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Abstract. An element α ∈ Fqn is normal over Fq if B = {α, αq, αq
2

, · · · , αq
n−1}

forms a basis of Fqn as a vector space over Fq. It is well known that α ∈ Fqn is

normal over Fq if and only if gα(x) = αxn−1 +αqxn−2 + · · ·+αq
n−2

x+αq
n−1

and

xn − 1 are relatively prime over Fqn , that is, the degree of their greatest common

divisor in Fqn [x] is 0. Using this equivalence, the notion of k-normal elements was

introduced in Huczynska et al. (2013): an element α ∈ Fqn is k-normal over Fq

if the greatest common divisor of the polynomials gα[x] and xn − 1 in Fqn [x] has

degree k; so an element which is normal in the usual sense is 0-normal.

Huczynska et al. made the question about the pairs (n, k) for which there exist

primitive k-normal elements in Fqn over Fq and they got a partial result for the

case k = 1, and later Reis and Thomson (2018) completed this case. The Primitive

Normal Basis Theorem solves the case k = 0. In this paper, we solve completely

the case k = 2 using estimates for Gauss sum and the use of the computer, we

also obtain a new condition for the existence of k-normal elements in Fqn .

1. Introduction

Let Fqn be a finite field with qn elements, where q is a prime power and n is a

positive integer. An element α ∈ F∗
qn is primitive if α generates the cyclic multi-

plicative group F∗
qn (α has multiplicative order qn − 1). Also, α ∈ Fqn is normal

over Fq if the set Bα = {αqi | 0 ≤ i ≤ n − 1} spans Fqn as a Fq-vector space, in

this case we say that Bα is a normal basis. Normal basis are frequently used in

cryptography and computer algebra systems due to the efficiency of exponentiation.

Primitive elements are constantly used in cryptographic applications such as dis-

crete logarithm problem and pseudorandom number generators [12]. If we put these

two properties together, we obtain a primitive normal element. We can study the
1
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multiplicative structure of Fqn and at the same time see Fqn as a vector space over

Fq. The Primitive Normal Basis Theorem states that for any extension field Fqn of

Fq, there exists a basis composed by primitive normal elements; this result was first

proved by Lenstra and Schoof [7] using a combination of character sums, sieving

results and a computer search.

One can prove that an element α ∈ Fqn is normal if and only if the polynomial

gα(x) = αxn−1 + αqxn−2 + . . .+ αqn−2
x+ αqn−1

and xn − 1 are relatively prime over

Fqn [8, Theorem 2.39]. With this as motivation, Huczynska et al. [4] introduced the

concept of k-normal elements, as an extension of the usual normal elements:

Definition 1.1. Let α ∈ Fqn and let gα(x) =
∑n−1

i=0 αqixn−1−i ∈ Fqn [x]. If gcd(xn −
1, gα(x)) over Fqn has degree k (where 0 ≤ k ≤ n−1), then α is a k-normal element

of Fqn over Fq.
1

The k-normal elements can be used to reduce the multiplication process in finite

fields, see [9]. From the above definition, elements which are normal in the usual

sense are 0-normal and from the Primitive Normal Basis Theorem, we know that

they always exist. There are several criteria in the literature for the existence of

k-normal elements (see for example [10], [15], [16]). In [4] the authors worked out

the case k = 1, and partially established a Primitive 1-normal element Theorem.

Reis and Thompson completed the case k = 1 in [11].

A question which naturally arises is: for which values of k one has a Primitive k-

normal element Theorem (see [4, Problem 6.3])? On this line, in [10], Reis obtained

a sufficient condition for the existence of primitive k-normal elements, and he proved

that given ǫ > 0, for q sufficiently large, there exist primitive k-normal elements for

k ∈ [0, (1
2
− ǫ)n], whenever k-normal elements actually exist in Fqn . Since this is an

asymptotic result for q, it is not possible to conclude the result for specific values, but

from the condition that he obtained it is possible to generalize and study particular

cases of k.

Since the cases k = 0 and k = 1 are completely finished, in this paper we study

the case k = 2 as follows: in Section 2, we provide background material that is used

along the paper. In Section 3, we present two general conditions for the existence

of primitive k-normal elements in Fqn over Fq, as well as some weaker conditions

1We use this definition to find primitive 2-normal elements for specific values of (q, n), using

Sagemath (cf. [13]) program. Also, throughout this paper, when we talk about a k-normal element

α ∈ Fqn , it will be over Fq.
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for some particular cases. In Section 4, we apply the results from previous sections

to prove all cases for n ≥ 8 and also for q ≤ 19. In Section 5, we study the cases

n = 5, 6, 7 developing new ideas based on the factorization of certain divisors of

qn − 1. Finally, in Section 6 we study the remaining case n = 4, where we prove

that there exist primitive 2-normal elements in Fq4 if and only if q ≡ 1 (mod 4).

For this last case we develop Gauss sum which is different from the ones used in the

previous cases.

Our results can be summarized in the following theorem.

Theorem 1.2 (The Primitive 2-Normal Theorem). Let q be a prime power

and n be a natural number. There exists a primitive 2-normal element in Fqn if and

only if n ≥ 5 and gcd(q3 − q, n) 6= 1 or n = 4 and q ≡ 1 (mod 4).

In Appendix A we show the SageMath procedures that we used in the paper and

in Appendix B we present tables with primitive 2-normal elements for specific cases.

2. Preliminaries

In this section, we present some definitions and results that will be useful in the

rest of this paper. We start with the following definitions.

Definition 2.1. (a) Let f(x) be a monic polynomial with coefficients in Fq. The

Euler Totient Function for polynomials over Fq is given by

Φq(f) =

∣

∣

∣

∣

(

Fq[x]

〈f〉

)∗∣
∣

∣

∣

,

where 〈f〉 is the ideal generated by f(x) in Fq[x].

(b) If t is a positive integer (or a monic polynomial over Fq), W (t) denotes the

number of square-free (monic) divisors of t.

(c) If f(x) is a monic polynomial with coefficients in Fq, the Polynomial Möbius

Function µq is given by µq(f) = 0 if f is not square-free and µq(f) = (−1)r

if f is a product of r distinct irreducible factors over Fq.

We have an interesting formula for the number of k-normal elements over finite

fields:

Theorem 2.2. ([4], Theorem 3.5) The number of k-normal elements of Fqn over Fq

is given by
∑

h|xn−1
deg(h)=n−k

Φq(h),
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where the divisors are monic and the polynomial division is over Fq.

2.1. Linearized polynomials and the Fq-order. Here we present some defini-

tions and basic results on linearized polynomials over finite fields that are frequently

used in this paper. A useful feature of these polynomials is the structure of the set

of roots that facilitates the determination of the roots, see [8, Section 3.4].

Definition 2.3. Let f ∈ Fq[x] with f(x) =
∑r

i=0 aix
i.

(a) The polynomial Lf(x) :=
∑r

i=0 aix
qi is the linearized q-associate of f .

(b) For α ∈ Fqn, we set Lf(α) =
∑r

i=0 aiα
qi.

The polynomial Lf induces a linear transformation of Fqn over Fq that also has

additional properties:

Lemma 2.4. [8, Lemma 3.59] Let f, g ∈ Fq[x]. The following hold:

(a) Lf (x) + Lg(x) = Lf+g(x);

(b) Lfg(x) = Lf (Lg(x)) = Lg (Lf (x)).

Lemma 2.5. Let f, g ∈ Fq[x] such that fg = xn − 1. For every α ∈ Fqn, we have

that Lg(α) = 0 if and only if α = Lf(β) for some β ∈ Fqn.

Proof. Observe that fg = xn − 1 implies Lg ◦ Lf = Lf ◦ Lg = Lxn−1 = 0, so

ImLf ⊂ KerLg and ImLg ⊂ KerLf . On the other hand, Lg has degree qdeg g and

KerLg has at most dimension deg g. Conversely, we have that ImLg has at most

dimension deg f = n − deg g. So, we get that KerLg has dimension exactly deg g

and ImLf = KerLg, since n = dimFq ImLg+dimFq KerLg ≤ (n−deg g)+deg g. �

Let D ∈ Fq[x] be a monic polynomial. We say that an element α ∈ Fqn has

Fq-order D if D is the lowest degree monic polynomial such that LD(α) = 0. It is

known that the Fq-order of an element α ∈ Fqn divides xn − 1 and we also have the

following equivalences.

Theorem 2.6. ([4], Theorem 3.2) Let α ∈ Fqn. The following three properties are

equivalent:

(i) α is k-normal over Fq.

(ii) Let Vα be the Fq-vector space generated by {α, αq, . . . , αqn−1}, then dimVα is

n− k.

(iii) α has Fq-order of degree n− k.
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2.2. Freeness and Characters. We present the concept of freeness, introduced

in Carlitz [1] and Davenport [3], and refined in Lenstra and Schoof (see [7]). This

concept is useful in the construction of certain characteristic functions over finite

fields.

Definition 2.7. (a) Let m | (qn − 1), we say that α ∈ F∗
qn is m-free if, for every

d |m and β ∈ Fqn, α = βd implies that d = 1.

(b) Let M | (xn − 1), we say that α ∈ Fqn is M-free if, for every h |M and

β ∈ Fqn, α = Lh(β) implies that h = 1.

It is well known that an element α ∈ F∗
qn is primitive if and only if α is (qn−1)-free

and α ∈ Fqn is normal if and only if α is (xn − 1)-free.

Also, from the definition, we have that if α is m-free then α is e-free, for any e |m
(analogous result for polynomial).

Following the notation in [2], we can characterize the freeness of an element. For

the multiplicative part: a multiplicative character η of F∗
qn is a group homomorphism

of F∗
qn to C∗, whose order is the least positive integer d such that η(α)d = 1 for any

α ∈ F∗
qn. Let m be a divisor of qn−1 and let

∫

d|m
ηd denote the sum

∑

d|m
µ(d)
ϕ(d)

∑

(d) ηd,

where ηd is a multiplicative character of Fqn , and the sum
∑

(d) ηd runs over all

multiplicative characters of order d. It is known that there exist ϕ(d) of those

characters.

For the additive part: if p is the characteristic of Fq, for α ∈ Fqn, let χα : Fqn −→ C

be the additive character defined by

χα(β) = e
2πi
p

Trqn/p(αβ), β ∈ Fqn,

where Trqn/p is the trace function of Fqn over Fp. It is well known that any additive

character of Fqn is of this form. We say that the additive character χα has Fq-orderD

if α has Fq-order D. We use the notation
∫

D|T
χδD to represent

∑

D|T
µq(D)
Φq(D)

∑

(δD) χδD

where χδD runs through all characters of Fq-order D. It is known that there exist

Φq(D) of those characters.

For each divisor m of qn − 1 and each monic divisor T ∈ Fq[x] of x
n − 1, set

θ(m) =
ϕ(m)

m
and Θ(T ) = Φq(T )

qdeg(T ) .

Proposition 2.8. Let m be a divisor of qn − 1 and T ∈ Fq[x] be a monic divisor of

xn − 1. For any α ∈ Fqn we have
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(i)

wm(α) = θ(m)

∫

d|m
ηd(α) =

{

1, if α is m-free,

0, otherwise.

(ii)

ΩT (α) = Θ(T )

∫

D|M
χD(α) =

{

1, if α is T -free,

0, otherwise.

Proof. See [4, section 5.2] or [10, Theorem 2.15]. Extending the multiplicative char-

acters η to 0 ∈ Fqn by setting η(0) = 0, we can easily see that wm(0) = 0. �

2.3. Estimates. To finish this section, we present some estimates that are used

along the next sections.

We will need the following result, which is modeled after [2, Lemma 3.3] and

[5, Lemma 4.1] and, like these results, is proved using the multiplicativity of the

function W (·) and the fact that if a positive integer M has l distinct prime divisors

then W (M) = 2l.

Lemma 2.9. Let M be a positive integer and t be a positive real number. Then

W (M) ≤ At ·M
1
t , where

At =
∏

℘α℘<2t

℘ is prime

℘α℘ |M

2
t
√
℘α℘

,

and for any prime ℘, α℘ is defined as the largest positive integer such that ℘α℘ < 2t

and ℘α℘ | M .

Proof. Let M = pα1
1 · · · pαl

l , so that W (M) = 2l. If ℘ is a prime such that ℘ > 2t

then 2
t
√
℘
< 1. Let βi ≤ αi be the greatest integer such that pβi

i ≤ 2t, thus

W (M)

M
1
t

=
2l

t
√

pα1
1 · · · t

√

pαl
l

≤
l
∏

i=1

2

t

√

pβi

i

≤
∏

℘α℘<2t

℘ is prime
℘α℘ |M

2
t
√
℘α℘

= At.

The result follows immediately. �

Now, we present some estimates involving sum of characters:

Lemma 2.10. [8, Theorem 5.41] Let η be a multiplicative character of Fqn of order

r > 1 and f ∈ Fqn[x] be a monic polynomial of positive degree such that f is not of
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the form g(x)r for some g ∈ Fqn[x] with degree at least 1. Let e be the number of

distinct roots of f in its splitting field over Fqn. For every a ∈ Fqn,
∣

∣

∣

∣

∣

∣

∑

α∈Fqn

η(af(α))

∣

∣

∣

∣

∣

∣

≤ (e− 1)qn/2.

Lemma 2.11. [14, Theorem 2G] Let η be a multiplicative character of Fqn of order

d 6= 1 and χ be a non-trivial additive character of Fqn. If F,G ∈ Fqn [x] are such

that F has exactly m1 roots and deg(G) = m2 with gcd(d, deg(F )) = gcd(m2, q) = 1,

then
∣

∣

∣

∣

∣

∣

∑

α∈Fqn

η(F (α))χ(G(α))

∣

∣

∣

∣

∣

∣

≤ (m1 +m2 − 1)qn/2.

Lemma 2.12 ([6], Theorem 1). Let F be a finite field, let n ≥ 1 be an integer and

let E be an extension field of F of degree n. Let χ be any nontrivial complex-valued

multiplicative character of E× (extended by zero to all of E ), and x in E any element

that generates E over F . Then
∣

∣

∣

∣

∣

∑

t∈F
χ(t− x)

∣

∣

∣

∣

∣

≤ (n− 1)
√

#(F )

3. General results

In [10], Reis gives a method to construct k-normal elements: let β ∈ Fqn be a

normal element and f ∈ Fq[x] be a divisor of xn − 1 of degree k, then α = Lf(β) is

k-normal (see [10, Lemma 3.1]). From Theorem 2.2, we also know that there exists

a k-normal element in Fqn if and only if xn − 1 has a divisor of degree n − k (or,

equivalently, a divisor of degree k). So, if xn − 1 has a divisor of degree k and

(1) q
n
2
−k ≥ W (qn − 1)W (xn − 1),

then there exists a primitive k-normal element in Fqn (see [10, Theorem 3.3]).

When k = 2, it is easy to prove that the existence of primitive 2-normal elements

is only possible for n ≥ 4 (see Theorem 2.6). Note that we cannot use condition 1

for the case n = 4 because the exponent on the left side is equal to zero, so we need

a different approach in that case. We will discuss this case in Section 6. First, we

are going to use the ideas of Huczynska [4] and Reis [10] to get a more general result

than condition 1.
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From Theorem 2.2 we know that the existence of a factor of degree k of xn − 1 is

a necessary and sufficient condition for the existence of k-normal elements. Thus,

the following result is very important to know the number of these factors.

Lemma 3.1. Let q be a prime power and let n be a positive integer prime to q. Let

In(r) be the number of irreducible monic factors of xn−1 with degree r over Fq. We

have

In(r) =
1

r

∑

d|r
td · µ

(r

d

)

,

where td = gcd(qd − 1, n).

Proof. Let α be a primitive element in F∗
qr . For 0 ≤ s ≤ qr − 1, we have (αs)n = 1 if

and only if qr−1 divides sn. Since qr−1
tr

and n
tr
are coprimes, we get that (αs)n = 1 if

and only if qr−1
tr

divides s. Therefore, there exist tr possibilities for s, which implies

that the number of elements α in F∗
qr with αn = 1 is tr.

Observe that for each irreducible polynomial of degree r defined over Fq which

divides xn − 1, there are r elements α in Fqr such that α /∈ Fqd for any d < r, with

αn = 1. So, from the definition of In(r), the number of elements α in Fqr which are

not in Fqd for d < r, with αn = 1 is r · In(r). Note that if α ∈ Fqr ∩ Fqd and d < r,

then d | r. We conclude by using the inclusion-exclusion principle. �

Lemma 3.2. Let q be a prime power and let n be a positive integer. There exists a

2-normal element in Fqn over Fq if and only if gcd(q3 − q, n) 6= 1.

Proof. The result follows directly from Theorem 2.2 and Lemma 3.1. �

For the purpose of proving The Primitive Normal Basis Theorem without com-

putational calculations, in [2], the authors defined, for m|(qn − 1) and g|(xn − 1),

the number N(m, g) of non-zero elements of Fqn that are both m-free and g-free. So

they needed to prove that N(qn − 1, xn − 1) is positive. Similarly, we define:

Definition 3.3. Let f, T ∈ Fq[x] be divisors of xn − 1 such that deg f = k and let

m ∈ N be a divisor of qn−1. We denote by Nf (T,m) the number of T -free elements

α ∈ Fqn such that Lf (α) is m-free.

The following theorem generalizes [10, Theorem 3.3] using Definition 3.3.

Theorem 3.4. Let f, T ∈ Fq[x] be divisors of x
n−1 such that deg f = k and let m ∈

N be a divisor of qn − 1. We have Nf(T,m) > θ(m)Θ(T )
(

qn − qn/2+kW (m)W (T )
)

.

In particular, if qn/2−k ≥ W (m)W (T ) then Nf (T,m) > 0.



PRIMITIVE 2-NORMAL ELEMENTS 9

Proof. We have that

Nf(T,m) =
∑

α∈Fqn

ΩT (α) · wm(Lf (α))

= θ(m)Θ(T )
∑

α∈Fqn

∫

d|m

∫

D|T
ηd(Lf (α))χδD(α).

If we denote the Gauss sum Sf (ηd, χδD) =
∑

α∈Fqn
ηd(Lf (α))χδD(α), we can write

Nf(T,m)

θ(m)Θ(T )
= S0 + S1 + S2 + S3,

where S0 = Sf(η1, χ0), S1 =

∫

D|T
D 6=1

Sf(η1, χδD), S2 =

∫

d|m
d6=1

Sf (ηd, χ0) and

S3 =

∫

D|T
D 6=1

∫

d|m
d6=1

Sf(ηd, χδD).

We observe that

S0 =
∑

α∈Fqn

η1(Lf (α))χ0(α) =
∑

α∈Fqn\KerLf

1 = qn − qk

and

S1 =
∑

α∈Fqn\KerLf

∑

D|T
D 6=1

µq(D)

Φq(D)

∑

(δD)

χδD(α) = −
∑

α∈KerLf

∑

D|T
D 6=1

µq(D)

Φq(D)

∑

(δD)

χδD(α),

which implies that |S1| ≤ qk (W (T )− 1), since |χδD(α)| ≤ 1.

Now we would like good estimates of the sums S2 and S3. We have f(x) =
∑k

i=0 aixi. One can see that the formal derivative of the q−associate of f is a0 6= 0

(since f divides xn − 1, f is not divisible by x), hence Lf does not have repeated

roots and is not of the form G(x)r for any G(x) ∈ Fqn[x] and r > 1. Therefore, by

Lemma 2.10, we have, for each divisor d 6= 1 of qn − 1:

|Sf(ηd, χ0)| =

∣

∣

∣

∣

∣

∣

∑

α∈Fqn

ηd(Lf (α))

∣

∣

∣

∣

∣

∣

≤ (qk − 1)qn/2 < qn/2+k.
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From 2.11, we conclude that, for each divisor D 6= 1 of xn−1 and each divisor d 6= 1

of qn − 1,

|Sf (ηd, χδD)| =

∣

∣

∣

∣

∣

∣

∑

α∈Fqn

ηd(Lf (α))χδD(α)

∣

∣

∣

∣

∣

∣

≤ (qk + 1− 1)qn/2 = qn/2+k.

Combining the previous bounds, we have the following inequality:

Nf(T,m) ≥ θ(m)Θ(T ) (S0 − |S1| − |S2| − |S3|)

≥ θ(m)Θ(T )
[

qn − qk − qk(W (T )− 1)− qn/2+k(W (m)− 1)W (T )
]

> θ(m)Θ(T )
(

qn − qn/2+kW (m)W (T )
)

.

Therefore, if W (m)W (T ) ≤ qn/2−k we have Nf (T,m) > 0. �

To use Theorem 3.4, we need to have some knowledge about the factorization of

m and T . Knowing some factors of these values, one can use the next proposition,

which helps to decrease the estimates of the function W by adding an offset factor.

Before that, we present a result which will be needed in what follows.

For any natural number m, rad(m) denotes the largest square-free factor of m

and for any polynomial T ∈ Fq[x], rad(T ) denotes the square-free factor of T of

largest degree over Fq.

The sieving technique from the next two results follows the ideas of [2].

Lemma 3.5. Let f, T ∈ Fq[x] be divisors of xn − 1 such that deg f = k and let

m ∈ N be a divisor of qn − 1. Let Q1, . . . , Qs be irreducible polynomials and let

p1, . . . , pr be prime numbers such that rad(xn − 1) = rad(T ) · Q1 · Q2 · · ·Qs and

rad(qn − 1) = rad(m) · p1 · p2 · · · pr. We have that

(2) Nf(x
n− 1, qn− 1) ≥

r
∑

i=1

Nf(T,mpi)+

s
∑

j=1

Nf (T ·Qj, m)− (r+ s− 1)Nf(T,m).

Proof. The left side of (2) counts every α ∈ Fqn for which α is normal and Lf (α) is

primitive. Observe that if α is normal and Lf(α) is primitive then α is T · Qj-free

and T -free; and Lf (α) is mpi-free and m-free, so α is counted r+ s− (r+ s−1) = 1

times on the right side of (2). For any other α ∈ Fqn, we have that either α is not

T ·Qj-free for some j ∈ {1, . . . , s} or Lf (α) is not mpi-free for some i ∈ {1, . . . , r},
so the right side of (2) is at most zero. �

Proposition 3.6. Let f, T ∈ Fq[x] be divisors of xn − 1 such that deg f = k and

let m ∈ N be a divisor of qn − 1. Let Q1, . . . , Qs be irreducible polynomials and
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let p1, . . . , pr be prime numbers such that rad(xn − 1) = rad(T ) · Q1 ·Q2 · · ·Qs and

rad(qn − 1) = rad(m) · p1 · p2 · · · pr. Suppose that δ = 1−
∑r

i=1
1
pi
−
∑s

j=1
1

qdegQj
> 0

and let ∆ = r+s−1
δ

+ 2. If q
n
2
−k ≥ W (m)W (T )∆, then Nf(x

n − 1, qn − 1) > 0.

Proof. From equation 2, we have that

Nf(x
n − 1, qn − 1) ≥

r
∑

i=1

Nf(T,mpi) +

s
∑

j=1

Nf (T ·Qj , m)− (r + s− 1)Nf(T,m).

We can rewrite the equation in the form

Nf (x
n − 1, qn − 1) ≥

r
∑

i=1

[

Nf (T,mpi)− θ(pi)Nf(T,m)
]

+
s
∑

j=1

[

Nf(T ·Qj, m)−Θ(Qj)Nf(T,m)
]

+ δNf(T,m).

Now we need a good bound for Nf(T,mpi) − θ(pi)Nf (T,m). Since θ is a multi-

plicative function, we have

Nf (T,mpi) = Θ(T )θ(m)θ(pi)
∑

α∈Fqn

∫

d|mpi

∫

D|T
ηd(Lf(α))χδD(α).

We split the set of d’s which divide mpi into two sets: the first one contains those

which do not have pi as a factor, while the second one contains those which are a

multiple of pi. This will split the first summation into two sums, and we get

Nf (T,mpi) = Θ(T )θ(m)θ(pi)
∑

α∈Fqn

(
∫

d|m

∫

D|T
ηd(Lf (α))χδD(α)

)

+Θ(T )θ(m)θ(pi)
∑

α∈Fqn





∫

d, pi|d
d|mpi

∫

D|T
ηd(Lf (α))χδD(α)



 .

Hence, Nf (T,mpi)− θ(pi)Nf(T,m) is equal to

Θ(T )θ(m)θ(pi)
∑

α∈Fqn





∫

d, pi|d
d|mpi

∫

D|T
ηd(Lf (α))χδD(α)



 .

So, from Lemma 2.11 we have the following inequality
∣

∣

∣
Nf (T,mpi)− θ(pi)Nf (T,m)

∣

∣

∣
≤ Θ(T )θ(m)θ(pi)W (T )W (m)qn/2+k.

Analogously we can prove that
∣

∣

∣
Nf(T ·Qj , m)−Θ(Qj)Nf (T,m)

∣

∣

∣
≤ Θ(T )θ(m)Θ(Qj)W (T )W (m)qn/2+k.
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Combining these inequalities, we obtain

Nf (x
n − 1, qn − 1) ≥ δNf(T,m)−

Θ(T )θ(m)W (T )W (m)qn/2+k

(

r
∑

i=1

θ(pi) +

s
∑

j=1

Θ(Qj)

)

.

Therefore, from Theorem 3.4, we have

Nf(x
n − 1, qn − 1) > δΘ(T )θ(m)

(

qn − qn/2+kW (m)W (T )
)

−Θ(T )θ(m)W (T )W (m)qn/2+k

(

r
∑

i=1

θ(pi) +
s
∑

j=1

Θ(Qj)

)

= δΘ(T )θ(m)
(

qn − qn/2+kW (m)W (T )∆
)

.

Thus, we obtain the desired result. �

For the case k ≥ 2 we can rewrite the previous condition as follows, depending

on the factorization of xn − 1.

Proposition 3.7. Let n ≥ 5 be a natural number and let q be a prime power

such that q ≥ n2. If xn − 1 has a factor of degree k ≥ 2 in Fq[x] and q
n
2
−k ≥

(n + 2)W (qn − 1), then there exists a primitive k-normal element in Fqn.

Proof. Let f ∈ Fq[x] be a factor of xn − 1 of degree k. We may use Proposition 3.6

with T = 1 and m = qn − 1.

Let Q1, . . . , Qs be irreducible polynomials such that rad(xn − 1) = Q1 ·Q2 · · ·Qs.

Then δ = 1−∑s
j=1

1

qdegQj
≥ 1− n

q
≥ 1− 1

n
= n−1

n
> 0, since q ≥ n2 and s ≤ n. We

also have that

∆ =
s− 1

δ
+ 2 ≤ n− 1

n−1
n

+ 2 = n+ 2.

This means that W (m)W (T )∆ ≤ (n + 2)W (qn − 1) and from Proposition 3.6, we

get the desired result. �

For small values of q we have the following result which will be used in combination

with Theorem 3.4 and Lemma 2.9. Note that those results are different from [7,

Lemma 2.11].

Lemma 3.8. For q a prime power, there exist a, b ∈ N such that

W (xn − 1) ≤ 2
n+a
b .
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For q ≥ 29, we have a = 0 and b = 1, for 7 ≤ q ≤ 27 we have a = q − 1 and b = 2

and for small values of q we may use the following values of a and b.

q a b

2 14 5

3 20 4

4 12 3

5 18 3
Table 1. Values of a and b for small values of q

Proof. Let sn,t be the number of distinct monic irreducible polynomials of degree at

most t that divide xn−1 and let Tn,t be the sum of their degrees. Hence W (xn−1) =

2j , where

(3) j ≤ n− Tn,t

t + 1
+ sn,t =

n + (t+ 1)sn,t − Tn,t

t+ 1
.

Since each term in the sum Tn,t is at most t, the right-hand side of the expression

above maximizes when sn,t is maximal. On the other hand, it is obvious that zero

is not a root of xn − 1, so the sum of the degrees of polynomials of degree i is less

or equal than the number of elements of F∗
qi, which is not an element of F∗

qj , for any

divisor j of i.

Table 1 is obtained from (3) and the reasoning above. For q = 2, we use t = 4;

for q = 3, we use t = 3; for q = 4 or q = 5, we use t = 2; and for 7 ≤ q ≤ 27, we use

t = 1 to obtain a = q − 1 and b = 2. For q ≥ 29, it is convenient to use the usual

inequality. �

4. Results for all cases where n ≥ 8 and the cases n ≥ 5 for q ≤ 19

In this section we begin to apply the results of the previous section for the case

k = 2. Thus, we study the values of q and n for which we can guarantee the existence

of primitive 2-normal elements in Fqn .

Proposition 4.1. Let q ≤ 19 be a prime power and n ≥ 5 be a natural number.

There exists a primitive 2-normal element in Fqn if and only if gcd(q3 − q, n) 6= 1.

Proof. From Theorem 3.4, if q
n
2
−2 ≥ W (qn−1)W (xn−1) then Nf (x

n−1, qn−1) > 0.

From Lemma 2.9 and Lemma 3.8, it follows that At ·q
n
t ·2n+a

b ≥ W (qn−1)W (xn−1),
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where

At =
∏

℘<2t

℘ is prime
℘ 6=p

2
t
√
℘

and charFq = p.

So, if for some t ∈ N we have q
n
2
−2 ≥ At · q

n
t · 2n+a

b , then Nf(x
n − 1, qn− 1) > 0. For

b > logq 4 and t >
2b

b− logq 4
, this inequality is equivalent to

(4) n ≥ 2 ln q + ln
(

At · 2
a
b

)

(

1
2
− 1

t

)

ln q − 1
b
ln 2

.

q a b (4) satisfied for q a b (4) satisfied for

2 14 5 n ≥ 69 8 7 2 n ≥ 28

3 20 4 n ≥ 46 9 8 2 n ≥ 27

4 12 3 n ≥ 38 11 10 2 n ≥ 26

5 18 3 n ≥ 35 16 15 2 n ≥ 24

7 6 2 n ≥ 31 {13, 17, 19} q − 1 2 n ≥ 25

Table 2. Values of n depending on q such that (4) is satisfied with t = 6.

We know that for values of q and n from Table 2, the condition qn/2−2 ≥ W (qn −
1)W (xn−1) is satisfied, so it remains only a finite number of cases to test for q ≤ 19.

q n q n

2 6, 8, 9, 10, 12, 14, 15, 18, 21 9 5, 6, 8, 10

3 6, 8, 9, 10, 12, 16 11 5, 6, 8, 10, 12

4 5, 6, 8, 9, 10, 12, 15 13 6, 7, 8, 12

5 5, 6, 8, 9, 10, 12, 16 16 5, 6, 9, 10, 15

7 6, 7, 8, 9, 10, 12 17 6, 8

8 6, 7, 8, 9 19 5, 6, 8, 9, 10, 12

Table 3. Values of q and n such that q ≤ 19, n is not in Table 2,

gcd(q(q − 1)(q + 1), n) 6= 1 and qn/2−2 < W (qn − 1)W (xn − 1)

Table 3 shows the values of q and n which are not in Table 2 with q ≤ 19 and

gcd(q3 − q, n) 6= 1, where qn/2−2 ≥ W (qn − 1)W (xn − 1) is not satisfied.
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For pairs (q, n) from Table 3, we test condition q
n
2
−2 ≥ W (m)W (T )∆ (see Propo-

sition 3.6). For this, we use the SageMath procedure Test Delta(q,n,u) (see Ap-

pendix A) where u is a given natural number, m = gcd(qn−1, u). If q > 5 we choose

T = 1; if q ≤ 5 then T is the product of all monic linear factors of xn − 1.

For u = 2 · 3 · 5, procedure Test Delta(q,n,u) gets True for (q, n) = (2, 14),

(2, 15), (2, 18), (2, 21), (3, 9), (3, 16), (4, 10), (4, 12), (4, 15), (5, 9), (5, 10), (5, 16),

(7, 7), (7, 9), (7, 10), (8, 8), (8, 9), (9, 10), (11, 8), (11, 10), (11, 12), (13, 7), (13, 8),

(16, 9), (16, 10), (17, 8), (19, 8), (19, 9), (19, 10), (19, 12).

For (q, n) = (7, 12), (13, 12), (16, 15), we take m = 30, 30, 3 and T = x2−1, x4−1,

x15 − 1 respectively, and we get that condition q
n
2
−2 ≥ W (m)W (T )∆ is satisfied.

For the last remaining cases, Tables 4, 5 and 6 (see Appendix B), show explicitly

a primitive 2-normal element α ∈ Fqn such that g(α) = 0 for some irreducible

polynomial g ∈ Fp[x], where p is the characteristic of Fq. Primitivity and Normality

can be tested using the programs in Appendix A. �

Proposition 4.2. Let n ≥ 8 be a natural number. There exists a primitive 2-normal

element in Fqn for all prime powers q satisfying gcd(q3 − q, n) 6= 1.

Proof. From the last result, we have that for q < 23 and n ≥ 5, there exists a

primitive 2-normal element in Fqn. So we will focus on q ≥ 23. From Theorem 3.4,

Lemma 2.9 and considering that W (xn − 1) ≤ 2n, there exists a primitive 2-normal

element in Fqn if q
n
2
−2 ≥ 2n ·At ·q

n
t is satisfied for some real number t. This condition

is equivalent to the following two inequalities:

n ≥ ln(At) + 2 ln(q)
(

1
2
− 1

t

)

ln(q)− ln(2)
and q ≥ (2n ·At)

2t
(t−2)n−4t .

For a fixed value of t ≥ 4, the right-hand side of the first inequality is a decreasing

function of q ≥ 16. So, fixing t = 7 in the first inequality, we get that for q ≥ 23 and

n ≥ 28, there exists a primitive 2-normal element in Fqn . Now, if 14 ≤ n ≤ 27, from

the second inequality (whose right-hand side is also a decreasing function of n) and

with t = 6.3, we get that, if n ≥ 14 and q ≥ 144, there exists a primitive 2-normal

element in Fqn. Now, using SageMath, we verify that q
n
2
−2 ≥ W (qn−1)W (xn−1) is

true for all prime powers 23 ≤ q < 144 and 14 ≤ n < 28. Hence, from Theorem 3.4

and the previous considerations we conclude that there exists a primitive 2-normal

element in Fqn for every prime power q and for all n ≥ 14.

Now, let us suppose that 8 ≤ n ≤ 13. From Proposition 3.7 and Lemma 2.9 there

exists a primitive 2-normal element in Fqn if q ≥ n2 and q
n
2
−2 ≥ (n + 2)At · q

n
t .
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Define

(5) Mt(n) = max
{

n2,
⌈

((n + 2) · At)
2t

(t−2)n−4t

⌉}

,

where for x ∈ R, ⌈x⌉ is the smallest integer such that x ≤ ⌈x⌉. From the inequalities

above, if we have q ≥ Mt(n), for some real number t suficiently large (for n ≥ 8 this

means t > 4), then there exists a primitive 2-normal element in Fqn. For n between

8 and 13, we have

M6.3(8) = 6426, M6(10) = 100, M6(12) = 144,

M6(9) = 413, M6(11) = 121, M6(13) = 169.

For pairs (q, n) such that 8 ≤ n ≤ 13 and 23 ≤ q < Mt(n), where q is a prime power,

we test q
n
2
−2 ≥ W (m)W (T )∆, from Proposition 3.6. The procedure Test Delta,

with u = 6, returns True for all those pairs. Proposition 4.2 is now proved. �

5. Cases n = 5, 6, 7

For 5 ≤ n ≤ 7, applying Proposition 3.7 and Lemma 2.9, we get that a sufficient

condition to have a primitive 2-normal element in Fqn is q ≥ Mt(n) for some real

number t, where Mt(n) is defined by equation (5). The problem is that Mt(n) is

very large.

5.1. Case n=7: The condition gcd(q3 − q, 7) 6= 1 means that q ≡ 0,±1 (mod 7).

Proposition 5.1. There exists a primitive 2-normal element in Fq7 for every prime

power q such that q ≡ 0,±1 (mod 7).

Proof. Suppose first that 7 | q. In this case, q = 7k for some integer k ≥ 1. We will

use Theorem 3.4 in combination with Lemma 2.9. Since 7 ∤ qn − 1, we may use the

following constant

(6) At =
∏

℘ 6=7 , ℘<2t

℘ is prime

2
t
√
℘

from Lemma 2.9. From Theorem 3.4, and taking into account that W (x7 − 1) =

W ((x − 1)7) = 2, we have that if, for some real number t, the inequality q
7
2
−2 ≥

W (x7−1) ·At ·q
7
t = 2At ·q

7
t holds, then Nf (x

7−1, q7−1) > 0. Setting t = 7, we get

that Nf (x
7 − 1, q7 − 1) > 0 for q ≥ 104368. Since for prime powers q = 72, 73, 74, 75

the condition q
7
2
−2 ≥ W (q7−1)W (x7−1) is satisfied, the result follows from Theorem

3.4.
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If q ≡ −1 (mod 7), then 7 ∤ q7− 1, and we may also use the constant At given by

(6). From Lemma 3.1, we conclude that x7 − 1 has one factor of degree 1 and three

factors of degree 2. We set m = q7−1 and T = 1, so δ = 1− 1
q
− 3

q2
and ∆ = 4−1

δ
+2.

Since q ≥ 23 and q ≡ −1 (mod 7) then, q ≥ 27. This means that ∆ < 5.116 and

from Proposition 3.6 we get Nf(x
7 − 1, q7 − 1) > 0 for prime powers q satisfying

q
7
2
− 7

t
−2 ≥ 5.116 · At > At ·∆,

for some real number t. Setting t = 6.5, we get Nf (x
7 − 1, q7 − 1) > 0 for q ≥

614236. There are 8377 prime powers q between 23 and 614236 such that q ≡ −1

(mod 7). For those prime powers, we use Theorem 3.4 and we get that condition

q
7
2
−2 ≥ W (q7 − 1)W (x7 − 1) is satisfied except for q = 27. From 277 − 1 = 2 · 13 ·

1093 · 368089, we set m = 277 − 1 and T = x − 1 in Proposition 3.6 and we get

27
7
2
−2 ≥ W (m)W (T )∆, so the proposition is proved for q ≡ −1 (mod 7).

Finally, suppose that q ≡ 1 (mod 7). In this case we may use the following

constant

At =
2

t
√
72

·
∏

℘ 6=7 , ℘<2t

℘ is prime

2
t
√
p

from Lemma 2.9, as 72 appears in the factorization of q7 − 1 and 72 < 2t for any

t ≥ 6. From Lemma 3.1 we know that x7 − 1 has seven factors of degree 1. We set

m = q7 − 1 and T = 1, so δ = 1 − 7
q
and ∆ = 6

δ
+ 2 = 8 + 42

q−7
. Let us suppose

that q ≥ 337. This means that ∆ < 8.128 and from Proposition 3.6, we get that

if q
7
2
−2 ≥ 8.128 · At · q

7
t > W (q7 − 1)W (1)∆, then Nf (x

7 − 1, q7 − 1) > 0. Setting

t = 6.8, the inequality q
3
2
− 7

t ≥ 8.128 · At is equivalent to q ≥ 2142829. For those

prime powers, we have Nf(x
7 − 1, q7 − 1) > 0. There are 26543 prime powers q

between 23 and 2142829 such that q ≡ 1 (mod 7). For those prime powers, we test

q
n
2
−2 ≥ W (m)W (T )∆. The procedure Test Delta, with u = 2, returns True in all

cases, so the proposition is also proved for q ≡ 1 (mod 7). �

5.2. Case n=6: The condition gcd(q3−q, 6) 6= 1 is satisfied for every prime power q.

From the considerations at the beginning of this section, we have Nf(x
6−1, q6−1) >

0 for prime powers q ≥ Mt(6). For t = 8.1 we get Mt(6) < 1.62 · 1018. So, we will

suppose that q < 1.62 · 1018.
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We have that if q is a prime power then q is of the form 2k, 3k or q ≡ ±1 (mod 6).

Observe also that gcd(q2 − 1, q4 + q2 + 1) = gcd(q2 − 1, 3) = 3. Let

q4 + q2 + 1 = 3β0 ·
v
∏

i=1

℘βi

i

be the prime factorization of q4 + q2 + 1, where 3 < ℘1 < · · · < ℘v are the prime

factors of q4 + q2 + 1.

Now, we want to apply Proposition 3.6 with m = q2 − 1, and therefore we need

to have some control on the prime factors of q4 + q2 + 1.

Lemma 5.2. Let q ≡ ±1 (mod 6) be a prime power such that q < 1.62 · 1018. If

q4+ q2+1 = 3β0 ·∏r
i=1 ℘

βi

i is the prime factorization of q4+ q2+1, then r ≤ 34 and

S =

r
∑

i=1

1

℘i
< 0.539.

Proof. Let Sk and Pk be, respectively, the sum of the inverses and the product of

the first k primes of the form 6j + 1. We have that gcd(q4 + q2 + 1, q2 − 1) = 1 or

3, so the only primes which divide q4 + q2 + 1 are 3 and primes of the form 6j + 1.

Thus q4 + q2 + 1 ≥ 3 · Pr and then Pr ≤ (M4 +M2 + 1)/3, where M = 1.62 · 1018.
We have that Pr ≤ (M4 +M2 + 1)/3 for r ≤ 34, so S ≤ S34 < 0.539. �

Proposition 5.3. There exists a primitive 2-normal element in Fq6 for every prime

power q.

Proof. Consider 105 < q < 1.62 · 1018 and let us suppose first that q ≡ ±1 (mod 6).

Now, we will apply Proposition 3.6 with m = q2 − 1 and T = 1. If q ≡ 1 (mod 6),

then x6 − 1 has six factors of degree 1 and if q ≡ −1 (mod 6), then x6 − 1 has two

factors of degree 1 and two factors of degree 2. In any case, we have 6
q
< 2

q
+ 2

q2

and s = 4 or s = 6, so, in any case, s ≤ 6. From Lemma 5.2, considering the prime

factorization of q4 + q2 + 1 given in such lemma and the considerations above, we

get δ ≥ 1 − S34 − 6
q
, r ≤ 34 and s ≤ 6. Since q ≥ 105, we have δ > 0.46094 and

∆ = 2 + r+s−1
δ

< 86.61. From Lemma 2.9 we have W (q2 − 1) ≤ At · q
2
t for any

real number t. Now, if q ≥ (At · 86.61)
t

t−2 , then from Proposition 3.6, there exists a

primitive 2-normal element in Fq6. For t = 4.9, this condition becomes q ≥ 94870.

Now, let us assume that q < 94870 and q ≡ ±1 (mod 6). There are 9221 prime

powers q between 23 and 94870 such that q ≡ ±1 (mod 6). For those prime powers,

we test q
n
2
−2 ≥ W (m)W (T )∆. The procedure Test Delta, with u = 6, returns
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True in all cases, except for the following prime powers: 23, 25, 29, 31, 37, 41, 43,

47, 49, 59, 61, 67, 79.

Finally, for prime powers above, table 7 shows an element α ∈ Fq6 , primitive

2-normal over Fq, such that g(α) = 0 for some irreducible polynomial g ∈ Fp[x],

where p is the characteristic of Fq.

If q = 2k, then W (x6 − 1) ≤ 8 and if q = 3k, then W (x6 − 1) = 4. Hence from

Theorem 3.4 and Lemma 2.9, we test the inequality q ≥ 8 ·At · q
6
t with t = 8 and we

conclude that there exists a primitive 2-normal element in Fq6 for k ≥ 58 (if q = 2k)

and k ≥ 37 (if q = 3k). We also know that there exists a primitive 2-normal element

in Fq6 for q ≤ 19. We test the condition q ≥ W (m)W (T )∆ from Proposition 3.6.

The procedure Test Delta, with u = 3 for q = 2k (5 ≤ k ≤ 57) and u = 2 for

q = 3k (3 ≤ k ≤ 36), returns True in all these cases. �

5.3. Case n=5: From Lemma 3.1, if q ≡ ±2 (mod 5), then x5−1 has no irreducible

quadratic factor and only one linear factor. If 5 | q, we have x5 − 1 = (x − 1)5, if

q ≡ 1 (mod 5), then x5 − 1 has five linear factors and if q ≡ −1 (mod 5), then

x5 − 1 has one linear factor and two irreducible factors of degree 2. In particular,

there exist 2-normal elements in Fq5 if and only if q ≡ 0,±1 (mod 5).

Lemma 5.4. Let q ≡ 0,±1 (mod 5) be a prime power. There exists a primitive

2-normal element in Fq5 for q ≥ 507936.

Proof. Let t, u be positive real numbers such that t + u ≥ 11 and let

q5 − 1 = ℘a1
1 · · ·℘av

v · ̺b11 · · · ̺brr
be the prime factorization of q5− 1 such that 2 ≤ ℘i ≤ 2t or 2t+u ≤ ℘i for 1 ≤ i ≤ v

and 2t < ̺i < 2t+u for 1 ≤ i ≤ r. We use Proposition 3.6, where we set T = 1 and

m = ℘a1
1 · · ·℘av

v , so we have

δ = 1−
r
∑

i=1

1

̺i
−

s
∑

j=1

1

qdegQj
,

where rad(xn−1) = Q1 · · ·Qs. From the considerations above, we have s ∈ {1, 3, 5}
and 1 ≤ degQi ≤ 2. Before applying Proposition 3.6, we will bound δ, ∆ and

W (m).

Let St,u be the sum of the inverse of all prime numbers between 2t and 2t+u and

r(t, u) be the number of those primes. If St,u + 5
q
< 1, then δ ≥ 1 − St,u − 5

q
. If

we choose q > 106 and (t, u) = (5.8, 9.8), we get St,u ≤ 0.962094, δ > 0.037901,
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r ≤ r(t, u) = 5085 and ∆ = 2+ r+s−1
δ

< 2+ 5085+5−1
0.037901

≤ 134272.87. To bound W (m)

we will use Lemma 2.9. Let Pt be the set of all prime numbers less than 2t. From

this, we obtain that W (m) ≤ At,um
1

t+u ≤ At,uq
5

t+u , where

At,u =
∏

℘∈Pt

2
t+u
√
℘
≤ 3678.26, since (t, u) = (5.8, 9.8).

From Proposition 3.6, we conclude that a suficient condition for the existence of a

primitive 2-normal element in Fq5 is q
1
2 ≥ ∆max ·At,u ·q

5
t+u (where ∆max = 134272.87)

or, equivalently,

q ≥ (∆max ·At,u)
2(t+u)
t+u−10 ∼= 2.729 · 1048.

Let’s suppose now that q < 2.729 · 1048. We will apply Proposition 3.6 again,

but this time we will set m = q − 1 and T = 1. We have that gcd(q4 + q3 + q2 +

q + 1, q − 1) = 1 or 5 and if a prime different from 5 divides q4 + q3 + q2 + q + 1,

then it is of the form 5j + 1. We will bound δ, ∆ and W (m). Obviously, from

Lemma 2.9, we have W (q − 1) ≤ At · q
1
t for any real number t. Let Sk and Pk

be, respectively, the sum of the inverses and the product of the first k primes of

the form 5j + 1. Let r be the number of prime factors of q4 + q3 + q2 + q + 1

different from 5, so Pr ≤ q4 + q3 + q2 + q + 1 < 5.55 · 10193. Therefore r ≤ 69

and Sr < 0.29717. As before, if q > 105 then δ ≥ 1 − Sr − 5
105

> 0.70278 and

∆ = 2 + r+s−1
δ

< 105.874. So, observing that if q ≥ (105.874 · At)
2t
t−2 for some real

number t, then q
1
2 ≥ At · q

1
t · 105.874 ≥ W (q − 1) ·W (1) ·∆, and using Proposition

3.6, there exists a primitive 2-normal element in Fq5

For t = 4.7, the condition above becomes q ≥ 1.984 · 1010. If we suppose now

q < 1.984 · 1010 and if we use again Proposition 3.6 with m = q − 1 and T = 1,

we get r ≤ 19 and Sr < 0.2441801. For q > 105, we also get δ > 0.7558149 and

∆ < 32.43074. From Proposition 3.6 and taking t = 4.8, we get that there exists a

primitive 2-normal element in Fq5 for q ≥ 3.208 · 108.
We apply now Proposition 3.6, setting m = gcd(q5 − 1, 2 · 3 · 5) (so W (m) ≤ 8)

and T = 1, and let r and s ≤ 5 be the natural numbers defined by Proposition

3.6. Let Sk and Pk be, respectively, the sum of the inverses and the product of the

first k primes greater than 5. In particular we have Pr ≤ M5 − 1 ≤ 3.398 · 1042,
where M = 3.208 · 108. This implies that r ≤ 25, and if we suppose q ≥ 106 then

δ ≥ 1 − Sr − 5
q
> 0.20155 and ∆ ≤ 145.885. The condition from Proposition 3.6 is

q
1
2 ≥ 1167.08 ≥ 8 · 145.885 ≥ W (m)W (T )∆. So, if q ≥ 1.363 · 106, then there exists

a primitive 2-normal element in Fq5.
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Finally, we apply one last time Proposition 3.6, setting m = gcd(q5 − 1, 2 · 3 · 5)
(so W (m) ≤ 8) and T = 1. This time we get r ≤ 19 and Sr ≤ 0.7359. If we suppose

q ≥ 106, we get δ ≥ 0.264104, ∆ ≤ 89.087 and q ≥ 507936. �

If we try to use procedure Test Delta, with u = 2 · 3, for all prime powers such

that q ≡ 0,±1 (mod 5) and q < 507936, it will produce a list of 127 prime powers

for which Test Delta returns False. For this reason we will try another approach.

Lemma 5.5. Let q be a prime power such that q ≡ ±1 (mod 5). Then x5 − 1 =

(x− 1)(x2 − bx+ 1)(x2 + (b+ 1)x+ 1), where b ∈ Fq is a root of x2 + x− 1 = 0.

Proof. Let ξ 6= 1 be a root of x5−1 in Fq2 and define b = ξ+ ξ−1. If q ≡ 1 (mod 5),

then obviously ξ ∈ Fq, which implies that b ∈ Fq. If q ≡ −1 (mod 5), then there

exists a primitive element α in Fq2 such that ξ = α
q2−1

5 . Observe that

ξq = α
q(q−1)(q+1)

5 =
(

α
q+1
5

)q2−q

=
(

α
q+1
5

)1−q

= ξ−1.

This implies that bq = ξ−1+ξ = b, so we also have b ∈ Fq. Since ξ
4+ξ3+ξ2+ξ+1 = 0,

we get that b2+b = ξ−2(ξ4+ξ3+ξ2+ξ+1)+1 = 1 and (x2−bx+1)(x2+(b+1)x+1) =

x4 + x3 + x2 + x+ 1. �

Lemma 5.6. Let q be a prime power such that q ≡ ±1 (mod 5), b ∈ Fq be a root of

x2 + x− 1 = 0, α be a normal element in Fq5 and f = x2 − bx+ 1. Then Lf (α) + a

is a 2-normal element in Fq5 for all a ∈ Fq except for only one value of a.

Proof. If we let g = (x − 1)(x2 + (b + 1)x + 1), we get fg = x5 − 1 and, for every

element γ ∈ Fq5 we have 0 = Lfg(γ) = Lg(Lf (γ)). Since x − 1 is a factor of g,

then Lg(a) = 0 for every a ∈ Fq. In particular, if α is a normal element in Fq5 then

Lg(Lf(α) + a) = Lg(Lf (α)) +Lg(a) = 0 for every a ∈ Fq, so Lf (α) + a has Fq-order

deg h ≤ 3 for some divisor h of g. From Theorem 2.6, we get that Lf (α) + a is k-

normal where k ≥ 2. Let us suppose that deg h ≤ 2. If x−1 | h, then Lh(a) = 0 and

Lh(Lf (α)) 6= 0, since α is normal, so, in this case, Lh(Lf (α) + a) 6= 0. This means

that if deg h ≤ 2, then x− 1 ∤ h and, in particular, h | x2 + (b+ 1)x+ 1. Note that

Lx2+(b+1)x+1(Lf (α)+ a) = 0 is equivalent to Lx4+x3+x2+x+1(α)+Lx2+(b+1)x+1(a) = 0.

Since Lx2+(b+1)x+1(a) = (b+ 3)a, then α4 + α3 + α2 + α+ 1 = −(b+ 3)a. If b = −3,

then (−3)2 + (−3) − 1 = 0, which is not possible because 5 ∤ q and hence b 6= −3.

Therefore there is only one possible value of a such that Trq5/q(α) = −(b + 3)a.

In particular, this means that if a 6= −(b + 3)−1 · Trq5/q(α), then Lf(α) + a is

2-normal. �
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In fact, if j ∈ Fq is the only value for which Lf (α) + j is not 2-normal, then

g(a) = (a − j)(Lf (α) + a) is 2-normal for every a ∈ Fq\{j} and for j we have

g(j) = 0. This means that if g(a) is primitive, then g(a) is also 2-normal. We finish

the case n = 5 with a computational approach using the idea from Lemma 5.6.

Proposition 5.7. Let q be a prime power. There exists a primitive element 2-

normal in Fq5 if and only if q ≡ 0,±1 (mod 5).

Proof. From Lemma 5.4, we only need to prove the existence of a primitive 2-normal

element in Fq5 for q ≡ 0,±1 (mod 5) such that q < 507936.

Inspired by Lemma 5.6, we use the SageMath procedure named TestExplicit5

(see Appendix A) to find a primitive 2-normal element in Fq5. In this procedure,

a generates Fq5, j ∈ Fp, b ∈ Fq is a root of x2 + x − 1 = 0 and β = Lx2−bx+1(a)

for q ≡ ±1 (mod 5). If 5 | q, then β = L(x−1)2(a). From Lemma 5.6, we get that

if q ≡ ±1 (mod 5), then β + j is always 2-normal except, maybe, for one value of

j. In any case (q ≡ 0 (mod 5) or q ≡ ±1 (mod 5)), this procedure returns True if

β + j is primitive 2-normal in Fq5 for some j ∈ Fp, where p = charFq.

For all prime powers q such that q ≡ 0,±1 (mod 5) for which q < 507936 and

Test Delta (with u = 2 ·3) returns False, the procedure TestExplicit5(q) returns
False only for q = 64.

For q = 64, we may use procedures ordmodqn and Normal (see Appendix A)

to see that α is a primitive 2-normal element in Fq5 where α is a root of

g(x) = x30 + x27 + x26 + x23 + x22 + x21 + x16 + x14 + x12 + x9 + x6 + x5 + x3 + x+1.

This proves the proposition. �

6. Case n = 4

In [10] after Remark 3.5, the author proved that there is no primitive 2-normal

element in Fq4 if q ≡ 3 (mod 4). Suppose now that q is a power of 2. In this case,

x4−1 = (x+1)4 and f = (x+1)2, so if β is a 2-normal element, there exists a normal

element α ∈ Fq4 such that β = L(x+1)2(α) = αq2 + α. Since βq2 = (αq2 + α)q
2
=

α + αq2 = β, we have that β is not a primitive element in Fq4 . Therefore, if there

exists a primitive 2-normal element in Fq4, then q ≡ 1 (mod 4). In this case, we

may factor x4 − 1 into four linear factors, say x4 − 1 = (x+ 1)(x− 1)(x+ b)(x− b),

where b ∈ Fq and b2 = −1.
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Throughout this section, we will consider q ≡ 1 (mod 4), b ∈ Fq such that b2 =

−1, f(x) = (x + 1)(x + b) ∈ Fq[x] a factor of x4 − 1 of degree two and α ∈ Fq4 a

normal element in Fq4 . Thus, Lf (α) is a 2-normal element in Fq4 (see [10], Lemma

3.1). The following result tells us that we can generate more 2-normal elements if

they are also primitive, more precisely we have

Lemma 6.1. Let u, v ∈ F∗
q and f(x) = (x+1)(x+ b) ∈ Fq[x], where b ∈ Fq satisfies

b2 = −1. If γ = uLf(α) + v is primitive in Fq4, then γ is 2-normal in Fq4.

Proof. We know that Lf is a linear transformation over Fq, so L(x4−1)/f (uLf(α)+v) =

uL(x−1)(x−b)(Lf(α)) + L(x−1)(x−b)(v) = uLx4−1(α) + L(x−b) (v
q − v) = 0. Since x4−1

f

is a degree two polynomial, we have that the set {γ, γq, γq2} is linearly dependent.

Suppose that γ and γq are linearly dependent, thus γq−1 ∈ F∗
q and ord q(γ) ≤

(q− 1)2 < q4 − 1, which is a contradiction. Thus, 〈γ, γq, γq2 , γq3〉 = 〈γ, γq〉 and γ is

2-normal, by Theorem 2.6. �

Let us define a function g(x) = x + β, where β is a 2-normal element in Fqn.

We need conditions for the existence of primitive elements of the form g(a), where

a ∈ F∗
q , because in the case where n = 4, if we choose β = Lf(α) then, from

Lemma 6.1, primitivity of g(a) implies 2-normality of g(a). Observe also that if

β = Lf (α) ∈ Fq4 , then β /∈ Fq2. Indeed, if β ∈ Fq2 , then 0 = Lx4−1
f

(β) = βq2 − (b+

1)βq + bβ = (b+ 1)(β − βq). Since b2 = −1 and q ≡ 1 (mod 4), we get b 6= −1 and

β ∈ Fq, which is a contradiction.

Theorem 6.2. Let q be a prime power, let m ∈ N be a divisor of q4 − 1, and

let β = Lf (α) be a 2-normal element in Fq4, where α ∈ Fq4 is a normal element,

f(x) = (x + 1)(x + b) ∈ Fq[x] and b ∈ Fq satisfies b2 = −1. Let Nβ(m) be the

number of elements a ∈ Fq such that g(a) = a+ β is m-free. If q1/2 ≥ 3W (m), then

Nβ(m) > 0, i.e., there exists an element of the form g(a) in F∗
q4 which is m-free.

Proof. Since β = Lf (α) /∈ Fq2, we have that Fq4 = Fq(β). Therefore, from Lemma

2.12, for any non-trivial multiplicative character χ over Fq4, we have

(7)

∣

∣

∣

∣

∣

∣

∑

a∈Fq

χ(g(a))

∣

∣

∣

∣

∣

∣

≤ 3
√
q,
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Now, from Proposition 2.8, we have that

Nβ(m) =
∑

a∈Fq

wm (g(a)) = θ(m)







∑

a∈Fq

χ1(g(a)) +

∫

d|m, d6=1

∑

a∈Fq

χd(g(a))






.

Therefore we obtain the following estimative, using inequality (7)

∣

∣

∣

∣

Nβ(m)

θ(m)
− q

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∑

d|m
d6=1

µ(d)

ϕ(d)

∑

(d)

∑

a∈Fq

χd(g(a))

∣

∣

∣

∣

∣

∣

∣

∣

≤ 3
√
q
∑

d|m
d6=1

|µ(d)| = 3(W (m)− 1)
√
q,

Then
Nβ(m)

θ(m)
≥ q − 3(W (m)− 1)

√
q, and we obtain the desired result. �

The next result’s proof is similar to the proof of Proposition 3.6, and hence is

omitted.

Proposition 6.3. Let m ∈ N be a divisor of q4−1 and let β be a 2-normal element as

in Theorem 6.2. Let ℘1, . . . , ℘r be prime numbers such that rad(q4−1) = rad(m)·℘1·
℘2 · · ·℘r. Suppose that δ = 1−∑r

i=1
1
℘i

> 0 and let ∆ = r−1
δ

+2. If q
1
2 ≥ 3W (m)∆,

then Nβ(q
4 − 1) > 0.

Now, we get the following sufficient conditions for the existence of primitive ele-

ments in Fq4 of the form g(a) = a+ β. If

(8) q1/2 > 3W (q4 − 1) or q1/2 > 3W (m)∆

(for some m | q4−1 and a specific value of ∆), then there exists a primitive element

in Fq4 of the form g(a) = a+β with a ∈ Fq; also this element is 2-normal by Lemma

6.1. Let us use Proposition 6.3 in combination with Lemma 6.1 to find a bound for

the values of q such that there exists a primitive 2-normal element in Fq4.

Theorem 6.4. Let q be a prime power. There exists a primitive 2-normal element

in Fq4 if and only if q ≡ 1 (mod 4).

Proof. We proceed as in Lemma 5.4. Let t, u be positive real numbers such that

t+ u > 8 and let q4 − 1 = ℘a1
1 · · ·℘av

v · ̺b11 · · · ̺brr be the prime factorization of q4 − 1

such that 2 ≤ ℘i ≤ 2t or 2t+u ≤ ℘i for 1 ≤ i ≤ v and 2t < ̺i < 2t+u for 1 ≤ i ≤ r

and consider m = ℘a1
1 · · ·℘av

v . Let St,u < 1 be the sum of the inverses of all prime

numbers between 2t and 2t+u, and r(t, u) be the number of those primes. As in
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Lemma 5.4 r ≤ r(t, u), δ ≥ 1−St,u and ∆ ≤ 2+ r(t,u)−1
1−St,u

. By Lemma 2.9, considering

that 24 | q4 − 1 and 4 < t+ u, we have W (m) < At,u · q
4

t+u , where

At,u =
2

t+u
√
24

·
∏

2<℘<2t

℘ is prime

2
t+u
√
℘
.

We know that β = Lf(α) /∈ Fq2 and we may apply Proposition 6.3. Therefore,

if q
1
2 ≥ 3 · At,u · q 4

t+u · ∆ then Nβ(q
4 − 1) > 0. This condition is equivalent to

q ≥ (3 · At,u ·∆)
2(t+u)
t+u−8 . Taking t = 5 and u = 8.5 we get Nβ(q

4 − 1) > 0 for

q ≥ M = 2.12 · 1035.
Suppose now q < M = 2.12·1035. We will use now Proposition 6.3 withm = q2−1.

Let q2 + 1 = 2 · ℘a1
1 · · ·℘ar

r be the prime factorization of q2 + 1. For any odd prime

number such that ℘ | q2 + 1, we have q2 6≡ 1 (mod ℘) and q4 ≡ 1 (mod ℘). This

means that 4 | ϕ(℘) = ℘− 1. Let Sk be the sum of the inverses of the first k prime

numbers of the form 4j + 1 and let Pk be the product of those k prime numbers.

So, from 2Pr ≤ q2 + 1 < M2 + 1, we get r ≤ 33, Sr < 0.60520004, δ > 0.39479996

and ∆ ≤ 83.054. Let

At =
2

t
√
23

·
∏

2<℘<2t

℘ is prime

2
t
√
p

be the constant from Lemma 2.9, considering that 23 | q2 − 1 and 3 < t. Therefore,

if q
1
2 ≥ 3 · At · q

2
t · ∆ > 3 · W (q2 − 1) · ∆, and applying Proposition 6.3, then

Nβ(q
4 − 1) > 0. For t = 6.8, we get (3 · At ·∆)

2t
t−4 ≤ 7.321 · 1021.

Let us suppose now that M = 7.321 · 1021 and q < M . We will use again

Proposition 6.3 with m = gcd(q4 − 1, 2 · 3 · 5 · 7). Let Sk be the sum of the inverses

of the first k prime numbers starting with 11 and let Pk be the product of those

k prime numbers. Observe that if 5 ∤ q4 − 1, then q is a prime power of 5 which

implies that 3 | q4 − 1. This means that 24 · 3 | q4 − 1 or 24 · 5 | q4 − 1. Let r be the

number of prime factors of q4 − 1 greater than 7. We have r ≤ 44, since Pr <
M4−1
48

.

So, S ≤ Sr < 0.7821, δ > 0.2179 and therefore ∆ < 2 + 44−1
0.2179

< 199.34. Thus,

q
1
2 ≥ 3 ·W (m) ·∆ for q ≥ 9.156 · 107.
We repeat this last process with M = 9.156 ·107 and m = gcd(q4−1, 2 ·3 ·5). Now

Sk is the sum of the inverses of the first k prime numbers starting with 7 and Pk is the

product of those k prime numbers. We have Pr <
M4−1
48

for r ≤ 19 and ∆ < 70.155.

So, q
1
2 ≥ 3 · 23 · 70.155 ≥ 3 ·W (m) ·∆ for q ≥ 2834914. Repeating this process one

last time with M = 2834914 and m = gcd(q4−1, 2 ·3 ·5), we get r ≤ 16, ∆ < 51.253.
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From Proposition 6.3 we get Nβ(q
4−1) > 0 if q ≥ 1513078 > (3 · 23 · 51.253)2. From

Lemma 6.1, we get that, for q ≥ 1513078, there exists a primitive 2-normal element

in Fq4 .

There are 57731 prime powers q ≡ 1 (mod 4) less than 1513078. We use the test

q
1
2 ≥ 3 · W (m) · ∆ using the SageMath procedure Test(q,list) from Appendix A

where the variable list is the list of prime numbers which can be factors of m. With

list = [2, 3, 5], the procedure Test(q,list) returns False for 1704 primes powers

from all prime powers q ≡ 1 (mod 4) less than 1513078. For those prime powers,

the procedure Test(q,list), with list = [2, 3], returns False for 934 prime powers.

Finally, for those last prime powers, the procedure Test(q,list), with list = [2],

returns False for 918 prime powers.

Now, we use the SageMath procedure named TestExplicit4 (see Appendix A) to

find a primitive 2-normal element in Fq4 . In this procedure, we found first a normal

element α ∈ Fq4 , b ∈ Fq a root of x2+1 = 0 and we define β = L(x+1)(x+b)(a). Next,

we try to find an element j ∈ Fp such that β + j is primitive. From Lemma 6.1,

β + j is also 2-normal. This procedure returns True if β + j is primitive 2-normal

in Fq4 for some j ∈ Fp. For all 918 prime powers for which we didn’t conclude with

the procedure Test(q,list), the procedure TestExplicit4(q) returns False only for

13, 17, 125. Table 8 shows for these cases a primitive 2-normal element α ∈ Fq4,

such that h(α) = 0, for some irreducible polynomial h ∈ Fp[x], where p is the

characteristic of Fq. This completes the proof. �
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Appendix A: Procedures in SageMath

def Test_Delta(q,n,u):

A.<a>=GF(q); P.<x>=PolynomialRing(A)

M1=factor(q^n-1); M2=factor(x^n-1) ; m=1

count1=0; count2=0; choose=True

T=1

for g in M2:

if g[0].degree()==1 and q<7:

T=T*g[0]

r=len(M1); s=len(M2); S1=0; S2=0

for p in M1:

if gcd(p[0],u)!=1:

m=m*p[0]

r=r-1

else:
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S1=S1+1/p[0]

for Q in M2:

if gcd(Q[0],T)!=1:

s=s-1

else:

S2=S2+1/q^(Q[0].degree())

delta=1-S1-S2

if delta>0:

Delta=2+(r+s-1)/delta; A=(q*1.0)^(n*0.5-2)

B=Delta*2^(len(factor(m)))*2^len(factor(T)); Fact=A>=B

else:

Fact=False

return Fact

———————————————————————————————————

#Given p,q,n and g define:

B=GF(p); T.<x>=PolynomialRing(B)

C.<c>=B.extension(g); R.<x>=PolynomialRing(C)

#Testing if c is primitive: ordmodqn(c)

#Testing if c is 2-normal: Normal(c)

#where:

def ordmodqn(d):

ord=q^n-1

for m in divisors(q^n-1):

if d^m==1:

if m<ord:

ord=m

return (q^n-1)/ord

def Normal(e):

pol=0

for i in range(0,n):

pol=pol+e^(q^i)*x^(n-1-i)

pol_gcd=gcd(pol,x^n-1); k=pol_gcd.degree()

return k

———————————————————————————————————

def TestExplicit5(q):

A.<a>=GF(q^5); T.<x>=PolynomialRing(A)
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if mod(q,5)==0:

beta=a^(q^2)-2*a^q+a

else:

Sol=(x^2+x-1).roots(); b=Sol[0][0]; beta=a^(q^2)-b*a^q+a

j=0; Teste=False; valor=True

while valor:

c=beta+j; ord=q^5-1

for m in divisors(q^5-1):

if c^m==1:

if m<ord:

ord=m

e=(q^n-1)/ord

if e==1:

pol=0

for i in range(0,5):

pol=pol+c^(q^i)*x^(4-i)

pol_gcd=gcd(pol,x^n-1); k=pol_gcd.degree()

if k==2:

valor=False; Teste=True

j=j+1

if beta+j==beta:

valor=False

return Teste

———————————————————————————————————

def Test(q,list):

L=factor(q^4-1); m=1; r=len(L); S=0.0

for p in L:

if p[0] in list:

m=m*p[0]; r=r-1

else:

S=S+1/p[0]

delta=1-S

if delta>0:

Delta=2+(r-1)/delta; A=(q*1.0)^(0.5); B=3*Delta*2^(len(factor(m)))

Fact=A>=B

else:

Fact=False
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return Fact

———————————————————————————————————

def TestExplicit4(q):

A.<a>=GF(q^4, modulus="primitive"); T.<x>=PolynomialRing(A)

z=1

norm=True

while norm:

alpha=a^z

pol=0

for i in range(0,n):

pol=pol+alpha^(q^i)*x^(n-1-i)

pol_gcd=gcd(pol,x^n-1); k=pol_gcd.degree()

if k==0:

norm=False

z=z+1

if z==q^4-1 and norm:

norm=False; Test=False

Sol=(x^2+1).roots(); b=Sol[0][0]

beta=alpha^(q^2)+(b+1)*alpha^q+b*alpha; j=0

Test=False; valor=True

while valor:

c=beta+j; ord=q^n-1

for m in divisors(q^n-1):

if c^m==1:

if m<ord:

ord=m

e=(q^n-1)/ord

if e==1:

pol=0

for i in range(0,n):

pol=pol+c^(q^i)*x^(n-1-i)

pol_gcd=gcd(pol,x^n-1); k=pol_gcd.degree()

if k==2:

valor=False; Test=True

j=j+1

if beta+j==beta:

valor=False
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return Test

Appendix B: Tables

(q, n) g(x) ∈ Fp[x]

(2, 6) x6 + x5 + x3 + x2 + 1

(2, 8) x8 + x5 + x3 + x+ 1

(2, 9) x9 + x8 + x6 + x5 + x4 + x3 + x2 + x+ 1

(2, 10) x10 + x6 + x5 + x3 + x2 + x+ 1

(2, 12) x12 + x10 + x8 + x4 + x3 + x2 + 1

(3, 6) x6 + x5 + x4 + x3 + x+ 2

(3, 8) x8 + 2x5 + x4 + 2x2 + 2x+ 2

(3, 10) x10 + x8 + x7 + 2x6 + x5 + x4 + x3 + 2x2 + x+ 2

(3, 12) x12 + x10 + 2x9 + 2x8 + x7 + x6 + 2x4 + 2x3 + 2

Table 4. α ∈ Fqn is a primitive 2-normal element such that g(α) = 0

(q, n) g(x) ∈ Fp[x]

(4, 5) x10 + x8 + x6 + x5 + x3 + x+ 1

(4, 6) x12 + x11 + x10 + x8 + x6 + x4 + x3 + x+ 1

(4, 8) x16 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x5 + x2 + 1

(4, 9) x18 + x16 + x12 + x10 + x4 + x+ 1

(5, 5) x5 + 2x3 + x+ 2

(5, 6) x6 + x4 + 4x3 + x2 + 2

(5, 8) x8 + 4x7 + x6 + 3x4 + x3 + x+ 3

(5, 12) x12 + x11 + 3x10 + x9 + 4x7 + 3x5 + 3x3 + 3x2 + 4x+ 3

(7, 6) x6 + x4 + 5x3 + 4x2 + 6x+ 3

(7, 8) x8 + 3x6 + 6x5 + x4 + 6x3 + 5x2 + 4x+ 5

(8, 6) x18 + x16 + x15 + x14 + x13 + x6 + x2 + x+ 1

(8, 7) x21 + x16 + x14 + x11 + x7 + x6 + x5 + x3 + 1

Table 5. α ∈ Fqn is a primitive 2-normal element such that g(α) = 0
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(q, n) g(x) ∈ Fp[x]

(9, 5) x10 + x7 + 2x6 + x5 + x4 + 2x3 + 2

(9, 6) x12 + x9 + x8 + x7 + x6 + 2x4 + 2x3 + 2x+ 2

(9, 8) x16 + 2x14 + 2x13 + 2x12 + x11 + x10 + 2x9 + x8 + x5 + x4 + 2

(11, 5) x5 + 9x3 + 4x2 + 9x+ 3

(11, 6) x6 + 9x5 + x4 + 3x3 + x2 + x+ 7

(13, 6) x6 + 10x3 + 11x2 + 11x+ 2

(16, 5) x20 + x19 + x15 + x13 + x11 + x10 + x7 + x6 + x3 + x+ 1

(16, 6)
x24 + x22 + x21 + x20 + x19 + x18 + x15+

x14 + x12 + x10 + x8 + x7 + x3 + x2 + 1

(17, 6) x6 + 9x5 + 15x4 + 6x3 + x2 + 4x+ 14

(19, 5) x5 + 2x4 + x2 + 2x+ 16

(19, 6) x6 + 17x3 + 17x2 + 6x+ 2

Table 6. α ∈ Fqn is a primitive 2-normal element such that g(α) = 0

q g(x) ∈ Fp[x]

23 x6 + 3x5 + 20x4 + 12x3 + 6x+ 11

25 x12 + x11 + 3x10 + x9 + 4x7 + 3x5 + 3x3 + 3x2 + 4x+ 3

29 x6 + 14x4 + 22x3 + 6x2 + 2x+ 15

31 x6 + 19x3 + 16x2 + 8x+ 3

37 x6 + 35x3 + 4x2 + 30x+ 2

41 x6 + 17x4 + 19x3 + 9x2 + 38x+ 17

43 x6 + 19x3 + 28x2 + 21x+ 3

47 x6 + 35x4 + 36x3 + 36x2 + 19x+ 31

49 x12 + 6x10 + 5x9 + 6x8 + 6x7 + 3x6 + x5 + 4x3 + x2 + 5x+ 3

59 x6 + 13x4 + 56x3 + 15x2 + 2x+ 11

61 x6 + 49x3 + 3x2 + 29x+ 2

67 x6 + 32x5 + 58x4 + 46x3 + 22x2 + 59x+ 61

79 x6 + 19x3 + 28x2 + 68x+ 3

Table 7. α ∈ Fq6 is a primitive 2-normal element such that g(α) = 0



PRIMITIVE 2-NORMAL ELEMENTS 33

q h(x) ∈ Fp[x]

13 x4 + 11x3 + 8x2 + 6x+ 11

17 x4 + 10x2 + 5x+ 3

125 x12 + x10 + 3x9 + 4x8 + 3x6 + 2x5 + 2x4 + 3x3 + x2 + 4x+ 3

Table 8. α ∈ Fq4 is a primitive 2-normal element such that h(α) = 0
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