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NEWTON POLYGONS OF L-FUNCTIONS

ASSOCIATED TO DELIGNE POLYNOMIALS

JIYOU LI

Abstract. A conjecture of Le says that the Deligne polytope
∆d is generically ordinary if p ≡ 1 (mod D(∆d)), where D(∆d)
is a combinatorial constant determined by ∆d. In this paper a
counterexample is given to show that the conjecture is not true in
general.

1. Introduction

Let Fq be the finite field of q elements of characteristic p. Let ψ be
a fixed nontrivial additive character on Fq. For a Laurent polynomial
f ∈ Fq

[
x±1
1 , . . . , x±1

n

]
, define its associated L-function by

L∗(f, T ) = exp




∞∑

k=1

∑

x∈(F
qk

)∗

ψ(f(x))
T k

k


 .

A celebrated theorem of Dwork-Bombieri-Grothendieck implies that
L∗(f, T ) is a rational function inQ[ζp](x) [5], [9]. Furthermore, Deligne’s
theorem on the Riemann hypothesis [4] gives very nice descriptions of
the Archimedean absolute values of its zeroes and poles.
Adolphson and Sperber [2] show that if the Laurent polynomial f

satisfies a non-degenerate geometric condition, then L∗(f, T )(−1)n−1

is
indeed a polynomial in Z[ζp][x] of degree n!V(∆(f)). Here ∆(f) is
the Newton polytope (see [8] for details) of f , defined to be the convex
closure in Rn generated by the origin and all exponents of the nonzero
monomials (viewed as lattice points in Rn), and V (∆(f)) is the volume.

Since the Archimedean absolute values of the zeroes of L∗(F, T )(−1)n−1

are determined explicitly, it remains to study the most intriguing prob-
lem of determining the non-Archimedean absolute values. Equivalently,
it suffices to study the slopes of the Newton polygon of L∗(f, T )(−1)n−1

,
which is defined as follows.

Definition 1.1. Let g(x) =
∑d

i=0 cix
i ∈ 1 + xZ[ζp]. The (q-adic)

Newton polygon of g(x), denoted by NP (f), is defined to be the lower
1
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convex hull of the points (i, ordqci) in the plane R2. An example is
given in Figure 1.

Unfortunately, the computation of the Newton polygon of a given
L-function is very hard in general. However, as shown by the Dwork
theory, in many cases the combinatorial geometrical properties of the
Newton polytope may give very nice algebraic properties of f . For
instance, when f is non-degenerate, Adolphson and Sperber [2] show

that the Newton polygon of L∗(f, T )(−1)n−1

lies above a topological
lower bound called Hodge polygon, which will be briefly introduced as
follows.
Let ∆ be an n-dimensional convex integral polytope in Rn. Let C(∆)

be the cone generated by ∆ and the origin. For a vector u ∈ Rn, w(u)
is the smallest nonnegative real number c satisfying u ∈ c∆. If such c
does not exist, then we define w(u) = ∞.
For a co-dimension 1 face δ not containing 0 in ∆, let

∑n
i=1 eiXi = 1

be the equation of the hyperplane containipng δ in Rn. Since the
coordinates of vertices spanning ∆ are integers, the coefficients ei are
uniquely determined rational numbers. Let D(δ) be the least common
denominator of {ei, 1 ≤ i ≤ n} and D = D(∆) be the least common
denominator of all D(δ), where δ runs over all the co-dimension 1 faces
of ∆ which do not contain the origin.
For an integer k, let W∆(k) = #{u ∈ Zn | w(u) = k

D
}. Let

H∆(k) =

n∑

i=0

(−1)i
(
n

i

)
W∆(k − iD).

Definition 1.2. The Hodge polygon HP (∆) of ∆ is defined to be the
lower convex polygon in R2 with vertices

(
m∑

k=0

H∆(k),
1

D

m∑

k=0

kH∆(k)

)
, 0 ≤ m ≤ nD.

Equivalently, HP (∆) is the polygon starting from the origin with a
side of slope k/D with horizontal length H∆(k) for each integer 0 ≤
k ≤ nD.
For a finite integral polytope ∆ ⊂ Rn, let Mp(∆) be the set of non-

degenerate f over Fp with ∆(f) = f . To study how NP (f) varies
for f ∈ Mp(∆), by the Grothendieck specialization theorem [16], the
generic Newton polygon is given by

GNP (∆, p) := inf
f∈Mp(∆)

NP (f).
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0 (1, 0)

(5, 3)

(8, 7)

Figure 1. The Newton polygon (blue) and the Hodge
polygon (red) of f(x1, x2) = x1x

3
2 + x31x2 + x1x2.

Some work of computing GNP (∆, p) in one-dimensional cases has
been done [18] and in certain two variable cases in [13].
In [2] Adolphson and Sperber proved that for f ∈ Mp(∆), the graph

of NP (f) lies above the graph of HP (∆) with the same endpoints,
which can be stated as the following inequality NP (f) ≥ HP (∆). See
Figure 1 for an example.
Combining these inequalities we have

Proposition 1.3. For every prime p and every f ∈ Mp(∆),

NP (f) ≥ GNP (∆, p) ≥ HP (∆).

A natural question is then to decide when the second inequality
holds. For this purpose, we have the following definitions.

Definition 1.4. A Laurent polynomial f is called ordinary if NP(f)
= HP(∆).

Definition 1.5. The family Mp(∆) is called generically ordinary if
GNP (∆, p) = HP (∆).

It is known that a necessary condition for GNP (∆, p) = HP (∆) is
p ≡ 1 (mod D(∆)). Adolphson and Sperber [1] conjectured that the
converse is also true.

Conjecture 1.6 (Adophson-Sperber). If p ≡ 1 (mod D(∆)), then
Mp(∆) is generically ordinary.

This is a generalization of a conjecture of Dwork [6] and Mazur [12].
Wan showed in [15] that Conjecture 1.6 is true for n ≤ 3. Furthermore,
he proved the following theorem.
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O

∆

δi

Figure 2. A facial decomposition for a 3 dimensional polytope.

Theorem 1.7 (Wan). For any n ≥ 4, there are explicitly constructed
counterexamples for the A-S conjecture. However, a weaker version
holds: there is an effectively computable integer D∗(∆) such that if
p ≡ 1 (mod D∗(∆)), then GNP (∆, p) = HP (∆).

Roughly speaking, one of the most important techniques of Wan’s
proof is a decomposition theorem which decomposes ∆ into small nice
pieces and reduce the problem to small problems which are easier to be
checked (see Figure 2 for an illustration). Then Wan developed several
very useful decomposition theorems including the star decomposition,
the boundary decomposition [15] and the collapsing decomposition [17].
Suppose ∆ = ∆(f) and thus we can write f as

f =
∑

I∈∆∩Zn

aIx
I .

Similarly, for a face δ ⊆ ∆, define

f δ =
∑

I∈δ∩Zn

aIx
I .

Theorem 1.8 (Wan’s facial decomposition theorem). Suppose f is
non-degenerate (See [2] for the definition). Let {δi, 1 ≤ i ≤ s} be the
set all co-dimension 1 faces of ∆(f). Then f is ordinary if and only if
each f δi is ordinary.

In particular, it turns out that if all f δi’s are diagonal, then we have
effective methods to determine if they are ordinary. Since the cases for
diagonal Laurent polynomials are very easy to deal with, this decom-
position theorem will immediately give good nontrivial applications.
Conjecture 1.6 is true in many important cases as showed by Wan

[15] and more interesting examples are yet to be classified. Motivated
by this, Le [11] studied an important class of Laurant polynomials, in
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which f is given by

(1.1) f(x0, x1, . . . , xn) = x0h(x1, x2, . . . , xn)+g(x1, x2, . . . , xn)+1/x0,

where deg h = d, deg g < d/2, and h is an n-variable Deligne polyno-
mial, which will be introduced in Section 2. We are interested in the
A-S conjecture for this family of polynomials.

Conjecture 1.9. Let f be a generic polynomial given in 1.1 and let
∆ = ∆(f). Then GNP (∆, p) = HP (∆) if and only if p ≡ 1 (mod D(∆)).

Recall Mp(∆) is the set of non-degenerate f over Fp with ∆(f) = f .

Let M̃p(∆) ⊆ Mp(∆) be the set of non-degenerate f of shape 1.1 with
∆(f) = ∆, and let

G̃NP (∆, p) := inf
f∈M̃p(∆)

NP (f).

Since clearly G̃NP (∆, p) ≥ GNP (∆, p) ≥ HP (∆), a slightly stronger
conjecture arises.

Conjecture 1.10 (Le, 2013). G̃NP (∆, p) = HP (∆) if and only if
p ≡ 1 (mod D(∆))).

Le proved this conjecture for odd d and this implies that the A-S
conjecture for this family holds for odd d. He then conjectured that it
is also true for even d.
In this paper we give a counterexample to this conjecture.

Theorem 1.11. Le’s conjecture is false in general.

Note that the reason that Le’s conjecture fails is because when d

is even, the family polynomials M̃p(∆) studied in this paper and the
family of polynomials Mp(∆) are not identical. In other words, the
family Le considered is slightly smaller and thus is not a universal
family. A natural question is to determine whether Le’s conjecture
is true when the family of f defined by 1.1 becomes larger, i.e., the
condition ”deg g < d/2” is replaced by ”deg g ≤ d/2”.

2. A counterexample to Le’s conjecture

A polynomial f(x) = f(x1, x2, . . . , xn) in Fq[x1, x2, . . . , xn] is called a
Deligne polynomial if its leading homogeneous form fd defines a smooth
projective hypersurface in the projective space Pn−1, where d is the
degree of f . Deligne polynomials were extensively studied by Deligne
[4], Katz [10], Browning and Heath-Brown [3], Le [11], Fu and Wan [7].
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(−1, 0, 0)

O

(1, 0, 0)

(1, 0, d)

(1, d, 0)

Figure 3. ∆ ⊇ ∆d ⊇ δd (δd is the blue triangle)

Deligne shows that if f is a Deligne polynomial, then L∗(f, T )(−1)n−1

is polynomial of degree (d − 1)n and this fact immediately gives a
fundamental estimate

|
∑

x∈F
qk

ψ(f(x))| ≤ (d− 1)nq
k
2 .

Motivated by the study of exponential sums, it is natural to consider
a general class of Laurent polynomials of the following form

f(x0, x1, . . . , xn) = x0h(x1, x2, . . . , xn) + g(x1, x2, . . . , xn) + 1/x0,

where deg h = d, deg g < d/2, and h is a Deligne polynomial in n
variables.
From now on, ∆ is always used to denote the Newton Polytope of

f and e0, e1, . . . , en be the standard basis for Rn+1. Let δd be the
polytope spanned by −e0, e0 + de1, . . . , e0 + den, and δ′d spanned by
e0, e0 + de1, . . . , e0 + den. They are the only two co-dimension 1 faces
of ∆ that do not contain the origin. Let ∆d(∆

′
d, respectively) be the

convex hull of δd(δ
′
d, respectively) and the origin. Please see Figure 3

for an example.
Since the defining equation of δd is

X1 −
2

d
X2 −

2

d
X3 − · · · −

2

d
Xn+1 = 1,
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one computes that

D(∆d) =

{
d d is odd;
d
2

d is even.

For simplicity we denote D(∆d) by D . The Hodge polygon HP (∆d)
can be determined explicitly. We would like to know if ∆d satisfies
Conjecture 1.6.

Let M̃p(∆d) ⊆ Mp(∆d) be the set of non-degenerate f of shape 1.1
with ∆(f) = ∆d. Let

G̃NP (∆d, p) := inf
f∈M̃p(∆d)

NP (f).

Note that G̃NP (∆d, p) ≥ GNP (∆d, p) ≥ HP (∆d).
ByWan’s facial decomposition theorem, Le’s conjecture is then equiv-

alent to

G̃NP (∆d, p) = HP (∆d) ⇐⇒ p ≡ 1 (mod D).

Applying the regular decomposition theorem, Le [11] proved that

Theorem 2.1. If p 6≡ 1 (mod D) then GNP (∆d, p) lies strictly above
HP (∆d). In particular, for any odd d, p ≡ 1 (mod D) if and only if

G̃NP (∆d, p) = HP (∆d).

This implies that A-S conjecture for the family of polynomials (1.1)
holds for odd d. Le then conjectured that it also holds for even d. We
now give a counterexample to this conjecture.

Theorem 2.2. Le’s conjecture is false in general.

Proof. Recall M̃p(∆d) ⊆ Mp(∆d) be the set of non-degenerate f of
shape 1.1 with ∆(f) = ∆d. It suffices to prove

G̃NP (∆d, p) 6= HP (∆d).

Let f be a polynomial in M̃p(∆d). If we define

f δd = x0h(x1, x2, . . . , xn) + 1/x0,

and

f δ′
d = x0h(x1, x2, . . . , xn),

then equivalently the facial decomposition theorem implies that f is
generically ordinary if and only if both f δd and f δ′

d are generically
ordinary. Since Le has already showed that f δ′

d is generically ordinary,
his conjecture is then equivalent to the statement that the polynomial
f δd is also generically ordinary.
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•

•

••

• ◦

(1, 0, d) (1, d, 0)

(0, 0, d
2
)

(−1, 0, 0)

(1, 1, d− 1)

(0, d
2
, 0)

Figure 4. A face τ ⊆ δd for n = 2

Suppose now n = 2, 4 | d and p ≡ d
2
+ 1 (mod d). Let τ be a

1-dimensional face spanned by (1, d, 0) and (−1, 0, 0) on the two di-
mensional face δd (see Figure 4 for the example). Its matrixM is given
by

M =

[
−1 1
0 d

]
.

Clearly detM = −d.
Let r = (r1, r2). Solving the system of linear equations

M

(
r1
r2

)
≡ 0 (mod 1), ri ∈ Q ∩ [0, 1),

we have

r1 = r2 =
k

d
(0 ≤ k ≤ d− 1).

This gives w(r) = 2k
d
and hence r is stable for even k.

However, since p ≡ d
2
+ 1 (mod d), {pr1} = {pr2} = { (1+d/2)k

d
}, for

odd k and k < d
2
we have {pr1} = {pr2} = k

d
+ 1

2
. This shows that

w(r) is not stable for odd k and k < d
2
and hence δ is not generically

ordinary.
Let Π1 be the sub polytope spanned by (0, 0, 0), (−1, 0, 0), (1, d, 0)

and (1, d− 1, 1) (please see the figure below for an illustration). Since
its face τ is not generically ordinary, Π1 is also not generically ordinary.
By the boundary decomposition theorem ([15], Theorem 5.1, see also
Figure 5 for the graph) ∆d is not generically ordinary. The proof is
complete.
�

Acknowledgement. The author wishes to thank Professor Daqing
Wan for his instructive suggestions.
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(−1, 0, 0)

(1, 0, 4)

(1, 1, 3)

(1, 2, 2)

(1, 3, 1)

(1, 4, 0)

Π1(0, 2, 0)

Figure 5. A boundary decomposition for the polytope
∆d, d = 4, n = 2
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