructed automatically non-standard groups F∗
p of

size p− 1 for primes p ≡ 3 mod 4, and their extensions (in the sense of Theorem 5.1) of
size m = k(p − 1) with k > 0 an integer with (k, p) = 1. Note also that this type of
extension to an automatically non-standard group M = F

∗
q for q a prime power is not

always possible, since for example M = F
∗
9, of size 8 = 23, is ruled out by Theorem 4.3.

However, there seems to be no obvious reason why there cannot be an automatically
non-standard subgroup of every size m of the form m = rs with r, s > 1 and (r, s) = 1,
although we do not know an example in every such case. Taking M = F

∗
11 provides

a automatically non-standard group for m = 10. Extension of the m = 6 example in
characteristic p = 7 by taking k = 2 gives a non-standard group of size 12 in F

∗
72 , so the

smallest undecided case is m = 14. This size may still be small enough to be handled by
an exhaustive search, if needed with the help of a computer.

12



6 Discussion and open problems

Trivially, there are no non-standard subgroups of order m ≤ 3; however every subgroup
M ≤ F

∗ of size m ≥ 4 is a non-standard f -subgroup for f(x) = (xm−1)/(x−1) = xm−1+
· · ·+x+1 in any characteristic p, provided that (m, p) = 1. Indeed, let M = 〈α〉 with α in
some extension Fq of Fp (such an element exists if (m, p) = 1), and let π be a permutation
of 1, 2, . . . , m − 1. Then s0 = 1, s1 = απ(1), . . . , sm−1 = απ(m−1) is a presentation of M
by a periodic f -sequence s with period m. Indeed, if sn, sn+1, . . . , sn+m−2 are m − 1
distinct elements of M , then sn+m−1 = −sn − sn+1 − · · · − sn+m−2 is the remaining
element in M distinct from sn, . . . , sn+m−2. So there are at least (m − 1)! f -sequences
s with s0 = 1 presenting M , and there are only ϕ(m) presentations 1, β, β2, . . . with
β = αk, (k,m) = 1, a primitive mth root of 1 in M . Now (m − 1)! > m − 1 ≥ ϕ(m)
for m ≥ 4. For example, if m = 4 and p is odd, there exists a primitive 4th root of
unity, say α, in F

∗
p (if p ≡ 1 mod 4) or in Fp2 \ Fp (if p ≡ 3 mod 4). By Theorem 2.8,

both presentations s0, s1, s2, s3 = 1,−1, α,−α and 1, α,−α,−1 have minimal polynomial
fs(x) = x3 + x2 + x+ 1 = (x+ 1)(x2 + 1).

In order to avoid such slightly trivial examples, we need to put further constrants
on the polynomial f . One possibility is to require that f(x) is irreducible over some
field Fq, and to take M = 〈α〉 for some zero α of f(x) in view of Theorem 2.9. Another
possibility is to require that no zero of f(x) generates M , which leads to the automatically
non-standard subgroups considered here in Sections 4 and 5.

In view of the above, and given Theorem 2.9, the most ambitious goal would be to
determine, for every prime p, all minimally non-standard polynomials in characteristic p,
that is, all polynomials f over a field of characteristic p for which the subgroup M gen-
erated by the zeros of f can be presented as M = {s0, s1, . . . , sm−1} with m = |M | for a
non-cyclic sequence s with minimal period m and minimal recursion fs = f (an even more
ambitious goal would be to count the number of such presentations). Note that every min-
imally non-standard polynomial has degree at least 2, as every polynomial f(x) = x− a
of degree 1 is of course standard.

With this point of view, all minimally non-standard polynomials f(x) ∈ Fq of degree 2
and of the form f(x) = (x − ξ)(x − ξq) for some ξ ∈ Fq2 \ Fq (that is, irreducible
over Fq) have been determined in [12]; there is a relation with irreducible cyclic codes
having extra automorphisms. In [7] and in [12], various other classes of irreducible non-
standard polynomials are described; obviously these are all minimally non-standard. So
besides classifying all irreducible non-standard polynomials (which might be possible at
least for degree at most 3), now one of the main open problems is the determination
of the minimally non-standard polynomials f(x) ∈ Fq of degree 2, of the form f(x) =
(x−a)(x−b) with a, b ∈ Fq \{0, 1}, a 6= b, with M = 〈a, b〉. To the best of our knowledge,
the only known examples are the polynomials f(x) = x2 − a2 ∈ Fq[x] with q odd, a ∈ Fq

of even order m > 4 (where 〈a〉 is indeed a non-standard f -subgroup [3, Proposition 2.3]).
In a subsequent paper, we will describe some new examples of degree 2.
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