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CORRELATION OF SHIFTED VALUES OF L-FUNCTIONS IN THE

HYPERELLIPTIC ENSEMBLE

PRANENDU DARBAR AND GOPAL MAITI

Abstract. The moments of quadratic Dirichlet L-functions over function fields have re-
cently attracted much attention with the work of Andrade and Keating. In this article,
we establish lower bounds for the mean values of the product of quadratic Dirichlet L-
functions associated with hyperelliptic curves of genus g over a fixed finite field Fq in the
large genus limit. By using the idea of A. Florea [14], we also obtain their upper bounds.
As a consequence, we find upper bounds of its derivatives. These lower and upper bounds
give the correlation of quadratic Dirichlet L-functions associated with hyperelliptic curves
with different transitions.

1. Introduction

The correlation of L-functions i.e., study of the mean values of product of shifted val-
ues of L-functions near the critical line has become central to number theory. Random
matrix theory has recently become a fundamental tool for understanding the correlation of
L-functions. Montgomery [22] showed that two-point correlations between the non-trivial
zeros of the Riemann ζ-function, on the scale of the mean zero spacing, are similar to the
corresponding correlations between the eigenvalues of random unitary matrices in the limit
of large matrix size and conjectured that these correlations are, in fact, identical to each
other.

Keating and Snaith [21] suggested that the value distribution of the Riemann zeta function on
its critical line is related to that the characteristic polynomials of random unitary matrices.
Conjectures for the moments of L-functions have been attempted for many decades, with
very little progress until the random matrix theory came into the subject.

The main observation is that the structure of the mean values of L-functions is more clearly
revealed if one considers the average of a product of L-functions, where each L-function is
evaluated at a location slightly shifted from the critical point.

In this article, we discus about the moments and correlation of Riemann zeta function
(belonging to unitary family), Dirichlet L-functions (contained in the symplectic family)
and quadratic Dirichlet L-functions associated with hyperelliptic curves of large genus over
a fixed finite field which are also members of the symplectic family. These families and their
random matrix analogs have been discussed from the perspective of the leading terms in the
asymptotic expressions by several authors (see [8], [9], [10], [3], [20], [21], [11] and [19]).

Our main goal of this article is to establish lower and upper bounds for the correlation
of shifted values of quadratic Dirichlet L-functions near the critical line associated to the
hyperelliptic curves of large genus over a fixed finite field.
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1.1. Moments of the Riemann Zeta function. A classical question in the theory of
Riemann zeta function is to determine the asymptotic behaviour of

Mk(T ) :=

∫ T

1

|ζ(1
2
+ it)|2k dt,

where k ∈ C, as T → ∞. It is believed that for a given positive real number k,

Mk(T ) ∼ ckT (log T )
k2,

where ck is a positive constant. Ramachandra [27] showed that

Mk(T ) ≫ T (log T )k
2

,

for any k ∈ N. Using moments of characteristic polynomials of random matrices, Keating
and Snaith [20], conjectured an exact value of ck for ℜ(k) > −1

2
. Assuming the Riemann

hypothesis (RH), Soundararajan [33] showed that for every positive real number k and ε > 0,

Mk(T ) ≪k,ε ckT (log T )
k2+ε(1.1)

and Harper [17] removed the exponent ǫ in the bound of (1.1).

A generalization of the moments of ζ(s) are the shifted moments, defined as

Mk(m)(T,α(m)) :=

∫ T

0

|ζ(1
2
+ it + iα1)|2k1 . . . |ζ(12 + it+ iαm)|2km dt,

where k
(m) = (k1, . . . , km) is a sequence of positive real numbers and α

(m) = (α1, . . . , αm) ∈
Rm with αi 6= αj for i 6= j. In [7], Chandee obtained lower and upper bounds ofMk(m)(T,α(m))
for some special choices of α(m) and for a large values of T . More precisely, she proved as-
suming the RH,

Mk(m)(T,α(m)) ≪k(m),ε T (log T )k
2
1+...+k2m+ε

∏

i<j

(
min

{
1

|αi−αj | , log T
})2kikj

and unconditionally

Mk(m)(T,α(m)) ≫k(m),α(m) T (log T )k
2
1+...+k2m

∏

i<j

(
min

{ 1

|αi − αj |
, log T

})2kikj

,

for sufficiently large T .

The moments of the derivatives of the Riemann zeta function were studied by several math-
ematicians. An analog of Soundararajan’s estimate (1.1) for the derivatives of Riemann zeta
function was obtained by Milinovich [24]. Under the RH, he showed that for every ε > 0,

∫ T

1

|ζ (l)(1
2
+ it)|2k dt ≪k,l,ε T (log T )k

2+2kl+ε,

where k, l ∈ N and ζ (l) is the l-th derivative of ζ .
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1.2. Moments of quadratic Dirichlet L-functions. Let χd be a real primitive Dirichlet
character modulo d given by the Kronecker symbol χd(n) =

(
d
n

)
. It is interesting to determine

the asymptotic behaviour of
∑

0<d≤D L(1
2
, χd)

k as D → ∞. Extending their approach to
the zeta function, using random matrix theory, Keating and Snaith [21] made the following
conjecture about the asymptotic behaviour of moments of Dirichlet L-functions L(1

2
, χd).

Conjecture (Keating, Snaith). For k fixed with ℜ(k) ≥ 0, as D → ∞
1

D

∑⋆

|d|≤D

L(1
2
, χd)

k ∼ ck (logD)
k(k+1)

2 ,

where ck is a positive constant and
∑⋆

indicates that the sum is over fundamental discrim-

inants.

In [30], Rudnick and Soundararajan obtained that for any rational number k ≥ 1,

1

D

∑⋆

|d|≤D

L(1
2
, χd)

k ≫k (logD)
k(k+1)

2 .

Assuming the generalized Riemann hypothesis (GRH), Soundararajan established that for
any positive real number k and ǫ > 0,

1

D

∑⋆

|d|≤D

L(1
2
, χd)

k ≪k,ǫ (logD)
k(k+1)

2
+ε .

In general, it is important to find asymptotic behaviour of the following correlation of shifted
values of Dirichlet L-functions:

Sk(m)(α(m), D) :=
∑⋆

d≤D

L(1
2
+ α1, χd)

k1 . . . L(1
2
+ αm, χd)

km ,

where k
(m) = (k1, . . . , km) be a sequence of real numbers and α

(m) = (α1, . . . , αm) be a
sequence of complex numbers with αi 6= αj for i 6= j.

Conrey et. al. [9] gave a conjecture on the asymptotic behaviour of Sk(m)(α(m), D). Anal-
ogous questions for higher degree L-functions have been studied by Milinovich and Turnage-
Butterbaugh [26].

1.3. Moments of L-functions in the hyperelliptic essemble. Let Fq be a finite field
of odd cardinality and Fq[t] be the polynomial ring over Fq in variable t. Let D ∈ Fq[t]
be a monic square-free polynomial. The quadratic character χD attached to D is defined

using quadratic residue symbol for Fq[t] by χD(f) =
(

D
f

)
and the corresponding Dirichlet L-

function is denoted by L(s, χD). It is often convenient to work with the equivalent L-function
L(u, χD) written in terms of the variable u = q−s.

Define hyperelltiptic ensemble Hn,q or simply Hn as

Hn = {D ∈ Fq[t] : D is monic, square free, and deg(D) = n} .
For each D in the Hyperelliptic essemble Hn, there is an associated hyperelliptic curve given
by CD : y2 = D(t). These curve are non-singular and of genus g given by

2g = n− 1− λ,(1.2)
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where

λ =

{
1, if n even,
0, if n odd.

Note that, g → ∞ as n does so. See section 2 for more details about the properties of
Dirichlet L-function L(s, χD) and their spectral interpretation.

Andrade and Keating [3] conjectured that as g → ∞,
∑

D∈H2g+1

L(1
2
, χD)

k = q2g+1 (Pk(2g + 1) + o(1)) ,(1.3)

where Pk is a polynomial of degree k(k+1)
2

. Assuming q ≡ 1 (mod 4), the conjecture (1.3) is
known for k = 1 from the work of Andrade [2], and the error term in the asymptotic formula
was improved by Florea [12]. In [13, 14], Florea also proved the conjecture (1.3) for k = 2, 3
and 4 assuming q ≡ 1 (mod 4). For n = 2g + 2, Jung [18] obtained that

1

|H2g+2|
∑

D∈H2g+2

L(1
2
, χD) = P (1)(g + 1) +

P ′(1)

log q
− P (1)ζA

(
1

2

)
+O

(
2g+1q−

g
2

)
,

where P (s) =
∏

P (1− (1 + |P |)−1|P |−s) and ζA
(
1
2

)
is defined in Section 2.

Andrade [1] established the following lower bound:

Theorem 1.1 (Andrade). For every even natural number k, we have

1

|Hn|
∑

D∈Hn

L(1
2
, χD)

k ≫k n
k(k+1)

2 .

On the other hand, A. Florea [[14], Theorem 2.7] found the following upper bound for a
single shifted L-function associated with hyperelliptic curves:

Theorem 1.2 (Florea). Let v = eiθ, with θ ∈ [0, π). Then for every positive k and any

ǫ > 0,

∑

D∈H2g+1

∣∣L
( v√

q
, χD

)∣∣k ≪k,ε q
2g+1 gε exp

(
kM(v, g) +

k2

2
V(v, g)

)
,

where M(v, g) = 1
2
log
(
min{g, 1

2θ
}
)

and V(v, g) = M(v, g) + 1
2
log g.

1.3.1. Shifted moments and main results. In this article, for fixedm-tuple k(m) = (k1, . . . , km) ∈
Nm, we shall investigate the following mean values of the product of m-shifted quadratic
Dirichlet L-functions:

Sn(v
(m),k(m)) :=

∑

D∈Hn

L
( v1

q
1
2
+α1

, χD

)2k1
. . .L

( vm

q
1
2
+αm

, χD

)2km
,(1.4)

where v
(m) = (v1, . . . , vm) ∈ Cm with vj = eiθj , θj ∈ (0, π] and αj ∈ [0, 1

2
) for j = 1, . . . , m.

Also, θj = θj(g) is a real valued function of g such that lim
g→∞

g|θj| and for i 6= j, lim
g→∞

g|θi−θj |

exists or equals ∞. Note that one can obtain the moments of L
(

v√
q
, χD

)
by allowing the

shifts αj to tend to 0.
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Throughout the article, we follow that n and g are connected via (1.2). Before stating our
main results, let us define

µ(v(m), g) =

m∑

j=1

kj log

(
min

{ 1

2|θj|
, g
})

,(1.5)

σ(v(m), g) = 2

(
m∑

j=1

k2
j

)
log g + 2

m∑

j=1

k2
j log

(
min

{ 1

2|θj|
, g
})

(1.6)

+ 4
∑

i<j

kikj

(
log
(
min

{
1

|θi−θj | , g
})

+ log
(
min

{
1

|θi+θj | , g
}))

.

For m = 2, we set

W = {j ∈ {1, 2} : lim
g→∞

g|θj| < ∞} and W c = {j ∈ {1, 2} : lim
g→∞

g|θj| = ∞}.(1.7)

We also define a constant depending on W and W c as

cv(2) = max

{
lim
g→∞

g|θ1|, lim
g→∞

g|θ2|, lim
g→∞

g|θ1 − θ2|, lim
g→∞

g|θ1 + θ2|
}
,(1.8)

where maximum is taken only over the finite entries of the set.

Remark 1. If |W | = 2 and |W c| = 0 then

cv(2) = max

{
lim
g→∞

g|θ1|, lim
g→∞

g|θ2|, lim
g→∞

g|θ1 − θ2|, lim
g→∞

g|θ1 + θ2|
}
.

If W = {1} and W c = {2} then cv(2) = limg→∞ g|θ1|. If W = ∅ and lim
g→∞

g|θ1−θ2| < ∞, then

cv(2) = lim
g→∞

g|θ1 − θ2|. When none of the limit is finite then cv(2) is an absolute constant.

We obtain a lower bound (of the conjectured order of magnitude1) for Sn(v
(2),k(2)) in the

large degree limit i.e. when n is sufficiently large and q is fixed.

Theorem 1.3. Let k(2) and v
(2) be as earlier. Assume that αj = O

(
1
g

)
for j = 1, 2. Then

for n large,

1

|Hn|
∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)∣∣∣∣
2k1
∣∣∣∣L
( v2

q
1
2
+α2

, χD

)∣∣∣∣
2k2

≫k(2),c
v
(2)

exp

(
µ
(
v
(2), g

)
+

1

2
σ
(
v
(2), g

))
,

where µ
(
v
(2), g

)
, σ
(
v
(2), g

)
and cv(2) are defined by (1.5), (1.6) and (1.8) respectively.

In this article, we will provide the complete proof of the Theorem 1.3 and from observations
in the footnotes [2, 5, 7], one can easily extend Theorem 1.3 to the following form.

Theorem 1.4. Let k(m) and v
(m) be as earlier. Assume that αj = O

(
1
g

)
for all j. Then

for n large,

1

|Hn|
∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)∣∣∣∣
2k1

. . .

∣∣∣∣L
( vm

q
1
2
+αm

, χD

)∣∣∣∣
2km

≫k(m),v(m) exp

(
µ
(
v
(m), g

)
+

1

2
σ
(
v
(m), g

))
,

where µ
(
v
(m), g

)
and σ

(
v
(m), g

)
are defined by (1.5) and (1.6) respectively.

1The conjectural order of magnitude of these L-functions in the hyperelliptic ensemble can be compared
with the autocorrelation of the random matrix polynomials (for example, see [[10], Eqs. (3.6) and (4.19)]).
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We also establish an upper bound of nearly the conjectured order of magnitude for the sum
Sn(v

(m),k(m)).

Theorem 1.5. With the assumption as in the Theorem 1.4, for any ǫ > 0,

1

|Hn|
∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)∣∣∣∣
2k1

. . .

∣∣∣∣L
( vm

q
1
2
+αm

, χD

)∣∣∣∣
2km

≪k(m),ε n
ε exp

(
µ
(
v
(m), g

)
+

1

2
σ
(
v
(m), g

))
,

where µ
(
v
(m), g

)
and σ

(
v
(m), g

)
are defined by (1.5) and (1.6) respectively.

Theorem 1.5 is also true for any fixed sequence k(m) of positive real numbers. Let us define
L(l)(u, χD) as the l-th derivative of L(u, χD). As an important consequence of Theorem 1.5,
we have the following upper bound.

Theorem 1.6. Let l ∈ N and ε > 0. For n large, we have

∑

D∈Hn

∣∣L(l)
(
q−1/2, χD

)∣∣k ≪k,l,ε |Hn|g
1
2
k(k+1)+lk+ε.

1.3.2. Applications. From the Theorem 1.5 and in light of (2.3) if we specialize n as n = 2g+1
and αj’s are zero then we recover Theorem 1.2.
The case of the mean value for L(q−1/2, χD) taken over H2g+2 was investigated by Jung [18].
Taking n = 2g + 2, we have the following corollary which generalizes the Theorem 1.2 :

Corollary 1.7. Let ε > 0. For n large, we have

1

|H2g+2|
∑

D∈H2g+2

|L(q−1/2, χD)|k ≪k,ε g
1
2
k(k+1)+ε.

Similarly, Theorem 1.6 provide upper bound for k-th moment of L(m)(q−1/2, χD) with
D ∈ H2g+1 and D ∈ H2g+2. More precisely,

Corollary 1.8. Let l ∈ N and ε > 0. For n large, we have

∑

D∈H2g+1

∣∣L(l)
(
q−1/2, χD

)∣∣k ≪k,l,ε q
2g+1g

1
2
k(k+1)+lk+ε,

∑

D∈H2g+2

∣∣L(l)
(
q−1/2, χD

)∣∣k ≪k,l,ε q
2g+2g

1
2
k(k+1)+lk+ε.

Theorem 1.4 and 1.5 can be related to the main results of [7] and [25]. In fact we can say

that L
(

v1

q
1
2+α1

, χD

)
and L

(
v2

q
1
2+α2

, χD

)
are essentially correlated when |θj| ≍ 1

g
for j = 1, 2 and

independent when one of θj ’s is much larger than 1
g
. More precisely, we have the following

corollaries.

Corollary 1.9. Let W and W c be defined by (1.7). For every ε > 0 and n large,

∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)
L
( v2

q
1
2
+α2

, χD

)∣∣∣∣
2k
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≪k,ε





|Hn| g2k(4k+1)+ε if |W | = 2,

|Hn| g3k
2+k+ε

|θ2|k2+k|θ1−θ2|2k2 |θ1+θ2|2k2
if W = {1},W c = {2},

|Hn| g2k
2+ε

|θ1θ2|k2+k|θ1−θ2|2k2 |θ1+θ2|2k2
if |W c| = 2, lim

g→∞
g|θ1 − θ2| = ∞,

|Hn| g4k
2+ε

|θ1θ2|k2+k|θ1+θ2|2k2
if |W c| = 2, lim

g→∞
g|θ1 − θ2| < ∞,

Corollary 1.10. With the assumption as in Corollary 1.9, for n large, we have

∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)
L
( v2

q
1
2
+α2

, χD

)∣∣∣∣
2k

≫k,u(2)





|Hn| g2k(4k+1)+ε if |W | = 2,

|Hn| g3k
2+k+ε

|θ2|k2+k|θ1−θ2|2k2 |θ1+θ2|2k2
if W = {1},W c = {2}, ,

|Hn| g2k
2+ε

|θ1θ2|k2+k|θ1−θ2|2k2 |θ1+θ2|2k2
if |W c| = 2, lim

g→∞
g|θ1 − θ2| = ∞,

|Hn| g4k
2+ε

|θ1θ2|k2+k|θ1+θ2|2k2
if |W c| = 2, lim

g→∞
g|θ1 − θ2| < ∞.

Remark 2. Corollary 1.9 and 1.10 gives the lower and upper bound over all monic square-free
polynomials of both even and odd degree near the critical line.

2. Background for L-functions over function fields

We begin this section with some preliminaries of L-functions over function fields. We will
use [28] as a general reference.

2.1. Basic facts on Fq[t]. We start by fixing a finite field Fq of odd cardinality q = pr, r ≥ 1
with a prime p. We denote by A = Fq[t] the polynomial ring over Fq. For a polynomial f in
Fq[t], it’s degree will be denoted by either deg(f) or d(f).

The set of all monic polynomials and monic irreducible polynomials of degree n are denoted
by Mn,q (or simply Mn as we fix q) and Pn,q (or simply Pn) respectively. Let M = ∪n≥1Mn

and P = ∪n≥1Pn. we also denote the set of all monic polynomials and monic irreducible
polynomials of degree less or equal to n by M≤n,q (or simply M≤n) and P≤n,q (or simply
P≤n) respectively. Let Hn denotes the set of monic square-free polynomials of degree n.
Observe that for n ≥ 1, |Mn| = qn and

|Hn| =
{

q, if n = 1,
qn−1(q − 1), if n ≥ 2.

If f is is a non-zero polynomial Fq[t], we define the norm of f to be |f | = qd(f). If f = 0, we
set |f | = 0. The prime polynomial theorem (see [28], Theorem 2.2) states that

|Pn,q| =
qn

n
+ O

(q n
2

n

)
.(2.1)

The zeta function of A, denoted by ζA(s) and is defined by

ζA(s) :=
∑

f∈M

1

|f |s =
∏

P∈P

(
1− |P |−s

)−1
, ℜ(s) > 1.
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One can easily prove that ζA(s) =
1

1−q1−s , and this provides an analytic continuation of zeta

function to the complex plane with a simple pole at s = 1. Using the change of variable
u = q−s,

Z(u) =
∑

f∈M
ud(f) =

1

1− qu
, if |u| < 1

q
.

2.2. Quadratic Dirichlet character and properties of their L-functions. For a monic
irreducible polynomial P , the quadratic residue symbol

(
f
P

)
is defined by

(
f

P

)
=





1, if f is a square (mod P ), P ∤ f
−1, if f is not a square (mod P ), P ∤ f
0, if P | f.

For monic square-free polynomial D ∈ Fq[t], the symbol
(
D
.

)
is defined by extending the

above residue symbol multiplicatively. We denote the quadratic Dirichlet character χD by

χD(f) =

(
D

f

)
.

The L-function associated to the quadratic Dirichlet character χD is defined by

L(s, χD) =
∑

f∈M

χD(f)

|f |s =
∏

P∈P

(
1− χD(P ) |P |−s

)−1
, ℜ(s) > 1.

Using the change of variable u = q−s, we have

L(u, χD) =
∑

f∈M
χD(f) u

d(f) =
∏

P∈P

(
1− χD(P ) ud(P )

)−1
, |u| < 1

q
.

By [[28], Proposition 4.3], we see that if n ≥ d(D) then
∑

f∈Mn

χD(f) = 0.

It implies that L(u, χD) is a polynomial of degree at most d(D)−1. From [29], L(u, χD) has
a trivial zero at u = 1 if and only if d(D) is even. This allows us to define the completed
L-function as

L(s, χD) = L(u, χD) = (1− u)λL∗(u, χD) = (1− q−s)λL∗(s, χD),

where

λ =

{
1, if d(D) even,
0, if d(D) odd,

(2.2)

and L∗(u, χD) is a polynomial of degree

2g = d(D)− 1− λ(2.3)

satisfying the functional equation

L∗(u, χD) = (qu2)gL∗
(

1

qu
, χD

)

Because L and L∗ are polynomial in u, it is convenient to define

L∗(s, χD) = L∗(u, χD)
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so that the above functional equation can be rewritten as

L∗(s, χD) = q(1−2s)gL∗(1− s, χD).

The Riemann hypothesis for curve over finite fields, established by Weil [35], asserts that all
the non-trivial zero of L∗(u, χD) are lie on the circle |u| = q−1/2, i.e,

L∗(u, χD) =

2g∏

j=1

(1− u νj ) with |νj | =
√
q for all j.

One can define the completed L-function in the following way. Set

XD(s) = |D| 12−sX(s),(2.4)

where

X(s) =

{
qs−

1
2 , if d(D) odd

1−q−s

1−q−(1−s) q
−1+2s, if d(D) even.

Let us consider

Λ(s, χD) = L(s, χD)XD(s)
− 1

2 .(2.5)

Then Λ(s, χD) satisfies the symmetric functional equation

Λ(s, χD) = Λ(1− s, χD).(2.6)

2.3. Spectral Interpretation. Let C be a non-singular projective curve over Fq of genus
g. For each extension field of degree k of Fq, denote by Nk(C) the number of points of C in
Fqk . Then, the zeta function associated to C defined as

ZC(u) = exp

( ∞∑

k=1

Nk(C)
uk

k

)
, |u| < 1

q
,

is known to be a rational function of u of the form

ZC(u) =
PC(u)

(1− u)(1− qu)
.

Additionally, we know that PC(u) is a polynomial of degree 2g with integer coefficients,
satisfying a functional equation

PC(u) = (qu2)gPC

(
1

qu

)
.

The Riemann Hypothesis, proved by Weil [35], says that the zeros of PC(u) all lie on the
circle |u| = 1√

q
. Thus one may give a spectral interpretation of PC(u) as the characteristic

polynomial of a 2g × 2g unitary matrix ΘC :

PC(u) = det (I − u
√
qΘC) .

Thus the eigenvalues eiθj of ΘC correspond to the zeros, q−1/2e−iθj , of ZC(u). The matrix
ΘC is called the unitarized Frobenius class of C.

To put this in the context of our case, note that, for a family of hyperelliptic curves CD :
y2 = D(t) of genus g, the numerator of the zeta function ZC(u) associated to CD is coincide
with the L-function L∗(u, χD), i.e., PC(u) = L∗(u, χD).
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3. Preliminary Lemmas

We start with an analog of approximate functional equation for L(s, χD). Recall that
2g = n− 1− λ where λ is defined as in (2.2).

Lemma 3.1 (Approximate functional equation). Let χD be a quadratic Dirichlet character,

where D ∈ Hn. Then for 1/2 ≤ s < 1,

L(s, χD) =
∑

f∈M≤g

χD(f)

|f |s +XD(s)
∑

f∈M≤g−1

χD(f)

|f |1−s

− λq−s(g+1)
∑

f∈M≤g

χD(f)− λXD(s) q
−(1−s)g

∑

f∈M≤g−1

χD(f),

where XD(s) is defined by (2.4) respectively.

Proof. The case s = 1
2
is proved in [2] for D ∈ H2g+1 and [18] for D ∈ H2g+2. Their methods

can be easily generalized for any s ∈ (1/2, 1). �

The following lemma gives an asymptotic formula for a square polynomial in hyperelliptic
ensemble.

Lemma 3.2. For f ∈ M, we have

1

|Hn|
∑

D∈Hn

χD(f
2) =

∏

P∈P
P |f

(
1 +

1

|P |

)−1

+ O(|Hn|−1).

Proof. See [[5], Lemma 3.7] for n = 2g + 1. To get the result for n = 2g + 2, it is a small
adaptation of their proof. �

The following lemma is an analog of Polya-Vinogradov inequality over function fields.

Lemma 3.3 (Polya-Vinogradov inequality). For l ∈ M not a perfect square, let l = l1l2
2

with l1 square-free. Then for any ǫ > 0,∣∣∣∣
∑

D∈Hn

χD(l)

∣∣∣∣ ≪ε

√
|Hn||l1|ǫ.

Proof. One can easily generalize the above inequality which was proved in [[6], Lemma 3.5]
for n = 2g + 1. Here we give a different proof in the above form for completeness.
First assume that l1 = P1P2 . . . Pk, where Pj ’s are distinct prime polynomials, and deg(l1) ≤
n. Similar to the proof of Lemma 3.5 in [5], which in particular case k = 2, one can show:

∣∣∣∣
∑

D∈Hn

χD(l)

∣∣∣∣ =
∣∣∣∣
∑

D∈Hn

χD(l1)

∣∣∣∣ ≤
qgk−1 (d(P1) + . . .+ d(Pk))

d(P1) . . . d(Pk)
|l1|

1
2 ≪ǫ

√
|Hn||l1|ǫ.

Finally let deg(l1) > n. We combine Lemma 3.1 of [6] and Lemma 3.5 of [5] to obtain
∣∣∣∣
∑

D∈Hn

χD(l1)

∣∣∣∣≪ǫ

√
|Hn||l1|ǫ.

�

The following lemma gives an upper bound for the logarithm of L(u, χD) inside the critical
region.
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Lemma 3.4. Let 0 ≤ α ≤ 1
2
, v = eiθ, θ ∈ [0, π) and N be a positive integer. Then for

D ∈ Hn,

log
∣∣∣L
( v

q
1
2
+α

, χD

)∣∣∣ ≤ 2g
N+1

log

(
1 + q−α(N+1)

1 + q−2(N+1)

)
+ ℜ

∑

d(f)≤N

aα (d(f))χD(f) Λ(f)v
d(f)

|f | 12
+O(1),

where

aα(d(f)) =
1

d(f)|f |α − 1

d(f)|f |2 + O

(
1

(N + 1)q(N+1)α

)
, for 1 ≤ d(f) ≤ N.

Proof. From the functional equation (2.6), we observe that

∣∣∣Λ(α + it, χD)
∣∣∣ =

∣∣∣∣
Λ
(
5
2
− it, χD

)
Λ(1− α− it, χD)

Λ
(
−3

2
+ it, χD

)
∣∣∣∣ =

|Λ
(
5
2
− it, χD

)
||Λ(1− α + it, χD)|

|Λ
(
−3

2
+ it, χD

)
| .

Recall that

L(α + it, χD) =
(
1− q−α−it

)λ
L∗(α + it, χD).

Note that
∣∣∣L∗ (5

2
− it, χD

) ∣∣∣ ∼ 1. Using the expression (2.5) for Λ(s, χD), we get

∣∣L(α + it, χD)
∣∣ = qg(5−2α)

∣∣1− q−α−it
∣∣λ

2g∏

j=1

(
q2α−1 + 1− 2qα−

1
2 cos(2πθj − t log q)

q4 + 1− 2q2 cos(2πθj − t log q)

) 1
2

,

Since

q2α−1 + 1− 2qα−
1
2 cos(2πθj − t log q) = (qα−

1
2 − 1)2 + 4qα−

1
2 sin2

(
πθj −

t log q

2

)

with a similar expression holding for the denominator, it follows that

log |L(α + it, χD)| = g

(
5

2
− α

)
log q − 1

2

2g∑

j=1

log

(
a2 + sin2(πθj − t log q

2
)

b2 + sin2(πθj − t log q
2

)

)
+O(1),

where

a =
q2 − 1

2q
, b =

qα−
1
2 − 1

2q
α
2
− 1

4

.

The remaining part of the proof is the same as the proof of Lemma 8.1 in [14] proved by A.
Florea. �

Lemma 3.5. Let θ ∈ (−π, π), then we have

n∑

m=1

cos(θm)

m
≤ log

(
min

{
n,

1

|θ|
})

+O(1).

Proof. See [[14], Lemma 9.1]. �

Lemma 3.6. Let k, y be integers such that 2ky ≤ n. For any complex numbers {a(P )}p∈P,
we have

∑

D∈Hn

∣∣∣∣
∑

d(P )≤y

a(P )χD(P )

|P | 12

∣∣∣∣
2k

≪ |Hn|
(2k)!

k! 2k




∑

d(P )≤y

|a(P )|2
|P |




k

.

Proof. This is an easy generalization of the Lemma 8.4 of [14] and Lemma 6.3 of [34]. �



12 PRANENDU DARBAR AND GOPAL MAITI

During the study of our main theorems it seems interesting to estimate the following
bounds for the zeta function over function fields. This is an analog of bounding the Riemann
zeta function near to 1-line.

Lemma 3.7. Let v = eiθ, where θ ∈ (−π, π). Let C be a circle of radius r̃
g
centred at 1

q
,

where

r̃ = lim
g→∞

g |θ| < ∞.

For any u in C, we have

Z(uv) ≪ g if lim
g→∞

g |θ| < ∞.

For any u such that |u− 1
q
| = O(1/g), we have

Z(uv) ≪ 1

|θ| if lim
g→∞

g |θ| = ∞.

Proof. First assume that θ ∈ (−π, π) be such that lim
g→∞

g |θ| = ∞ . Then using |u − 1
q
| =

O (1/g), we have the following estimates:
∣∣∣∣

v

(1− v)
(1− qu)

∣∣∣∣ = o(1)

and

|(1− v)−1| ≪ 1

|θ| .

Thus

|Z(uv)| = |(1− quv)−1| =
∣∣∣∣(1− v)−1

(
1 +

v

(1− v)
(1− qu)

)−1 ∣∣∣∣≪
1

|θ| .

Finally let θ be such that lim
g→∞

g |θ| < ∞. Then |u − 1
q
| ≤ r̃

g
. We use the change of variable

u = q−s to get the hypothesis of the form |s− 1| ≤ r̃
g
. Since

Z(uv) =
∑

f∈M
(uv)deg(f),

it is enough to show that
∑

f∈M

1

|f |1+ r̃/g− iθ/ log q
= O(g).

Therefore using Lemma 3.5 and the prime polynomial theorem, we obtain

log

∣∣∣∣
∑

f∈M

1

|f |1+ r̃/g− iθ/ log q

∣∣∣∣ =ℜ
∑

P∈P

1

|P |1+ r̃/g− iθ/ log q
+ O(1) = ℜ

∑

n

1

nqn(r̃/g− iθ/ log q)
+ O(1)

=ℜ
∑

n≤g

q
inθ
log q

n
− ℜ

∑

n≤g

(
1

n
− 1

nq
r̃n
g

)
q

inθ
log q + ℜ

∑

n>g

q
inθ
log q

nq
r̃n
g

+O(1)

=
∑

n≤g

cos(nθ)

n
+O(1) ≤ log

(
min

{
g,

1

|θ|

})
≤ log g,

and the lemma’s proof is concluded. �
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4. Proof of Theorem 1.3

Throughout this section, for the sake of simplicity, we write v
(2) and k

(2) simply as v and
k respectively. For any k1, k2 ∈ N, we write

L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2
=
∑

f∈M
af

χD(f)

|f |1/2 ,(4.1)

where

af =
∑

f1f2=f

τk1(f1)τk2(f2)
|f1|α1 |f2|α2

ei
(
θ1 d(f1)+θ2 d(f2)

)
.(4.2)

We start by defining the following truncated L-function which is an analog of Dirichlet
polynomials over number fields:

L≤(k1+k2)X

(
v, χD

)
:=

∑

f∈M≤(k1+k2)X

af
χD(f)

|f |1/2 ,

where af is defined by (4.2) and the parameter X will be chosen later. We call X as point
of truncation of (4.1).

Using Cauchy-Schwarz inequality, we have

∑

D∈Hn

∣∣∣L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2
L≤(k1+k2)X

(
v, χD

)∣∣∣

≤
(
∑

D∈Hn

∣∣∣L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2∣∣∣
2
)1/2(∑

D∈Hn

∣∣∣L≤(k1+k2)X

(
v, χD

)∣∣∣
2
)1/2

.

Therefore, we obtain

∑

D∈Hn

∣∣∣L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2∣∣∣
2

≥ S2
1

S2

,(4.3)

where

S1 :=
∑

D∈Hn

∣∣∣L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2
L≤(k1+k2)X

(
v, χD

)∣∣∣

and

S2 :=
∑

D∈Hn

∣∣∣L≤(k1+k2)X

(
v, χD

)∣∣∣
2

.

Now we establish an asymptotic formula for S2 and a lower bound for S1.

4.1. Estimation of the sum S2. Inserting the D-sum after expanding square in S2, we get

S2 =
∑

f∈M≤(k1+k2)X

∑

f ′∈M≤(k1+k2)X

af af ′

|ff ′|1/2
∑

D∈Hn

χD(ff
′).
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Case 1. Assume that ff ′ 6= �. Observe that af ≪ε |f |ε and using Lemma 3.3, we obtain
that

S2 ≪
√

|Hn|
∑

f∈M≤2(k1+k2)X

1

|f | 12−ε
≪
√
|Hn| q2(

1
2
+ε)(k1+k2)X .

Let us choose X = g
2(k1+k2)

2. So, we have

S2 ≪ q(
3
2
+ε)g.

Case 2. Assume that ff ′ = � = l2, where l ∈ Fq[t]. By using Lemma 3.2 and τk(f) ≪ε |f |ε,

S2 = |Hn|
∑

l∈M≤(k1+k2)X

1

|l|
∑

f1f2f3f4=l2

τk1(f1)τk1(f2)τk2(f3)τk2(f4)
|f1f2|α1 |f3f4|α2

× eiθ1(d(f1)−d(f2))+iθ2(d(f3)−d(f4))
∏

P |l

(
1 +

1

|P |

)−1

+ O




∑

l∈M≤(k1+k2)X

1

|l|
∑

f1f2f3f4=l2

τk1(f1)τk1(f2)τk2(f3)τk2(f4)
|f1f2|α1 |f3f4|α2




= |Hn|
∑

l∈M≤(k1+k2)X

b(l)

|l| + O
(
qε(k1+k2)X

)
,

where

b(l) =
∑

f1f2f3f4=l2

τk1(f1)τk1(f2)τk2(f3)τk2(f4)
|f1f2|α1 |f3f4|α2

eiθ1(d(f1)−d(f2))+iθ2(d(f3)−d(f4))
∏

P |l

(
1 +

1

|P |

)−1

.

We use the Perron’s formula3 to get

∑

l∈M≤(k1+k2)X

b(l)

|l| =
1

2πi

∫

|u|=r

B(u)
(qu)−(k1+k2)X

(1− qu)

du

u
,

where

B(u) =
∑

l∈M
b(l)ud(l) and r <

1

q
.

For an irreducible polynomial P , we observe that

b(P ) =

(
1 +

1

|P |

)−1 ∑

f1f2f3f4=P 2

τk1(f1)τk1(f2)τk2(f3)τk2(f4)
|f1f2|α1|f3f4|α2

eiθ1(d(f1)−d(f2))+iθ2(d(f3)−d(f4))

2For the Theorem 1.4, the point of truncation will be (k1 + . . . + km)X and the choice of X is equal to
g

2(k1+...+km) .
3Perron’s formula in function fields comes through the Cauchy’s integral formula. More precisely∑

f∈M≤X

af =
1

2πi

∫

|u|=r

(∑

f∈M

af u
deg(f)

) du

uX+1(1− u)
, provided that the power series

∑

f∈M

af u
deg(f) is ab-

solutely convergent in |u| ≤ r < 1.
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=

(
1 +

1

|P |

)−1




2∑

j=1
ǫj∈{±1}

kj(kj + 1)

2

e2iǫjθj d(P )

|P |2αj
+

2∑

j=1

k2
j

|P |2αj
+

∑

ǫj∈{±1}

k1k2
|P |α1+α2

ei(ǫ1θ1+ǫ2θ2)d(P )


 ,

which allows us to write B(u) as

B(u) =

2∏

j=1

Zk2j (u)

2∏

j=1
ǫj∈{±1}

Z
kj(kj+1)

2

(
ue2iǫjθj

) ∏

ǫj∈{±1}
Zk1k2

(
uei(ǫ1θ1+ǫ2θ2)

)
C(u).

Here C(u) is absolutely convergent for |u| < 1√
q
. Therefore,

∑

l∈M≤(k1+k2)X

b(l)

|l| =
1

2πi

∫

|u|=r

B(u)
(qu)−(k1+k2)X

(1− qu)

du

u

=
1

2πi

∫

|u|=r

2∏

j=1

Zk2j (u)

2∏

j=1
ǫj∈{±1}

Z
kj (kj+1)

2

(
ue2iǫjθj

) ∏

ǫj∈{±1}
Zk1k2

(
uei(ǫ1θ1+ǫ2θ2)

)

× C(u)
(qu)−(k1+k2)X

(1− qu)

du

u
,

(4.4)

where r = 1
q1+ε .

4.1.1. Calculating the main term of S2. To get main term we have to shift the contour of
integration (4.4) over u to a circle of radius |u| = R = 1

q1/2+ ε . The integrand has a pole at

u = 1
q
of order k2

1 +k2
2 +1 and at u = 1

qe2iǫjθj
of order

kj(kj+1)

2
and at u = 1

q ei(ǫ1θ1+ǫ2θ2)
of order

k1k2, where ǫj ∈ {±1} and j = 1, 2.

We define

D(u) =

2∏

j=1

Zk2j (u)

2∏

j=1
ǫj∈{±1}

Z
kj (kj+1)

2

(
ue2iǫjθj

) ∏

ǫj∈{±1}
Zk1k2

(
uei(ǫ1θ1+ǫ2θ2)

)
C(u)

(qu)−(k1+k2)X

u(1− qu)
.

Using the Cauchy’s residue theorem4, we obtain

1

2πi

∫

|u|=r

D(u) du =
1

2πi

∫

|u|=R

D(u) du− Res
u=1/q

D(u)−
2∑

j=1
ǫj∈{±1}

Res
u=1/qe2iǫjθj

D(u)

−
∑

ǫj∈{±1}
Res

u=1/qei(ǫ1θ1+ǫ2θ2)
D(u),

where r = 1
q1+ε and R = 1

q1/2 + ε .

4Cauchy’s residue theorem says that if γ is a simple closed, positively oriented contour in the complex

plane and f is analytic excepts for some points z1, . . . , zn inside γ, then
∮
γ

f(z) dz = 2πi

n∑

k=1

Res
z=zk

f(z).
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On the circle |u| = R = 1
q1/2+ ε , we see that the functions 1

1−qu
, 1

1−quei(ǫ1θ1+ǫ2θ2)
and 1

1−que2iǫjθj

are bounded. This leads

1

2πi

∫

|u|=R

D(u) du ≪ q−( 1
2
−ε)(k1+k2)X .

Evaluation of the sum of residues. We claim that

Res
u=1/q

D(u) +
2∑

j=1
ǫj∈{±1}

Res
u=1/qe2iǫjθj

D(u) +
∑

ǫj∈{±1}
Res

u=1/qei(ǫ1θ1+ǫ2θ2)
D(u)

∼k,c̃ g
k21+k22

2∏

j=1

(
min

{ 1

2|θj|
, g
})kj(kj+1) (

min
{

1
|θ1−θ2| , g

})2k1k2 (
min

{
1

|θ1+θ2| , g
})2k1k2

,

where

c̃ := c̃v + 1 with c̃v is defined as in (1.8).(4.5)

Let us define the following sets

W1 = {j ∈ {1, 2} : lim
g→∞

g|θj| < ∞}, W c
1 = {j ∈ {1, 2} : lim

g→∞
g|θj| = ∞},

W2 = {(1, 2) : lim
g→∞

g|θ1 − θ2| < ∞}, W c
2 = {(1, 2) : lim

g→∞
g|θ1 − θ2| = ∞},

W−2 = {(1, 2) : lim
g→∞

g|θ1 + θ2| < ∞}, W c
−2 = {(1, 2) : lim

g→∞
g|θ1 + θ2| = ∞}.

We call the elements of the sets W1 and W c
1 as finite and infinite “single shift” respectively.

We also call the elements of the sets Wǫ2 and W c
ǫ2, ǫ ∈ {1,−1} as finite and infinite “pair

shift” respectively5.

Estimation of finite “single shift” and “pair shift”. Cauchy’s residue theorem allows us to
write

Res
u= 1

q

D(u) +
∑

j∈W1

ǫj∈{±1}

Res
u= 1

qe
2iǫj θj

D(u) +
∑

(1,2)∈Wǫ2

ǫ,ǫj∈{±1}

Res
u= 1

qei(ǫ1θ1+ǫ2θ2 )

D(u) =

∫

Γ

D(u) du,

where Γ is a circle centered at 1
q
of radius c̃

g
and c̃ is defined by (4.5). We apply the definition

of the sets W1, W
c
1 and Wǫ2, W

c
ǫ2 to write

D(u) =

(
1

1− qu

)k21+k22 ∏

j∈W1

ǫj∈{±1}

(
1

1− que2iǫjθj

)kj (kj+1)

2 ∏

(1,2)∈Wǫ2

ǫj∈{±1}

(
1

1− quei(ǫ1θ1+ǫ2θ2)

)k1k2

×
∏

j∈W c
1

ǫj∈{±1}

Z
kj(kj+1)

2

(
ue2iǫjθj

) ∏

(1,2)∈W c
ǫ2

ǫj∈{±1}

Zk1k2
(
uei(ǫ1θ1+ǫ2θ2)

)
C(u)

(qu)−(k1+k2)X

u(1− qu)

5Note that for two dimensional correlations only one of the sets Wǫ2,W
c
ǫ2, ǫ ∈ {1,−1} contains the “pair

shift” (1, 2) but for higher dimensional correlations either of the sets Wǫ2,W
c
ǫ2 may contain more than one

“pair shift” which are of the form (j1, j2).



CORRELATION OF L-FUNCTIONS OVER FUNCTION FIELDS 17

=

(
1

1− qu

)k21+k22+1 ∏

j∈W1

ǫj∈{±1}

(
1

1− que2iǫjθj

)kj (kj+1)

2 ∏

(1,2)∈Wǫ2

ǫj∈{±1}

(
1

1− quei(ǫ1θ1+ǫ2θ2)

)k1k2

×(qu)−(k1+k2)X Ẽ(u),

where

Ẽ(u) =
∏

j∈W c
1

ǫj∈{±1}

Z
kj(kj+1)

2

(
ue2iǫjθj

) ∏

(1,2)∈W c
ǫ2

ǫ,ǫ1,ǫ2∈{±1}

Zk1k2
(
uei(ǫ1θ1+ǫ2θ2)

) C(u)

u
.

Note that Ẽ(u) is analytic on and inside the circle Γ and it’s radius of convergence is ≫ 1
g
.

Therefore for |u− 1
q
| = O(1

g
),

Ẽ(u) =

∞∑

n=0

en (1− qu)n .

Next we evaluate the integral

∫

Γ

D(u) du which is equal to

∫

Γ

1

(1− qu)V+1

(
1 +

∞∑

n=1

bn
(1− qu)n

)
Ẽ(u) (qu)−(k1+k2)X du,(4.6)

where

V = k2
1 + k2

2 +
∑

j∈W1

kj(kj + 1) +
∑

(1,2)∈Wǫ2

ǫ∈{±1}

2k1k2 and

1 +
∞∑

n=1

bn
(1− qu)n

=
∏

j∈W1

ǫj∈{±1}

(
1 +

∞∑

n=1

(−1)n
(kj(kj+1)

2
+ n

kj(kj+1)

2

)
(e−2iǫjθj − 1)n

(1− qu)n

)

×
∏

(1,2)∈Wǫ2

ǫ,ǫ1,ǫ2∈{±1}

(
1 +

∞∑

m=1

(−1)m
(
k1k2 +m

k1k2

)
(e−i(ǫ1θ1+ǫ2θ2) − 1)m

(1− qu)m

)
.

For n ≥ 0, we deduce that
∫

Γ

1

(1− qu)V+1

bn
(1− qu)n

Ẽ(u)(qu)−(k1+k2)X du

= e0bn
FV+n((k1 + k2)X)

(V + n)!
+

V+n∑

l=1

elbn
FV+n−l((k1 + k2)X)

(V + n− l)!
,

where Fn(x) = x(x+ 1)(x+ 2) . . . (x+ n− 1), for n ≥ 1 and F0(x) = 1.

From the choice of X = g
2(k1+k2)

, right hand side of the above equation becomes

e0 bn
(V + n)!

(g
2

)V+n

+

V+n∑

l=1

el bn dV+n−l

(V + n− l)!

(g
2

)V+n−l

,(4.7)
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where

dl = 1 +
l!

eV+n−l

(
s
(l)
l−1eV+n−(l+1)

(l + 1)!
+

s
(l+1)
l−1 eV+n−(l+2)

(l + 2)!
+ . . .+

s
(V+n−2)
l−1 e1

(V + n− 1)!
+

s
(V+n−1)
l−1 e0

(V + n)!

)

with
s
(k)
k−i =

∑

1≤l1<...<li≤k

l1 . . . li , i = 1, 2, . . . , k.

The coefficients s
(k)
k−i are called the Stirling numbers of first kind and s

(k)
k−i ≤ (k + 1)! (see

[16], equation (6.9)). For more details about dl see Appendix 7.2. Therefore, the integral
(4.6) is equal to

(4.8)

e0g
V

2V

∞∑

n=0

bn g
n

2n(V + n)!
+

V∑

l=1

el g
V−l

2V−l

∞∑

n=0

bn dV+n−l g
n

2n(V + n− l)!

+

∞∑

l=1

eV+l

∞∑

n=0

bn+l dn g
n

2nn!
.

We claim that the main contribution comes from only the first term of the above expression.
To prove this, we have to find an upper bound for the coefficients bn, el and dn.
Let us denote

M := max
j∈W1

(1,2)∈Wǫ2

ǫ∈{±1}

{
kj(kj + 1)

2
, k1k2

}
, β := max

j∈W1
(1,2)∈Wǫ2

ǫ∈{±1}

{
|1− e2iθj |, |1− ei(θ1±θ2)|

}
,

and 2w := max
j

{ |Wj| }.We can write bn as

bn = (−1)n
∑

∑
nj+m12=n
nj ,m12≥0

j∈W1,(1,2)∈Wǫ2

ǫ∈{±1}

∏

j∈W1
ǫj∈{±1}

(kj(kj+1)

2
+ nj

kj(kj+1)

2

)
(e−2iǫjθj − 1)nj

×
∏

(1,2)∈Wǫ2

ǫj∈{±1}

(
k1k2 +m12

k1k2

)
(e−i(ǫ1θ1+ǫ2θ2) − 1)m12 .

Note that the number of terms such that
∑

nj + m12 = n with nj, m12 ≥ 0 and j ∈
W1, (1, 2) ∈ Wǫ2 is

(
w+n−1
w−1

)
. Therefore, for large g and n ≥ 1, we obtain

|bn| ≤
(
w + n− 1

w − 1

)(
M + n

M

)w

βn ≤ a0n
tβn,(4.9)

where a0, t are constants depend on w and M .

Let r be the radius of convergence of Ẽ(u). Note that 1
g
= o(r). Hence lim

n→∞

en+1

en
=

1

r
= o(g),

and this gives

|en| ≤ e0 a1

(
2

r

)n

.(4.10)

where a1 ∈ R depends on Ẽ.
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Note that,

eldV+n−l

(V + n− l)!
=

el
(V + n− l)!

+

(
s
(V+n−l)
V+n−l−1el−1

(V + n− l + 1)!
+

s
(V +n−l+1)
V+n−l−1 el−2

(V + n− l + 2)!
+ . . .+

s
(V+n−2)
V+n−l−1e1

(V + n− 1)!
+

s
(V+n−1)
V+n−l−1e0

(V + n)!

)
,

which implies together with (4.10),

eldV+n−l

(V + n− l)!
≤ el + el−1 + . . .+ e1 + e0 ≤ e0a1

l∑

k=1

(2
r

)k
≪ l

(2
r

)l
.

By using the above bounds, the fact that b0 = 1 and 1
r
= o(g), the second sum of (4.8) is

bounded by

≪k

V∑

l=1

l

(
2

r

)l (g
2

)V−l
(
1 +

∞∑

n=1

nt(gβ)n

2n

)

= o


gV

∏

j∈W c
1

1

|θj |kj(kj+1)

∏

(1,2)∈W c
ǫ2

ǫ∈{±1}

1

|θ1 + ǫθ2|2k1k2


 .

Since |gβ| < c̃ < 1 as g → ∞, the inside n-sum in the above expression is O(1). For any
l ≥ 1, using (4.9), we get

∞∑

n=0

bn+ldng
n

2nn!
≪k ltβl

∞∑

n=0

(n+ l)t

lt
(gβ)n

2n
≪k ltβl

∞∑

n=0

(n+ 1)t(gβ)n

2n
≪k ltβl.

From the fact β/r = o(1) and (4.10), the third sum of the equation (4.8) is bounded above
by

≪k

1

rV

∞∑

l=1

(
2β

r

)l

lt

= o


gV

∏

j∈W c
1

1

|θj |kj(kj+1)

∏

(1,2)∈W c
ǫ2

ǫ∈{±1}

1

|θ1 + ǫθ2|2k1k2


 .

Finally, we consider the first sum of the equation (4.8). Using the bound of bn (see (4.9)),
we note that

1 ≪
∞∑

n=0

bng
n

2n(V + n)!
≪ 1

V !
+

∞∑

n=1

nt(β g)n

2n(V + n)!
= O(1)

where the implied constant depends on c̃ and k (i.e., V ). Therefore, we conclude that
∫

Γ

D(u) du ∼k,c̃ g
V
∏

j∈W c
1

1

|θj|kj(kj+1)

∏

(1,2)∈W c
ǫ2

ǫ∈{±1}

1

|θ1 + ǫθ2|2k1k2
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∼k,c̃ g
k21+k22

2∏

j=1

(
min

{ 1

|2θj|
, g
})kj(kj+1)(

min
{ 1

|θ1 − θ2|
, g
})2k1k2 (

min
{ 1

|θ1 + θ2|
, g
})2k1k2

,

as required.

Evaluation of infinite “single shift” and “pair shift”. We claim that
∑

j∈W1

ǫj∈{±1}

Res
u= 1

qe
2iǫjθj

D(u) +
∑

(1,2)∈Wǫ2

ǫ,ǫj∈{±1}

Res
u= 1

qei(ǫ1θ1+ǫ2θ2 )

D(u)(4.11)

= o

(
gk

2
1 + k22

2∏

j=1

(
min

{ 1

|2θj |
, g
})kj(kj+1)(

min
{ 1

|θ1 − θ2|
, g
})2k1k2 (

min
{ 1

|θ1 + θ2|
, g
})2k1k2

)
.

For the sake of simplicity, we will provide all the details of the proof of the claim (4.11) in
the Appendix section.

4.2. Estimation of the sum S1. We define

L̃(u, χD) := L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2
=
∑

f∈M
afχD(f)

( u√
q

)d(f)
,

where af is defined by (4.2). We begin with the integral

I =
1

2πi

∮

|u|=r

L̃(u, χD)
u−(k1+k2)X

(1− u)

du

u
, r < 1.

Integrating term by term to get

I =
∑

f∈M≤(k1+k2)X

af
χD(f)

|f |1/2 .

On the other hand we move the contour of integration to |u| = qy, encountering a simple
pole at u = 1, y > 1

2
. In doing so, we obtain

I = L̃(1, χD) +
1

2πi

∮

|u|=qy

L̃(u, χD)
u−(k1+k2)X

(1− u)

du

u
.

We use the Lindelöf bound L̃(u, χD) ≪ qεn [[4], Theorem 3.3]6 to obtain

1

2πi

∮

|u|=qy

L̃(u, χD)
u−(k1+k2)X

(1− u)

du

u
≪ qεn

q((k1+k2)X+1)y
.(4.12)

It follows that

L̃(1, χD) =
∑

f∈M≤(k1+k2)X

af
χD(f)

|f |1/2 +Oε

(
qεn

q((k1+k2)X+1)y

)
.(4.13)

6One can use the Theorem 1.5 to get the better bound for the integral (4.12), but for our case Lindelöf
bound is enough.
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From the approximation (4.13),

S1 ≫
∣∣∣∣∣
∑

D∈Hn

L
( v1
q1/2+α1

, χD

)k1
L
( v2
q1/2+α2

, χD

)k2
L≤X

(
v, χD

)
∣∣∣∣∣

=

∣∣∣∣∣
∑

f∈M≤(k1+k2)X

∑

f ′∈M≤(k1+k2)X

af af ′

|ff ′|1/2
∑

D∈Hn

χD(ff
′)

∣∣∣∣∣ + Oε

(
qnε|Hn|

q(1/2+ ε)(k1+k2)X

q((k1+k2)X+1)y

)

= |S2|+Oε

(
qnε |Hn|

q(1/2+ε)(k1+k2)X

q((k1+k2)X+1)y

)
.

We choose X = g
2(k1+k2)

and y = 2
3
. Hence the estimate of S2 gives us

S1 ≫k |Hn| gk
2
1+k22

2∏

j=1

(
min

{ 1

|2θj|
, g
})kj(kj+1)(

min
{ 1

|θ1 − θ2|
, g
})2k1k2

×
(
min

{ 1

|θ1 + θ2|
, g
})2k1k2

+O
(
|Hn|q−

g
12

+ εn
)
.

Inserting the estimates of S1 and S2 in (4.3) finishes the proof of Theorem 1.3.

5. Proof of Theorem 1.5

To keep things simple we use the notation v instead of v(m). The proof of the Theorem 1.5
will rely on getting an upper bound of the set

Υn(v, V ) = #

{
D ∈ Hn :

m∑

j=1

2kj log
∣∣∣L
( vj

q
1
2
+αj

, χD

)∣∣∣ ≥ µ(v, g) + V

}
,

for sufficiently large n and for all V > 2, where µ(v, g) is defined by (1.5). Recall that

2g = n− 1− λ,

where g and λ are defined by (2.3) and (2.2) respectively. We can write

∑

D∈Hn

∣∣∣∣L
( v1

q
1
2
+α1

, χD

)∣∣∣∣
2k1

. . .

∣∣∣∣L
( vm

q
1
2
+αm

, χD

)∣∣∣∣
2km

=

∫ ∞

−∞
Υn(v, V ) exp

(
µ(v, g) + V

)
dV.

(5.1)

We will estimate an upper bound of Υn(v, V ) for different ranges of V . The Lemma 3.4 lead
us
m∑

j=1

2kj log
∣∣∣L
( vj

q
1
2
+αj

, χD

)∣∣∣ ≤ 4g

N + 1

m∑

j=1

kj log

(
1 + q−αj(N+1)

1 + q−2(N+1)

)

+2ℜ
∑

d(f)≤N

m∑

j=1

kj
aαj

(d(f))χD(f)Λ(f)vj
d(f)

|f | 12
+O

(
m∑

j=1

kj

)

≤ 4gK

N + 1
log 2 + 2ℜ

∑

d(f)≤N

m∑

j=1

kj
aαj

(d(f))χD(f)Λ(f)vj
d(f)

|f | 12
+O(K),
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where

K =

m∑

j=1

kj and aαj
(d(f)) =

1

d(f)|f |αj
− 1

d(f)|f |2 +O

(
1

(N + 1)q(N+1)αj

)
.

Applying the prime polynomial theorem, the contribution from square polynomials f = P 2

to the second term of the right hand side of the above inequality is

2ℜ
∑

d(P )≤N
2

m∑

j=1

kj
aαj

(2d(P ))χD(P )d(P )vj
2d(P )

|P | +O(log log n)

≤ µ(v, g) +
2gK

N + 1
+O(log log n),

where the error term O(log log n) comes from the sum over P such that P |D. Also it is easy
to verify that the contribution from f = P r with r ≥ 3 is O(1). Therefore, we deduce that

m∑

j=1

2kj log
∣∣∣L
( vj

q
1
2
+αj

, χD

)∣∣∣ ≤ S1(D) + S2(D) + µ(v, g) +
5gK

N + 1
+O(log log n),

where

S1(D) = 2
∑

d(P )≤N0

χD(P )

|P |1/2
m∑

j=1

kjaαj
(d(P ))d(P ) cos(θjd(P )),

S2(D) = 2
∑

N0<d(P )≤N

χD(P )

|P |1/2
m∑

j=1

kjaαj
(d(P ))d(P ) cos(θjd(P )).

We rewrite σ(v, g) as

σ(v, g) = 2

(
m∑

j=1

k2
j

)
log g + 2

m∑

j=1

k2
jFj + 4

∑

i<j

kikjFi,j,

where

Fj = log

(
min

{ 1

2|θj|
, g
})

and Fi,j = log
(
min

{
1

|θi−θj | , g
})

+ log
(
min

{
1

|θi+θj | , g
})

.

From now onward, for the sake of simplicity we write σ(v, g) simply as σ. We consider
various different range of V . The range −∞ < V ≤ √

log g yields
∫ ∞

−∞
Υn(v, V ) exp

(
µ(v, g) + V

)
dV ≪ |Hn| exp

(√
log g + µ(v, g

)
≪ |Hn|go(1) exp (µ(v, g)).

Applying Lemma 3.1, it is enough to assume that
√
log g ≤ V ≤ Kg

logq g
. We define the

quantity A by

A =





logσ
2

, if
√
log g ≤ V ≤ σ,

σ logσ
2V

, ifσ ≤ V ≤ σ logσ
25K

,

7K, ifV > σ logσ
25K

.
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Let us consider
g

N + 1
=

V

A
and N0 =

N

logq g
.

Notice that, if D ∈ Υn(v, V ) then we must have either

S1(D) ≥ V (1− 6K

A
) := V1 or S2(D) ≥ KV

A
:= V2.

To determine an upper bound of Υn(v, V ), we will actually examine the set

Υn(v, Vi) = # {D ∈ Hn : Si(D) ≥ Vi} ,
for i = 1, 2. We set aj(P ) := aαj

(d(P ))d(P ) cos(θjd(P )). So

aj(P ) =
cos(θjd(P ))

|P |αj
− cos(θjd(P ))

|P |2 +O

(
d(P )

(N + 1)q(N+1)αj

)
≪ 1.

Using Lemma 3.6, we obtain

∑

D∈Hn

|S2(D)|2l ≪ |Hn|
(2l)!

l! 2l

(
∑

N0<d(P )≤N

(
∑m

j=1 2kj)
2

|P |

)l

≪ |Hn|
(2l)!

l!2l
(
4K2

(
log logq g +O(1)

))l
,

for any l such that 2lN ≤ n, which implies that l ≤ g
N
+ 1

2N
≤ 2V

A
.

Therefore, by using Markov’s inequality and Stirling’s formula, it follows that

Υn(v, V2) ≤ V2
−2l
( ∑

D∈Hn

|S2(D)|2l
)

≪ |Hn|
( A

KV

)2l (2l)!
l!2l

(
4K2

(
log logq g +O(1)

))l

≪ |Hn| exp(−
V

2A
log V ).

Again applying Lemma 3.6 and Stirling’s formula, we get

∑

D∈Hn

∣∣S1(D)
∣∣2l ≪ |Hn|

(2l)!

l!2l

(
∑

d(P )≤N0

1

|P |

( m∑

j=1

2kj cos(θjd(P ))

|P |αj

)2
)l

≪ |Hn|
(2l)!

l!2l

(
∑

d(P )≤N0

4

( m∑

j=1

kj
2 cos2(θjd(P ))

|P |1+2αj
+ 2

∑

i<j

kikj
cos(θid(P )) cos(θjd(P ))

|P |1+(αi+αj)

))l

≪ |Hn|
(
lσ

e

)l

,

for any l such that 2lN0 ≤ n, which implies that l ≤ V
A
logq g. Markov’s inequality gives us

Υn(v, V1) ≪ V1
−2l

(
∑

D∈Hn

|S1(D)|2l
)

≪ |Hn|
(

lσ

eV1
2

)l

.

It is now convenient to consider the case when V ≤ σ
2

K3 and the case V > σ
2

K3 separately.
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Case 1. Assume that V ≤ σ
2

K3 . We choose l = ⌊V1
2

σ
⌋. The definition of A and this choice of

l implies that l ≤ V
A
logq g. In this case, we find that

Υn(v, V1) ≪ |Hn| exp
(
l log

(
lσ

eV1
2

))
≪ |Hn| exp

(
−V1

2

σ

)
.

Case 2. Assume that V > σ
2

K3 . We choose l = ⌊10V ⌋. Again from the definition of A,

it is easy to see that this choice l satisfies l ≤ V
A
logq g. Notice that V > σ2

K3 , implies
log V > 2 logσ − 3 logK. So, we have

A = K and V1
2 = 25V 2.

Hence, we conclude that

Υn(v, V1) ≪ |Hn| exp
(
10V log

(
10V σ

eV1
2

))

≪ |Hn| exp (−4V log V ) ,

for sufficiently large g.
Therefore combining the above estimates, we deduce that

Υn(v, V ) ≪ |Hn|
{
exp

(
− V

2A
log V

)
+ exp

(
−V1

2

σ

)
+ exp (−4V log V )

}
.(5.2)

We extract the value of V1 for various range of V comes from the definition of A.
If
√
log g ≤ V ≤ σ, then

A =
1

2
logσ and V1 = V

(
1− 12K

logσ

)
.

So, for sufficiently large g, (5.2) implies that

Υn(v, V ) ≪ |Hn| exp
(
−V 2

σ

(
1− 12K

logσ

)2)

≪ |Hn| exp
(
−V 2

σ

(
1− 24K

logσ

))
.

If σ ≤ V ≤ 1
25K

σ logσ, then

A =
σ logσ

2V
and V1 = V

(
1− 12KV

σ logσ

)
.

For this range of V , log V
σ logσ

> 1
σ
and hence from (5.2) we obtain

Υn(v, V ) ≪ |Hn|
{
exp

(
−V 2 log V

σ logσ

)
+ exp (−4V log V )

+ exp

(
−V 2

σ

(
1− 12KV

σ logσ

)2
)}

≪ |Hn| exp
(
−V 2

σ

(
1− 24KV

σ logσ

))
.

Finally, if V > 1
25K

σ logσ, then

A = 7K and V1 =
V

7
.
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So from (5.2), we get that

Υn(v, V ) ≪ |Hn| exp
(
− V

98K
log V

)
.

Adding these estimates in (5.2) for different range of V , we conclude that

Υn(v, V ) ≪
{

|Hn|nε exp
(
−V 2

σ

)
, if 3 ≤ V ≤ 2021σ,

|Hn|nε exp (−4V ) , ifV > 2021σ.
(5.3)

Inserting (5.3) in (5.1) finishes the proof of Theorem 1.5.

6. Proof of Theorem 1.6

Let C1/g be the circle in the complex plane whose center is origin and radius is 1
g
. By

Cauchy’s integral formula

L(l)(q−1/2, χD) =
l!

2πi

∮

C1/g

L

(
1

2
+ θ, χD

)
dθ

θl+1
,

Notice that if θ = α− it
log q

, then

L
(1
2
+ θ, χD

)
= L

( v

qα+1/2
, χD

)
,

where α = O
(

1
g

)
. Therefore, applying Hölder’s inequality, we see that

∑

D∈Hn

∣∣L(l)(q−1/2, χD)
∣∣k ≤

(
l!

2π

)k ( ∑

D∈Hn

∮

C1/g

∣∣L
(1
2
+ θ, χD

)∣∣k |dθ|
)(∮

C1/g

|θ|−
k(l+1)
(k−1) |dθ|

)(k−1)

≪
(

l!

2π

)k (
2π

g

)k−1 ( g

2π

)k(l+1) ( ∑

D∈Hn

∮

C1/g

∣∣L
(1
2
+ θ, χD

)∣∣k |dθ|
)

≪
(

l!

2π

)k (
2π

g

)k ( g

2π

)k(l+1)

max
|θ|≤ 1

g

∑

D∈Hn

∣∣L
(1
2
+ θ, χD

)∣∣k.

As a direct application of Theorem 1.5, we obtain

∑

D∈Hn

∣∣∣L
( v

qα+1/2
, χD

)∣∣∣
k

≪ε |Hn| g
k(k+1)

2
+ε.

Using this upper bound to the above inequality, we conclude that

∑

D∈Hn

∣∣L(l)(q−1/2, χD)
∣∣k ≪ε |Hn| g

k(k+1)
2

+kl+ε.
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7. Appendix

7.1. Proof of claim (4.11). We have to show that for j ∈ W c
1 ,

Res
u= 1

qe
2iθj

D(u) =(7.1)

o

(
gk

2
1 + k22

2∏

j=1

(
min

{ 1

2|θj|
, g
})kj(kj+1) (

min
{

1
|θ1−θ2| , g

})2k1k2 (
min

{
1

|θ1+θ2| , g
})2k1k2

)
,

and for (1, 2) ∈ W c
2ǫ, ǫ ∈ {±1}7,

Res
u= 1

qei(θ1+ǫθ2)

D(u) =(7.2)

o

(
gk

2
1 + k22

2∏

j=1

(
min

{ 1

2|θj|
, g
})kj(kj+1) (

min
{

1
|θ1−θ2| , g

})2k1k2 (
min

{
1

|θ1+θ2| , g
})2k1k2

)
.

We will prove the claim (7.1) and proof of the claim (7.2) follows in the similar way. We
assume that ǫ, ǫj ∈ {1,−1} for j = 1, 2. To prove the claim (7.1), without loss of generality,
we assume that 1 ∈ W c

1 , so (1, 2) ∈ W c
−2. Note that if 2 ∈ W c

1 and (1, 2) ∈ W c
2 , then

they are not closed to each other i.e., |θ1 − θ2| ≫ 1
g
, |θ1 − (θ1 − θ2)| = |θ2| ≫ 1

g
and

|θ2− (θ1 + θ2)| = |θ1| ≫ 1
g
, otherwise they will contained in the sets W1 and W2 respectively.

By Cauchy’s theorem, we obtain

Res
u=1/qe2iθj

D(u) =

∮

C̃

D(u) du, j = 1, 2,

7To estimate infinite pair shift for Theorem 1.5, one can follow the article of V. Chande [[7], Appendix].
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where C̃ is the circle centered at u = 1/qe2iθj with radius c̃
g
and c̃ is defined by (4.5). Note

that, 1
g
= o(|θj|) and θj = o(1) for all j. For u on the circle C̃, we write

Z(u) = (1− qu)−1 = (1− e−2iθ1)−1

(
1 +

e−2iθ1(1− que2iθ1)

1− e−2iθ1

)−1

.

Therefore, we get

|Z(u)| ≪ 1

|θ1|
.

If 2 ∈ W1, then it is easy to see that |θ1 ± θ2| ∼ |θ1|. For u on the circle C̃,

Z(ue2iǫjθ2) = (1− que2iǫjθ2)−1 = (1− e−2iθ1)−1

(
1 +

e−2iθ1(1− que2i(ǫjθ2−θ1))

1− e−2iθ1

)−1

,

which implies that

|Z(ue2iǫjθ2)| ≪ 1

|θ1|
.

Also, if (1, 2) ∈ W2, then for u on the circle C̃, we see that

|Z(ue2i(ǫ1θ1+ǫ2θ2))| ≪ 1

|θ1|
.

For elements in the infinite single shift and pair shift, we have to partition the sets W c
1 , W

c
ǫ2

into three different subsets to estimate bounds for the corresponding zeta functions. For
2 ∈ W c

1 , we divide the set W c
1 into three subsets. First we define

W c
11 :=

{
2 ∈ W c

1 : lim
g→∞

|θ1|
|θ2|

< +∞ and lim
g→∞

θ1
θ2

6= 1

}
.

If 2 ∈ W c
11, then for u on the circle C̃,

|Z(ue2iǫjθ2)| ≪ 1

|θ2|
.

Next, we consider

W c
12 =

{
2 ∈ W c

1 : lim
g→∞

|θ1|
|θ2|

= ∞
}
.

For 2 ∈ W c
12 and u on the circle C̃, we obtain

|Z(ue2iǫjθ2)| ≪ 1

|θ1|
.

Lastly, let

W c
13 =

{
2 ∈ W c

1 : lim
g→∞

θ1
θ2

= 1

}
.

For 2 ∈ W c
13 and u on the circle C̃,

|Z(ue2iǫjθ2)| ≪ 1

|θ1 − θ2|
.

Similarly, for (1, 2) ∈ W c
ǫ2, we define

1W c
ǫ2 =

{
(1, 2) ∈ W c

ǫ2 : lim
g→∞

|θ1|
|θ1 − ǫθ2|

< +∞ and lim
g→∞

θ1
(θ1 − ǫθ2)

6= 1

}
.
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In this case, for u on the circle C̃,

|Z(uei(θ1−ǫθ2))| ≪ 1

|θ1 − θ2|
.

Let
2W c

ǫ2 =

{
(1, 2) ∈ W c

ǫ2 : lim
g→∞

|θ1|
|θ1 − ǫθ2|

= +∞
}
.

Inside the set 2W c
ǫ2, for u on the circle C̃,

|Z(uei(θ1−ǫθ2))| ≪ 1

|θ1|
.

Lastly, we consider

3W c
ǫ2 =

{
(1, 2) ∈ W c

ǫ2 : lim
g→∞

θ1
(θ1 − ǫθ2)

= 1

}
.

For u on the circle C̃,

|Z(uei(θ1−ǫθ2))| ≪ 1

|θ2|
.

Using these bounds for the zeta functions, we conclude that
∮

C̃

D(u) du ≪ g
k1(k1+1)

2
−1 |θ1|−

(
k21 + k22+

k1(k1+1)
2

)

min

{
1

|θ1|
,
1

|θ2|
,

1

|θ1 − θ2|

}k2(k2+1)

×min

{
1

|θ1|
,
1

|θ2|
,

1

|θ1 − θ2|

}2k1k2

min

{
1

|θ1|
,
1

|θ2|
,

1

|θ1 + θ2|

}2k1k2

Using the fact 1
|θj | = o(g), one can easily cheek that the integral

∮

C̃

D(u) du is equal to

o

(
gk

2
1 + k22

2∏

j=1

(
min

{ 1

|2θj|
, g
})kj(kj+1)(

min
{ 1

|θ1 − θ2|
, g
})2k1k2 (

min
{ 1

|θ1 + θ2|
, g
})2k1k2

)
,

and we obtain the claim (7.1).

7.2. Deduction of dn. We start with the expression (4.7), i.e.,

e0bn
FV+n((k1 + k2)X)

(V + n)!
+

V+n∑

l=1

elbn
FV+n−l((k1 + k2)X)

(V + n− l)!

where Fn(x) = x(x + 1)(x + 2) . . . (x + n − 1), for n ≥ 2 and F0(x) = 1, F1(x) = x. We
expand Fn(x) to get

Fn(x) = x
(
xn−1 + s

(n−1)
n−2 xn−2 + s

(n−1)
n−3 xn−3 + s

(n−1)
n−4 xn−4 + . . .+ s

(n−1)
0

)

with
s
(k)
k−i =

∑

1≤l1<...<li≤k

l1 . . . li , i = 1, 2, . . . , k.

This gives us

e0bn
FV+n(x)

(V + n)!
+ e1bn

FV+n−1(x)

(V + n− 1)!
+ e2bn

FV+n−2(x)

(V + n− 2)!
+ e3bn

FV+n−3(x)

(V + n− 3)!
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+ . . .+ eV+n−1bnF1(x) + eV+nbnF0(x)

=
e0bn

(V + n)!

(
xV+n + s

(V+n−1)
V+n−2 xV +n−1 + s

(V+n−1)
V+n−3 xV +n−2 + . . .+ s

(V +n−1)
0 x

)

+
e1bn

(V + n− 1)!

(
xV +n−1 + s

(V+n−2)
V+n−3 xV+n−2 + s

(V+n−2)
V+n−4 xV+n−3 + . . .+ s

(V+n−2)
0 x

)

+
e2bn

(V + n− 2)!

(
xV +n−2 + s

(V+n−3)
V+n−4 xV+n−3 + s

(V+n−3)
V+n−5 xV+n−4 + . . .+ s

(V+n−3)
0 x

)

+ . . .+

+
eV+n−3bn

3!

(
x3 + s

(2)
1 x2 + s

(2)
0 x
)
+

eV+n−2bn
2!

(
x2 + s

(1)
0 x
)
+ eV+n−1bnx+ eV+nbn.

:=
e0bn

(V + n)!
xV+n +

e1bndV+n−1

(V + n− 1)!
xV+n−1 +

e2bndV+n−2

(V + n− 2)!
xV +n−2 +

e3bndV+n−3

(V + n− 3)!
xV+n−3

+ . . .+
eV+n−3bn d3

3!
x3 +

eV+n−2bn d2
2!

x2 + eV+n−1bn d1x+ eV+nbn d0,

where d0 = 1, and 1 ≤ l ≤ V + n− 1,

dl = 1 +
l!

eV+n−l

(
s
(l)
l−1eV+n−(l+1)

(l + 1)!
+

s
(l+1)
l−1 eV+n−(l+2)

(l + 2)!
+ . . .+

s
(V +n−2)
l−1 e1

(V + n− 1)!
+

s
(V+n−1)
l−1 e0

(V + n)!

)
.
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