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CORRELATION OF SHIFTED VALUES OF L-FUNCTIONS IN THE
HYPERELLIPTIC ENSEMBLE

PRANENDU DARBAR AND GOPAL MAITI

ABSTRACT. The moments of quadratic Dirichlet L-functions over function fields have re-
cently attracted much attention with the work of Andrade and Keating. In this article,
we establish lower bounds for the mean values of the product of quadratic Dirichlet L-
functions associated with hyperelliptic curves of genus g over a fixed finite field F, in the
large genus limit. By using the idea of A. Florea [14], we also obtain their upper bounds.
As a consequence, we find upper bounds of its derivatives. These lower and upper bounds
give the correlation of quadratic Dirichlet L-functions associated with hyperelliptic curves
with different transitions.

1. INTRODUCTION

The correlation of L-functions i.e., study of the mean values of product of shifted val-
ues of L-functions near the critical line has become central to number theory. Random
matrix theory has recently become a fundamental tool for understanding the correlation of
L-functions. Montgomery [22] showed that two-point correlations between the non-trivial
zeros of the Riemann (-function, on the scale of the mean zero spacing, are similar to the
corresponding correlations between the eigenvalues of random unitary matrices in the limit
of large matrix size and conjectured that these correlations are, in fact, identical to each
other.

Keating and Snaith [21] suggested that the value distribution of the Riemann zeta function on
its critical line is related to that the characteristic polynomials of random unitary matrices.
Conjectures for the moments of L-functions have been attempted for many decades, with
very little progress until the random matrix theory came into the subject.

The main observation is that the structure of the mean values of L-functions is more clearly
revealed if one considers the average of a product of L-functions, where each L-function is
evaluated at a location slightly shifted from the critical point.

In this article, we discus about the moments and correlation of Riemann zeta function
(belonging to unitary family), Dirichlet L-functions (contained in the symplectic family)
and quadratic Dirichlet L-functions associated with hyperelliptic curves of large genus over
a fixed finite field which are also members of the symplectic family. These families and their
random matrix analogs have been discussed from the perspective of the leading terms in the
asymptotic expressions by several authors (see [], [9], [10], [3], [20], [21], [11] and [19]).

Our main goal of this article is to establish lower and upper bounds for the correlation
of shifted values of quadratic Dirichlet L-functions near the critical line associated to the
hyperelliptic curves of large genus over a fixed finite field.
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1.1. Moments of the Riemann Zeta function. A classical question in the theory of
Riemann zeta function is to determine the asymptotic behaviour of

vy = [ 1e v
where k € C, as T'— oo. It is believed that for a given positive real number k,
My(T) ~ & T(log )",
where ¢y, is a positive constant. Ramachandra [27] showed that
My(T) > T(log T)*,

for any k € N. Using moments of characteristic polynomials of random matrices, Keating
and Snaith [20], conjectured an exact value of ¢ for R(k) > —i. Assuming the Riemann
hypothesis (RH), Soundararajan [33] showed that for every positive real number k and € > 0,

(1.1) Mi(T) <o T (log T)F*+*

and Harper [I7] removed the exponent € in the bound of (I.T]).

A generalization of the moments of ((s) are the shifted moments, defined as
T
Mo (T, &™) := / [C(5 + it +ian) [P . |C (5 + it + i) | dt,
0

where k™ = (ki,..., k) is a sequence of positive real numbers and a™ = (ay,...,a,,) €
R™ with a; # a; fori # j. In [7], Chandee obtained lower and upper bounds of My, (T, a(™))
for some special choices of a™ and for a large values of 7. More precisely, she proved as-
suming the RH,

2kik;
My (T, a(m)) Lgom o T (log T)k%+"'+kgl+€ H (min {ﬁv log T}) ’
; Q;—Q
i<j

and unconditionally

. ohik;
Moy (T, &™) >y oy T (log T+ 11 (miﬂ {ﬁ? log T}) :
’ Q; — Oéj

1<j

for sufficiently large T'.

The moments of the derivatives of the Riemann zeta function were studied by several math-
ematicians. An analog of Soundararajan’s estimate (([LT]) for the derivatives of Riemann zeta
function was obtained by Milinovich [24]. Under the RH, he showed that for every ¢ > 0,

T
/ K(l)(% _|_Z~t)‘2k dt Khie T(logT>k2+2kl+€7
1

where k,1 € N and (¥ is the I-th derivative of (.
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1.2. Moments of quadratic Dirichlet L-functions. Let x, be a real primitive Dirichlet
character modulo d given by the Kronecker symbol x4(n) = (%) It is interesting to determine
the asymptotic behaviour of > ;_,p, L(%, xa)¥ as D — oco. Extending their approach to
the zeta function, using random matrix theory, Keating and Snaith [21I] made the following
. . . o . . 1
conjecture about the asymptotic behaviour of moments of Dirichlet L-functions L(3, xa)-

Conjecture (Keating, Snaith). For k fized with ®(k) > 0, as D — oo

1 * k(k+1)
BZ L(%de)chk (lOgD) 2,

|d|<D

*
where ¢, 1S a positive constant and E indicates that the sum is over fundamental discrim-
mants.

In [30], Rudnick and Soundararajan obtained that for any rational number k£ > 1,

k(k+1)
_Z 2>Xd >>k (lOgD)
|d|<D

Assuming the generalized Riemann hypothesis (GRH), Soundararajan established that for
any positive real number k£ and € > 0,

k(k+1)
Y Z 2 ’ Xd <<k,6 (log D) CE .
|d|<D

In general, it is important to find asymptotic behaviour of the following correlation of shifted
values of Dirichlet L-functions:

Sk:(m) 7 Z L +a17Xd> "‘L(%+am7Xd)km7
d<D
where k™ = (ki,..., kn) be a sequence of real numbers and a™ = (ay,...,a,) be a
sequence of complex numbers with o; # o for 7 # j.
Conrey et. al. [9] gave a conjecture on the asymptotic behaviour of Sy (™, D). Anal-

ogous questions for higher degree L-functions have been studied by Milinovich and Turnage-
Butterbaugh [26].

1.3. Moments of L-functions in the hyperelliptic essemble. Let F, be a finite field
of odd cardinality and F,[t] be the polynomial ring over F, in variable t. Let D € F,[¢]

be a monic square-free polynomial. The quadratic character xp attached to D is defined
using quadratic residue symbol for F[t] by xp(f) = (?) and the corresponding Dirichlet L-
function is denoted by L(s, xp). It is often convenient to work with the equivalent L-function

L(u, xp) written in terms of the variable u = ¢~*
Define hyperelltiptic ensemble H,, , or simply H,, as

H, ={D € F,[t] : D is monic, square free, and deg(D) = n}.

For each D in the Hyperelliptic essemble H,,, there is an associated hyperelliptic curve given
by Cp : y*> = D(t). These curve are non-singular and of genus ¢ given by

(1.2) 29=n—1-\
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where

\ = 1, if n even,
1 0, if nodd.

Note that, g — oo as n does so. See section Pl for more details about the properties of
Dirichlet L-function L(s, xp) and their spectral interpretation.

Andrade and Keating [3] conjectured that as g — oo,

(1.3) S L)t = @ (P29 + 1) + of1)),

DeHag41

where P, is a polynomial of degree & k; U Assuming ¢ = 1 (mod4), the conjecture ([I3) is

known for £ = 1 from the work of Andrade [2], and the error term in the asymptotic formula
was improved by Florea [12]. In [I3| [14], Florea also proved the conjecture (L3)) for k£ = 2,3
and 4 assuming ¢ = 1 (mod 4). For n = 2¢g + 2, Jung [1§] obtained that

1 B P'(1) 1 g4l 8

where P(s) =[]p (1 — (1+|P|)7*P|™*) and (4 (3) is defined in Section 2.
Andrade [I] established the following lower bound:

Theorem 1.1 (Andrade). For every even natural number k, we have

k(k+1)

, > n 2
\’H\Z QXD) k

DeHny

On the other hand, A. Florea [[14], Theorem 2.7] found the following upper bound for a
single shifted L-function associated with hyperelliptic curves:

Theorem 1.2 (Florea). Let v = ¢, with 6 € [0,7). Then for every positive k and any
€ >0,

k 2g+1 k?
> ‘£<\/—7XD>‘ Lpe ¢ g7 exp (k/\/l(v,g) + 7)}(@,9)) ,

DeHag+1
where M(v,g) = %log (min{g, %}) and  V(v,g) = M(v,g) + % log g.

1.3.1. Shifted moments and main results. In this article, for fixed m-tuple k™ = (ky,... k) €
N we shall investigate the following mean values of the product of m-shifted quadratic
Dirichlet L-functions:

(14) S (v K) = 3 E( 2+17XD)2k1...E< - =XD)2km,

Den q2+m

where v™ = (vy,...,v,) € C™ with v; = €%, §; € (0,7] and o; € [0,3) for j =1,.
Also, 8, = 0;(g) is a real valued function of ¢ such that hm g|9 | and for i # 7, hm g|9 —9 |

exists or equals co. Note that one can obtain the moments of E(%, X D) by allowing the
shifts o to tend to 0.
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Throughout the article, we follow that n and g are connected via (IL2). Before stating our
main results, let us define

(1.5) (o™, g) = i k;log (min {%Hj‘,g}) ,
(1.6) o(v'™, g) =2 (Z k2> logg + 2Zk2 log (mln {%@‘,g})

+ 42 kik; (log (min {—wi_eﬂ,g}) + log (min {—wiieﬂ,g})) :
i<j
For m = 2, we set
(1.7) W ={j€e{1,2}: lim g|0;| < oo} and W= {j € {1,2} : lim ¢|0;| = oo}.
g—o0 g—o0

We also define a constant depending on W and W€ as
(1.8) Cp(z) = MAax { lim ¢|6,], lim ¢|6s|, lim g|6y — 05|, lim g|0; + 6’2|} ,

g—00 g—00 g—00 g—00
where maximum is taken only over the finite entries of the set.
Remark 1. If [W| =2 and |W¢| = 0 then

Cp(2) = Max { lim g¢|6;|, im g|6s], lim g|6; — 65|, lim g|6; + 92|} :

g—o0 g—o0 g—o0 g—o0

If W = {1} and W = {2} then c o) = lim, 0 g|61|. If W =0 and lim g|6; — 0| < oo, then
g—o0
Co = lim g|0; — 6;]. When none of the limit is finite then ¢, is an absolute constant.
g—o0

We obtain a lower bound (of the conjectured order of magnitudeﬂ) for S, (v?,k?) in the
large degree limit i.e. when n is sufﬁciently large and ¢ is fixed.

Theorem 1.3. Let k) and v be as earlier. Assume that a; =0 ( ) for 7 =1,2. Then
for n large,

! o1 v2 0 o) 4+ 1o (v@
I’HnID;; ‘£<q2 7XD) E(q%wz’XD) >>k(z>,cv(2)exp<u('v 9)+50 (0%, 9) ),

where pi (v?,g), 0 (v, g) and c,e are defined by (L), (LO) and (L) respectively.

In this article, we will provide the complete proof of the Theorem [I.3]and from observations
in the footnotes [2], B [7], one can easily extend Theorem to the following form.

Theorem 1.4. Let k"™ and v™ be as earlier. Assume that a; =0 (%) for all 5. Then
for n large,

1 Uy Um,
E( ) XD) . ‘£< ) XD)
|Hn‘ D;n q2+05 q2+06m
where pi (V™ g) and o (v™, g) are defined by ([L5) and (LG) respectively.

IThe conjectural order of magnitude of these L-functions in the hyperelliptic ensemble can be compared
with the autocorrelation of the random matrix polynomials (for example, see [[10], Eqs. (3.6) and (4.19)]).

2ky 2ko

2k1 2km

1

> () p(m) €XP (M (v, g) + 20( o™ g)) :
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We also establish an upper bound of nearly the conjectured order of magnitude for the sum
Sy (0™ ),

Theorem 1.5. With the assumption as in the Theorem[1.]], for any e > 0,

1 v v 2him
a7 1 £<1—17XD> ‘£< = 7XD>
o 22 s

q2+06m
where ('v(m),g) and o ('U(m),g) are defined by (LE) and (LO) respectively.

Theorem is also true for any fixed sequence k™) of positive real numbers. Let us define
LD (u, xp) as the I-th derivative of £(u, xp). As an important consequence of Theorem L5
we have the following upper bound.

2k

1

Lglm) n° exp (,u (v(m),g) + 50 (’U(m), g)) ,

Theorem 1.6. Letl € N and € > 0. Forn large, we have

Z "C < aXD) ‘k Lk le |Hn|g%k(k+l)+lk+e‘
DeHn

1.3.2. Applications. From the Theorem [[Hand in light of (2.3) if we specialize n asn = 2g+1
and «;’s are zero then we recover Theorem
The case of the mean value for £(q~1/2, yp) taken over Ha, o was investigated by Jung [I§].
Taking n = 2¢g + 2, we have the following corollary which generalizes the Theorem :
Corollary 1.7. Let € > 0. For n large, we have

1

m |£(q_1/2,XD)|k Lk e 92k(k+1)
g+

DeHagt2

Similarly, Theorem provide upper bound for k-th moment of £ (¢~'/? xp) with
D € Hogy1 and D € Hagro. More precisely,

Corollary 1.8. Letl € N and € > 0. For n large, we have

Z }ﬁ(z)(q—uz’xD)‘ <<kl€q2g+1g2k(k+1)+lk+e
DeHagt1

_ k
Z }E(l) (q 1/27XD>‘ Cpre ¢H2 gkl D) +kte.

DeHag+42
Theorem [[.4] and [[.5] can be related to the main results of [7] and [25]. In fact we can say
that £ (2

independent when one of 6;’s is much larger than 2. More precisely, we have the following
corollaries.

X D) and £< >XD> are essentially correlated when [6;] < % for j=1,2and

Corollary 1.9. Let W and W€ be defined by (LT). For every e > 0 and n large,

> [e( -t w)e(-15 )

Loy lia
DeHn qz qz

2k
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(M| gD if W|=2,
2
[Hn| g3 Fhte ; — c _
|02|F2 5|01 —62|2K2 |61 +64 |22 Zf W= {1}a We = {2}>

<<k‘,€ ‘H'rl‘ 92k2+5
10102 [K2 k|01 —02]2k2 |9 +0,|2K>

if We) =2, lim g|6) — 6] = oo
g—)OO

|H7L‘ g4k2+s
10102 |k +5 |61 +02| 2k

if (Wel =2, lim g|0; — 6] < oo,
g—o0

\

Corollary 1.10. With the assumption as in Corollary[IL.d, for n large, we have

2k
Z ' 1+a>XD ﬁ( 1+a>XD>
'|Hn| gk if w|=2,
ol g 11 if W= {1}, We = {2},

|92‘k2+k|91_92‘2k2 |91+92|2k2

g a® | g2t
10102 K2 +E|0; 022k |01 +04|2K2

if [We =2, lim gl — 6] = oo
g—00

|H7L| g4k2+s
1610252 +|01 462 |2k

if |Wel =2, lim g|0; — 65| < oc.
\ g—)OO
Remark 2. Corollary [[.9 and [[.10] gives the lower and upper bound over all monic square-free
polynomials of both even and odd degree near the critical line.

2. BACKGROUND FOR L-FUNCTIONS OVER FUNCTION FIELDS

We begin this section with some preliminaries of L-functions over function fields. We will
use [28] as a general reference.

2.1. Basic facts on F,[t]. We start by fixing a finite field F, of odd cardinality ¢ = p", r > 1
with a prime p. We denote by A = F,[t] the polynomial ring over F,. For a polynomial f in
[F,[t], it’s degree will be denoted by either deg(f) or d(f).

The set of all monic polynomials and monic irreducible polynomials of degree n are denoted
by M,, , (or simply M,, as we fix ¢q) and P, , (or simply P,,) respectively. Let M = U,>1M,,
and P = U,>1P,. we also denote the set of all monic polynomials and monic irreducible
polynomials of degree less or equal to n by M, , (or simply M<,) and P<,, (or simply
P<n) respectively. Let #H, denotes the set of monic square-free polynomials of degree n.
Observe that for n > 1, |M,,| = ¢" and

ifn=1,
[Hal = {q" Yqg—1), ifn>2.

If f is is a non-zero polynomial F,[t], we define the norm of f to be |f| = ¢*¥). If f =0, we
set | f| = 0. The prime polynomial theorem (see [28], Theorem 2.2) states that

n n

_ 7 a
(2.1) Pudl =L+ 0(L).
The zeta function of A, denoted by Ca(s) and is defined by

=Y ==L 0a-1P) R(s)>1

fem |f P
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One can easily prove that (4(s) = Tll,s, and this provides an analytic continuation of zeta
function to the complex plane with a simple pole at s = 1. Using the change of variable
u=q”,

1
=> ul 17, if ful < -
feMm —qu q

2.2. Quadratic Dirichlet character and properties of their L-functions. For a monic
irreducible polynomial P, the quadratic residue symbol (%) is defined by

=< —1, if fisnot asquare (mod P), P{ f

f 1, if fis asquare (mod P), P{ f
(p) = s

For monic square-free polynomial D € F,[t], the symbol (2) is defined by extending the
above residue symbol multiplicatively. We denote the quadratic Dirichlet character xp by

xp(f) = (?) -

The L-function associated to the quadratic Dirichlet character yp is defined by
xp(f _s\—1
Lsw) = 3 22U T (10— xo(P) PP, Ris) > 1

Zom A

Using the change of variable u = ¢~°, we have
-1
(w,xp) = > _ xn(f =[] @ =xp(P)u™™) ", Jul < -
fem PeP q
By [[28], Proposition 4.3], we see that if n > d(D) then

Z Xp(f) =

JeMa

It implies that £(u, xp) is a polynomial of degree at most d(D) — 1. From [29], L(u, xp) has
a trivial zero at v = 1 if and only if d(D) is even. This allows us to define the completed
L-function as

L(s,xp) = L(u,xp) = (1 —u)*L*(u,xp) = (1 — ¢~ *)*L*(s, xp),

where

(2.2) )= { 1, if d(D) even,

0, if d(D) odd,
and L*(u, xp) is a polynomial of degree
(2.3) 2g=d(D)—1- X\
satisfying the functional equation

£ o) = (@ (o )
Because £ and L£* are polynomial in u, it is convenient to define
L*(s,xp) = L*(u, xDp)
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so that the above functional equation can be rewritten as
L*(s,xp) = "> L*(1 = s, xp).
The Riemann hypothesis for curve over finite fields, established by Weil [35], asserts that all

the non-trivial zero of L£*(u,xp) are lie on the circle |u| = ¢~'/2, i.e,
29
L*(u, xp) = H (1 —wv;) with |v;| = /q for all j.
=1

One can define the completed L-function in the following way. Set
(24) Xp(s) = [D|7*X(s),
where

¢, if d(D) odd
X(s) = { 71_1;1&;) q 125 if d(D) even.

Let us consider

(2.5) A(s,xp) = L(s,x0)Xp(s) 2.
Then A(s, xp) satisfies the symmetric functional equation
(26) A(Sa XD) = A(]- -5 XD)

2.3. Spectral Interpretation. Let C' be a non-singular projective curve over F, of genus
g. For each extension field of degree k of F,, denote by Nj(C') the number of points of C' in
F . Then, the zeta function associated to C' defined as

Zo(u) = exp <Z Nk(C)%) <o
k=1

is known to be a rational function of u of the form
Pe(u)
(I —u)(1—qu)
Additionally, we know that Pc(u) is a polynomial of degree 2¢g with integer coefficients,
satisfying a functional equation

Po(u) = (qu?)'Po (qiu) .

The Riemann Hypothesis, proved by Weil [35], says that the zeros of Po(u) all lie on the
circle |u| = ﬁ. Thus one may give a spectral interpretation of Po(u) as the characteristic

Zc(u) =

polynomial of a 2¢g X 2¢g unitary matrix O¢:
Pc(u) = det ([ — u\/a@c) .
Thus the eigenvalues ¢ of ©¢ correspond to the zeros, ¢~'/2¢7"%  of Zy(u). The matrix

O is called the unitarized Frobenius class of C.

To put this in the context of our case, note that, for a family of hyperelliptic curves Cp :
y? = D(t) of genus g, the numerator of the zeta function Z-(u) associated to Cp is coincide
with the L-function £*(u, xp), i-e., Po(u) = L*(u, xp)-
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3. PRELIMINARY LEMMAS

We start with an analog of approximate functional equation for L(s,xp). Recall that
29 =n —1— X where X is defined as in (2.2)).

Lemma 3.1 (Approximate functional equation). Let xp be a quadratic Dirichlet character,
where D € H,,. Then for 1/2 <s <1,

L(s,xp) XD +XD( ) Tﬁfi)
feMcy feM<g
. >\q—s(!]+1) Z XD(f) — )\XD(S) q_(l_s)g Z XD(f)v
feEM<, feEM<y 1

where Xp(s) is defined by (2.4]) respectively.

Proof. The case s = £ is proved in [2] for D € Hag41 and [I8] for D € Hagyo. Their methods
can be easily generalized for any s € (1/2,1). O

The following lemma gives an asymptotic formula for a square polynomial in hyperelliptic
ensemble.

Lemma 3.2. For f € M, we have

! 2y _ RRN .
g ot =T (14 5) + o™,

DeMHy PeP
Pf

Proof. See [[5], Lemma 3.7] for n = 2¢g + 1. To get the result for n = 2g + 2, it is a small
adaptation of their proof. O

The following lemma is an analog of Polya-Vinogradov inequality over function fields.

Lemma 3.3 (Polya-Vinogradov inequality). Forl € M not a perfect square, let | = I15*
with 1y square-free. Then for any € > 0,

> w)| < VK-

DeHn

Proof. One can easily generalize the above inequality which was proved in [[6], Lemma 3.5
for n = 2g + 1. Here we give a different proof in the above form for completeness.

First assume that [; = P Ps ... P, where P;’s are distinct prime polynomials, and deg(l;) <
n. Similar to the proof of Lemma 3.5 in [5], which in particular case k = 2, one can show:

3= o] =| 3= ] < et < VI

Finally let deg(l;) > n. We combine Lemma 3.1 of [6] and Lemma 3.5 of [5] to obtain

> xob)| < VIHaIL

DeHnp

U

The following lemma gives an upper bound for the logarithm of £(u, xp) inside the critical
region.
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Lemma 3.4. Let 0 < a < %, v=2¢€% 0 €c0,7) and N be a positive integer. Then for

DEHn)
1+ g oD o (A1) xp () A"
o (o) | < o (i) + 90 30 e AREMAES o),
where
1 1 1
w0 = gz~ g+ O (Germge ) <

Proof. From the functional equation (2.6]), we observe that

‘A (g — it,XD) Al —a —it, xp) \A (— — it XD) [|A(1 — o + it, XD)\
A (=% +1it,xp) IA (=3 +it,xp) |

‘A(a + it,XD)‘ —

Recall that R
L(a+it,xp) = (1—¢ > ") L*(a +it,xp).

Note that

L* (5 —it, xp) ‘ ~ 1. Using the expression (2.5]) for A(s, xp), we get

1

29 (q2a—1 + 1— 2qa_% COS(27T9j - thg q)) :

Y

. _ 9(5—-2a)|7 _ ,,—a—it A
‘L(a et XD)‘ =7 }1 1 ‘ H ¢* +1—2q¢%cos(2m8; — tlogq)

Since

1 tl
1= 2 cos(2nty — thoga) = (¢ = 12+ aq s (- T2

with a similar expression holding for the denominator, it follows that

29 2 2 tlo
. 5 1 a® + sin®(w; — =$4)
log |L(a + it, = ——allo ——g lo +0
g|L( xp)l =g <2 ) g4 2 — & <b2+sin2(ﬂ9- t102gq) (D),

where L
2 1 a-3 _ ]
A S
2q 2¢=2"1
The remaining part of the proof is the same as the proof of Lemma 8.1 in [I4] proved by A.
Florea. U

. 1
Lemma 3.5. Let 0 € (—m, ), then we have Z cosq(jm) < log (min{ Tl }) + O(1).

m=1
Proof. See [[14], Lemma 9.1]. O

Lemma 3.6. Let k, y be integers such that 2ky < n. For any complex numbers {a(P)},ep,
we have
k

CLPDP
3 (P)xp(P)[*

1

2.

DeHy,

< g 200 [ 5l

k! 2k | P|
d(P)<y

aryey 1T
Proof. This is an easy generalization of the Lemma 8.4 of [I4] and Lemma 6.3 of [34]. O
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During the study of our main theorems it seems interesting to estimate the following
bounds for the zeta function over function fields. This is an analog of bounding the Riemann
zeta function near to 1-line.

r

Lemma 3.7. Let v = €, where § € (—m, 7). Let C be a circle of radius
where

centred at %,

7= lim ¢g|0| < oc.
g—o0

For any u in C, we have
Z(uv) < g if lim gl|f] < oo.
g—00

For any u such that |u — %| =0(1/g), we have

Z(uw )<<m if lim g16] =
Proof. First assume that § € (—m, 7) be such that lim ¢g|f#] = oo . Then using |u — %| =
g—o0

O (1/g), we have the following estimates:

v
1-— =o(1
(1= )| = of1)
and .
(1-v)7Y <
[k
Thus
v ! 1
2] = |- quo =@ =0 (14 - ) <o
(1—v) 6]
Finally let 6 be such that lim ¢ |0 < co. Then |u — —| < . We use the change of variable
g—o0
u = q~° to get the hypothesis of the form |s — 1| < g. Smce
Z(ww) = Z (uv)deg(f),
fem
it is enough to show that
1
Z | f|1+7/9—0/Togq = 0(g).
fem
Therefore using Lemma and the prime polynomial theorem, we obtain
1 1
log Z \f|1+?/g 0/ logq %Z |P‘1+F/g—i€/logq %Z nr/g 0/ log q) + O(1)
JeM peP
_in6 in6
Tog q q in log q
Ry <_ _ l) g Ry
n<g n<g nq s n>g ng s
cos n@)
_Z +0(1) < log ( min< g, — |9| < logg,

n<g

and the lemma’s proof is concluded. O
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4. PROOF OF THEOREM [1.3]

Throughout this section, for the sake of simplicity, we write v and k® simply as v and
k respectively. For any ki, ky € N, we write

vy k1 Vg
b £(omrw) e (maw) " = X a8,
fem
where
(4.2) 0 Z Tk1(/2)7_k2(£2) (o dipyro2d(s)
2 ThIIAL

We start by defining the following truncated L-function which is an analog of Dirichlet
polynomials over number fields:

xp(f
Lty hnx (v, XD) = Z af |})|§/2)’

FEM<(ky+ho)x

where ay is defined by (£2) and the parameter X will be chosen later. We call X as point
of truncation of (4.1).

Using Cauchy-Schwarz inequality, we have

o vy ko
Z ’£< 1/24a1 ’XD> E(q1/2+a2’XD> ‘CS(kH—kz)X ('U7XD)’

DeHn
N N
Z "Cﬁ(kﬁ-kz)X (’U, XD) ‘ .

V1 k1 Vs )
S ( Z "C(ql/}i-ou’XD) £(q1/2+a2’XD)
DeHn DeHn

Therefore, we obtain

V2 k2,2 512
(4.3) D%;n’ﬁ< 1/2+a17XD> L(WnXD) > S,
where
k1 Vo ko
S1 = Z ‘E( 1/2+a1’XD> ﬁ(m’XD> ﬁé(kﬁkz)x(’l),XD)’
DeHy, q
and

2
Sy 1= Z ‘ES(lirkg)x(v,XD)‘
DeMH.n

Now we establish an asymptotic formula for S and a lower bound for S.

4.1. Estimation of the sum S,. Inserting the D-sum after expanding square in Ss, we get

- Y EEE S wun

FEM< by +rg) X [ EM< iy k) x DeHn
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Case 1. Assume that ff’ # 0. Observe that ay <. |f|® and using Lemma 3.3 we obtain
that

|an| q2(%+€)(k1+k2)x.

S <VMH D

FEM<o(ky +ho)X

1
<
| f[27°

Let us choose X = E So, we have

P
S2 <<q(%+€)g.
Case 2. Assume that ff' =0 = [?, where | € F,[t]. By using Lemma B2 and 7,,(f) <. |f]7,

1 Thy (£1) Th1(f2) Tka(f3) Tha(fa)
Sy = |,Hn‘ Tl -
Z 1] Z | f1 S| | f5 fa|2

lEM< (ky+ko)X J1f2f3 fa=1?

-1
x et -di) T (1 I L)

P\l ‘P|
1 Thy (f1) Tk (f2) Tha(f3) Tha(f4)
+ O —
Z || Z | f1falot| f5 fa]o2

lEM<(ky+ho)x ' fifafsfa=1?
D SR T
! ] ’

LEM< (k) +hp) X

-1
o Tk (1) Th1(f2) Tha(f3) Tha (1) i0y (d(f1)—d(f2))+i02(d(f3)—d(f1)) ( 1 )
b(l) = e 2 14+ — )
0= 2 TRAA L7

J1f2f3 fa=1?

We use the Perron’s formulall to get

) _ 1 [ e @) d
> e [ W ,

(1 —qu) w

lEMS(k1+k2)X

where

1
=Y b(0u'™  and < -
q

leMm
For an irreducible polynomial P, we observe that

-1
b(P) = <1 + i Z Tk1(f1) Tk1(f2) Tha(f3) Tk (fa) 101 (d(f1)=d(f2))+i02(d(f3)—d(f1))
P

fif2fsfa=P? |f1f?|oq|fi’>f4|0l2

2For the Theorem [[4] the point of truncation will be (k1 + ... + k)X and the choice of X is equal to

g
2k +o. A kom)
3Perron’s formula in function fields comes through the Cauchy’s integral formula. More precisely

d
Z af = — (Z afr udestf) ) Y , provided that the power series Z as ud°s) is ab-

: 2mi uX (1 — u)
feEMcx [u|= fem

solutely convergent in |u| <r<l.
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1 -1 2 k](]fj + 1) e2i€j€j d(P) k1k2 )
- 2 (€101 +€e262)d(P)
(]. + |P|) Z; 2 |P|2a] + Z |P|2a] Z |P|a1+a2€ 101+€202 ’
j:

i e;e{£1}
which allows us to write B(u) as
2 k2 2 kj(kj+1) )
B(u) = HZ H Z 2 (ue<if) H Zhake (ue’(5191+5262)) C(u).
Jj=1 é 1y e;e{£1}
€5
Here C(u) is absolutely convergent for |u| < ﬁ. Therefore,
(i) 1 ~(kitk)X g
S ALl du
I 2mi (1 —qu) wu
lEM< (k) +h9) X lul
1 S BUGHD gies0, kiks () i(e101+e20
(4.4) = 3 / HZ i(u) H Z7 3 (ue e, J) H Zhkiks (uez(q 1+e2 2))
= I=1 j{=il} eje{x1}
€;€

(qu)_(k1+k2)X d_u
X C’(u)—(1 .

1

where r = e

4.1.1. Calculating the main term of Sy. To get main term we have to shift the contour of
integration ([@4) over u to a circle of radius |u| = R = ql/z%. The integrand has a pole at

U == of order k% + k2 +1 and at u = 2“ —zie; of order w and at u = m of order
k1k2, where €; € {£1} and j =1,2.
We define
2 2 . (ks —(k1+k2) X
_ k2 BEHD g0, Kike (o i(e101+e0s) (qu)~
D(U)—HZJ(U) H Z 2 (U@ ]J) H 212(U€ 171 22)C(U)W
7=1 7=1 Eje{:tl}
e;e{£1}
Using the Cauchy’s residue theoremH, we obtain
L [ pwyau=-2 | Dw)du— Res D(u) 22: Res D(u)
— u)du = — u)du — Res D(u) — es u
21 21 u=1/q o u= 1/q6226J0J
Jul=r ul=R je{+1}

— Z Res D(u),

—1/gei(e101+€202)
Eje{:tl}u /ae

_ 1 - _1
where r = pIE= and R = g2 e

4Cauchy’s residue theorem says that if v is a simple closed, positively oriented contour in the complex

plane and f is analytic excepts for some points z1,..., 2, inside ~, then § f(z)dz = 27 Z Resf(z)
~y 1 Z=ZL
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1
1—qu’ 1—que

On the circle |u| = R = qwﬁ, we see that the functions
are bounded. This leads

1 1
i(e101+e002) a“nd 1_que2ie 0

773

1

211
|u|=R

Evaluation of the sum of residues. We claim that
2

Res D(u) + Z Res D(u)+ Z Res D(u)

u=1 2iej0; =1/get(€101+¢€202)
& j=1 usl/eemy ez e
e;e{£1}

2 kj(kj+1)
1 3 (Kj 2k1 ko 2k1k2
k24k2 l I : : 1 : 1
“he§ <mm{2|6’j|’g}) (mm{\@l—(’z\’g}> (mm{|91+92|’g}> ’
i=1

where
(4.5) € := Cp + 1 with ¢, is defined as in (LS.
Let us define the following sets

Wi ={j € {L,2}: limglf;| <oo}, Wy={je€{l,2}: limg|f| = oo},

Wy = {(1,2) : hmg|91 — ‘92| < OO}, ch = {(1,2) : lim g\@l — ‘92| = OO},

g—o0 g—o0

Woo ={(1,2) : lim g6y + 6] <oco}, WE, ={(1,2): limgléy + 2| = co}.

We call the elements of the sets W; and Wy as finite and infinite “single shift” respectively.

We also call the elements of the sets W, and W5, € € {1,—1} as finite and infinite “pair
shift” respectivel

Estimation of finite “single shift” and “pair shift”. Cauchy’s residue theorem allows us to

write
ResD(u) + Z Res  D(u) + Z Res /D

q GEWL T 428 (1,2)EWey * geile101Fez02) +6292)
Eje{:tl} E,EjE{:I:l}

where I' is a circle centered at % of radius ¢ and ¢ is defined by (4.5). We apply the definition

of the sets Wy, W and Wy, W5 to write

@ 1oy

kj(kj+1)

1 k%-{-k% 1 J ) 1 k1ko
D(U) = (1 _ qu) H (1 _ qu€2i6j€j) H (1 — quei(5191+6292))
jEWI (172)€W€2
e;e{£1} e;e{£1}
k (k +1) (qu)—(kl—l—kg)X
2ie;60 k1k (6191+6292)
% j ZRik2 C I
H ue H (ue ) (u) i
JjeEWY (l 2)eWS,
e;e{£1} e;e{£1}

Note that for two dimensional correlations only one of the sets Wea, WS, € € {1, —1} contains the “pair
shift” (1,2) but for higher dimensional correlations either of the sets Weo, WS may contain more than one

€
“pair shift” which are of the form (41, j2).
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kj(kj+1)

1 k%-‘,—k%-ﬁ-l 1 - 1 k1ko
= (1 — qu) jg[/ (1 _ que2i5j€j) G 2£[W (1 _ quei(6191+6292))
1 s €2
eje{x1} e;e{+1}

x(qu) BRI E (),

where

E(u) = H ZM (uezleje ) H Zkle (uei(til@l +6292)) C(u) ]
jeEW?E (1,2)EWS u
e;e{£1} ee1,e26{£1}

Note that E (u) is analytic on and inside the circle " and it’s radius of convergence is > é.
Therefore for |u — —\ = (—)

= Z en (1 —qu)"”
n=0

Next we evaluate the integral / D(u) du which is equal to

r
4 —(k1+k2)X g
0 /(1—un+1<+Z 1—qu ) E(u) (qu) u,
where
V:k%+k§+2kj(k;j+1)+ Z O%kky and
Jem (1,2)EWe
ec{*1}
= o0 GICRSY o
bn +n ( 2ie;0; 1)n
S N
n=1 (1 - qu) jem p— (1 _ qu)
EjE{:I:l}
- krky +m)\ (e7i(@bitedz) _ 1ym
LSt
(1,2)EWe2 < m=1 k1Ko (1 - qu)

€,61,e2€{+1}

For n > 0, we deduce that

1 b
n —(kl—l—kz)X
/r (1 —qu)V (1 - QU)"E(U)(QU> tu

Frinllhi £ 12)X) | 5%y Franllhy +52)X)
(V +n)! T Wan—0

where F,(z) =z(z+1)(z+2)...(x +n—1), for n > 1 and Fy(z) = 1.
From the choice of X =

= eobn

=1

m, right hand side of the above equation becomes

€o by, g V+n Vin e by, dV—l—n—l g V+n—l
47 V +n)! (5) + ; Wrn—0l (5) :
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where
d =1+ ! Sz(l—)1€v+n—(l+1) Sz(l—Jrll)GV+n—(l+2> Sz(‘—/frn_z)el + l(v1+n 1)60
: v tni ((+1)! (I+2)! T WAn=10) T (V+n)
with
shi= > bk, i=12,.. .k

1< <..<l; <k

The coefficients s,(f_)l are called the Stirling numbers of first kind and s,(f_)l < (k4 1)! (see

[16], equation (6.9)). For more details about d; see Appendix [[.2 Therefore, the integral

(4.4]) is equal to

e0g” o~  bng" N XV: erg¥ ! i b dv i1 g"
oV 2 2n(V 4 n)! V= 24 9n(V 1 — 1)
(48) n=0 =1 n=0

We claim that the main contribution comes from only the first term of the above expression.
To prove this, we have to find an upper bound for the coefficients b,,, ¢; and d,,.
Let us denote

ki(k; +1 . .
M ‘= max {M k1k2} 5 ‘=  max {|1 o 6229j|’ |1 - €Z(01i62)|},
JEWL

JjEWL
(1.2)EWes (1.2)EWes

ee{£1} ec{£1}

and 2w := max { |W;| }. We can write b, as
J

=03l

> nj+miz=n JEW:
nj,mi2>0  e;€{£1}
JEWL,(1,2)EWe2
ec{x1}

]{51]{?2 + Mo —i(€1014€202)
ile € _ 1 m12'
% H ( ki ko )(e )

(1,2)EWe2
e;e{£1}

ky 1)
+n .
< k ey (k1) J) (7% —1)m

Note that the number of terms such that ) n; + mj2 = n with nj,m;; > 0 and j €
Wi, (1,2) € W is (“’;:” 1) Therefore, for large g and n > 1, we obtain

wH+n—1\[(M+n n n
(4.9) |bn|§< w1 )( u )5 < agn'p",
where ag, t are constants depend on w and M.
- . 1
Let r be the radius of convergence of E(u). Note that é = o(r). Hence lim il _ 2 o(9),
n—oo €, r

and this gives
2 n
(410) |€n| S €o aq (-) .
r

where a; € R depends on E.
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Note that,
erdy ini _ el i 5§/V++nn ll)lel 1 5%/v+tzn—_zl—+11)el—2 TR
V4+n=0!" (V+n-=1) V4+n—1+1)! V+n—-101+2)!
V4n—2 V4n—1
5§/+n 1 )161 5§/+n l )1‘30
(V+n-1)! (V+n) |’

which implies together with ([I0),
I

edy 4n— 9\ k N
m§€l+€l 1+ +€1+€0§60a12<;> <<l<;)

By using the above bounds, the fact that by = 1 and £ = o(g), the second sum of [{J) is
bounded by
14 !
2\ (9\"! p)"
() ()
<k ; (r) 9 < )

1 1
v
=019 H Tk (k1) H ek
jews ;%% (1.2)eWs, 01 + et a2
ee{£1}

Since |gf| < ¢ < 1 as g — o0, the inside n-sum in the above expression is O(1). For any
[ > 1, using ([A9), we get

- bn+ldng t ol ( +l)t (gﬁ)n t ol - (n+1)t(gﬁ)n t nl

From the fact §/r = o(1) and (@Q}), the third sum of the equation (48] is bounded above

by
1 < /28\",
<<k—vz(_)z
T —1 T

1
=o|g" H k; (k ) H ek
jews 1051 (1,2)EWS 01 + et [tz
ec{£1}
Finally, we consider the first sum of the equation (4.§)). Using the bound of b, (see (£9])),
we note that

1<<ZW<<_+Z2nv+n =0

where the implied constant depends on ¢ and k (i.e., V). Therefore, we conclude that

/D du kcg H

1
EWC 0 ‘k) (k) +1 H | 1 _I_ 692|2k1k2

(1,2)eWs,
eE{:I:l}
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iz 2 1 kj(k‘j-i-l) 1 2k1ko 1 2k1 ko
~rg g (min{—,g}) (min{i,g}) (min{i,g}) ,
g ]1:[1 1261 61 — 6, 161 + 65|

as required.

Evaluation of infinite “single shift” and “pair shift”. We claim that

(4.11) Z Res  D(u)+ Z Res D(u)

jews T qe2ti% (1,2)EWes YT jeile101 Feaby)
Eje{:tl} €7Ej€{:|:1}

o 2 ‘ 1 Ktk t1) 1 Hikz s 1 2k1 ks
<o (o T (o)) () (o))

For the sake of simplicity, we will provide all the details of the proof of the claim (4.11)) in
the Appendix section.

4.2. Estimation of the sum S;. We define
5 V1 k1 V2 u N\ 4f)
Ewo) = £z o) £ (o) = X anwoln) ()
) /24a1’ 1/24as’ )
q ! q 2 vy V4
where af is defined by ([4.2)). We begin with the integral
1 - u—(k1+k2)X du

I =— - -
2mi £, xp) (1—u) wu

|ul=r

, 1<l

Integrating term by term to get

- XD(f)
I= Z af TiREh
FEM< (kg +ho) X
On the other hand we move the contour of integration to |u| = ¢¥, encountering a simple
poleat u =1,y > % In doing so, we obtain
~ 1 ~ u_(k1+k2)X du
I =L(1 — L(u _ .
(’XD)+27TZ. % ( ?XD) (].—U) U
lul=qV

We use the Lindelsf bound £(u, xp) < ¢ [[4], Theorem 3.3[ to obtain

En

kl—l—kz Xdu q
(412) 271‘2 j{ ﬁ u XD ) U — K m

lul=¢¥

It follows that

_ f EN
(4.13) L(1,xp) = Z fo|(1/2) + 0. <q((kﬁg€m) ’

FEM<(ky+ho)x

50ne can use the Theorem to get the better bound for the integral (Z12), but for our case Lindelof
bound is enough.
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From the approximation (£.I3]),

kl ’U2 kz—
Z E( 1/2+a1’XD) £<W7XD) ‘CSX(U7XD)

DeHn
a7 (1/2+€)(k1+k2)X
arpag / n

Y Y i X owln) + o (el gy

FEM< (b +ho) X JTEM< (kg +ko) X Detrn

S >

(1/2 +e)(k1+k2) X
— ne
=[S + O- < |H, | R )
We choose X = m and y = % Hence the estimate of Sy gives us

S50 (ol 0 T (min{ o) (min {20}
j[[l 26,1 |61 — 0,

x (min (oo o . G ,g})%kz +0 ([Halg %)

Inserting the estimates of Sy and Sy in (4.3)) finishes the proof of Theorem [L.3

5. PROOF OF THEOREM

To keep things simple we use the notation v instead of ™. The proof of the Theorem
will rely on getting an upper bound of the set

Tn('v,V):#{DEH 22/’{; log‘£< _,XD)‘Zu(v,g)jLV},

for sufficiently large n and for all V' > 2, where u(v, g) is defined by (L3). Recall that
2g=n—1-— )\,

where g and A are defined by (2.3) and (2.2) respectively. We can write

(5.1)

2.

DeHnp

2k1

T /_OO T.(v,V)exp (u(v, g) + V)dV.

[e.e]

U1 Um
‘6( +a1’XD) “6( N aXD)
q2 qzrom

We will estimate an upper bound of Y, (v, V') for different ranges of V. The Lemma [3.4] lead
us

14+ aj(N+1)
ZQ!{: log)ﬁ( a-’XD>)_N+1Zkl (%)
d(f) m
2R Y Zk Goy (d ({)A(f)vjdf +0 <Zkg)
2 =1

d(f)<N j=1 |fI2

49K @, (d(£)) xp(F)A(f)v; ")
< §oploe2+2R ) Zk: ; +O(K),

d(f)<N j=1 12
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m 1 1 1
K = Zk‘j and aq,; (d(f)) = d(f)[f]* - FNE +0 <(N+ 1)q(N+1)aj) '

j=1
Applying the prime polynomial theorem, the contribution from square polynomials f = P?
to the second term of the right hand side of the above inequality is

o P)d(P 2d(P)
o Y3k e AP I Oftoglog
dp)<f =1
29K
< I log1
< (v, g) + Nl + O(loglogn),

where the error term O(loglogn) comes from the sum over P such that P|D. Also it is easy
to verify that the contribution from f = P" with r > 3 is O(1). Therefore, we deduce that

Z 2k;log ‘E( _7XD> ‘ < S1(D) + Sy(D) + (v, g) + % + O(loglogn),
where
B Xp(P)
S1(D) =2 7 > kjaa, (d(P)) d(P) cos(6;d(P))
d(P)<Ng Jj=1
_ Xn(P) <
Sy(D) = 2N0<CKZP)SN P17 ;kjaa] (d(P)) d(P) cos(8;d(P))

We rewrite o(v, g) as

o(v,g) =2 (Zk2> logg+22k2F +4) kikiF,

1<J

where

. 1 : .
F; =log (mln {m,g}) and F;; = log (mln {Flejpg}) + log (mln {\GTléjl’g}) .

From now onward, for the sake of simplicity we write o(v,g) simply as . We consider
various different range of V. The range —oo < V' < y/log g yields

/Oo Yo(v,V)exp (u(v, g) + V)dV < [H,|exp (v1og g + p(v, g) < |Halg"V exp (u(v, g)).

— 00

Applying Lemma B it is enough to assume that y/Iogg < V < 29 We define the

log, g

quantity A by

log o :
27,  ifylogg <V <o,

_ glogo ologo
A= o, ifo <V < B2

TK,  ifV > 2%
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Let us consider

g \%4
9" and Ny=
N+l A4 M T gy

Notice that, if D € T, (v, V) then we must have either
6K KV

S(D)>V(1—7) =V or SQ(D)ET::%.

To determine an upper bound of Y, (v, V), we will actually examine the set
T.(v,V;) =#{D € H, : S;(D) > V;},
for i = 1,2. We set a;(P) := aq, (d(P)) d(P) cos(0;d(P)). So
_cos(0;d(P))  cos(0;d(P)) d(P)
a;(P) = | P[os - | P|? +0 (N + 1)gN+Day <L
Using Lemma [3.6] we obtain

m 2k
> 1Sa(D |2l<<|H|(l,2)l< 2 LTPT )>

DeH, No<d(P)<N
(20)!

o (4K (loglog, g + O(1 )))

v
for any [ such that 2IN < n, which implies that | < £ + L < 2¥.

Therefore, by using Markov’s inequality and Stlrhng s formula, it follows that

Tolv, Vo) <17 (3 15a(D))

DeHnp

< |Hn\<1;;4 ) (12,2 (4K (loglog, g+ O(1)))’

v
——1 .
< Ml exp(— 1 o V)

Again applying Lemma [3.6] and Stirling’s formula, we get

l
(20)! 1 (N 2k cos(0;d(P))\?
> SiD) < [l r 12! (d(z |P\<Z | P|e ) )

DeHn P)<No j=1

I
(21)! "< k;” cos? cos(6;d(P)) cos(0;d(P))
< |H"| 12l d(z 4 Z ‘P|1+2a] +2Zkk |p|1+(az+aj)

P)<Ng 7=1 i<j

S

for any [ such that 2INy < n, which implies that [ < %logq g. Markov’s inequality gives us

lal
T,(v, V1) < Vi ™% S ( 2l<<3'1z( )
o V) <z| D) <« i (22,

DeHy,

It is now convenient to consider the case when V < "3 and the case V > £ K3 separately.
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Casel. Assume that V < Z5. We choose | = L‘%Zj The definition of A and this choice of
[ implies that [ < ¥ 7 1og, g. In this case, we find that

V2
T, (v, V1) < |H,| exp (llog( )) < [ Hy| exp( 01_ ) .

Case2. Assume that V > ;—i We choose | = [10V|. Again from the definition of A,

it is easy to see that this choice [ satisfies | < %l gq g. Notice that V > }'(—i, implies
logV > 2logo — 3log K. So, we have

A=K and V;2=25V2

Hence, we conclude that

10V
T,(v, V1) < |H,|exp (10V10g ( 0 20-))
eV

< |Hp|exp (—4V 1og V),

for sufficiently large g.
Therefore combining the above estimates, we deduce that

(5.2) To(v, V) < |H, {exp (=55 log V) + exp (—‘%2) + exp (—4V log V)} :

We extract the value of V) for various range of V' comes from the definition of A.
If logg <V < o, then

12K)

1
A=-logo and V1:V<1— .
2 log o

So, for sufficiently large g, (5.2) implies that

2 2
T (0, V) < [Ha] exp <_v7 (1- ) )

< |H,| exp (—V?Q (1 — 1?:5;)) .

fo<V < %—Kaloga, then

_ologo _ 12KV
A=T27 and V=V (1- 252,
For this range of V, ;‘iggva > L and hence from (5.2) we obtain

V2logV
T,(v,V) < |7-ln|{ exp (—i
ologo

2
+exp< V2 (1_ 12KV) )}
ologo

V2 24KV
< |Hy, |exp( . (1_aloga))’

Finally, if V' > 25K0'10g0’ then

) + exp (—4V'1og V)

A=T7TK and V=

~| =<
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So from (5.2), we get that
T (v, V) < [Ha| exp (—5ar log V) .
Adding these estimates in (5.2]) for different range of V', we conclude that

[ Ho|n® exp (—V;) Jif3 <V < 20210,

(5.3) T.(v,V) <
|Hn|nfexp (—4V) | ifV > 20210

Inserting (5.3) in (5] finishes the proof of Theorem

6. PROOF OF THEOREM

Let /4 be the circle in the complex plane whose center is origin and radius is é. By
Cauchy’s integral formula

Il 1 db
(1) (y—1/2 _ (240 v
LOq™" xp) = 5 iw <2+ ,XD) g1’

then

Notice that if 6 = o — logq’

L(% +«9,XD) = £(ﬁ,m>,

where a = O (%) Therefore, applying Holder’s inequality, we see that

> el = (1) (2 Ie(Gen)l ) (f, ot
1/9

DeHn Ciyg

< (;T) (%ﬂ) _ ( MH Z% \L ) XD)} |d9\>

DeHn
k k
<) (5) G 3 g o)l

As a direct application of Theorem [[L5, we obtain

k(k+1)
Z ’ <a+1/2>XD>’ <e |H |g 2 +€

Using this upper bound to the above inequality, we conclude that

ST L0 2 xp)|" <. [Halg

DeHn

B | kl4e
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7. APPENDIX
7.1. Proof of claim (£II)). We have to show that for j € WY,

(7.1) Res D(u) =

U=—57—
qEZZBJ

2 kj(kj+1)
9 5 ) 1 VASAN) . lekz . 2k1k2
0 gk1+k2H(m1n{m’g}) (mm{ﬁ,g}) <m1n{m>g}) )
j=1

and for (1,2) € W, e € {£1f],
(7.2) Res  D(u)=

U=——F5T 7
qet(01+€02)

2 kj (kj+1)
1 5 (K 2k1 ko 2k1k2
k2+k2 . . 1 . 1
“\7 QH(mm{M’g}) (min {tapof) " (min{ ko)
j=1

We will prove the claim (7.1]) and proof of the claim (7.2)) follows in the similar way. We
assume that €,¢; € {1, —1} for j = 1,2. To prove the claim (7.1), without loss of generality,
we assume that 1 € Wf, so (1,2) € W¢,. Note that if 2 € W{ and (1,2) € Wy, then
they are not closed to each other i.e., |#; — 65 > é, 160, — (01 — 6)] = |62] > % and
|0 — (61 4+ 62)| = |61] > %, otherwise they will contained in the sets W, and W5 respectively.
By Cauchy’s theorem, we obtain

u=1/qe%

Res D(u) = 7{D(u) du, j7=1,2,
¢

"To estimate infinite pair shift for Theorem [[5} one can follow the article of V. Chande [[7], Appendix].
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where C' is the circle centered at u = 1/qe*® with radius S and ¢ is defined by (43). Note
that, é — 0(]6;]) and 6, = o(1) for all j. For u on the circle C, we write

e 20 (1 — que?

Z(u)=(1—qu)™ = 1-e)7! (1 L p—— 2261))_

Therefore, we get

1
|61
If 2 € Wy, then it is easy to see that |0; & 0| ~ |6;]. For u on the circle C,

€—2i61(1 _ que2i(5j92—91)) -1
1 _ 6—2i91 ’

[Z(u)] < 5=

Z(U62i5j92) — (1 _ QU62i5j92)—1 — (1 _ 6—2i91)—1 (1 +

which implies that
1
10:]

Also, if (1,2) € W, then for u on the circle C, we see that

| Z(ue? )| <« —

|Z(ue2l(6191+6292 )‘ < —
161]

For elements in the infinite single shift and pair shift, we have to partition the sets W, W&
into three different subsets to estimate bounds for the corresponding zeta functions. For
2 € Wf, we divide the set WY into three subsets. First we define

0
Wi =492 Wy: lim u < 400 and hm—;«él
g—00 |6y g—00 by
If 2 € W&, then for u on the circle C|
1
| Z (uei%2)| «
6]

Next, we consider

szz{QeWC- lim (1] oo}.

g—o0 ‘92‘

For 2 € WY, and u on the circle C, we obtain

1
| Z(ue? )| <« ——
[
Lastly, let
0
g—)OO 2
For 2 € W§ and u on the circle C,
, 1
Z(ue? %) « ————
e < 5=

Similarly, for (1,2) € W5, we define

0
! o= {(1 2) e W5 - hmi<+ooand hmil);él},

g—0 |91 — 6‘92‘ g—© (91 — 692
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In this case, for u on the circle 6’,

|2 (ue® )| <

|01 — 02|
Let 6|
2 C C 1
WS =4¢(1,2) e W5 lim —— = )
€2 {( ) ) €2 gl{go |91 —692| +OO}
Inside the set 2W$, for u on the circle C,
1
|2 (ue®—0)| <
[6:]
Lastly, we consider
0
3 C C 1
WS=4¢(1,2) e W5 lim —— =1,.
€2 {( ) ) €2 gLIgo (91 —692) }
For u on the circle 6’,
1
| Z (ue’ @) « 0l

Using these bounds for the zeta functions, we conclude that

ka(k2+1)
(k1+1) ky(k1+1) 1 1 1
j{D Ydu < g B AR (kg + k31012 >m1n{ }
1017 105] 161 — 62

i {1 1 1 }2’“1’“2 , {1 1 1 }2’“’“2
ming —, —, ———— min{ —, —, ———
|01]" 62| |01 — 65 01| 02| |01 + 62

Using the fact ﬁ = 0(g), one can easily cheek that the integral §D(u)du is equal to
J ~
¢

k2 + k2 = . 1 Ry (kg +1) . 1 Zorks . 1 s
(o T (o)) (o)) () ).

and we obtain the claim ().
7.2. Deduction of d,. We start with the expression (L7, i.e.,

C

Fyn((k1 + k2)X) Zb Fyn (k1 + k2) X)

(V +n)! -~ V+n—10)

where F,(z) = z(x + 1)(z +2)...(x +n—1), for n > 2 and Fy(z) = 1, Fi(z) = z. We
expand F),(z) to get

60bn

Fo(e) = o (a7 s am 2 4 s am 0 st )
with
shi= > b, i=1,2,.. k.

1<ii<..<l; <k
This gives us

FV+n(x> + elb FV+n—1(x> + 62b FV+n—2(x> + 6gb FV+n—3(x)

Cobn ) "Wan—1) W2 S W —3)
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+ ...+ €V+n_1an1 (LU) + 6V+nan0(x)

€ bn n— n— n— n— n—
_ (Vj_n)! (l,\/-i-n n 5§/V+tz—21)95v+ 1y s%/\/;;_gl)xwr 24 sV 1):5)
6 bn n— n— n— n— n— n—
+—(V +1n ) (:cv+ T4 sg,v+tl_32)xv+ 24 sg,v+tl_42)xv+ sS4+ s(()v+ 2)x>
€ bn — n— n— n— n— n—
+(V Jr2n 50 (xV-i-n 2, s%/V+J;_43)xv+ 3 4 S%/VJ:;_S?»)IVJF T S(()V+ 3):1:>
+...+
evin_3bn evin_2bn
+7V+3' 3 <x3 + 552)x2 + 582)x> + 7V+2' 2 <x2 + sgl)x) + evin_1bpx + eyinb,.
_ eobr, LVAn e1bndyvin—1 yvin_1 . €2bndvin—z yi,_o  e3bpdyin_3 V=3
(V+n)! (V4+n-1) (V+n-—2)! (V+n-3)!
n—3bn, d n—2bn, d
+...+ Vit 3‘? LAV v+ 2'2 202+ evin_1bp dix + ey pb, do,
where dg=1,and 1 <[ <V +n-—1,
l l n— n—
d=11 ! Sz(_)1€v+n—(l+1) Sz(_ﬁl)ev+n—(l+2> Lo Sz(Yfr Ve, I sl(fj Ve
: eV ni (I+1)! (I +2)! T W= (V+n)
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