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Abstract

In this work, we present a number of generator matrices of the
form [loy, | Tx(v)], where Iy, is the kn x kn identity matrix, v is an
element in the group matrix ring Ms(R)G and where R is a finite
commutative Frobenius ring and G is a finite group of order 18. We
employ these generator matrices and search for binary [72, 36, 12] self-
dual codes directly over the finite field Fo. As a result, we find 134
Type I and 1 Type II codes of this length, with parameters in their
weight enumerators that were not known in the literature before. We
tabulate all of our findings.
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1 Introduction

A search for new binary self-dual codes of different lengths is still an ongoing
research area in algebraic coding theory. Many researchers have employed
various techniques to search for binary self-dual codes of different lengths
with new parameters in their weight enumerators. A classical technique is
to consider a generator matrix of the form [I,, | A,], where I, is the n x n
identity matrix and A,, is some n X n matrix with entries from a finite field
IFy. Of course, if we were to define the matrix A,, in terms of n? independent
variables, then only for the finite field Fy we would have a search field of on’
which is not practical. Therefore, many researchers have considered matrices
A, that are fully defined by the elements appearing in the first row - this
reduces the search field from 2" to 2". For example, one can consider the
matrix A4,, to be a circulant or a reverse circulant matrix.

In [12], T. Hurley introduced a map o(v), where v is an element in the
group ring RG with |G| = n, that sends v to an n x n matrix that is fully
defined by the elements appearing in the first row - these elements are from
the ring R or finite field F,. By employing different groups G one can obtain
different n x n matrices as images under the map ¢ and this is the advantage
of this map. In [9], the authors consider a generator matrix of the form
[I,, | o(v)] for various groups G to search for new binary self-dual codes of
length 68 with a success. Recently in [4], the authors extended the map o(v)
so that v € RG gets sent to more complex n X n matrices that are also fully
defined by the elements appearing in the first row. They name this map as
Q(v) and call the corresponding n x n matrices, the composite matrices -
please see [4] for details. In [5], generator matrices of the form [7,, | Q(v)] are
considered to search for binary self-dual codes.

The above two maps, ¢ and €2, both send an element v from the group ring
RG to an n x n matrices that are fully defined by the elements appearing in
the first rows. Recently in [8], the authors extended the map o and considered
elements from the group matrix ring My (R)G rather than elements from the
group ring RG. They defined a map that sends an element from the group
matrix ring My (R)G to a kn x kn matrix over the ring R. They called this
map 7x(v) - please see [§] for details. The advantage of this map is that
it does not only depend on the choice of the group G, but it also depends
on the form of the elements from the matrix ring My (R), that is, the form
of the k x k matrices over R. In this work, we employ the map 74(v) and
consider generator matrices of the form [Iy, |7x(v)] with k = 2 and groups of



order 18 to search for binary self-dual codes with parameters [72, 36, 12]. We
find many such codes with weight enumerators that were not known in the
literature before.

The rest of the work is organized as follows. In Section 2, we give prelim-
inary definitions and results on self-dual codes, special matrices, group rings
and we also recall the the map 7(v) that was defined in [8]. In Section 3,
we present a number of generator matrices of the form [Iy, | 7(v)] for k = 2
and groups of order 18. For each generator matrix, we fix the 2 x 2 ma-
trices by letting them be some special matrices that we define in Section 2.
In Section 4, we employ the generator matrices from Section 3 and search
for binary self-dual codes with parameters [72,36,12]. As a result we find
134 Type I and 1 Type II binary [72, 36, 12] self-dual codes with parameters
in their weight enumerators that were not previously known. We tabulate
our results, stating clearly the parameters of the obtained codes and their
orders of the automorphism group. We finish with concluding remarks and
directions for possible future research.

2 Preliminaries

2.1 Codes

We begin by recalling the standard definitions from coding theory. A code
C of length n over a Frobenius ring R is a subset of R". If the code is a
submodule of R™ then we say that the code is linear. Elements of the code C
are called codewords of C'. Let x = (x1,29,...,2,) and y = (y1,%2,-- -, Yn)
be two elements of R™. The duality is understood in terms of the Euclidean

inner product, namely:
<X7 y>E' = Z LilYi-
The dual C+ of the code C is defined as

Ct={xeR"|(x,y)g=0foralyeC}

We say that C' is self-orthogonal if C' C C*+ and is self-dual if C = C*.

An upper bound on the minimum Hamming distance of a binary self-dual
code was given in [16]. Specifically, let d;(n) and d;;(n) be the minimum
distance of a Type I (singly-even) and Type II (doubly-even) binary code of



length n, respectively. Then

d[[(n) < 4|_ i

|+ 4
< 24J+

and

A[Z]+4 if n#22 (mod 24)

Self-dual codes meeting these bounds are called extremal. Throughout
the text, we obtain extremal binary codes of different lengths. Self-dual codes
which are the best possible for a given set of parameters is said to be optimal.
Extremal codes are necessarily optimal but optimal codes are not necessarily
extremal.

2.2 Special Matrices and Group Rings

To understand the form of the generator matrices which we define later in
this work, we recall some basic definitions of some special matrices and theory
on group rings.

A circulant matrix is one where each row is shifted one element to the
right relative to the preceding row. We label the circulant matrix as A =
circ(ag, as ..., ay,), where o are ring elements. The transpose of a matrix A,
denoted by A", is a matrix whose rows are the columns of A, i.e., AT, = Aj;.
A symmetric matrix is a square matrix that is equal to its transpose. A
persymmetric matrix is a square matrix which is symmetric with respect to
the northeast-to-southwest diagonal. Later in this work, we only consider
2 x 2 persymmetric matrices with three independent variables for which we
use the following notation:

a; a2
persym(ay, az, az) = :
as ap

Let R be a ring, then if R has an identity 1, we say that u € R is a
unit in R if and only if there exists an element w € R with uw = 15.While
group rings can be given for infinite rings and infinite groups, we are only
concerned with group rings where both the ring and the group are finite. Let
G be a finite group of order n, then the group ring RG consists of > | ;i
o; € R, g; € G.



Addition in the group ring is done by coordinate addition, namely
Z @;g; + Z Bigi = Z(Oéi + Bi)9i- (2.1)
i=1 i=1 i=1

The product of two elements in a group ring is given by

(Z aigi) (ZBJQJ) = Zaiﬁjgigj- (2.2)

It follows that the coefficient of g, in the product is ) gigy—gr Vi B;.

2.3 The map 7;(v) and generator matrices of the form
Urn | 7(v)]

We now recall the map 7(v), where v € M(R)G and where Mg(R) is a
non-commutative Frobenius matrix ring and G is a finite group of order n,
that was introduced in [§].

Let v = Ay,91 + Aggo + -+ Ay,9, € Mi(R)G, that is, each A, is a
k x k matrix with entries from the ring R. Define the block matrix oy (v) €
(My(R)),, to be

Agflm Agflgz Agflg3 Agflgn
A A A 1 A,
O'k(’U) — 92. g1 92' g2 92. 93 92' gn ] (2?))
Agigr Agtg Agiig Ay,
We note that the element v is an element of the group matrix ring

My (R)G.
Construction 1 For a given element v € My (R)G, we define the follow-
ing code over the matrix ring My (R):

Cr(v) = (ok(v)). (2.4)

Here the code is generated by taking the all left linear combinations of the
rows of the matrix with coefficients in M (R).

Construction 2 For a given element v € My(R)G, we define the fol-
lowing code over the ring R. Construct the matrix 74(v) by viewing each
element in a k by k£ matrix as an element in the larger matrix.

By (v) = (1(v)). (2.5)
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Here the code By (v) is formed by taking all linear combinations of the rows
of the matrix with coefficients in R. In this case the ring over which the code
is defined is commutative so it is both a left linear and right linear code.

We note that the map 7, (v) does not only depend on the choice of the
group G and the ring R, but also on the structure of the k x k matrices. Later
in this work, we employ this map and consider generator matrices of the form
[Ikn | 76(v)] for groups of order 18 and for k = 2. That is, we consider 2 x 2
matrices of different forms. We finish this section with some results on the
generator matrices of the form [y, | 7 (v)] from [g].

Lemma 2.1. Let G be a group of order n and v = Ajgy + Asgs + -+ +
A,gn be an element of the group matriz ring My (R)G. The matriz [I,|m:(v)]
generates a self-dual code over R if and only if 7o(v)7(v)T = —I},.

Recall that the canonical involution % : RG — RG on a group ring RG
is given by v* = 3"/ agg~ ", for v = 499 € RG. Also, recall that there is
a connection between v* and v when we take their images under the map o,
given by

o(v*) = o(v)’. (2.6)

The above connection can be extended to the group matrix ring M (R)G.
Namely, let * : My (R)G — My (R)G be the canonical involution on the group
matrix ring My (R)G given by v* = > Agg~!, for v = 3 Agg € Mi(R)G
where Ay are the kxk blocks. Then we have the following connection between
v* and v under the map 7%:

7 (v*) = T (v)7. (2.7)

Lemma 2.2. Let R be a finite commutative ring. Let G be a group of order
n with a fized listing of its elements. Then the map 1 : v — M(R)yy, is a
bijective ring homomorphism.

Now, combining together Lemma[21] Lemma[22land the fact that 7, (v) =
— 1y, if and only if v = —I}, we get the following corollary.

Corollary 2.3. Let M (R)G be a group matriz ring, where My(R) is a non-
commutative Frobenius matriz ring. For v € My(R)G, the matriz [, | (v)]
generates a self-dual code over R if and only if vv* = —Iy. In particular v
has to be a unit.

When we restrict our attention to a matrix ring of characteristic 2, we
have that —I; = I, which leads to the following further corollary:
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Corollary 2.4. Let My(R)G be a group matriz ring, where My(R) is a
non-commutative Frobenius matrix ring of characteristic 2. Then the ma-
triz [Ir,|m:(v)] generates a self-dual code over R if and only if v satisfies
vo* = Iy, namely v is a unitary unit in My(R)G.

3 Generator Matrices

In this section, we define generator matrices of the form [Is, | 2(v)] where
v € My(R)G, for groups of order 18 and some 2 x 2 matrices.

I Let G = (z,y | 2° = 9> = 1,2 = 27!) = Dig. Also, let v; =
> Zjl-:o Aitivsjy’xt € M(R)Dsg. Then:

= (3 )

A - CIRC(Al, Ag, Ag, e ,Ag),
B — REVC[RC(A:[Q, Alla Alg, e ,Alg),

where

and where A; € My(R). Now we define five generator matrices of the
following forms:

1.
G = [[36 | 7'2(@1)]7 (3-1)
with
Ay = circ(ay, az), As = circ(as, ay),
A7 = circ(ass, asa), A1 = circ(ass, ass).
2.
Gy = [Is6 | 72(v1)], (3.2)
with
Al = CiT’C(CLl, CLQ), e ,Ag = circ(a17, alg),
Ay = persym(alg, a2, a21), sy Ag = persym(%?n Qy4, CL45)-



1, = [136 | 72(1)1)]> (3-3)
with
Ay = circ(ay, az), Ay = persym(ag, ay, as), As = circ(ag, ay),
e
A7 = circ(ase, a17), As = persym(ass, arg, azo), Ag = circ(as, ag),
Ao = persym(ags, ass, ass), Ain = circ(ass, asr),
Ayy = persym(ass, agg, a3p), A1z = circ(ag:, asz),

)

Ay = circ(aq, as2), A1g = persym(ass, Gaa, ass),

4.
1” = [136 | 72(U1)]> (3-4)
with
Ay = persym(ay, as, as), ..., Ag = persym(ass, ass, azz),
Al() = C’éTC(agg, agg), ceey Alg = Ci’f’C(CL44, 0,45).
5.
V= Isg | (o)), (3.5)
with
Ay = persym(aq, as,a3), ..., Ay = persym(ay, as, ag),
Az = persym(a49, 50, 051), Ay = persym(a52, as3, @54)-

II. Let G = (z,y | 2° = y?> = 1L,2¥ = 27!) = Dy Also, let vy =
21'8:0 2]1':0 A1+i+8jl’2yj € M(R)Dlg Then:

T2(v2) = (;T AB;)



where
A= CIRO(A17 A2> A3> s ,Ag),

B = CIRC(Ay, A1, A, - .., Atg),

and where A; € M,(R). Now we define three generator matrices of the
following forms:

1.
Go = [I36 | T2(v2)], (3.6)
with
Ay = circ(ay, az), Ay = circ(as, ay),
A17 = Ci’f’C(Cng, CL34), Alg = Ci’f’C(CL35, CL36).
2.
Gy = [I36 | T2(v2)], (3.7)
with
Ay = persym(ay, as, az), ..., Ag = persym(ass, asg, asr),
Al() = C’iTC(agg, agg), ceey Alg = Ci’f’C(CL44, 0,45).
3.
Gy = [Is6 | 2(v2)], (3.8)
with
Ay = persym(aq, as, a3), ..., Ay = persym(ay, as, ag),
Az = persym(cug, 50, a51), oAy = persym(a52, 53, @54)-

ML Let G = (z | 2% = 1)C3. Also, let vg = 30370 Aryiya;a®™ €
M (R)C4g. Then:

A B C D FE F
Fm A B C D E
EN ' FF A B C D
7_2(1)3) = D E F A B C
¢ D F F A B
B C" D E F A

9



where
A=CIRC(A;, Ay, A3), B=CIRC(Ay, As, Ag),

B' = CIRC(Ag, Ay, As),C = CIRC(A7, Ag, Ag),
C' = CIRC(Ay, A7, Ag), D = CIRC (A, A11, A1),
D' = CIRC(Az, Ao, A1), E = CIRC(A13, Awa, Ass),
E' = CIRC (A5, A3, An), F = CIRC(Asg, A7, Arg),
F'=CIRC(Ass, Asg, A17),
and where A; € Ms(R). Now we define a generator matrix of the fol-

lowing form:

1.
Gs = [[36 | 7'2(?13)]7 (3-9)

with
Ay = circ(ay, az), Ay = circ(as, ay),

)

A7 = circ(ass, asa), A1 = circ(ass, ass).

IV. Let G = (z,y | 2° = 3 = 1,2y = yz) = C3 x Cs. Also, let vy, =
S0 Y i Artireja'y’ € M(R)(Cs x C). Then:

A B C
To(vg) = (C A B)

B C A

where

A= CIRC(Al,AQ, .. .,AG),B = CIRC(A7,A8, .. .,Alg),

C — C]RC(Alg, A14, ey Alg),
and where A; € My(R). Now we define two generator matrices of the

following forms:
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Gy = [136 | 7‘2(214)], (3-10)
with
Ay = circ(ay, az), Ay = circ(as, ay),

)

Ayr = circ(ass, ass), A1g = circ(ass, ass).

Gy = [Iss | T2(v4)], (3.11)
with

Ay = persym(ay, az, az), . .., Ay = persym(asgs, ass, az7),
AIO = C’iTC(CLQg, a29), cey Alg = Ci’f’C(CL44, CL45).

VLetG—(xy|:B—y Lzy = yr) = Cg x Cs. Also, let vy =

S0 i Avysipje'y’ € M(R)(Cg x Cs). Then:
A B C D E F
F A B C D FE
r(v5) = E F A B C D
D EFE F A B C
C D E F A B
B C D E F A

where

A= CIRC(Ay, Ay, Ay), B = CIRC(Ay, As, Ag),
E = CIRC(A13, A4, Ass), F = CIRC(Ase, A7, Ass),

and where A; € Ms(R). Now we define a generator matrix of the fol-
lowing form:

1.
Gs = [Is6 | m2(vs)], (3.12)
with
Ay = circ(ay, az), Ay = circ(as, ay),

A7 = circ(ass, asa), Aig = circ(ass, ass).
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We note that in the above generator matrices, the choices for the 2 x 2
matrices represent only a fraction of all the possibilities. There are many
more possibilities to consider. One may, for example, consider 2 x 2 matrices
with four independent variables, however, this would increase the number of
calculations.

4 New Binary Self-Dual Codes of length 72

In this section, we employ the generator matrices defined in Section 3 and
search for binary [72, 36, 12] self-dual codes.

The possible weight enumerators for a Type I [72,36,12] codes are as
follows ([6]):

Wiaq = 14 2By" + (8640 — 647)y™* + (124281 — 243 + 3844)y' + ...

Wiao = 14 2By" + (7616 — 647)y™* + (134521 — 248 + 3844)y' + . ..

where [ and ~ are parameters. The possible weight enumerators for Type II
(72,36, 12] codes are ([6]):

1+ (4398 + a)y"® + (197073 — 120)y"® + (18396972 + 660 )y™ + . ..

where « is a parameter.

Many codes for different values of o, 8 and v have been constructed in
121, 31,16, [7l, (8], 10y, [T, [13), 5] [1°7, 18], 19} 20]. For an up-to-date list of all known
Type I and Type II binary self-dual codes with parameters [72, 36, 12] please
see [14].

We now split the remaining of this section and tabulate our findings
according to the generator matrix we employ. We only list codes with pa-
rameters in their weight enumerators that were not known in the literature
before. All the upcoming computational results were obtained by performing
searches using a particular algorithm technique (see [15] for details) in the
software package MAGMA ([1]).

1. Generator matrices Gy, Gy, Gy, G/" and GY"

In the generator matrix Gi, the matrix 75(vq) is fully defined by the
first row, for this reason, we only list the first row of the matrices A
and B which we label as r4 and rp respectively.
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Table 1: New Type I [72,36, 12] Codes from G; and R

[Aut(C})|

B8
93
111

5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B
(0,1,1,0,0,1,0,1,1,1,1,0,1,1,1,0,1,1)

Type

36
36
36
36
36
36
36
36
36

(0,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0)

Wra

1

(1,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0,0)
(1,1,0,0,1,1,0,0,0,1,0,0,1,0,0,0, 1,0)
(0,1,0,0,1,0,1,0,1,0,0,0,1,0,0,0,0,0)

(1,0,0,0,1,1,0,1,0,1,1,1,0,0,0,0,1,1)

(0,1,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0)
(0,1,0,1,0,1,1,0,1,0,0,0,0,1,1,1,1,1)
(0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0, 1,0)
(0,0,1,1,0,1,0,1,0,1,1,0,0, 1,0, 1,0, 0)
(0,1,0,0,1,1,1,0,1,0,0,1,0,0,0, 1,0, 0)

(0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,1,1)

Waa

&

132

138

144

150

174

198

309

345

366

378

411

444

453
18 228
18 243
18 252
18 255
18 267
18 282
18 291
18 294
18 303
18 312
18 318
18 321
18 330
18 333
18 339
18 348
18 351
18 360
18 363
18 366
18 369
18 372
18 381
18 384
18 390
18 399
18 402
18 408
18 411
18 414
18 417
18 423
18 426
18 438
18 444

Waga

Cs

Waga
Wi

Cy

Cs

(0,1,1,1,1,0,0,1,1,1,1,1,0,0,0,0,0, 1)
(1,0,1,0,0,0,1,1,1,0,1,1,0,1,1,0,0,1)

Wraa
Waga

Cs

Cr

(1,0,0,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0)
(0,1,1,1,0,1,1,1,1,1,0,0,0,1,0,0, 1,0)
(0,1,1,0,1,1,0,1,0,0,1,0,1,0,1, 1,0,0)

(1,1,0,1,1,0,0,1,1,1,1,0,1,1,1,1,0,1)

(0,1,1,1,1,1,0,1,0,0,0,1,1,1,0,0,0,0)
(0,0,1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,0)
(0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1)
(1,1,0,1,1,0,1,0,0,0,1,1,0,0,0, 1,0,0)

(1,0,1,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1)

Waga
Wiaa

Cs

Gy

36
36
36
36
36
36
36
36
36
36

Waga

Cio

Waga

Cll

(0,0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,1)
(1,0,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,0)

Waa
Wiz

Crz

(1,0,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0,0)
(1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,0)
(1,0,1,0,0,0,1,0,1,0,1,1,0,1,0,0,1,0)
(0,0,0,1,1,1,1,1,1,1,0,1,0,1,0,0,1,0)
(1,0,0,1,0,0,1,1,1,1,0,1,1,0,0,1,0,1)
(1,1,1,0,0,1,1,1,1,0,0,1,1,0,1,1,1,1)
(1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0)

(0,1,1,0,0,0,0,1,0,0,1,1,0,0,1,0,1,1)

Cis

(0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0)
(0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)

(0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,1,1)
(1,0,0,0,1,1,0,0,0,0,0,1,0,1,1,1,0,0)

Waga
Wi

C114

Cli

Wiz

Cie

Waaa

Cir

(1,1,1,0,1,1,0,0,0,0,1,0,0,0,0,1,0,1)
(1,1,0,0,0,0,1,1,0,0,1,0,1,0,1,0,1,1)
(1,1,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,1)

(1,1,0,0,1,0,0,0,1,0,0,1,1,1,0,0,1,1)

Waga
Waga

018

C'19

36
36
36
36
36
36
36
36
36
36

Waga

Cyo

(1,0,1,0,0,1,1,1,0,1,1,1,1,0,1,1,0,1)

Waga

021

(1,1,1,1,1,1,0,1,1,1,1,0,1,0,0,1,0,0)
(1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1)
(0,1,1,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1)

(0,1,1,1,0,1,0,0,0,1,0,1,0,0,1,1,1,0)

Waa
Wiaa

C‘Z 2

(1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0,1,1)

CZ3

(1,1,1,0,0,1,0,1,0,1,0,0,0,1,0,0,0,0)
(0,1,0,1,1,1,1,0,1,0,0,0,1,0,1,1,1,0)

(0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,1,1)

Wiz

C24

(1,1,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0)
(0,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,1)

(0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,1,1,1)

Wraa

CZ 5

Wz

Cy

(0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,1,1,0)

Wz

Cor

(0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0)
(0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0)
(0,1,1,0,0,1,1,1,1,0,1,1,0,0,1,1,0,1)

(1,0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,1)

(1,0,1,0,0,1,1,1,0,1,1,1,0,1,1,1,1,0)

Waga
Waga

CZS

(0,0,1,0,0,1,1,0,0,1,1,1,0,1,0,0, 1,0)

Ca

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

(0,1,1,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
(0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,1,0)

Waga

CBO

Waga

CS 1

(1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,1,0)
(1,0,0,0,1,1,1,0,1,1,0,0,1,1,0,0,1,0)

(0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1)

(1,1,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0)
(1,0,0,1,1,1,1,1,1,1,0,1,1,0,1,0,0,1)
(0,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0,1,0)
(1,0,1,1,1,1,1,0,1,1,1,1,0,1,0,1,0,1)
(0,1,0,1,0,1,1,1,0,1,1,1,0,1,0,0,0, 1)

(0,1,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0)

Wraa
Wiaa

CB 2

Cii 3

Wiz

C34

(1,1,1,0,0,0,0,1,0,1,0,0,0,0,1,1, 1,0)
(0,0,1,1,0,0,1,0,0,0,0,1,0,1,0,0,1, 1)

Wiaa

C35

Waa1

C'36

(1,0,1,0,0,1,1,0,1,0,0,0,1,0,0,0,1,1)
(1,0,1,0,0,0,0,1,0,0,0,0,1,1,1,0, 1,0)

Wiz

CB 7

(0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,1)
(1,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,1,0)

(0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0)

Waga
Wi

C438

(1,1,0,1,0,0,1,0,1,1,1,1,0,0,1,1,1,0)

C39

(1,1,0,1,1,1,1,1,0,0,0,1,0,1,0,1,1,1)
(0,0,0,1,0,0,1,0,1,0,1,1,1,1,1,0,0,1)

Waga

Cyo

(0,1,0,0,1,0,0,0,1,1,0,0,1, 1,0, 1, 1,0)

Waga

C’4 1

(0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,1,1,1)
(1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,1,0,1)

(0,1,1,1,1,0,0,1,0,1,1,1,1,1,0,1,0,0)

(1,1,1,0,0,1,0,0,1,1,1,1,1,0,0,0,1,0)
(0,0,1,0,0,0,1,1,0,1,1,0,1,0,0,1,0,0)
(0,0,1,1,1,1,0,1,1,0,0,0,0,1,0,1,1,1)
(0,0,1,1,1,0,0,0,1,0,0,0,1, 1, 1,0, 1, 0)
(0,1,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0)
(0,1,1,1,0,0,1,0,1,1,0,1,0,0,0,0, 1,0)
(1,0,1,1,0,0,1,1,1,1,1,0,0,0,0, 1, 1,0)
(1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,0,1,1)
(0,0,0,1,0,0,1,1,0,1,1,0,1,0,0, 1,0, 0)

Wraa
Wiaa

C442

C/13

Wiz

Cu

(1,0,1,0,1,1,1,0,1,1,1,1,1,1,1,0,0,1)
(0,0,1,0,1,1,0,1,0,0,1,0,0,1,0,0,1,1)
(0,0,1,1,0,1,0,0,1,0,0,1,1,0,1,0,1,1)

Waaa

Cys

Waa

Cus

Waga

C1417

(1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0)
(0,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1,1,0)
(1,1,1,0,0,1,0,0,1,1,0,0,0, 1,1, 1,0,1)

Waga
Wi

C1418

C/lf)

Waga

CSO

13



[Aut(C5)|

B
18 450
18 462
18 471
18 474
18 480
18 486
18 489
18 498
18 507
18 516
18 525

B
(0,1,0,0,1,0,0,1,1,1,1,1,1,1,0,0,0,1)

A
(1,0,0,0,0,1,1,1,1,0,0,1,1,0,1,1,1, 1)

Type

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

Waga
Waaa

51

C

(1,0,1,1,1,1,0,1,1,0,1,0,0,1,1,1,0,1)
(1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0)

(1,0,0,1,0,1,0,0,1,1,1,1,1,1,0,0,0,0)
(0,0,0,0,0,1,0,1,1,1,1,0,1,1,1,0,0,1)

CB 2

Wi

CS 3

(1,1,0,0,1,1,0,1,1,0,0,1,1,1,1,1,1,1)

(0,0,1,0,0,1,1,0,0,1,1,1,1,0,0,1,0,0)

Waga

Cs4
C,

Waga

(1,0,0,0,1,1,0,0,0,1,1,0,1,1,1,1,0,0)

(0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1)
(0,0,1,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0)

55

(0,1,0,1,0,1,1,0,0,0,0,0,1,1,1,0,1,0)
(1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,1,1,1)
(1,1,0,1,1,0,1,0,1,0,0,1,1,0,1, 1,0,0)
(1,1,0,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1)
(0,1,0,0,0,1,1,0,1,0,1,0,0,1,0,0,1,1)

(0,0,0,0,1,0,0,0,1,0,1,1,1,0,1,1,0,0)

Wraa
Wiz

056

(1,0,0,0,0,1,0,1,0,1,0,0,0,1,1,1,0,0)

Csz

(0,0,1,0,1,0,0,0,1,1,1,0,0,0,1, 1,0, 0)

Wran

Css

(1,0,1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,1)
(1,0,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0,1)

(1,1,1,0,0,1,0,0,0,0,1,1,0,1,1,0,1,0)
(1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,1,1)
(0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,1,0,1)

Waa
Waa
Waga
Wi

C'59
CGO
CGI

540
36 393
36 399
36 402
36 444
36 453
36 462
36 477
36 489
36 507

18
36

(0,1,1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0)
(0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,0)

CﬁZ

Wi

Cﬁ!{

(0,0,0,0,0,1,1,0,1,0,0,1,0,1,0,1,0,0)

(1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,1,1,1)

Waga

Coa

(1,1,0,1,1,1,0,0,0,1,1,1,1,0,0,1,0,1)
(1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,1,1)

(1,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0)
(1,0,1,0,0,1,0,0,1,1,0,1,0,1,0,1,1,1)

Waga
Waaa
Wi

065
066

72

(0,0,1,0,0,0,0,1,1,0,0,1,0,0,1,0,0,0)
(0,0,1,0,1,0,0,1,1,1,1,0,0,1,1,1,1,0)

(0,1,1,0,0,1,1,1,0,0,1,1,1,0,1,1,1,1)

067

36
36
36
36
36

(1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,1)
(0,1,1,1,0,1,0,0,1,1,1,1,1,0,1,0,0,1)

(0,0,0,0,0,1,0,1,1,1,0,1,1,0,1,1,1,1)

Waga

Cis

(1,1,0,1,0,1,0,0,0,0,0,1,1,1,1,0,1,1)
(0,0,0,1,0,1,1,0,1,1,0,0,1,0,0,0,0,1)
(1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1)
(0,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,0,1)

(1,1,0,1,1,0,1,0,0,1,1,1,0,1,0,1,0,0)
(0,0,0,0,0,0,1,0,0,1,1,0,1,1,0,1,1,0)

Waa
Wiz
Wiz
Wi

CV69
C?O
C171

516

Cr

(1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,1,0,1)
(1,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,0,1)

(1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0)
(1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,1,1,0)

Wi

C73

36 534 36
36
36
36

36
36

Waaa

C

582
588

(0,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0, 1,0)
(1,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0,1)

(0,1,1,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0)

Waga

075

(0,0,0,1,1,1,1,0,0,1,0,0,0,0,0,1, 1,0)
(1,1,1,0,0,0,0,0,0,0,0,1,1,0,0, 1, 1,0)

Waga
Wi

C476

36 600
36 606
36 624
36 663
54 651

54

(0,1,0,0,0,0,1,0,1,1,1,0,1,1,1,1,1,0)

C'77

36
36
36
36
36

(1,1,0,0,1,0,1,1,0,1,0,0,1,1,1,0, 1,0)
(1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1)
(1,1,1,0,0,1,0,1,1,1,1,0,0,0,1,1,0,1)
(0,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0, 1,0)

(0,1,0,0,1,0,0,1,0,1,0,0,1,1,1,0, 1,0)

(0,0,0,1,1,1,0,0,0,0,0,1,1,0,0, 1, 1,0)
(0,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1)

(0,0,1,0,0,0,0,0,1,1,1,0,1,0,0,1,0,0)

Waga

Crs

Waa
Waa
Wiaa

C79
CSO

(0,1,1,1,0,0,0,1,1,0,0,1,1,0,1,1,0,1)
(0,0,1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,1)

CSI

657

Wraa

C8 2

5T A

the matrix 75(v1) is fully defined by the

/
1

2 x 2 matrices in the first row- some of them are circulant and some of
them are persymmetric. For this reason, we only list the first row of

the matrices Ay, As, As, ..

., A1s which we label as 74,,74,, 745, - -

such matrix and if the matrix A; is persymmetric, we only list the three

respectively. If the matrix A; is circulant, we only list the first row of
variables that correspond to such matrix.

In the generator matrix G

— T,

Table 2: New Type I [72,36,12] Codes from G| and R

[Aut(C5)|

B

0.0

TAr

A7
(1,0)

7’_46
(1,1

TAis
(0,0,1)

T A5

(0,0)

TAu
(1.01)

)

TAis

T As
(1,0)

T Ay
(0,1)

TA,
(1,0)

TAyo
(1.0.1)

Type

)

TAs
(0,1,0)

18

282

0

TAws
(1,1,0)

TArz

(0,0,0)

TAn
0.11)

Wag

083

(1,1,0)

(0,0,0)

14




Type ra -
1 As
0,0 : "
Csy Wran (,4) (0,0) (1,&) (SAi) (7“/15 T Ag r
’ Aro ra o ) 0, 0) - A7 TA
(1,0,1 11 A - ! (1,1) 8 A ;
) (0,0.1) (1,0.0) (1’?30) ran T (? 0 0.0 00 v B |Aut(C)|
,1,0) (1,1,0) (1,1,1) (1.?)161) (OTA” Tas 9 192
Type 7 7 ] 1,0) (0,0,0) : 18
A1 " Al
0. 2 T A
Css Wrag (,41) (1,0) (076) (SA.}) (7“/15 T Ag r
’ A1 rA - ) 1,0) - Ar A
10,1 1 o " ’ (1,0) 8 A ;
(1,0,1) (1,0,0) (1,0,1) (0’?)131) (1/,34“ . (EAO) 0.0 (@D v B |Aut(C)|
s Uy "1’1) (1.1°0 16 T Ay ,,.'
- e o8 oy aay S P
pe A —
21 T As
0,0 : "
Css Wran (,4) (1,0) (1,’6) (;Ai Tas T Ag r
(1:11.01) O,‘A“ T'A1z rA ) (170) (171) (0/16 "'As T Aq 5
11) (0.1,0) (0,1,0) (1,1,1) s T A 'r‘,;) 1) @1 B 1Aut(C)
) @l Loy 011 ©0.01) ©.0. 9 225
- ,1,1) (0,0,1) (0,0,1) ° 18
ype A T -
} (0,0) L T4 rA -
Cst Wt Tagp (Tl‘l) 11 (© i) (ZA(EJ TAq A
1 ’ . 7 g
0,1,0) (0 A‘in T Ay a o ) (1,1) (0,0) T'As TAg v B
eIy 000 010 0.00 00 " 0.0 01 B |Aut(C)
o 000 @iy 00 01y oo 9 2
- .0,1) (0,1,1) (0,0,1) 8 18
ype A T -
A .
0,1 : L :
Css Wi ( ) 0.0 (11) e " 45 A
o ST T
, U, 12 g ’ A y /
0 (@10 0.0 (.00 L1 w0 (ro’o) ©.0 (0.1 7 B Aut(C)
,0,0) (1,1,0) (1,0,1) (0?161 iz Tae 9 25
- 1,1) (0,0,1) (1,1,0) 5 18
ype rA T -
A .
1, 2 A :
Csg Wra ( 0 L0 i) 0t TAs A
) T A ra ’ (0,0) (0,0) 6 T, .
0O 01 .0 (.0 : X B (B (SR 5
1) (1.0.1) (0.0,1) ran e Lo (01 B |Aut(C)
01 (LLD (11.0) (11,0 Tan  Tas 9 25
. ,1,0) (0,1,1) (1,1,0) 8 18
/pe A —
21 T As
(1,0) T T TA
Coo Wraa ra (01> (0,0) § 6> Tas T Ag r
(0.41100) 1’ Ann Tam ,A (1, 0) (1 0) (1/11 TAs T aq ~
i} (1,0,1) (0,1,1) (010131) TAy Tars 7‘7 ) (0,1) ©,1) 6 |Aut(C;)]
01) (1,1,0) 1,1,1) @ I A Tas 9 2
- , L ) (1,0,1) (1 1) 61 18
ype A —
£1 TA-
1,0 : " A
Cor Wraa (,4) (1,0) (0, i) (SA;] A T Ag r
(O.AIIOU) Tau A r 0 (L1) (0,1) (0/171 A L /
1,0) (1,0,0) (1,0,1) (1 1(4)131) Tars i v Y (L) (LD v B [Aut(Cy)|
") 0.000) (L1 010 (LLD (L0 9
: 1.0) (LL1) (1,0,1) 270 18

15



Type A TAy TAs Ty TAs T Ag TA; T Ag Ay v B [Aut(Cy)]

0.0 0.0 @) L0 @) (Lo Lo (Lo 00
092 w/n,l TAyo TAn TA2 TAis TA TAs TAe TAr TAis 9 282 18
(1,1,1) (0,1,0) (1,0,1) (1.0,0) (0,1,0) (1,0,1) (071.1) (1.0,1) (1,1,0)

Type A Ay T"As T"Ay T As T Ag A7 T"As T Aq gl ﬁ |AUt (Cz) ‘
0.0 (0.0 (L) (00 (©1) (L) (00 (01 (01
093 w/n,l TAyg TApn TAy TA3 TA TAs TAg TA TAg 9 318 18

(0,0,1) (0,1,1) (0,0,1) (1,1,0) (1,0,0) (1,0,1) (1,1,0) (0,0,0) (1,1,0)

Type A Ay T'As T"A4 TAs T Ag A7 T"As T Ao gl ﬁ |AUt (Cz) ‘
O B 8 R G B (1X) R () B (X B N R N1 R Y
Coy w/n,l T'As T'An TApp T4y TAw T'As5 T'Ase Az TAs 9 336 18

(1,0,1) (1,1,1) (1,0,1) (0,0,1) (0,1,1) (1,1,0) (0,0,1) (1,0,0) (1,0,1)

Type T4, T Ay T4y T rAs TAg T4 TAs ra, v B Aut(Cy)]
G R G R O ) R (V0 ) B (X B (8 VR SV R O )
Cos Wray T A T A, T A T A, TAus T A T A TA, TArg 18 393 18

0,1,1) (0,1,0) (1,0,1) (1,0,0) (1,0,1) (1,0,1) (0,0,0) (0,0,1) (1,0,1)

In the generator matrix G/, the matrix m5(vy) is fully defined by the
2 x 2 matrices in the first row- some of them are circulant and some of
them are persymmetric. For this reason, we only list the first row of
the matrices Ay, Ag, As, ..., Ajg which we label as 74,,74,, 745, - - - s TAys
respectively. If the matrix A; is circulant, we only list the first row of
such matrix and if the matrix A; is persymmetric, we only list the three
variables that correspond to such matrix.

Table 3: New Type I [72,36,12] Codes from G} and R = [y

Type A T Ay TAs T A4 TAs T As TAq T Ag T Ag 7B [Aut(C)]
0,000 000 L 000 L0 000 L0 LLY) 00
Cos w/n,l T'Aso T'An TAp T4y TAw T'Ass T'Asg Az TAs 9 252 18

(1,1,0) (0,1) (0,1,1) (1,0) (1,1,1) (1,0) (1,0,1) (1,0) (0,0,0)

In the generator matrix Gi”, the matrix m»(v;) is fully defined by the
2 x 2 matrices in the first row- some of them are circulant and some of
them are persymmetric. For this reason, we only list the first row of
the matrices Ay, Ag, As, ..., As which we label as 74,,74,, 745, - -, T 44
respectively. If the matrix A; is circulant, we only list the first row of
such matrix and if the matrix A; is persymmetric, we only list the three
variables that correspond to such matrix.
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Table 4: New Type I [72,36, 12] Codes from G}" and R = F,

Type [ T A, [ T, T A5 T Aq A, T'Ag T Aq v B JAut(C)
(0,1,1) (1,0,1) (1,1,0) (1,1,1) (1,0,1) (0,1,0) (1,0,0) (1,0,1) (0,1,0)
Cor Wray T Ao T Ay T A TAs TAuy T A T A TA, TArg 9 291 18
(0,1 (0,00 (1,0 (0,1) (0,00 (1L,1) (0,00 (0,1)  (0,0)
Type A, T A, T A, ra, T A5 TAq A, T Ag T Aq v B JAu(C)
(1,1,0) (1,0,0) (0,1,0) (0,1,0) (0,0,0) (1,1,0) (0,1,0) (1,1,1) (0,0,1)
Cos Wray T Ao T Ay T A TAs T Ay T A T A TA, TArg 9 300 18
(0,1) (0,1 (0,00 (0,00 (1,1 (1,1 (0,1) (L,1) (1,1
In the generator matrix G;”, the matrix 75(v;) is fully defined by the
2 X 2 matrices in the first row that are all persymmetric. For this
reason, we only list the first row of the matrices Ay, Ay, A3, ..., Ag
which we label as r4,,74,,744,-..,74,, respectively. We only list the
three variables that correspond to such matrix.
Table 5: New Type I [72,36,12] Codes from G” and R = F,
Type [ T A, [ T, T A5 T Aq A, T'Ag T Aq v B JAut(C)
(1,1,1) (1,1,0) (0,1,1) (1,1,1) (1,1,0) (0,1,1) (1,0,0) (1,1,0) (1,1,0)
Cog W1 Tay Tan TArs Tay T T A TAg T Aur ras 9 213 18
(1,1,1) (0,1,1) (0,1,1) (1,1,1) (0,0,1) (1,1,0) (0,0,1) (0,1,0) (1,0,1)
Type 74, Ay TAs A TAs T A A T A ra, v B Aut(Ch)]
(0,1,1) (0,1,1) (1,0,1) (0,0,0) (0,0,0) (1,1,0) (1,0,0) (0,1,0) (0,0,1)
Clog I/mel rAw rAu I‘Au 7‘,413 7‘A14 7'A15 ”Am I‘A” 7‘A18 9 246 18
(0,1,1) (1,0,1) (1,1,0) (1,0,0) (0,0,0) (0,1,1) (1,0,0) (1,1,0) (1,0,1)
Type 74, T A, A, A A, T A A T A ra, v B Aut(Ch)]
(0,1,0) (0,0,0) (0,0,0) (0,0,1) (0,1,0) (1,0,1) (0,1,0) (1,1,0) (0,1,0)
ClOl I/mel rAw rAu I‘Au 7‘,413 7‘A14 7'A15 ”Am I‘A” 7‘A18 9 279 18
(1,1,1) (1,0,0) (1,0,1) (0,1,0) (1,0,0) (0,1,0) (1,0,0) (0,1,0) (1,0,1)
Type Ay T Ay T A3 TAy TAs T Ag I'Az T'As T Ay Y /3 ‘A’”<Cl) |
(1,0,1) (1,0,1) (1,1,0) (1,0,1) (1,1,0) (0,0,0) (1,0,1) (0,1,1) (0,1,1)
0102 I/1/72,1 TA1o TAn TArz TAss TA1a TAss T Asg TAs7 TAss 9 283 18
(1,0,0) (0,0,1) (1,1,1) (0,1,0) (1,0,0) (1,0,0) (1,0,0) (0,0,1) (0,0,1)
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Type 14, Ta, T Ay T A4 T T Ag Tz T As Tay v B |Aut(Cy)|
(1,1,1) (1,0,0) (0,1,0) (1,1,1) (1,0,0) (0,0,1) (0,1,0) (1,1,1) (1,0,0)
0103 I/mel TApg TAy, TAp TAis TA TAs TAe TA7 TAg 9 315 18
LIy 1) 010 001 LID 010 0.0 L1 0.0
Type 74, 7 Ay rag Ty Tas 7 Aq rA; ras Ta, v B Aut(Cy)]
(0,1,1) (0,1,0) (0,0,0) (0,0,1) (0,1,1) (1,0,0) (1,1,1) (1,1,1) (L,1,1)
Cioa I/1/72,1 T'Axp TAn TAip TAis TAua TAs TAse TAi7 TAwg 9 324 18
(0,1,0) (0,0,0) (1,0,0) (0,1,1) (0,1,0) (0,0,0) (1,0,1) (1,0,1) (0,1,1)
Type 74, 7 Ay rag Ty Tas 7 Aq ra; I As Ta, v B [Aut(C))]
(0,1,0) (0,1,0) (1,1,0) (0,0,0) (0,1,0) (0,0,0) (0,1,0) (0,1,1) (1,0,1)
0105 I/1/72,1 T'Axo TAn TAip TAis TAua TAs TAse TAiq TAg 9 354 18
(1,1,1) (1,0,1) (0,0,0) (1,1,0) (1,1,1) (1,1,0) (1,0,1) (1,1,0) (1,0,1)
Type 74, T a5 ray Ty Tas 7 Aq rA; T As Ta, 7 B Aut(Cy)]
(0,0,0) (1,1,0) (1,1,0) (0,0,1) (1,0,1) (1,0,0) (1,0,1) (1,1,1) (0,1,0)
Cios Wi Tay T, TA, T A TAp, T T A T Ay ras 9 357 18
(0,1,0) (0,11 (LL1) (0,00) (LL1) (O,L1) (0,01 (L1,1) (1,1,1)
Type 74, T A, T A3 T A, T A5 TAg T, T Ag T A v B Aut(C)]
0,000 (LL0) (0,L1) (LLL) (10,0 (1,L0) (LL1) (0,0,0) (I,1,0)
0107 I/mel TAg TAy, TAp TAis TA TAs TAe TA7 TAg 27 354 18
(1,1,1) (0,0,1) (0,0,1) (0,0,1) (0,1,0) (1,0,0) (0,0,0) (0,1,1) (0,0,0)
Type T A Ay T A4 ra, TAs TAq A TAg T Ay v B Aut(Cy))
0,0 ©OLD) (L0, L) (0,00 0L LY (LL0) (1,00
Cmg I/mel TAg TAy, TAp TAis TA TAs TAe TA7 TAg 27 405 18
(1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0) (1,0,0) (1,0,0) (0,1,0) (1,0,0)
Type T, T A, T A ra, T A, A T Ar T Ag T Aq v B JAu(C)
(0,0,1) (0,1,1) (0,1,1) (0,1,0) (0,1,0) (1,1,0) (0,0,0) (0,0,0) (1,1,0)
Clog I/mel T Ay TAp, TApy T A T A TAs TA T A7 TAg 27 444 18
(0,0,1) (0,0,1) (0,0,0) (1,1,0) (1,0,1) (1,0,0) (0,0,1) (1,0,0) (0,0,1)
2. Generator matrices G, G5 and G))

In the generator matrix Gs, the matrix 7 (vs)

18
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and B which we label as r4 and rp respectively.



Table 6: New Type I [72,36,12] Codes from Gy and R = F,

Type A B v B Aut(C)|
Cio Wmy  (0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0) (1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,0) 0 270 36
Cin Wma (0,1,1,1,1,1,0,0,1,0,1,1,0,1,1,0,1,1) (1,0,1,0,0,0,0,0,1,1,0,1,0,1,1,0,1,1) 18 216 36
Cis Wry (0,1,0,1,0,0,1,1,1,0,0,0,0,0,1,1,1,0) (1,0,0,1,1,0,0,0,0,1,1,1,0,0,1,0,1,1) 18 249 36
Cis Wmy (0,0,0,0,0,1,1,0,1,1,1,1,0,1,0,0,1,0) (0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,1,0) 18 309 36
Cia Wy (L1,1,0,1,0,1,0,1,0,0,0,0,1,1,1,0,1) (1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,0,1) 18 315 36
Cis Wy (1,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1) (1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,0,0) 18 327 36
Cus Wmy (0,0,0,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0) (1,1,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1) 18 354 36
Ciz Wy (0,1,0,1,0,0,1,1,1,0,0,0,0,0,1,1,1,0) (1,0,1,0,1,0,0,0,0,1,1,1,0,0,1,0,1,1) 18 435 36
Cis Wy (L1,1,1,0,0,1,1,0,0,0,1,1,1,1,0,1,0) (1,1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,1,0) 18 468 __ 36
Cis Wmy (1,0,1,0,0,0,1,1,1,1,0,1,1,1,1,0,1,0) (1,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0) 36 420 36
Ciao Wmy (1,1,0,1,0,0,1,1,0,0,1,1,1,1,1,0,1,0) (1,1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,1,0) 36 567 36
Cizi Wy (1,0,0,0,1,1,0,1,1,1,1,0,1,0,1,0,0,1) (1,0,1,1,1,0,0,0,1,0,1,1,0,0,0,0,0,0) 36 615 36
Cix Wy (1,0,0,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1) (0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0) 54 642 36
In the generator matrix Gj, the matrix 75(vq) is fully defined by the
2 x 2 matrices in the first row- some of them are circulant and some of
them are persymmetric. For this reason, we only list the first row of
the matrices Ay, Ag, As, ..., As which we label as r4,,74,, 745, - -, T 44
respectively. If the matrix A; is circulant, we only list the first row of
such matrix and if the matrix A; is persymmetric, we only list the three
variables that correspond to such matrix.
Table 7: New Type I [72,36,12] Codes from G and R = F,
Type 14, T A TAs A, s T g TA; T As ra, v B [Aut(Cy)|
@LLO) (1,0,0) (1L0,1) (L0,1) (LL1) (0.0.1) (0,1,0) (1,0,0) (I,1,0)
Cizs I/I/72vl T'Aio T'Ay T'Aip T'Ais TAyy T'Ass T'Ase T'Ai7 T'Asg 9 273 18
(0,00 (L0 (0,00 (0,00 (L1 (1,0 (0,00 (L1 (0,0
Type 74 T, T3 TAs TAs TAq A T As ray 7B [Aut(G)
(1,1,0) (1,1,0) (1,0,0) (0,0,1) (0,1,0) (1,1,1) (0,0,1) (0,0,1) (0,0,0)
0124 I/I/72vl TAo A T'Ayp T'Ays TAus TAss T'Ase T'Ayz TAs 9 297 18
(y @y (0 (01 (©1) (0,0 (0,1) (0,1) (0,1
Type 74 T, T3 TAs TAs TAg A TAs Ty v B [Aut (G
T10) (0,,1) (0,1,0) (0,0,1) (0,0,0) (1,1,0) (0,1,0) (0,0,0) (0,1,0)
0125 I/mel TAg TAy, TAp TAis TA TAs TAe TA7 TAg 9 306 18
(Lo) (0,0) (o1 (00 (L1 (LY (1 (0,0 (L1)
Type 14, T A, T A, T, A T A rA; rAs T, Y B Aut(Cy)]
(0,1,0) (1,1,0) (1,1,1) (0,0,1) (1,0,1) (1,0,0) (0,0,1) (0,1,0) (1,0,0)
Chas I/1/72,1 TA1o TAn TAip TAis TAua TAs TAse TAi7 TAg 9 309 18
(1,0) (0,0) (0,00  (1,0) (0,1) (1,0) (Lo (11 (1,0
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In the generator matrix G, the matrix 75 (v9) is fully defined by the 2 x2
matrices in the first row that are all persymmetric. For this reason, we
only list the first row of the matrices Ay, As, As, ..., A;g which we label
as TA,;,TAy, TAss - - -5 T Ay Tespectively. We only list the three variables
that correspond to such matrix.

Table 8: New Type I [72,36,12] Codes from G and R = Fy

Type A T"As T'As T"A4 T'As T"Ag A7 T"As T"Ag Y 3 ‘AUt(Cl)l

(0,0,1) (1,0,1) (1,0,0) (1,1,1) (1,0,0) (1,1,0) (1,1,0) (1,0,1) (1,1,0)

C127 I/mel TAg TAy, TAp TA3 TA TAs TAe TA7 TAg 0 465 36

(1,0,0) (0,0,0) (1,0,1) (0,1,1) (1,0,0) (1,0,0) (1,0,0) (1,1,1) (0,1,0)

Type  ra, A, T As T A4 A T Ao T Az T As ray 7 B [Aut(C))]

0,1,0) ©,0.1) (0,0,0) (1,0,1) (0,0,0) (0,1, (0,0,0) (1,1,0) (1,0,0)

Cios Wi T'Aio TAn TAr2 TAss TAiy T'Ass T'Aws TAr7 T'Ag 9 342 18

(0,1,1) (1,1,1) (1,0,0) (0,1,0) (0,0,0) (1,1,0) (0,1,0) (0,1,0) (1,0,0)

Type 14, T Ay g A T A5 T rag ray ray, v B |Au(G)

(0,0,0) (1,0,0) (0,0,0) (0,1,1) (0,0,0) (1,1,1) (0,1,1) (1,0,0) (0,1,1)

0129 I/1/72,1 TA1o TAn TAip TAis TAua TAs TAse TAiq TAg 9 345 18

(0,1,1) (0,1,0) (1,1,0) (1,1,1) (1,1,0) (1,1,0) (1,1,1) (0,0,1) (1,1,0)

Type 14, T Ay g A T A5 T rag ray ray v B |Au(G)

(0,0,0) (1,0,0) (1,0,1) (1,1;1) (1,0,1) (O,i,l) (1,0,0) (0,1,0) (1,1,0)

Chso I/1/72,1 T'Axg TAn Tz TAwz TAw TAus TAws TArr TAwg 9 37 18

(1,0,1) (1,1,0) (1,1,1) (0,0,1) (1,0,0) (1,1,0) (1,1,1) (0,0,1) (0,1,0)

3. Generator matrix Gs

In the generator matrix Gs, the matrix 75(vs) is fully defined by the
first row, for this reason, we only list the first row of the matrices
A, B,C, D, E and I which we label as r4,rg,7¢c,7p, 7g and rg respec-
tively.

Table 9: New Type I [72,36, 12] Codes from G3 and R = F,

Type rA B c D e 3 Y

B
Cisi Wpy (1,0,0,0,1,1) (0,1,1,1,0,1) (1,0,1,1,1,0) (1,0,0,0,1,0) (0,1,1,0,0,0) (1,1,1,1,1,1) 0 135 72

4. Generator matrix Gy

In the generator matrix G4, the matrix 75(vy) is fully defined by the
first row, for this reason, we only list the first row of the matrices A, B
and C' which we label as 74, rg and r¢ respectively.
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Table 10: New Type I [72,36,12] Codes from G4 and R = F

Type A B ro v B Aut(C)|

Cizz Wy (1,1,1,1,0,1,1,1,0,0,0,0) (0,1,0,1,0,0,1,0,1,1,0,1) (1,0,0,1,1,1,1,0,1,1,0,1) 0 165 72

In the generator matrix Gj, the matrix 7 (vy) is fully defined by the
2 x 2 matrices in the first row- some of them are circulant and some of
them are persymmetric. For this reason, we only list the first row of
the matrices Ay, Ao, As, ..., Ajg which we label as 74,,74,, 745, - - -y TAys
respectively. If the matrix A; is circulant, we only list the first row of
such matrix and if the matrix A; is persymmetric, we only list the three
variables that correspond to such matrix.

Table 11: New Type I [72,36,12] Codes from G} and R = F

Type A T Ay TAs TAs TAs T Ag TAr TAs T Ag 7B |Au(C)
(0,1,0) (1,0.1) (0,1,0) (0,0,0) (1,0,0) (1,0,0) (1,0,1) (1,1,0) (1,0,1)
0133 I/1/72,1 T'Axo TAn TAip TAis TAua TAs TAse TAi7 TAg 18 297 36

(1,0) (1,0) (0,0) (0,0) (1,0) (1,1) (0,1) (1,1) (0,0)

Type A T Ay TAs TAs TAs T Ag TAr TAs T Ag 7B [Au(C)
(1,1,0) (0,0,0) (0,1,1) (0,0,1) (0,0,1) (0,1,0) (0,0,0) (0,0,1) (1,1,0)
0134 I/1/72,1 T'Axo TAn TAip TAis TAua TAs TAse TAi7 TAg 36 378 36

(0,1) (1,1) (0,0) (1,0) (1,0) (1,1) (0,1) (1,0) (1,1)

5. Generator matrix Gs

In the generator matrix Gs, the matrix 75(vs) is fully defined by the
first row, for this reason, we only list the first row of the matrices
A, B,C, D, E and I which we label as r4,rg,rc,7p, 7g and rg respec-
tively.

Table 12: New Type II [72,36, 12] Codes from G5 and R = F,

A rB ro D rE rp @ |Aut(C;)|

Ciss (0,0,0,1,0,0) (0,0,1,0,0,0) (1,0,0,0,0,0) (0,0,0,1,1,0) (1,0,0,1,0,1) (0,0,1,1,0,1) —1980 432

5 Conclusion

In this paper, we defined generator matrices of the form [I, | 7%(v)] - this
idea was first introduced in [8]. Such generator matrices depend on the
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choice of the group G and the form of the k x k£ matrices. We specifically
considered groups of order 18 and some 2 x 2 matrices, that is, k = 2 in our
generator matrices. We then employed our generator matrices to search for
binary [72, 36, 12] self-dual codes. We were able to construct Type I binary
(72,36, 12] self-dual codes with new weight enumerators in Wrg 1:

(y=0, B={93,111,132,135,138,144, 150, 165, 174, 198, 270, 282, 309, 345,
366,378, 411, 444, 453, 465}),

(y=09, B={192,210,213,225,228, 246,255, 258, 261, 270, 273, 279, 282, 288,
291,297, 300, 306, 309, 315, 318, 324, 336, 342, 345, 354, 357, 375,

(v = 18, B = {216,228,243, 249, 252, 255, 267, 282, 291, 204, 297, 303, 309, 312,
315,318, 321, 327, 330, 333, 339, 348, 351, 354, 360, 363, 366, 369,
372, 381, 384, 390, 393, 399, 402, 408, 411, 414, 417, 423, 426, 435,
438, 444, 450, 462, 468, 471, 474, 480, 486, 489, 498, 507, 516, 525,
540}),

(v = 27, B = {354,405, 444}),

(v =36, 3 = 378,393,399, 402, 420, 444, 453, 462, 477, 489, 507, 516, 525, 534
567,582, 588, 600, 606, 615, 624, 663})

(v =54, B = {642,651,657})

Y

and Type II binary [72, 36, 12] self-dual codes with new weight enumerators:
(v = {—1980}),

A suggestion for future work is to consider generator matrices of the
form [Iy, | 7x(v)] for groups of orders different than 18 and for values of
k different than 2, to search for optimal binary self-dual codes of different
lengths. Another suggestion is to consider generator matrices of the form
[Ikn | Te(v)] over different alphabets, for example, rings, and explore the
binary images of the codes under the Gray maps.
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