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WEIGHT DISTRIBUTIONS AND WEIGHT

HIERARCHIES OF TWO CLASSES OF BINARY

LINEAR CODES

FEI LI AND XIUMEI LI

Abstract. Linear codes with a few weights can be applied to
communication, consumer electronics and data storage system. In
addition, the weight hierarchy of linear codes has many appli-
cations such as on the type II wire-tap channel, dealing with t-
resilient functions and trellis or branch complexity of linear codes
and so on. In this paper, we first present a formula for computing
the weight hierarchies of linear codes constructed by the general-
ized method of defining sets. Then, we construct two classes of
binary linear codes with a few weights and determine their weight
distributions and weight hierarchies completely. Some codes of
them can be used in secret sharing schemes.

1. Introduction

For a prime number p and a positive integer s, let Fps be the finite
field with ps elements and F∗

ps be its multiplicative group.
An [n, k, d] p-ary linear code C is a k-dimensional subspace of Fn

p

with minimum (Hamming) distance d. For i ∈ {1, 2, · · · , n}, denote
by Ai the number of codewords in C with Hamming weight i. The
sequence (1, A1, · · · , An) is called the weight distribution of C and the
polynomial 1+A1x+A2x

2+ · · ·+Anx
n is called the weight enumerator

of C. If the sequence (A1, · · · , An) has t nonzero Ai with i = 1, 2, · · ·n,
then the code C is called a t-weight code. In coding theory, the weight
distribution of linear codes is a classical research topic and attracts
much attention. Furthermore, linear codes with a few weights have im-
portant applications in authentication codes [10], association schemes
[5], secret sharing [33] and strongly regular graphs [6].
Motivated by applications to cryptography, generalized Hamming

weight of linear codes was introduced in 1970s [12, 19]. For linear code
C, denote by [C, r]p the set of all its Fp-vector subspaces with dimension
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r. For V ∈ [C, r]p, define Supp(V ) = ∪c∈V Supp(c), where Supp(c) is
the set of coordinates where c is nonzero, that is,

Supp(V ) = {i : 1 ≤ i ≤ n, ci 6= 0 for some c = (c1, c2, · · · , cn) ∈ V }.
Definition 1.1. Let C be an [n, k, d] linear code over Fp. For 1 ≤ r ≤
k,

dr(C) = min{|Supp(V )| : V ∈ [C, r]p}
is called the r-th generalized Hamming weight (GHW) of C and {dr(C) :
1 ≤ r ≤ k} is called the weight hierarchy of C.

GHW can be thought of an extension of the minimum distance
d = d1(C) and has become an important research object in coding
theory after Wei’s paper [31] in 1991. A detailed overview on the re-
sults of GHW up to 1995 was given in [30]. The weight hierarchy of
linear codes has many applications such as completely characterizing
the performance of the code on the type II wire-tap channel, deal-
ing with t-resilient functions and trellis or branch complexity of linear
codes and so on [13, 30, 31]. Much is known about weight hierarchy for
several classes of codes: algebraic geometric codes, BCH codes, Reed-
Muller codes, cyclic codes [1, 4, 14, 18, 32, 34]. Recently, there are
research results about weight hierarchy of some classes of linear codes
[3, 16, 26, 27].
The rest of this paper is organized as follows. In Sec. 2, we intro-

duce a generalized method of constructing linear code by defining sets
and give a corresponding formula for computing the generalized Ham-
ming weights. In Sec. 3, we construct binary linear codes with a few
weights and determine their weight distributions and weight hierarchies
completely. In Sec. 4, we summarize the paper.

2. Preliminaries

2.1. A generic construction of linear codes. Ding et al. [9] pro-
posed a generic construction of linear codes as below. Denote by Tr
the trace function from Fps to Fp. Let D = {d1, d2, · · · , dn} be a subset
of F∗

ps. A p-ary linear code of length n is defined as follows:

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ Fps},(2.1)

and D is called the defining set of CD. By choosing some proper defin-
ing sets, some optimal linear codes with a few weights can be con-
structed [7, 8, 11, 20, 21, 22, 29, 35, 36].
Li et al. generalized the above constructing method and also con-

structed some linear codes with a few weights [24, 25]. The generalized
method is as follows. For a positive integer e, let D = {d1, d2, · · · , dn}
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be contained in Fe
ps\{(0, 0, · · · , 0)}. For u = (u1, u2, · · · , ue), v = (v1, v2, · · · , ve),

denote by u · v the ordinary inner product of u and v, that is,

u · v = u1v1 + u2v2 + · · ·+ ueve.

Define a p-ary linear code CD with length n as follows:

CD = {(Tr(x · d1),Tr(x · d2), . . . ,Tr(x · dn)) : x ∈ Fe
ps}.(2.2)

Here, D is also called the defining set. Using this method, some classes
of linear codes with few weights were obtained by choosing proper
defining sets [2, 17].

2.2. A formula for computing dr(CD). For the linear code CD in
(2.2), a general formula in Proposition 2.1 will be employed to cal-
culate the generalized Hamming weight dr(CD). Indeed, the result of
Proposition 2.1 can be regarded as a generalization of [26, Theorem 1].

Proposition 2.1. For each r and 1 ≤ r ≤ es, if the dimension of CD

is es, then

dr(CD) = n−max
{

|D ∩H| : H ∈ [Fe
ps, es− r]p

}

.

Proof. Let f be a map from Fe
ps to Fn

p defined by

f(x) =
(

Tr(x · d1),Tr(x · d2), . . . ,Tr(x · dn)
)

.

Obviously, f is an Fp-linear homomorphism and the image f(Fe
ps) is

CD. By hypothesis, we know that the dimension of CD is es. Hence, f
is injective.
For any r-dimensional subspace Ur ∈ [CD, r]p, denote by Hr =

f−1(Ur) the inverse image of Ur. So, Hr is also an r-dimensional sub-
space. Let {β1, β2, . . . , βr} be an Fp-basis of Hr. By definition,

dr(CD) = n−max{N(Ur) : Ur ∈ [CD, r]p},

where

N(Ur) =
∣

∣

∣
{i : 1 ≤ i ≤ n, ci = 0 for any c = (c1, c2, . . . , cn) ∈ Ur}

∣

∣

∣

=
∣

∣

∣
{i : 1 ≤ i ≤ n,Tr(β · di) = 0 for any β ∈ Hr}

∣

∣

∣

=
∣

∣

∣
{i : 1 ≤ i ≤ n,Tr(βj · di) = 0, j = 1, 2, · · · , r}

∣

∣

∣
.
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Then, by the orthogonal property of additive characters, we have

N(Ur) =
1

pr

n
∑

i=1

∑

x1∈Fp

ζ
Tr
(

x1(β1·di)
)

p . . .
∑

xr∈Fp

ζ
Tr
(

xr(βr ·di)
)

p

=
1

pr

n
∑

i=1

∑

x1,...,xr∈Fp

ζ
Tr
(

(β1x1+...+βrxr)·di
)

p

=
1

pr

n
∑

i=1

∑

β∈Hr

ζTr(β·di)
p .

For any k-dimensional subspace H of Fe
ps, let

H⊥ = {v ∈ Fe
ps : Tr(u · v) = 0 for any u ∈ H}.

We call H⊥ the dual space of H . Taking a Fp-basis α1, α2, · · · , αes of
Fe
ps and γ1, γ2, · · · , γk of H , then the matrix

(

Tr(αi ·αj)
)

is an invertible

matrix. For any v =
es
∑

i=1

xiαi ∈ H⊥ with xi ∈ Fp, we have Tr(γj · v) =
es
∑

i=1

xiTr(γj ·αi) = 0, j = 1, 2, · · · , k. This is a system of linear equations

of x1, x2, · · · , xes and the rank of its coefficient matrix (Tr(γj · αi)) is
equal to k. Thus, dimFp

(H) + dimFp
(H⊥) = es and (H⊥)⊥ = H . So,

For y ∈ Fe
ps,

∑

β∈Hr

ζTr(β·y)p =

{

|Hr|, if y ∈ H⊥
r ,

0, otherwise .

Hence, we have

N(Ur) =
1

pr

∑

y∈D∩H⊥
r

|Hr| = |D ∩H⊥
r |.

So, the desired result follows from the fact that there is a bijection
between [Fe

ps, r]p and [Fe
ps, es− r]p. We complete the proof. �

3. Two classes of binary linear codes

In this section, we construct two classes of binary linear codes and
determine their parameters. We firstly present a few more auxiliary
results which will be needed in proving our main results.
Let l be a prime such that 2 is a primitive root modulo lm. Here and

after, let p = 2, q = 2φ(l
m), where φ is the Euler phi-function. Let γ be a

fixed primitive element of F∗
q and χ1 be the canonical additive character

over Fq, then for any x ∈ Fq, χ1(x) = (−1)Tr(x). Set α = γ
q−1
lm . See [23]

for more information about additive characters over finite fields.
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3.1. An exponential sum. For any a, b ∈ Fq, we define

S(a, b) =
∑

x∈F∗
q

χ1

(

ax
q−1
lm + bx

)

and S(a) =
lm−1
∑

i=0

χ1(aα
i).

Since 2 is a primitive root modulo lm, we have that Fq = F2(α).
Expressing u ∈ Fq in the basis {α, α2, . . . , αφ(lm)}, say

u =

φ(lm)
∑

i=1

ajα
j,

where aj ∈ F2. For i = 0, 1, . . . , lm−1−1, we denote by u(i) the following
sub-vector of length l − 1 of the coordinate vector u = (a1, . . . , aφ(lm))
of u:

u(i) = (alm−1−i, a2lm−1−i, . . . , a(l−1)lm−1−i).

Recall that wt(x) is the Hamming weight of binary vector x. For
a ∈ F∗

q, we define two subsets of F∗
q as follows.

Ea = {u ∈ F∗
q : 2|wt

(

(au− q−1
lm )(0)

)

},

Oa = {u ∈ F∗
q : 2 ∤ wt

(

(au− q−1
lm )(0)

)

}.
In subsection 3.3, we will give the cardinal numbers of Ea and Oa.
Now, we give some results on S(a, b) and S(a) in the following lem-

mas, which will play important roles in settling the parameters of our
codes.

Lemma 3.1. [21, Lemma 4] Let a ∈ F∗
q , b ∈ Fq and let c = ab−

q−1
lm if

b 6= 0. Then,

S(a, b) =

{ q−1
lm

S(a), if b = 0,

(−1)wt(c(0))√q −
√
q+1

lm
S(a), if b 6= 0.

Lemma 3.2. [28, Theorem 1] Let a ∈ Fq. Then

S(a) =

lm−1−1
∑

i=0

(−1)wt(a(i))(l − 2wt(a(i))).

Lemma 3.3. [28, Theorem 3] The value set of S(a), as a runs over
F∗
q, is

{lm − 4j|j = 1, . . . ,
lm−1(l − 1)

2
}.
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3.2. Our defining sets and some auxiliary results. In this paper,
we choose a defining set contained in F2

q as follows. For a ∈ F∗
q, b ∈ Fq,

set

D(a,b) = {(x, y) ∈ F2
q \ {(0, 0)} : Tr(ax

q−1
lm + by) = 0} = {d1, d2, . . . , dn}

and the corresponding binary linear code CD(a,b)
is defined by

(3.1) CD(a,b)
=

{

(Tr(x · d1),Tr(x · d2), . . . ,Tr(x · dn)) : x ∈ F2
q

}

.

Now, we first calculate the length of the linear codes CD(a,b)
and the

Hamming weight of non-zero codewords in CD(a,b)
.

Lemma 3.4. For a ∈ F∗
q , b ∈ Fq. Then,

n = |D(a,b)| =
{

1
2
q
(

q + 1 + S(a, 0)
)

− 1, if b = 0,
1
2
q2 − 1, if b 6= 0.

Proof. By the orthogonal property of additive characters, we have

|D(a,b)| =
1

2

∑

x,y∈Fq

∑

z∈F2

(−1)Tr
(

z(ax
q−1
lm +by)

)

− 1

=
1

2

∑

x,y∈Fq

(

1 + (−1)Tr(ax
q−1
lm +by)

)

− 1

=
1

2
q2 +

1

2

∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +by) − 1

=
1

2
q2 +

1

2

∑

y∈Fq

(−1)Tr(by)
∑

x∈Fq

(−1)Tr(ax
q−1
lm ) − 1.

When b = 0, we have

|D(a,0)| =
1

2
q2 +

1

2
q
∑

x∈Fq

(−1)Tr(ax
q−1
lm ) − 1

=
1

2
q2 +

1

2
q
(

1 + S(a, 0)
)

− 1

=
1

2
q
(

q + 1 + S(a, 0)
)

− 1.

When b 6= 0, we have
∑

y∈Fq
(−1)Tr(by) = 0, which follows that

|D(a,b)| = 1
2
q2 − 1. We complete the proof. �

Let c(u,v) be the corresponding codeword in CD(a,b)
in (3.1) with

(u, v) ∈ F2
q , that is,

c(u,v) =
(

Tr(ux+ vy)
)

(x,y)∈D(a,b)

.
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Obviously, c(0,0) = 0 and wt(c(0,0)) = 0. Now, we determine the Ham-
ming weight wt(c(u,v)) with (u, v) 6= (0, 0) in the following lemma.

Lemma 3.5. Let (u, v)( 6= (0, 0)) ∈ F2
q. We have

(1) If b = 0, then

wt(c(u,v)) =







1
4
q
(

q + 1 + S(a, 0)
)

, if v 6= 0,

1
4
q
(

q + S(a, 0)− S(a, u)
)

, if v = 0.

(2) If b 6= 0, then

wt(c(u,v)) =

{

1
4
q2, if v = 0 or v 6= b, v 6= 0,

1
4
q
(

q − 1− S(a, u)
)

, if v = b.

Proof. Put N(u, v) = {(x, y) ∈ F2
q : Tr(ax

q−1
lm + by) = 0,Tr(ux+ vy) =

0}, then

|N(u, v)| = 1

4

∑

x,y∈Fq

(

∑

z1∈F2

(−1)Tr(z1(ax
q−1
lm +by))

∑

z2∈F2

(−1)Tr(z2(ux+vy))
)

=
1

4

∑

x,y∈Fq

(

(

1 + (−1)Tr(ax
q−1
lm +by)

)(

1 + (−1)Tr(ux+vy)
)

)

=
1

4
q2 +

1

4

∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +by) +

1

4

∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +ux+by+vy),

where we use the fact that
∑

x,y∈Fq

(−1)Tr(ux+vy) =
∑

x∈Fq

(−1)Tr(ux)
∑

y∈Fq

(−1)Tr(vy) = 0.

Now we discuss case by case on the term of b = 0 or b 6= 0.
(1) If b = 0, then

|N(u, v)| = 1

4

(

q2 +
∑

x,y∈Fq

(−1)Tr(ax
q−1
lm ) +

∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +ux+vy)

)

=
1

4

(

q2 + q
∑

x∈Fq

(−1)Tr(ax
q−1
lm ) +

∑

y∈Fq

(−1)Tr(vy)
∑

x∈Fq

(−1)Tr(ax
q−1
lm +ux)

)

=
1

4

(

q2 + q(1 + S(a, 0)) + (1 + S(a, u))
∑

y∈Fq

(−1)Tr(vy)
)

.

So, we have

|N(u, v)| =







1
4
q
(

q + 1 + S(a, 0)
)

, if v 6= 0,

1
4
q
(

q + 2 + S(a, 0) + S(a, u)
)

, if v = 0.
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Noting that wt(c(u,v)) = n− |N(u, v)|+ 1. By Lemma 3.4, we have

wt(c(u,v)) =







1
4
q
(

q + 1 + S(a, 0)
)

, if v 6= 0,

1
4
q
(

q + S(a, 0)− S(a, u)
)

, if v = 0.

(2) If b 6= 0, then
∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +by) =

∑

x∈Fq

(−1)Tr(ax
q−1
lm )

∑

y∈Fq

(−1)Tr(by) = 0,

which follows that

|N(u, v)| = 1

4
q2 +

1

4

∑

x,y∈Fq

(−1)Tr(ax
q−1
lm +by+ux+vy)

=
1

4
q2 +

1

4

∑

y∈Fq

(−1)Tr((b+v)y)
∑

x∈Fq

(−1)Tr(ax
q−1
lm +ux)

=
1

4
q2 +

1

4
(1 + S(a, u))

∑

y∈Fq

(−1)Tr((b+v)y).

So, we have

|N(u, v)| =











1
4
q2, if v = 0,

1
4
q
(

q + 1 + S(a, u)
)

, if v = b,
1
4
q2, if v 6= b, v 6= 0.

By Lemma 3.4 again, we have

wt(c(u,v)) =











1
4
q2, if v = 0,

1
4
q
(

q − 1− S(a, u)
)

, if v = b,
1
4
q2, if v 6= b, v 6= 0.

The proof is finished. �

Remark 3.6. By Lemma 3.5, we know that, for (u, v)( 6= (0, 0)) ∈ F2
q,

we have wt(c(u,v)) > 0. So, the map: F2
q → CD(a,b)

defined by (u, v) 7→
c(u,v) is an isomorphism as linear spaces over F2. Hence, the dimension
of the codes CD(a,b)

in (3.1) is equal to 2φ(lm).

Lemma 3.7. Let CD(a,b)
be defined in (3.1). Then, the minimal dis-

tance of the dual code C⊥
D(a,b)

is at least 2.

Proof. We prove it by contradiction. If not, then there exists a coor-
dinate i such that the i-th entry of all of the codewords of CD(a,b)

is 0,

that is, Tr(x · di) = 0 for all x ∈ F2
q , where di ∈ D(a,b). Thus, by the

properties of the trace function, we have di = 0. It contradicts with
di 6= 0. �
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3.3. Weight distribution of CD(a,b)
in (3.1). In this sequel, we de-

termine the weight distributions of linear codes CD(a,b)
in (3.1).

Theorem 3.8. Let a ∈ F∗
q. The code CD(a,0)

in (3.1) is an [n, 2φ(lm), d]
binary linear code with the weight distribution in Table 1, where d =
1
4
q(q −√

q +
(q+

√
q)S(a)

lm
) and n = 1

2
q
(

q + 1 + q−1
lm

S(a)
)

− 1.

Table 1. The weight distribution of the codes of Theo-
rem 1.

Weight ω Multiplicity Aω

0 1
1
4
q(q + 1 + (q−1)S(a)

lm
) q(q − 1)

1
4
q(q +

√
q +

(q+
√
q)S(a)

lm
) 1

2
(q − 1)(1 + S(a)

lm
)

1
4
q(q −√

q +
(q+

√
q)S(a)

lm
) 1

2
(q − 1)(1− S(a)

lm
)

Proof. Assume that (u, v) 6= (0, 0). By Lemma 3.1 and Lemma 3.5,
wt(c(u,v)) has only three values, that is,











ω1 =
1
4
q(q + 1 + (q−1)S(a)

lm
),

ω2 =
1
4
q(q +

√
q +

(q+
√
q)S(a)

lm
),

ω3 =
1
4
q(q −√

q +
(q+

√
q)S(a)

lm
).

Recall that Aωi
is the multiplicity of ωi. By Lemma 3.5, we have

Aω1 = q(q − 1). By Lemma 3.7 and the first two Pless Power Moment
([15, P. 260] ), we obtain the system of linear equations as follows:







Aω1 = q(q − 1),
Aω2 + Aω3 = q − 1,
ω1Aω1 + ω2Aω2 + ω3Aω3 =

1
2
q2n.

Solving the system , we get






Aω1 = q(q − 1),

Aω2 =
1
2
(q − 1)(1− S(a)

lm
),

Aω3 =
1
2
(q − 1)(1 + S(a)

lm
).

Then we get the weight distribution of Table 1. By Lemma 3.3, of
all the non-zero weights, ω3 is the smallest. So we get the value of
minimum Hamming weight d = ω3. We complete the proof. �

Corollary 3.9. For each a ∈ F∗
q , we have |Ea| = 1

2
(q−1)(1+ S(a)

lm
) and

|Oa| = 1
2
(q − 1)(1− S(a)

lm
).
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Proof. Recall the definitions of Ea and Oa in Subsection 3.1. Obviously,
|Ea|+ |Oa| = q − 1. By Lemma 3.1,

S(a, u) = (−1)wt((au
− q−1

lm )(0))√q −
√
q + 1

lm
S(a).

For a code word c(u,v) ∈ CD(a,0)
, by the computing of |N(u, v)|, we know

that wt(c(u,v)) =
1
4
q(q−√

q+
(q+

√
q)S(a)

lm
) if and only if 2|wt((au− q−1

lm )(0)).
So the desired result follows from Theorem 3.8. The proof is completed.

�

Remark 3.10. By Lemma 3.3, we know that neither Ea nor Oa is
empty for every a ∈ F∗

q.

Example 3.11. Let (l, m, a, b) = (3, 2, 1, 0). Then, the corresponding
code CD(1,0)

has parameters [3199, 12, 1536] and weight enumerator 1 +

49x1536 + 4032x1600 + 14x1792.

Theorem 3.12. Let a, b ∈ F∗
q. The code CD(a,b)

in (3.1) is a [1
2
q2 −

1, 2φ(lm)] binary linear code with the weight distribution in Table 2.

Table 2. The weight distribution of the codes of Theo-
rem 2.

Weight ω Multiplicity Aω

0 1
1
4
q(q − 1− (q−1)S(a)

lm
) 1

1
4
q(q − 1−√

q +
(1+

√
q)S(a)

lm
) 1

2
(q − 1)(1 + S(a)

lm
)

1
4
q(q − 1 +

√
q +

(1+
√
q)S(a)

lm
) 1

2
(q − 1)(1− S(a)

lm
)

1
4
q2 q2 − q − 1

Proof. Assume that (u, v) 6= (0, 0). By Lemma 3.1 and Lemma 3.5,
wt(c(u,v)) has only four values, that is,



















ω1 =
1
4
q(q − 1− (q−1)S(a)

lm
),

ω2 =
1
4
q(q − 1−√

q +
(1+

√
q)S(a)

lm
),

ω3 =
1
4
q(q − 1 +

√
q +

(1+
√
q)S(a)

lm
),

ω4 =
1
4
q2.

By the computation of |N(u, v)| in Lemma 3.5 and Corollary 3.9, it
is easy to get the multiplicity Aωi

of ωi. They are listed as follows.














Aω1 = 1,

Aω2 =
1
2
(q − 1)(1 + S(a)

lm
),

Aω3 =
1
2
(q − 1)(1− S(a)

lm
),

Aω4 = q2 − q − 1.
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Then we get the weight distribution of Table 2. The proof is finished.
�

Example 3.13. Let (l, m, a, b) = (3, 2, 1, 1). Then, the corresponding
code CD(a,b)

has parameters [2047, 12, 448] and weight enumerator 1 +

x448 + 49x960 + 14x1216 + 4031x1024.

Example 3.14. Let (l, m, a, b) = (5, 1, 1, 1). Then, the corresponding
code CD(a,b)

has parameters [127, 8, 32] and weight enumerator 1+x96+

251x64 + 3x32.

Remark 3.15. In Example 3, when (l, m, a, b) = (5, 1, 1, 1), the last
two weights of CD(a,b)

equal. So it is a 3-weight code.

3.4. Weight hierarchy of CD(a,b)
in (3.1). LetHr be an r-dimensional

subspace of F2
q and β1, β2, · · · , βr be an F2-basis of Hr. We set

N(Hr) = {x = (x, y) ∈ F2
q : Tr(ax

q−1
lm +by) = 0,Tr(x·βj) = 0, 1 ≤ j ≤ r}.

Then, N(Hr) = (D(a,b)∩H⊥
r )∪{(0, 0)}, which concludes that |N(Hr)| =

|D(a,b) ∩H⊥
r |+ 1.

So, by Remark 3.6 and the proof of proposition 2.1, we have

dr(CD(a,b)
)

= n−max
{

|D(a,b) ∩H2φ(lm)−r| : H2φ(lm)−r ∈ [F2
q , 2φ(l

m)− r]p

}

(3.2)

= n−max
{

|N(Hr)| : Hr ∈ [F2
q , r]p

}

+ 1.

(3.3)

Proposition 3.16. Define BHr
=

∑

(x,y)∈F2
q

∑

β∈Hr
(−1)Tr(β·(x,y)+ax

q−1
lm +by).

Then,

dr(CD(a,b)
) = n− 1

2r+1
q2 − 1

2r+1
max

{

BHr
: Hr ∈ [F2

q, r]p

}

+ 1.
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Proof. By the orthogonal property of additive characters, we have

2r+1|N(Hr)|

=
∑

x=(x,y)∈F2
q

(

∑

z∈F2

(−1)Tr(z(ax
q−1
lm +by))

r
∏

i=1

∑

xi∈F2

(−1)Tr(xi(x·βi))
)

=
∑

x=(x,y)∈F2
q

(

∑

z∈F2

(−1)Tr(z(ax
q−1
lm +by))

∑

β∈Hr

(−1)Tr(β·x)
)

=
∑

x=(x,y)∈F2
q

(

(

1 + (−1)Tr(ax
q−1
lm +by)

)

∑

β∈Hr

(−1)Tr(β·x)
)

=
∑

x=(x,y)∈F2
q

∑

β∈Hr

(−1)Tr(β·x) +
∑

x=(x,y)∈F2
q

∑

β∈Hr

(−1)Tr(β·x+ax
q−1
lm +by)

= q2 +
∑

x=(x,y)∈F2
q

∑

β∈Hr

(−1)Tr(β·x+ax
q−1
lm +by),

where the last equation comes from

∑

x=(x,y)∈F2
q

∑

β∈Hr

(−1)Tr(β·x) =
∑

x=(x,y)∈F2
q

1 +
∑

x=(x,y)∈F2
q

∑

(0,0)6=β∈Hr

(−1)Tr(β·x)

= q2 +
∑

(0,0)6=β∈Hr

∑

x=(x,y)∈F2
q

(−1)Tr(β·x) = q2.

So, the desired result is obtained. Thus, we complete the proof. �

In the following sequel, we shall determine the weight hierarchy of
CD(a,b)

by calculating BHr
in Proposition 3.16 and |D(a,b) ∩ H2φ(lm)−r|

in (3.2).

Theorem 3.17. Let a ∈ F∗
q and CD(a,0)

defined in (3.1). Then

dr(CD(a,0)) =







1
2
q
(

1− 1
2r

)(

q −√
q +

(q+
√
q)S(a)

lm

)

, if 1 ≤ r ≤ 1
2
φ(lm),

1
2
q
(

q + 1 + (q−1)S(a)
lm

)

− 1
2r
q2, if 1

2
φ(lm) < r ≤ 2φ(lm).
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Proof. When 1 ≤ r ≤ 1
2
φ(lm), by the definition of BHr

, we have

BHr
=

∑

x=(x,y)∈F2
q

∑

β∈Hr

(−1)Tr(β·x+ax
q−1
lm )

=
∑

(x,y)∈F2
q

(

∑

(β1,0)∈Hr

(−1)Tr(β1x+ax
q−1
lm ) +

∑

(β1,β2)∈Hr

β2 6=0

(−1)Tr(β1x+β2y+ax
q−1
lm )

)

= q
∑

(β1,0)∈Hr

∑

x∈Fq

(−1)Tr(β1x+ax
q−1
lm )

= q
∑

(β1,0)∈Hr

(

1 + S(a, β1)
)

.

So, by lemma 3.1, we obtain

1

q
BHr

=
∑

(β1,0)∈Hr

(

1− (
√
q + 1)S(a)

lm

)

+
√
q

∑

(β1,0)∈Hr

β1 6=0

(−1)wt((aβ
− q−1

lm

1 )(0))

+
(
√
q + q)S(a)

lm
.

By Corollary 3.9, there is an element β ∈ F∗
q such that wt((aβ− q−1

lm )(0))

is even. Recall that 2 is a primitive root modulo lm and q = 2φ(l
m),

we have q ≡ 1 mod lm, which concludes that
√
q ≡ −1 mod lm,

i.e. lm|√q + 1. Since
√
q − 1 and

√
q + 1 are coprime, we have

(βu)−
q−1
lm = β− q−1

lm (u
√
q−1)−

√
q+1

lm = β− q−1
lm for any u ∈ F∗√

q. Take an

r-dimensional subspace Lr contained in βF√
q and Put Hr = Lr × O,

then, for any (β1, 0) ∈ Hr, we have wt((aβ
− q−1

lm

1 )(0)) is even. Further-

more, by Lemma 3.3, we have −√
q < 1− (

√
q+1)S(a)

lm
<

√
q, which follows

that 1− (
√
q+1)S(a)

lm
+
√
q > 0. Hence, 1

q
BHr

reaches its maximum

2r
(

1− (
√
q + 1)S(a)

lm
+
√
q
)

+
(
√
q + q)S(a)

lm
−√

q.

So, by Proposition 3.16, we obtain the generalized Hamming weights
dr(CD(a,0)

) for 1 ≤ r ≤ 1
2
φ(lm).

When 1
2
φ(lm) < r < 2φ(lm), we have 1 ≤ 2φ(lm) − r < 3

2
φ(lm). By

Lemma 3.4 and Lemma 3.3, there exists an element (x, y) ∈ D(a,0) such

that x ∈ F∗
q, that is, Tr(ax

q−1
lm ) = 0 and x 6= 0. Then, for any u ∈ F∗√

q,

we have Tr(a(xu)
q−1
lm ) = Tr(ax

q−1
lm ) = 0. So, xF√

q × Fq ⊂ D(a,0). Note

that the dimension of the subspace xF√
q × Fq ⊂ F2

q is 3
2
φ(lm). Let
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H2φ(lm)−r be a (2φ(lm)− r)-dimensional subspace of xF√
q × Fq. So,

|H2φ(lm)−r ∩ D(a,0)| = 22φ(l
m)−r − 1,

Then,

max{|D(a,0) ∩H| : H ∈ [Fpm, 2φ(l
m)− r]p} = 22φ(l

m)−r − 1.

By the equation (2.1), for 1
2
φ(lm) < r < 2φ(lm), we have

dr(CD(a,0)
) = n− 22φ(l

m)−r + 1

=
1

2
q
(

q + 1 +
(q − 1)S(a)

lm

)

− 1

2r
q2.

Thus, we complete the proof. �

Theorem 3.18. Let a, b ∈ F∗
q and CD(a,b)

defined in (3.1). Then,

(1) If 1 ≤ r ≤ 1
2
φ(lm), we have

dr(CD(a,b)
) =















1
2
q2
(

1− 1
2r

)

− q(
√
q+1)

4

(

1− S(a)
lm

)

, if S(a) < 0,

1
2
q2
(

1− 1
2r

)

− q(
√
q+1)

4

(

1− S(a)
lm

)

+
q
√
q

2r+1

(

1−
√
q+1

lm
S(a)

)

,

if S(a) > 0.

(2) If 1
2
φ(lm) < r ≤ 2φ(lm), we have

dr(CD(a,b)
) =

1

2
q2(1− 1

2r−1
).

Proof. (1) When 1 ≤ r ≤ 1
2
φ(lm), by the definition of BHr

, we have

BHr
=

∑

(x,y)∈F2
q

∑

(β1,β2)∈Hr

(−1)Tr(ax
q−1
lm +β1x+β2y+by)

=
∑

(β1,β2)∈Hr

∑

x∈Fq

(−1)Tr(ax
q−1
lm +β1x)

∑

y∈Fq

(−1)Tr(β2y+by).

Let Prj2 be the second projection from F2
q to Fq defined by (x, y) 7→ y.

If b /∈ Prj2(Hr), then
∑

y∈Fq
(−1)Tr(β2y+by) = 0 for any (β1, β2) ∈ Hr,

which follows that BHr
= 0.

If b ∈ Prj2(Hr), by Lemma 3.1 again, we have

1

q
BHr

=
∑

(β1,b)∈Hr

∑

x∈Fq

(−1)Tr(ax
q−1
lm +β1x) =

∑

(β1,b)∈Hr

1 +
∑

(β1,b)∈Hr

S(a, β1)
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=



































∑

(β1,b)∈Hr

β1 6=0

(

1−
√
q+1

lm
S(a) + (−1)wt((aβ

− q−1
lm

1 )(0))√q
)

, if (0, b) /∈ Hr,

∑

(β1,b)∈Hr

β1 6=0

(

1−
√
q+1

lm
S(a) + (−1)wt((aβ

− q−1
lm

1 )(0))√q
)

+1 + q−1
lm

S(a),

if (0, b) ∈ Hr.

By Lemma 3.3, we have 1− (
√
q+1)S(a)

lm
+
√
q > 0. Take an element β ∈

F∗
q so that wt((aβ

− q−1
lm )(0)) is even and an (r−1)-dimensional space Lr−1

of βF√
q. Then, we have (βu)−

q−1
lm = β− q−1

lm (u
√
q−1)−

√
q+1

lm = β− q−1
lm for

any u ∈ F∗√
q. So, for any non-zero element β1 ∈ Lr−1, wt((aβ

− q−1
lm

1 )(0))
is even.
If S(a) < 0, set Hr = {(u, 0) : u ∈ Lr−1} ∪ {(ξ + u, b) : u ∈ Lr−1},

where ξ ∈ βF√
q\Lr−1. Then, (0, b) /∈ Hr. In this case, 1

q
BHr

reaches
its maximum

2r−1
(

1− (
√
q + 1)S(a)

lm
+
√
q
)

.

If S(a) > 0, set Hr = Lr−1 × bF2. Then, (0, b) ∈ Hr. In this case,
1
q
BHr

reaches its maximum

2r−1(1− (
√
q + 1)S(a)

lm
+
√
q) +

(
√
q + q)S(a)

lm
−√

q.

So, by Proposition 3.16, we obtain the generalized Hamming weights
dr(CD(a,b)

) for 1 ≤ r ≤ 1
2
φ(lm).

(2) For 1
2
φ(lm) < r ≤ 2φ(lm), we have 1 ≤ 2φ(lm)− r ≤ 3

2
φ(lm)− 1.

Take an element x ∈ F∗
q such that Tr(ax

q−1
lm ) = 0. Then, for any

u ∈ F∗√
q, we have Tr(a(xu)

q−1
lm ) = Tr(ax

q−1
lm ) = 0. Let Tb = {y ∈

Fq : Tr(by) = 0}, which is a (φ(lm) − 1)-dimensional subspace. So,
xF√

q×Tb ⊂ D(a,b). Note that the dimension of the subspace xF√
q×Tb ⊂

F2
q is

3
2
φ(lm)− 1. Let H2φ(lm)−r be a (2φ(lm)− r)-dimensional subspace

of xF√
q × Tb. So,

|H2φ(lm)−r ∩ D(a,b)| = 22φ(l
m)−r − 1,

Then,

max{|D(a,b) ∩H| : H ∈ [Fpm, 2φ(l
m)− r]p} = 22φ(l

m)−r − 1.

By the equation (2.1), for 1
2
φ(lm) < r < 2φ(lm), we have

dr(CD(a,b)
) = n− 1

2r
q2 =

1

2
q2(1− 1

2r−1
).

Thus, we complete the proof. �
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4. Concluding Remarks

The method of constructing linear codes by defining sets can be
generalized. In this paper, we give a formula for calculating the weight
hierarchies of linear codes constructed by the generalizes method. Then
we construct two classes of 3-weight or 4-weight binary linear codes
based on the generalized method. By the exponential sum theory, we
give the weight distributions of these codes. Using our formula, we
determine the weight hierarchies of these codes completely.
Let ωmin and ωmax be the minimum and maximum nonzero weight

of the linear code CD(a,0)
, respectively. It is easy to check that

ωmin

ωmax
>

1

2
.

By the results in [33], the binary linear codes CD(a,0)
in Theorem 1

are suitable for constructing secret sharing schemes with interesting
properties.
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