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Pure Gauss sums and skew Hadamard difference sets

Koji Momihara

Abstract. Chowla (1962), McEliece (1974), Evans (1977, 1981) and Aoki (1997, 2004,
2012) studied Gauss sums, some integral powers of which are in the field of rational num-
bers. Such Gauss sums are called pure. In particular, Aoki (2004) gave a necessary and
sufficient condition for a Gauss sum to be pure in terms of Dirichlet characters modulo
the order of the multiplicative character involved. In this paper, we study pure Gauss
sums with odd extension degree f and classify them for f = 5, 7, 9, 11, 13, 17, 19, 23 based
on Aoki’s theorem. Furthermore, we characterize a special subclass of pure Gauss sums
in view of an application for skew Hadamard difference sets. Based on the character-
ization, we give a new construction of skew Hadamard difference sets from cyclotomic
classes of finite fields.

1. Introduction

Let p be a prime and f be a positive integer. Let Fpf denote the finite field of order
pf . The canonical additive character ψ of Fpf is defined by

ψ : Fpf → C∗, ψ(x) = ζ
Tr

pf/p
(x)

p ,

where ζp = exp(2πi
p
) is a complex primitive p-th root of unity and Trpf/p is the absolute

trace from Fpf to Fp. All complex characters of (Fpf ,+) are given by ψa, where a ∈ Fpf .
Here ψa is defined by

(1.1) ψa(x) = ψ(ax), ∀x ∈ Fpf .

Let N be a positive divisor of pf − 1. For a multiplicative character ηN of order N of Fpf ,
we define the Gauss sum of Fpf

Gpf (ηN ) =
∑

x∈F∗

pf

ψ(x)ηN(x).

The Gauss sum is one of important and fundamental objects in number theory. The
concept of Gauss sums was introduced by Gauss in 1801 [19], who evaluated the quadratic
Gauss sums as in Theorem 2.1. After Gauss’ work, many researchers have tried to evaluate
Gauss sums for larger N . However, in general, the explicit evaluation of Gauss sums is
a very difficult problem. There are only a few cases where the Gauss sums have been
completely evaluated. For example, the Gauss sums for N = 3, 4, 5, 6, 8, 12, 16, 24 have
been evaluated (but not explicit in some cases). See [6] for more details. The next
important case is the so-called semi-primitive case (also referred to as uniform cyclotomy
or supersingular), where there exists an integer s such that ps ≡ −1 (mod N). See
Theorem 2.2 for the explicit evaluation in this case. The next interesting case is the
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index 2 case, where the subgroup 〈p〉 generated by p ∈ Z has index 2 in (Z/NZ)×. Many
authors have studied this case, see, e.g., [22, 25, 26, 31, 33]. In particular, a complete
solution to the problem of evaluating Gauss sums in this case was given in [33]. As a
large generalization, Aoki [4] studied Gauss sums such that (Z/NZ)×/〈p〉 is an elementary
abelian 2-group. The index 4 case including the case where (Z/NZ)×/〈p〉 is cyclic was
also studied in [15, 16, 32].

On the other hand, there were studies on Gauss sums from another point of view.
Chowla [9, 10] showed that if a Gauss sum defined in a prime field has the form ǫp

1
2 with

ǫ a root of unity, it is in the quadratic case. McEliece [24] studied for which (N, p, h), some
nonzero integral power of the corresponding Gauss sum is an integer, i.e., p−h/2Gph(ηN)
is a root of unity, related to weight distribution of irreducible cyclic codes. Such Gauss
sums are called pure. It is clear that the quadratic Gauss sums and the semi-primitive
Gauss sums are examples of pure Gauss sums. Evans [12] showed that pure Gauss sums
for prime powers N are in the semi-primitive case. Furthermore, Evans [13] gave some
nontrivial families of pure Gauss sums which are not semi-primitive. On the other hand,
Aoki [2] classified pure Gauss sums for small extension degrees as follows.

Theorem 1.1. [2] Assume that f ∈ {1, 2, 3, 4} and the order of p modulo N is f .
Then, the corresponding Gauss sum Gpf (ηN) is pure if and only if it is of semi-primitive
except for the following cases:

f = 3 : (N, [p]N) = (14, 9), (14, 11), (42, 25), (42, 37), (78, 55), (78, 71),

f = 4 : (N, [p]N) = (20, 13), (20, 17), (30, 17), (30, 23), (60, 17), (60, 53), (120, 83), (120, 107),

where [p]N is an integer such that [p]N ≡ p (mod N) and 1 6 [p]N 6 N − 1.

Furthermore, as a remarkable result, Aoki [3, 5] gave a necessary and sufficient con-
dition for a Gauss sum to be pure in terms of Dirichlet characters of modulo N , see
Theorem 2.13. Based on the result, Aoki [3, Theorem 1.2] proved that for any fixed f ,
the set of pairs (N, [p]N) such that the Gauss sum Gpf (ηN ) is pure but not semi-primitive
is finite.

The evaluating Gauss sums is an important work also in view of applications in Com-
binatorics. In fact, Gauss sums have rich applications in the studies of combinatorial
objects, such as difference sets, irreducible cyclic codes, strongly regular Cayley graphs,
cyclotomic association schemes, sequences with good auto-correlation property, highly
nonlinear functions, etc. See, e.g., [1, 18, 20, 24, 29, 30]. In particular, pure Gauss
sums were used for constructing skew Hadamard difference sets inequivalent to the clas-
sical Paley difference sets [8, 17, 27].

Let G be an additively written group. We call a subset D of G a difference set if the list
of differences “x−y, x, y ∈ D, x 6= y” represents every element of G\{0G} exactly λ times.
In this paper, we are concerned with difference sets in the additive group of the finite field,
i.e., G is an elementary abelian group. We say that a difference set is skew Hadamard if
D is a skew-symmetric (|G|−1)/2-subset of G, i.e., D∪−D = G\{0G} and D∩−D = ∅,
where −D = {−x : x ∈ D}. The primary example of skew Hadamard difference sets is
the classical Paley difference set in the additive group of the finite field Fq of order q with
q ≡ 3 (mod 4), which consists of all nonzero squares of Fq. The Paley difference set was
the only known example in abelian groups for many years. Therefore, many researchers
had believed that up to equivalence the Paley difference sets are the only skew Hadamard
difference sets in elementary abelian groups. In 2006, Ding and Yuan [11] disproved
this conjecture by giving counterexamples of skew Hadamard difference sets in (F35,+).
After their work, there have been many studies on constructions and classification of skew
Hadamard difference sets. See short surveys in Introduction of [8, 17, 27]. In particular,
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Feng and Xiang [17] gave a construction of skew Hadamard difference sets based on
pure Gauss sums, which are also in the index 2 case. Furthermore, Chen and Feng [8]
generalized the construction using pure Gauss sums satisfying 2 ≡ pj (mod N/2) for some
integer j, see Theorem 2.16. Their constructions are very flexible as explained in the next
section, and give rise to many skew Hadamard difference sets inequivalent to the Paley
difference sets [27]. The study in this paper is a continuation of those in [8, 17].

In this paper, we will study pure Gauss sums with f odd and their application for
constructing skew Hadamard difference sets. The objectives of this paper are three-fold.
First, we give some necessary conditions for pure Gauss sums with f odd based on Aoki’s
Theorem 2.13, and update the result of Theorem 1.1 for f ∈ {5, 7, 9, 11, 13, 17, 19, 23}
in Theorem 3.9. Second, we characterize pure Gauss sums such that f is odd and 〈p〉
has index at most 8 in (Z/NZ)×, and see that almost all pure Gauss sums for N 6

5000 and odd f fall into those classes. Third, we give a characterization for a special
class of pure Gauss sums with the following property in view of applications for skew
Hadamard difference sets: for N = 2m1m2 · · ·mr, Gpf (η2

∏
i∈J mi

) is pure for any subset
J of {1, 2, . . . , r} containing 1, where mi’s are distinct odd prime powers. Based on
the characterization of pure Gauss sums, we give a new construction of skew Hadamard
difference sets from cyclotomic classes of finite fields, which gives rise to two existence
results. One of the results (that is, Corollary 4.18) is covered by the result in [8], and the
other (that is, Corollary 4.19) is completely new not within the framework of previous
studies.

2. Preliminaries

2.1. Basic properties of Gauss sums. From the definition of Gauss sums, we see
clearly that Gpf (ηN) is in the ring of algebraic integers of the field Q(ζp, ζN). Let σa,b be
the automorphism of Q(ζp, ζN) defined by

σa,b(ζN) = ζaN , σa,b(ζp) = ζbp,

where gcd (a,N) = gcd (b, p) = 1. Below we list several basic properties of Gauss sums
[6].

(i) Gpf (ηN )Gpf (ηN) = pf if ηN is nontrivial.
(ii) Gpf (η

p
N ) = Gpf (ηN ).

(iii) Gpf (η
−1
N ) = ηN(−1)Gpf (ηN ).

(iv) Gpf (ηN ) = −1 if ηN is trivial.
(v) σa,b(Gpf (ηN )) = η−a

N (b)Gpf (η
a
N).

In general, explicit evaluations of Gauss sums are very difficult. There are only a few cases
where the Gauss sums have been evaluated. The most well-known case is the quadratic
case, i.e., the N = 2 case.

Theorem 2.1. ([23, Theorem 5.15]) Let η2 be the quadratic character of Fpf . Then,

Gpf (η2) = ǫpf/2, where

ǫ =

{

(−1)f−1 if p ≡ 1 (mod 4),

(−1)f−1if if p ≡ 3 (mod 4).

The next simple case is the so-called semi-primitive case (also referred to as uniform
cyclotomy or supersingular), where there exists an integer s such that ps ≡ −1 (mod N).

Theorem 2.2. ([6, Theorem 11.6.1]) Suppose that N > 2 and p is semi-primitive
modulo N , i.e., there exists an s such that ps ≡ −1 (mod N). Choose s minimal and
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write h = 2st. Let ηm be a multiplicative character of order m. Then,

p−h/2Gph(ηm) =

{

(−1)t−1 if p = 2;
(−1)t−1+(ps+1)t/m if p > 2.

In this paper, we will need the Davenport-Hasse product formula, which is stated
below.

Theorem 2.3. ([6, Theorem 11.3.5]) Let θ be a multiplicative character of order ℓ > 1
of Fpf . For any nontrivial multiplicative character η of Fpf ,

(2.1) Gpf (η) =
Gpf (η

ℓ)

ηℓ(ℓ)

ℓ−1
∏

i=1

Gpf (θ
i)

Gpf (ηθi)
.

It is not easy to determine ηℓ(ℓ) in general. The following transformation of (2.1) is
sometimes useful.

Corollary 2.4. With notation as in Theorem 2.3, if ℓ is odd,

Gpf (η
ℓ) = p−f ℓ−1

2 σ1,ℓ−1

(

ℓ−1
∏

i=0

Gpf (ηθ
i)
)

.

Proof. Note that

ℓ−1
∏

i=1

Gpf (θ
i) =

ℓ−1
2
∏

i=1

Gpf (θ
i)Gpf (θ

ℓ−i) = pf
ℓ−1
2

ℓ−1
2
∏

i=1

θi(−1).

Here, θ(−1) = 1; otherwise θℓ(−1) = −1, a contradiction to that θℓ is trivial. Hence,
∏ℓ−1

i=1 Gpf (θ
i) = pf

ℓ−1
2 . Furthermore, note that

Gpf (η
ℓ)η−ℓ(ℓ) = σ1,ℓ(Gpf (η

ℓ)).

Then, (2.1) is reformulated as

(2.2) σ1,ℓ(Gpf (η
ℓ)) = p−f ℓ−1

2

ℓ−1
∏

i=0

Gpf (ηθ
i).

Finally, by acting σ1,ℓ−1 to both sides of (2.2), we obtain the assertion of the corollary. �

We will also need the Davenport-Haase lifting formula, which is stated below.

Theorem 2.5. ([23, Theorem 5.14]) Let η be a nontrivial multiplicative character of
Fpf and let η′ be the lift of η to Fpfs, i.e., η

′(α) = η(Normpfs/pf (α)) for α ∈ Fpfs, where
s ≥ 2 is an integer. Then

Gpfs(η
′) = (−1)s−1(Gpf (η))

s.

2.2. Pure Gauss sums. Let ηN be a multiplicative character of order N of Fpf . We

say that the Gauss sum Gpf (ηN) is pure if ǫ = Gpf (ηN)p
−f/2 is a root of unity. We call

the ǫ as the sign or the root of unity of the pure Gauss sum Gpf (ηN).

Lemma 2.6. If Gpf (ηN) is pure, so is Gpf (η
a
N) for any a with gcd (a,N) = 1.

Proof. Let σa,1 ∈ Gal(Q(ζp, ζN)/Q). Then, σa,1(Gpf (ηN)) = Gpf (η
a
N) is also pure.

�

The lemma above implies that the purity of Gauss sums is depending on N but not
depending on the choice of ηN . Then, denote by P the set of triples (N, f, p) such that
Gpf (ηN) is pure.



PURE GAUSS SUMS 5

From now on, let f be the order of p modulo N and ηN be a multiplicative character of
order N of Fpf . Let s be any positive integer and η′N be the lift of ηN to Fpfs. If Gpf (ηN)
is pure, then so is Gpfs(η

′
N) by Theorem 2.5. Hence, the purity problem of Gpfs(η

′
N ) is

reduced to that of Gpf (ηN). Hence, we consider

P∗ := {(N, f, p) ∈ P | ordN (p) = f}.
The following characterization of pure Gauss sums is obtained from the well-known

Stickelberger theorem on ideal factorizations of Gauss sums [6, Theorem 11.2.2].

Proposition 2.7. ([3, 12, 21]) (N, f, p) ∈ P∗ if and only if

f−1
∑

i=0

[tpi]N =
fN

2

for any integer t prime to N , where [x]N is an integer such that 0 6 [x]N 6 N − 1 and
[x]N ≡ x (mod N).

The proposition above gives the following characterization.

Lemma 2.8. ([12, 13]) If (N, f, p) ∈ P∗, it holds that N | (pf−1)/(p−1) or N/2 | (pf−
1)/(p− 1) depending on whether f is even or odd.

On the other hand, Proposition 2.7 implies that the purity of Gauss sums for a fixed
N depends only on the residue class of p modulo N . Furthermore, the proposition implies
that if (N, f, p) ∈ P∗, then (N, f, r) ∈ P∗ for any prime r ≡ pi (mod N), where i is an
arbitrary integer such that 1 6 i 6 f − 1 and gcd (i, f) = 1.

The Gauss sums in semi-primitive case are clearly pure. Hence, we have

(P(−1) :=){(N, f, p) | ∃i s.t. pi ≡ −1 (mod N)} ⊆ P.
It is clear that f is even if (N, f, p) ∈ P(−1). Evans [12] showed that pure Gauss sums
for prime powers m are in the semi-primitive case. Furthermore, Evans [13] also gave the
following nontrivial sufficient conditions for Gauss sums to be pure.

Theorem 2.9. Suppose that m = cd with gcd (c, d) = gcd (ordc(p), ordd(p)) = 1 and
let f = ordm(p), where ordn(x) is the order of x in (Z/nZ)×. Then, Gpf (ηm) is pure if
any of the following holds.

(1) ordc(p) = φ(c) and ℓ ∈ 〈p〉 (mod d) for some prime ℓ | c.
(2) −1 6∈ 〈p〉 (mod c), 2ordc(p) = φ(c), ℓ ∈ 〈p〉 (mod d) for some prime ℓ | c, and all

of them hold with c and d interchanged.
(3) 2||m, 2+m/2 6∈ 〈p〉 (mod c), 2ordc(p) = φ(c), −1 or ℓ is in 〈p〉 (mod d) for some

prime ℓ | c, and all of them hold with c and d interchanged.

Here, φ is Euler’s totient function.

On the other hand, Aoki [3, Theorem 7.2] proved that the converse of the assertion
of Theorem 2.9 also holds if c and d are both odd prime powers.

In this paper, we are concerned with pure Gauss sums with f odd. There were not so
many studies on pure Gauss sums for odd f in the literature.

Proposition 2.10. ([13, Corollary 3]) If f is odd and (N, f, p) ∈ P∗, then 2‖N .

The following proposition comes from Theorem 2.9 (1) as c = ℓ = 2 or Corollary 8
in [13]. (Note that Theorem 2.13 below is a large generalization of Theorem 2.9.) Chen-
Feng [8] also gave a proof for the result based on Davenport-Hasse product formula.

Proposition 2.11. Assume that 2‖N . If there exists j such that pj ≡ 2 (mod N/2),
then (N, f, p) ∈ P∗. In particular, Gpf (ηN) = Gpf (η2).
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The proposition above defines a class of pure Gauss sums with f odd:

P(2) := {(N, f, p) | f is odd, ∃i s.t. pi ≡ 2 (mod N/2)} ⊆ P.
We will study in Section 4 whether there is a class of pure Gauss sums other than P(2)

compatible with a construction of skew Hadamard difference sets.
Next, we give one basic property of pure Gauss sums.

Lemma 2.12. Let p1 be an odd prime and t be a positive integer. Assume that pt1‖N .
If (N, f, p) ∈ P, then (N/ps1, f, p) ∈ P for any s 6 t− 1.

Proof. Let ηN be a multiplicative character of order N of Fpf and θ be a multiplica-
tive character of order ps1 of Fpf . Then, by Theorem 2.3 as ℓ = ps1, we have

Gpf (ηN) =
Gpf (η

ℓ
N )

ηℓN(ℓ)

ℓ−1
∏

i=1

Gpf (θ
i)

Gpf (ηNθi)
.

Since ηNθ
i is of order N , Gpf (ηNθ

i) is also pure. On the other hand,
∏ℓ−1

i=1 Gpf (θ
i) =

(

∏

ℓ−1
2

i=1 θ
i(−1)

)

pf
ℓ−1
2 . Hence, Gpf (η

ℓ
N) is pure, i.e., (N/p

s
1, f, p) ∈ P. �

We will need the following powerful characterization of pure Gauss sums given by
Aoki [5]. To state it, let D(N) denote the set of Dirichlet characters modulo N , and
define

D
−(N, p) := {χ ∈ D(N) | χ(p) = 1, χ is an odd character},

X
−(N, p) := {χ ∈ D

−(N, p) | The conductor of χ is divisible by any prime factor of N}.
Theorem 2.13. ([5, Proposition 4.9]) (N, f, p) ∈ P∗ if and only if the following two

conditions hold.

(1) X
−(N, p) = ∅.

(2) For any χ ∈ D
−(N, p), there exists a prime divisor ℓ of N but not dividing the

conductor of χ such that χ(ℓ) = 1.

Define
P∗

f := {(N, p) | (N, f, p) ∈ P∗ \ P(−1)},
where p denotes a minimum representative in {[pi]N | 1 6 i 6 f − 1, gcd (i, f) = 1}.
Based on the theorem above, Aoki [5, Theorem 1.1] proved that P∗

f is a finite set for
every positive integer f .

2.3. Skew Hadamard difference sets. Let q = pf be a prime power and let N > 1

be a divisor of q−1. Let C
(N,q)
i = ωi〈ωN〉, 0 6 i 6 N−1, be the cyclotomic classes of order

N of Fq, where ω is a fixed primitive element of Fq. We assume that q ≡ 3 (mod 4) and N
is even. Then, it is clear that N/2 is odd. In this paper, we will give a construction for a
skew Hadamard difference set D as a union of suitable m = N/2 cyclotomic classes. To do
this, we will use the following well-known characterization of skew Hadamard difference
sets.

Lemma 2.14. Let G be an abelian group of order v ≡ 3 (mod 4), and let D be a skew
symmetric (v − 1)/2-subset of G. The set D is a skew Hadamard difference set if and

only if ψ(D) ∈ {−1+
√
−v

2
, −1−

√
−v

2
} for any nontrivial character of G.

Note that D⊥ = {ψ ∈ G⊥ |ψ(D) = −1+
√−q
2

} (and its inverse) also forms a skew
Hadamard difference set, called the dual of D, in the character group G⊥ of G. The
following result is also known (cf. [7, Lemma 2.1]).
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Lemma 2.15. Let G be an abelian group of order ph, where p is a prime such that
p ≡ 3 (mod 4) and h is an odd integer. Let D be a skew symmetric (ph − 1)/2-subset of
G such that D is invariant under the multiplication by x2 for x ∈ F∗

p. If 2ψ(D) + 1 ≡
0 (mod p

h−1
2 ) for any nontrivial character ψ of G, then D is a skew Hadamard difference

set in G.

Let I be a N/2-subset of {0, 1, . . . , N − 1}. To check whether a candidate subset

D =
⋃

i∈I C
(N,q)
i is a skew Hadamard difference set, by Lemma 2.14, it suffices to show

that (ψa(D) :=)
∑

x∈D ψa(x) ∈ {−1±√−q
2

} for any nonzero a ∈ Fq. Note that the character
value ψa(D) can be expressed as a linear combination of Gauss sums (cf. [17]) by using
the orthogonality of characters:

ψa(D) =
1

N

N−1
∑

i=0

Gq(η
−i
N )

∑

i∈I
ηN (aγ

i),(2.3)

where ηN is a fixed multiplicative character of order N of Fq. Thus, the computations

needed to check whether a candidate subsetD =
⋃

i∈I C
(N,q)
i is a skew Hadamard difference

set are essentially reduced to evaluating Gauss sums. For example, if N = 2, we have

(2.4) ψa(C
(2,q)
i ) =

−1 + (−1)a+iGq(η2)

2
,

where η2 is the quadratic character of Fq. By Theorem 2.1, we have ψa(C
(2,q)
i ) ∈ {−1±√−q

2
}

if q ≡ 3 (mod 4). Hence, each C
(2,q)
i , i = 0, 1, is a skew Hadamard difference set in (Fq,+),

that is, the so-called Paley difference set.
Let X be a subset of F∗

qℓ/F
∗
q, and π : F∗

qℓ → F∗
qℓ/F

∗
q be the natural projection homo-

morphism. Define

D(X) = {x ∈ C
(2,qℓ)
0 | π(x) ∈ X} ∪ {x ∈ C

(2,qℓ)
1 | π(x) 6∈ X}.

Chen-Feng [8] showed that under the assumptions that ℓ is odd and X is a difference set
with parameters ((qℓ−1)/(q−1), qℓ−1, qℓ−2(q−1)), D(X) is a skew Hadamard difference set
or a Paley type partial difference set if and only if X is an Arasu-Dillon-Player difference
set. Furthermore, they gave the following construction of skew Hadamard difference sets
based on the class P(2) of pure Gauss sums, which is a generalization of that given by
Feng-Xiang [17].

Theorem 2.16. ([8, Theorem 1.4]) Let q = pf ≡ 3 (mod 4) be a prime power with
p a prime, and let ℓ be any odd positive integer. Let m be a divisor of (qℓ − 1)/(q − 1)
satisfying 2 ≡ pj (mod m) for some integer j, and τ : F∗

qℓ/F
∗
q → Z/mZ be the natural

projection. Then, for any subset X of Z/mZ, the set D(τ−1(X)) is a skew Hadamard
difference set in (Fqℓ ,+).

The original statement of the theorem above in [8] assumed that qℓ is an odd prime
power not necessarily qℓ ≡ 3 (mod 4) and m is a divisor of (qℓ − 1)/(q − 1) satisfying
−1 ≡ pj (mod m) or 2 ≡ pj (mod m) for some integer j since the authors treated also
Paley type partial difference sets not only skew Hadamard difference sets. However, in
our situation, −1 ≡ pj (mod m) is impossible since fℓ is odd. Note that the assumption
2 ≡ pj (mod m) implies that (pj − 1) ≡ 1 (mod m) for some positive integer j. Hence,
p − 1 and m are coprime, i.e., m is a divisor of (pf − 1)/(p − 1). Hence, we can not
remove the condition m | (qℓ−1)/(q−1). It is clear that D(τ−1(X)) in the theorem above
is a union of cyclotomic classes of order N = 2m of Fqℓ . In particular, it is expressed

as D(τ−1(X)) =
⋃

i∈I C
(2m,qℓ)
i , where I = {(m + 1)i (mod 2m) | i ∈ X} ∪ {(m + 1)i +
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m (mod 2m) | i ∈ (Z/mZ) \ X}. In other words, one can take I as an arbitrary m-
subset of Z/2mZ such that {i (mod m) | i ∈ I} = {0, 1, . . . , m − 1}. Thus, the theorem
above is very powerful. In fact, the choice of the set X is very flexible and fℓ can be
taken as an arbitrary odd positive integer divisible by the order of p in (Z/mZ)×. Then,
Theorem 2.16 yields infinite families of skew Hadamard difference sets inequivalent to
the Paley difference sets [27]. In Section 4, we give a construction of skew Hadamard
difference sets based on a class of pure Gauss sums not belonging to P(2).

3. Some necessary conditions for pure Gauss sums with f odd

Throughout this section, we assume that f = ordN(p) is odd and (N, f, p) ∈ P∗.
Then, by Proposition 2.10, we have 2‖N . Let pi, i = 1, 2, . . . , r, be distinct odd primes
and ui, i = 1, 2, . . . , r, be positive integers. Let N = 2m = 2m1m2 · · ·mr, where mi = pui

i ,
i = 1, 2, . . . , r. Let fi, i = 1, 2, . . . , r, denote the orders of p modulo mi, respectively.
Then, f = lcm(f1, f2, . . . , fr).

In this section, we characterize (N, p) ∈ P∗
f for f ∈ {3, 5, 7, 9, 11, 13, 17, 19, 23}, N 6

5000 or φ(N)/f 6 8 with f odd.

3.1. Necessary conditions. Aoki [3] proved the following theorem.

Theorem 3.1. [3, Theorem 5.1] Assume that f is odd and (N, f, p) ∈ P∗.

(1) If r is odd, mi | 22f − 1 for each i, i = 1, 2, . . . , r;
(2) If r is even, either mi | 22f − 1 or φ(mi) | 4f for each i, i = 1, 2, . . . , r.

Since φ(mi) | 4f implies that mi | 24f − 1 by Fermat’s little theorem, we have the
following corollary.

Corollary 3.2. ([3, Corollary 5.2]) Assume that f is odd and (N, f, p) ∈ P∗. Then,
m | 24f − 1.

The corollary above implies that the set of pairs (N, p) ∈ P∗
f is finite for any fixed f .

To classify (N = 2m, p) ∈ P∗
f for a fixed odd f , we may take positive divisors m of 24f −1

in view of Corollary 3.2. However, even if f is small, some divisor m of 24f − 1 is too
large to check whether (N, p) ∈ P∗

f by a computer. So, we will give some new necessary

conditions for divisors m of 24f − 1 such that (N, p) ∈ P∗
f , which are all based on Aoki’s

Theorem 2.13.
Let χi be a character of order φ(mi) of (Z/miZ)

×. Then, we have χfi
i (p) = χi(p

fi) =

1. Furthermore, χfi
i (−1) = χi(−1) = −1 since fi is odd. Hence, χfi

i ∈ D
−(N, p) for

i = 1, 2, . . . , r.

Proposition 3.3. Assume that f is odd and (N, f, p) ∈ P∗. If there is j such that

mj 6 |2f − 1, there is h with h 6= j such that mj | pfh − 1.

Proof. By Theorem 2.13, we have χ
fj
j (2) = 1 or χ

fj
j (ph) = 1 for some h = 1, 2, . . . , r

with h 6= j. If χ
fj
j (2) = χj(2

fj) = 1, we have mj | 2fj −1, which contradicts to mj 6 |2f −1.

Hence, we have χ
fj
j (ph) = 1 for some h = 1, 2, . . . , r with h 6= j. This implies that

mj | pfjh − 1 | pfh − 1. �

Next, we give two necessary conditions for (N, f, p) ∈ P∗ with r even.

Proposition 3.4. Assume that f is odd, r is even and (N, f, p) ∈ P∗. If there is j
such that mj 6 |22f − 1, it holds that φ(mh) 6 2f for any mh such that mh | 22f − 1.
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Proof. Assume that φ(mh) > 2f for some h such that mh | 22f − 1. Note that χ2f
h is

nontrivial. Consider the character

θ =
r
∏

i=1

χfi
i .

Since r is even, θ is an even character. Next, we consider the characters

θ′ = χ2f−fh
h θ = χ2f

h

∏

i 6=h

χfi
i

and

θ′′ =
∏

i 6=h

χfi
i .

Since θ′ ∈ X
−(m, p), by Theorem 2.13, we have θ′(2) = 1. On the other hand, since

χ2f
h (2) = χh(2

2f ) = 1, we have θ′′(2) = 1. Similarly, for any k with k 6= h, let

θ′′′ = χ−fk
k

∏

i 6=h,k

χfi
i .

Then, θ′′′(2) = 1. Hence, we have χ2fk
k (2) = 1. Then, mk | 22f − 1 for any k with k 6= h,

which contradicts to mj 6 |22f − 1 for some j. Hence, φ(mh) 6 2f for any h such that
mh | 22f − 1. �

Remark 3.5. We can improve Proposition 3.4 in the r = 2 case as “If m1 6 |2f − 1
and m2 | 22f − 1, it holds that φ(m2) 6 2f .” Let j = 1 and h = 2 in the proof of

Proposition 3.4. Then, we can similarly prove that θ′′(2) = χf1
1 (2) = 1. Then, we have

m1 | 2f1 − 1, which contradicts to m1 6 |2f − 1.

Proposition 3.6. Assume that f is odd, r is even and (N, f, p) ∈ P∗. If there is j

such that mj 6 |22f − 1, it holds that mk | p2fj − 1 for any k with k 6= j.

Proof. If φ(mj) 6 2fj, since 2fj divides φ(mj), we have φ(mj) = 2fj, which implies
that φ(mj) | 2f . However, this contradicts to mj 6 |22f − 1. Hence, we have φ(mj) > 2fj,

and then χ
2fj
j is nontrivial. Let

θ = χ
fj
j

r
∏

i=1

χfi
i = χ

2fj
j

∏

i 6=j

χfi
i .

Since θ ∈ X
−(m, p), we have θ(2) = 1. Let

θ′ =
∏

i 6=j

χfi
i .

Since θ′ ∈ X
−(m/mj , p), by Theorem 2.13, we have either θ′(2) = 1 or θ′(pj) = 1. If

θ′(2) = 1, we have χ
2fj
j (2) = 1, which contradicts to mj 6 |22f − 1. Hence, θ′(pj) = 1. For

any mk with k 6= j, let

θ′′ = χ−fk
k

∏

i 6=j,k

χfi
i .

Then, we similarly have θ′′(pj) = 1. Hence, χ2fk
k (pj) = 1. This implies thatmk | p2fj −1. �

The statement of the proposition above is similar to [3, Theorem 11.1] but not exactly
same. We next give a necessary condition for (N, f, p) ∈ P∗ with r odd.



10 KOJI MOMIHARA

Proposition 3.7. Assume that f is odd, r is odd and (N, f, p) ∈ P∗. If there are j

and h such that mj 6 |2f − 1 and mh | 2f − 1, then either φ(mh) 6 2f or mk | p2fj − 1 for

any k with k 6= j, h and mh | p4fj − 1.

Proof. If χ
fj
j (2) = 1, we have mj | 2fj − 1, which contradicts to mj 6 |2f − 1. Hence,

χ
fj
j (2) 6= 1.

Assume that φ(mh) > 2f . Noting that χ2f
h is nontrivial, let

θ = χf
h

∏

i 6=h

χfi
i

and
θ′ = χ2f

h

∏

i 6=j,h

χfi
i .

Since θ ∈ X
−(m, p), we have θ(2) = 1 by Theorem 2.13. Furthermore, since θ′ ∈

X
−(m/mj , p), we have θ′(2) = 1 or θ′(pj) = 1. If θ′(2) = 1, we have χf

h(2) = χ
fj
j (2) 6= 1,

which contradicts to mh | 2f − 1. Hence, θ′(pj) = 1. For k with k 6= j, h, let

θ′′ = χ2f
h χ

−fk
k

∏

i 6=j,h,k

χfi
i .

Then, we similarly have θ′′(pj) = 1. Hence, we obtain χ2fk
k (pj) = 1. This implies that

mk | p2fj − 1. Furthermore, let

θ′′′ = χ−2f
h

∏

i 6=j,h

χfi
i .

Then, we similarly have θ′′′(pj) = 1. Hence, we obtain χ4f
h (pj) = 1. This implies that

mh | p4fj − 1. �

Example 3.8. Let f = 7. Then, all integers N > 2 satisfying the condition of
Theorem 3.1 are

6, 30, 86, 174, 254, 258, 290, 430, 762, 1270, 2494, 7366,

10922, 32766, 37410, 110490, 163830, 950214, 1583690.

Proposition 3.3 reduces the list above to 254, 762, 10922, 32766. Furthermore, 762 and
10922 are excluded by Remark 3.5, and 32766 is excluded by Proposition 3.7. For the
remaining N = 254, we have (254, 129) ∈ P∗

7 . Thus, (N, p) ∈ P∗
7 are classified.

The following is our main theorem in this subsection.

Theorem 3.9. For f = 3, 5, 7, 9, 11, 13, 17, 19, 23, all (N, p) ∈ P∗
f are listed below:

f = 3 : (N, p) = (14, 9), (42, 25), (78, 55);

f = 5 : (N, p) = (62, 33), (110, 31);

f = 7 : (N, p) = (254, 129);

f = 9 : (N, p) = (146, 37), (1022, 513);

f = 11 : (N, p) = (46, 3), (178, 39), (4094, 2049);

f = 13 : (N, p) = (16382, 8193);

f = 17 : (N, p) = (262142, 131073);

f = 19 : (N, p) = (1048574, 524289);

f = 23 : (N, p) = (94, 3), (356962, 83663), (16777214, 8388609).
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Proof. First, we list all N = 2m satisfying the condition of Theorem 3.1. Then,
similarly to Example 3.8, we reduce the candidates of N such that (N, f, p) ∈ P∗ by
applying Propositions 3.3, 3.4, 3.6, 3.7, and Remark 3.5. For remaining candidates, we
used a computer to directly check whether there is p such that (N, f, p) ∈ P∗ based on
Proposition 2.7. �

3.2. Characterization of pure Gauss sums of small index. In Tables 1 and 2
of the appendix, we will give a list of (N, p) ∈ P∗

f for N 6 5000 and odd f by using a

computer. Almost all examples listed in the tables belong to P(2) or satisfy φ(N)/f 6

8. Therefore, in this subsection, we characterize (N, p) ∈ P∗
f such that f is odd and

φ(N)/f 6 8. Note that φ(N)/f must be even since f is odd. Hence, we consider the
cases where φ(N)/f = 2, 4, 6, 8.

Proposition 3.10. Assume that φ(N)/f = 2. Then, (N, f, p) ∈ P∗ if and only if
r = 1, p1 ≡ 7 (mod 8) and p ≡ g2 (mod N), where g is a generator of (Z/NZ)×.

Proof. It is clear that r = 1 since f is odd and φ(N)/f = 2. Then, by Theorem 2.13,

(N, f, p) ∈ P∗ if and only if χf1
1 (−1) = −1 and χf1

1 (2) = 1, where χf1
1 is of order 2. Note

that χf1
1 (−1) = −1 if and only if p1 ≡ 3 (mod 4). On the other hand, by the supplementary

law of quadratic reciprocity, χf1
1 (2) = 1 if and only if p1 ≡ 1, 7 (mod 8).

Furthermore, we need to choose p so that φ(N) = 2ordN(p), i.e., p ≡ g2 (mod N). �

The claim above is also obtainable from the complete characterization of index 2 Gauss
sums [33].

Proposition 3.11. Assume φ(N)/f = 6. Then, (N, f, p) ∈ P∗ if and only if r = 1,
p1 ≡ 7 (mod 24) such that p1 = a2 + 27b2 for some integers a, b, and p ≡ g6 (mod N),
where g is a generator of (Z/NZ)×.

Proof. Since f is odd and φ(N)/2f is odd, we have r = 1. Then, by Theorem 2.13,

(N, f, p) ∈ P∗ if and only if χf1
1 (−1) = −1 and χf1

1 (2) = 1, where χf1
1 is of order 6. If

6 6 |p1 − 1, it must be p1 = 3 since 6 | φ(m1). In this case, 2 is not a 6th power modulo m1

since 2 is a generator of (Z/m1Z)
×. Hence, we have 6|p1 − 1. Note that χf1

1 (−1) = −1 if
and only if p1 ≡ 7 (mod 12). On the other hand, by the supplementary law of quadratic

reciprocity and the cubic reciprocity law [6, Corollary 2.6.4], χf1
1 (2) = 1 if and only if

p1 ≡ 1, 7 (mod 8) and p1 = a2 + 27b2 for some integers a and b.
Furthermore, we need to choose p so that φ(N) = 6ordN(p), i.e., p ≡ g6 (mod N). �

The claims (1) and (2) in Theorem 2.9 give two sufficient conditions for (N, f, p) ∈ P∗

in the case where φ(m)/f = 4 and f is odd. The two cases in Proposition 3.12 below
correspond to those two conditions. In particular, we prove that the two conditions are
also necessary.

Proposition 3.12. Assume that φ(N)/f = 4. Then, (N, f, p) ∈ P∗ if and only if
r = 2, gcd (f1, f2) = 1, and either of the following conditions holds:

(1) p1, p2 ≡ 7 (mod 8);
(2) p1 ≡ 7 (mod 8), p2 ≡ 3 (mod 4) and p1 is quadratic modulo p2.

Furthermore, p is chosen so that p ≡ g21 (mod 2m1) and p ≡ g22 (mod 2m2), where g1 and
g2 are generators of (Z/2m1Z)

× and (Z/2m2Z)
×, respectively.

Proof. Since φ(mi)/fi > 2, we have r = 1 or 2. In the r = 1 case, by Theorem 2.13,

(N, f, p) ∈ P∗ if and only if χf1
1 (−1) = −1 and χf1

1 (2) = 1, where χf1
1 is a character of order

4. Then, χf1
1 (−1) = −1 if and only if p1 ≡ 5 (mod 8). On the other hand, χ2f1

1 (2) = 1 if
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and only if p1 ≡ 1, 7 (mod 8) by the supplementary law of quadratic reciprocity. Hence,
this case is impossible.

Next, we assume that r = 2. It is clear that gcd (f1, f2) = 1; otherwise, φ(N)/f > 4.

Then, we have φ(mi)/fi = 2, i = 1, 2. In this case, all characters in D
−(N, p) are χf1

1

and χf2
2 , both of which are of order 2. Then, by Theorem 2.13, (N, f, p) ∈ P∗ if and

only if χf1
1 (−1) = χf2

2 (−1) = −1 and either of the following holds: χf1
1 (2) = χf2

2 (2) = 1,

χf1
1 (2) = χf2

2 (p1) = 1 (or switching p1 and p2, χ
f1
1 (p2) = χf2

2 (2) = 1), or χf1
1 (p2) =

χf2
2 (p1) = 1. It is clear that χf1

1 (−1) = χf2
2 (−1) = −1 if and only if p1, p2 ≡ 3 (mod 4).

On the other hand, since χf1
1 (p2)χ

f2
2 (p1) = −1 by the quadratic reciprocity law, the

condition that χf1
1 (p2) = χf2

2 (p1) = 1 is impossible. Noting that χfi
i (2) = 1 if and only if

pi ≡ 1, 7 (mod 8), the former two conditions are corresponding to the cases (1) and (2) in
the statement, respectively. In these cases, noting that gcd (f1, f2) = 1, we need to choose
p so that p ≡ g21 (mod 2m1) and p ≡ g22 (mod 2m2). �

In the following proposition, we treat pure Gauss sums with φ(N)/f = 8 and f odd,
which have not been characterized in the literature.

Proposition 3.13. Assume that φ(N)/f = 8. Then, (N, f, p) ∈ P∗ if and only if
either of the following holds:

(1) r = 1, p1 = a2 +64b2 for some odd integers a, b, and p ≡ g8 (mod N), where g is
a generator of (Z/NZ)×;

(2) r = 2, p1 ≡ 5 (mod 8), p2 ≡ 3 (mod 8), gcd (f1, f2) = 1, p1 is quadratic mod-
ulo p2 and p2 is quartic modulo p1. Furthermore, p ≡ g41 (mod 2m1) and p ≡
g22 (mod 2m2), where g1 and g2 are generators of (Z/2m1Z)

× and (Z/2m2Z)
×,

respectively.
(3) r = 3, gcd (fi, fj) = 1 for any distinct i, j ∈ {1, 2, 3} and either one of the

following holds:
i) p1, p2, p3 ≡ 7 (mod 8);
ii) p1 ≡ 7 (mod 8), p2, p3 ≡ 3 (mod 8) and p1 is quadratic modulo pi for both

i = 2, 3;
iii) p1 ≡ 7 (mod 8), p2, p3 ≡ 3 (mod 8), p1 is quadratic modulo p2 and p2 is

quadratic modulo p3.
Furthermore, p ≡ g2i (mod 2mi) for all i = 1, 2, 3, where gi is a generator of
(Z/2miZ)

×, respectively.

Proof. Since φ(mi)/fi > 2, we have r = 1, 2 or 3. In the case where r = 1, by

Theorem 2.13, (N, f, p) ∈ P∗ if and only if χf1
1 (−1) = −1 and χf1

1 (2) = 1, where χf1
1 is a

character of order 8. Then, χf1
1 (−1) = −1 if and only if p1 ≡ 9 (mod 16). On the other

hand, by [6, Corollary 7.5.8], χf1
1 (2) = 1 under the assumption that p1 ≡ 9 (mod 16) if

and only if p1 = a2 + 64b2 for some odd integers a, b. In this case, p must be chosen so
that φ(N) = 8ordN(p), i.e., p ≡ g8 (mod N).

Assume that r = 2. If φ(mi)/fi = 2 for i = 1, 2, it follows that gcd (f1, f2) = 2, which
contradicts to that f is odd. Hence, we can assume that φ(m1)/f1 = 4, φ(m2)/f2 = 2
and gcd (f1, f2) = 1. Then, all characters in D

−(N, p) are given as

χf1
1 , χ

3f1
1 , χf2

2 , χ
2f1
1 χf2

2 .

Note that χf1
1 (−1) = −1 if and only if p1 ≡ 5 (mod 8). Then, by the supplementary law

of quadratic reciprocity, we have χ2f1
1 (2) = −1. Since χ2f1

1 χf2
2 (2) = 1 by Theorem 2.13,

we have χf2
2 (2) = −1. Noting that χf2

2 (−1) = −1 if and only if p2 ≡ 3 (mod 4), by
the supplementary law of quadratic reciprocity, we have p2 ≡ 3 (mod 8). On the other
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hand, by Theorem 2.13, either χf2
2 (2) = 1 or χf2

2 (p1) = 1 holds. Since χf2
2 (2) = −1, we

have χf2
2 (p1) = 1. Similarly, we have χf1

1 (p2) = 1. These conditions correspond to the
case (2) in the statement. In this case, p must be chosen so that p ≡ g41 (mod 2m1) and
p ≡ g22 (mod 2m2).

We finally assume that r = 3. Then, we have φ(mi)/fi = 2 for every i = 1, 2, 3 and
gcd (fi, fj) = 1 for any distinct i, j ∈ {1, 2, 3}. In this case, all characters in D

−(N, p) are

χf1
1 , χ

f2
2 , χ

f3
3 and χf1

1 χ
f2
2 χ

f3
3 .

Note that χf1
1 (−1) = χf2

2 (−1) = χf3
3 (−1) = −1 if and only if p1, p2, p3 ≡ 3 (mod 4).

It follows that χf1
1 χ

f2
2 χ

f3
3 (2) = 1 by Theorem 2.13. Then, by the supplementary law of

quadratic reciprocity, χfi
i (2) = 1 for all i if and only if pi ≡ 7 (mod 8) for all i. This

corresponds to the case (3)-i) in the statement. In other cases, we can assume that

χf1
1 (2) = 1 and χf2

2 (2) = χf3
3 (2) = −1. These are equivalent to that p1 ≡ 7 (mod 8) and

p2, p3 ≡ 3 (mod 8), respectively. Furthermore, by Theorem 2.13, we have either χf2
2 (p1) =

χf3
3 (p1) = 1, χf2

2 (p1) = χf3
3 (p2) = 1 or χf2

2 (p3) = χf3
3 (p2) = 1. Since χf2

2 (p3)χ
f3
3 (p2) = −1

by the quadratic reciprocity law, χf2
2 (p3) = χf3

3 (p2) = 1 is impossible. The remaining two
conditions are corresponding to (3)-ii) and (3)-iii) in the statement. In these cases, p must
be chosen so that p ≡ g2i (mod 2mi) for i = 1, 2, 3. This completes the proof. �

We list all (p,N) ∈ P∗
f for N 6 5000 and odd f in Tables 1 and 2 in the appendix.

From the computational results, we have the following remark.

Remark 3.14. For N 6 5000 and odd f , (N, f, p) ∈ P∗ is in P(2) or satisfies
φ(N)/f 6 8 except for (N, f, p) = (4042, 161, 21). This exception will be characterized in
Theorem 4.6 (see Remark 4.7).

4. An application of pure Gauss sums to skew Hadamard difference sets

We begin with the following general construction of skew Hadamard difference sets
based on pure Gauss sums.

Proposition 4.1. Let pi, i = 1, 2, . . . , r, be distinct odd primes and ui, i = 1, 2, . . . , r,
be positive integers. Let N = 2m = 2m1m2 · · ·mr, where mi = pui

i , i = 1, 2, . . . , r, and let
p be a prime such that p ≡ 3 (mod 4). Assume that (N, f, p) ∈ P∗ with f odd. Define

Y = {h > 1 | h is a divisor of m s.t. (2h, f, p) 6∈ P},
and I as an m-subset of {0, 1, . . . , N − 1} satisfying the following conditions:

(1) {x (mod m) | x ∈ I} = {0, 1, . . . , m− 1}.
(2)

∑

x∈I ζ
x
2h = 0 for any h ∈ Y .

Then, for every odd positive integer s,

(4.1) D =
⋃

x∈I
C

(N,pfs)
i

forms a skew Hadamard difference set in (Fpfs,+).

Proof. First, note that m | (pf − 1)/(p − 1) by Lemma 2.8. Then, D is invariant
under the multiplication of x2 for any x ∈ F∗

p.
Let γ be a primitive element of Fpfs and let η′N be a fixed multiplicative character

of order N of Fpfs. Furthermore, let X be the set of all divisors of m and Z be the set
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of odd 1 6 j 6 N − 1 such that N/2 gcd (j, N) ∈ X \ Y . Then, by the orthogonality of
characters and the conditions (1) and (2), we have for any a = 0, 1, . . . , pfs − 2,

ψF
pfs

(γaD) =
1

N

N−1
∑

j=0

∑

i∈I
Gpfs(η

′j
N)η

′−j
N (γa+i)

=
|I|
N
Gpfs(η

′0
N ) +

1

N

∑

j∈Z

∑

i∈I
Gpfs(η

′j
N)η

′−j
N (γa+i).(4.2)

Since Gpfs(η
′j
N) is pure for any j ∈ Z, we have

∑

j∈Z

∑

i∈I
Gpfs(η

′j
N)η

′−j
N (γa+i) ≡ 0 (mod p

fs−1
2 ).

Finally, noting that Gpfs(η
′0
N) = −1 and gcd (m, p) = 1, we have 2ψF

pfs
(γaD) + 1 ≡

0 (mod p
fs−1

2 ). Then, by Lemma 2.15, the claim follows. �

Even if we determine the set Y , i.e., for which h we have (2h, f, p) 6∈ P, in the propo-
sition above, it may happen that there is no nontrivial subset I satisfying the conditions
(1) and (2) as commented in Section 5. Moreover, it is difficult to determine the dual of
D in general. Indeed, to do this, we need to evaluate the signs (or roots of unity) of the
corresponding pure Gauss sums. Thus, we have to choose suitable (N, f, p) ∈ P∗ such
that a nontrivial subset I exists satisfying the conditions (1) and (2) and we can evaluate
the signs (or roots of unity) in some sense. From this point of view, we consider pure
Gauss sums satisfying a special property defined below.

Throughout this section, we assume that the order f of p modulo N is odd and N has
the prime factorization N = 2m1m2 · · ·mr, where mi = pui

i with pi an odd prime and ui
a positive integer. We consider (N, f, p) ∈ P∗ such that

(⋆) (2
∏

i∈J mi, f, p) ∈ P for any subset J ⊆ {1, 2, . . . , r} such that 1 ∈ J .

4.1. Characterization of pure Gauss sums with property (⋆). In this subsec-
tion, we give a characterization of pure Gauss sums with property (⋆).

Lemma 4.2. If (N, f, p) ∈ P∗ and (2
∏

i∈J mi, f, p) ∈ P for a subset J ⊆ {1, 2, . . . , r},
then (2

∏

i∈J mi, f
′, p) ∈ P∗, where f ′ = lcm(fi : i ∈ J).

Proof. Note that f = lcm(f1, f2, . . . , fr) and f
′ | f . Then, by Theorem 2.5, we have

(2
∏

i∈J mi, f
′, p) ∈ P∗. �

Proposition 4.3. Assume that (N, f, p) ∈ P∗ with property (⋆). Then, either of the
following holds:

(1) χfi
i (2) = 1 for any i ∈ {1, 2, . . . , r}; or

(2) χf1
1 (2) = 1, χfi

i (2) 6= 1 for any i ∈ {2, 3, . . . , r}, and χfi
i (p1) = 1 for any i ∈

{2, 3, . . . , r}.
Proof. Since (2m1, f, p) ∈ P, we have (2m1, f1, p) ∈ P∗ by Lemma 4.2. Then,

by Theorem 2.13, we have χf1
1 (2) = 1. Furthermore, since (2m1mi, f, p) ∈ P for any

i ∈ {2, 3, . . . , r}, we have (2m1mi, lcm(f1, fi), p) ∈ P∗ by Lemma 4.2 again. Then, by

Theorem 2.13, we have either χfi
i (2) = 1 or χfi

i (p1) = 1.

We assume that χfi
i (2) = 1 for some i ∈ {2, 3, . . . , r}. Since (2m1mimj , f, p) ∈ P

for any j ∈ {2, 3, . . . , r} \ {i}, (2m1mimj , lcm(f1, fi, fj), p) ∈ P∗ follows by Lemma 4.2.

Then, by Theorem 2.13, we have χf1
1 χ

fi
i χ

fj
j (2) = 1. Since χf1

1 (2) = χfi
i (2) = 1, we have

χ
fj
j (2) = 1. This implies that χfh

h (2) = 1 for any h ∈ {1, 2, . . . , r}. If χfi
i (2) 6= 1 for
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any i ∈ {2, 3, . . . , r}, we have χfi
i (p1) = 1 for any i ∈ {2, 3, . . . , r}. This completes the

proof. �

Remark 4.4. If (N, f, p) satisfies the condition (2) in Proposition 4.3, (2m1, f, p) ∈ P
but (2mi, f, p) 6∈ P for any i ∈ {2, 3, . . . , r} by Theorem 2.13.

We now give a sufficient condition for (N, f, p) ∈ P∗ with property (⋆).

Theorem 4.5. Assume that f = ordN(p) is odd. If (N, f, p) ∈ P(2), (N, f, p) ∈ P∗

with property (⋆).

Proof. Since 2 ∈ 〈p〉 (mod m′) for any divisor m′ of m, the assertion holds. �

The theorem above implies that (N, f, p) ∈ P(2) belongs to the class (1) of Proposi-
tion 4.3. The pure Gauss sums in this case were used for constructing skew Hadamard
difference sets as in Theorem 2.16. Next, we give a sufficient condition for (N, f, p) ∈ P∗

to belong to the class (2) of Proposition 4.3.

Theorem 4.6. Assume that fi are all odd and gcd (f1, fi) = 1 for any i ∈ {2, 3, . . . , r}.
If (N, f, p) satisfies that φ(m1)/f1 = 2, 2 ∈ 〈p〉 (mod m1), −2 ∈ 〈p〉 (mod m/m1) and
p1 ∈ 〈p〉 (mod m/m1), then (N, f, p) ∈ P∗ with property (⋆).

Proof. By the assumption that gcd (f1, fi) = 1 for any i ∈ {2, 3, . . . , r}, any odd

character in D
−(N, p) has the form τ1 = χf1

1 χ for some even character χ modulo m/m1

such that χ(p) = 1 or τ2 = χ′ for some odd character χ′ modulom/m1 such that χ′(p) = 1.
By the assumptions that φ(m1)/f1 = 2, 2 ∈ 〈p〉 (mod m1) and −2 ∈ 〈p〉 (mod m/m1), we
have

τ1(2) = χf1
1 (2)χ(2) = χ(−1)χ(pi) = 1

for some i. On the other hand, since p1 ∈ 〈p〉 (mod m/m1), we have

τ2(p1) = χ′(p1) = 1.

Then, by Theorem 2.13, it follows that (N, f, p) ∈ P∗. Furthermore, it is clear that the
property (⋆) is satisfied. �

The theorem above is a generalization of Proposition 3.12 (2).

Remark 4.7. The exception (N, p) = (4042, 21) ∈ P∗
161 listed in Table 2 satisfies the

condition in Theorem 4.6 as m1 = 47 and m2 = 43.

Corollary 4.8. Assume that

(1) p1 ≡ 7 (mod 8) and pi ≡ 3 (mod 8) for all i ∈ {2, 3, . . . , r};
(2) p1 is quadratic modulo pi for all i ∈ {2, 3, . . . , r};
(3) fi = φ(mi)/2 for all i;
(4) φ(mi)/2’s are mutually coprime.

Then, (N, f, p) ∈ P∗ with property (⋆).

Proof. By the supplementary law of quadratic reciprocity, we have χf1
1 (2) = 1 and

χfi
i (2) = −1 for all i > 1. Then, the conditions of Theorem 4.6 are fulfilled. �

One can see that there are infinitely many tuples of m1, m2, . . . , mr, p satisfying the
condition of Corollary 4.8.

Example 4.9. Fix m2 = 3 and m3 = 11. Let m1 ≡ 7 (mod 8) be a prime such that m1

is quadratic modulo both 3 and 11, i.e., m1 ≡ 1 (mod 3) and m1 ≡ 1, 3, 4, 5, 9 (mod 11).
Furthermore, we need the restriction m1 ≡ 3, 5, 7, 9 (mod 10) in order to satisfy that
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gcd (φ(m1)/2, φ(11)/2) = 1. There are infinitely many such primes m1 by the Dirichlet
theorem in arithmetic progressions. For example, we can takem1 = 103, 199, 223, 367, 463, . . ..
Let p′ be any integer with 1 6 p′ 6 N − 1 determined by the congruences











p′ ≡ 1 (mod 6)

p′ ≡ 1, 3, 5, 9 or 15 (mod 22)

p′ ≡ g2 (mod 2m1)

for any generator g of (Z/2m1Z)
×. Then, 〈p′〉 is of index 2 modulo 2mi for each i.

Then, (N, f, p) ∈ P∗ with property (⋆) for any odd prime p ≡ p′ (mod N), where f :=
5(m1 − 1)/2.

4.2. The signs or roots of unity of pure Gauss sums with property (⋆).
In this subsection, we study the signs or roots of unity of pure Gauss sums satisfying
property (⋆). The following result was known.

Lemma 4.10. ([13, Lemma 6]) If Gq(ηN ) is pure, then ǫ = Gq(ηN )/q
1
2 is a 2 gcd (N, p− 1)th

root of unity.

The sign (root of unity) ambiguities of pure Gauss sums in the class P(2) was com-
pletely determined as in Theorem 2.11. However, it is difficult to explicitly determine
them for pure Gauss sums in general. In fact, it sometimes becomes complicated as in
[13, Theorem 10]. In this subsection, we show that if Gpf (ηN) is pure with property (⋆),
the sign (or root of unity) of Gpf (ηN ) is determined from those of Gpf (η2m1mi

)’s, 1 6 i 6 r.
This property will be used to determine the duals of skew Hadamard difference sets ob-
tained from the construction in Theorem 4.16.

For positive integers x and y with gcd (x, y) = 1, let inv(x; y) denote an integer such
that x · inv(x; y) ≡ 1 (mod y). The claim of the following lemma was given in the proof
of [13, Theorem 7].

Lemma 4.11. Let n = st be a positive integer, where s is an odd prime power and
t > 1 with gcd (s, t) = 1. Let ηn be a multiplicative character of order n of Fpf . Assume

that (n, f, p) ∈ P and (t, f, p) ∈ P. Then, Gpf (ηn)/Gpf (η
s·inv(s,t)
n ) is a gcd (p− 1, s)th root

of unity.

Recall that N = 2m = 2m1m2 · · ·mr, where mi = pui
i , i = 1, 2, . . . , r. For a subset

J ⊆ {1, 2, . . . , r}, denote mJ =
∏

i∈J mi and nJ = m/mJ . Let ω be a primitive root of
Fpf , and let ηN be a fixed multiplicative character of order N of Fpf such that ηN (ω) = ζN .

We denote η2mJ
= η

nJ ·inv(nJ ,2mJ )
N , and also denote an arbitrary multiplicative character of

order h of Fpf by θh. Note that for any mi |m/mJ , η2mJ
= η

mi·inv(mi,2mJ )
2mimJ

.

Proposition 4.12. Assume that (N, f, p) ∈ P∗ with property (⋆). Then, the following
hold:

• There are integers si, i = 1, 2, . . . , r, such that

(4.3) Gpf (η2m1) = ζs1m1
Gpf (η2) and Gpf (η2m1mi

) = ζsimi
Gpf (η2m1), 2 6 i 6 r.

• Let J ⊆ {1, 2, 3, . . . , r} such that 1 ∈ J . Then,

(4.4) Gpf (η2mJ
) =

(

∏

i∈J
ζsimi

)

Gpf (η2),

where si’s are defined as in (4.3). In particular, s1 = 0.
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Proof. (4.3) is a direct consequence of Lemma 4.11. Furthermore, we have s1 = 0
by Proposition 2.11.

We prove that (4.4) holds. Let mi, mj be distinct prime power divisors of m/m1 and
J be any subset of {1, 2, . . . , r} \ {i, j} containing 1. By Lemma 4.11, we have

{

Gpf (η2mimJ
)/Gpf (η2mJ

) = ζumi

Gpf (η2mjmJ
)/Gpf (η2mJ

) = ζu
′

mj

and

{

Gpf (η2mimjmJ
)/Gpf (η2mimJ

) = ζvmi

Gpf (η2mimjmJ
)/Gpf (η2mjmJ

) = ζv
′

mj

for some integers u, u′, v, v′. By combining these equations, we have ζumi
ζv

′

mj
= ζvmi

ζu
′

mj
, i.e.,

u = v and u′ = v′. Hence, Gpf (η2mimjmJ
)/Gpf (η2mJ

) = ζumi
ζu

′

mj
. This argument inductively

shows (4.4). �

Proposition 4.13. Assume that (N, f, p) ∈ P∗ with property (⋆). Let J ⊆ {1, 2, . . . , r}
such that 1 ∈ J , and let J ′ ⊆ J . Furthermore, let v =

∏

i∈J ′ p
ℓi
i for some integers

1 6 ℓi 6 ui − 1. Then,

(4.5) Gpf (η
v
2mJ

) =
(

∏

i∈J
ζvsimi

)

Gpf (η2).

Proof. By Corollary 2.4, we have

(4.6) Gpf (η
v
2mJ

) = p−f v−1
2 σ1,v−1

(

v−1
∏

j=0

Gpf (η2mJ
θjv)

)

,

where σ1,v−1 ∈ Gal(Q(ζ2mJ
, ζp)/Q) and θv is any multiplicative character of order v

of Fpf . Noting that gcd (2mJ , 1 + 2mJj/v) = 1 for any j = 0, 1, . . . , v − 1, we have

σ1+2mJ j/v,1(Gpf (η2mJ
)) = Gpf (η

1+2mJ j/v
2mJ

). On the other hand, by Proposition 4.12, we

have σ1+2mJ j/v,1(Gpf (η2mJ
)) =

(

∏

i∈J ζ
si(1+2mJ j/v)
mi

)

Gpf (η2). Hence, Gpf (η
1+2mJ j/v
2mJ

) =
(

∏

i∈J ζ
si(1+2mJ j/v)
mi

)

Gpf (η2). Then, by noting that v is odd,

v−1
∏

j=0

Gpf (η2mJ
θjv) =

v−1
∏

j=0

Gpf (η
1+2mJ j/v
2mJ

)

=
(

∏

i∈J
ζsivmi

)(

∏

i∈J
ζsi2mJ (1+···+v−1)/v
mi

)

Gpf (η2)
v

=
(

∏

i∈J
ζsivmi

)

Gpf (η2)
v.

Furthermore, we have

Gpf (η2)
v = η

v−1
2

2 (−1)pf
v−1
2 Gpf (η2).

Therefore, (4.6) is reformulated as

Gpf (η
v
2mJ

) = η
v−1
2

2 (−1)
(

∏

i∈J
ζsivmi

)

σ1,v−1(Gpf (η2)) = η
v−1
2

2 (−1)η2(v)
(

∏

i∈J
ζsivmi

)

Gpf (η2).

Finally, we see that η
v−1
2

2 (−1)η2(v) = 1. Note that η2(v) =
∏

i∈J ′

(

pi
p

)ℓi , where
(

pi
p

)

is the

Legendre symbol. Since f is odd, we have
(

p
pi

)

= 1. Then, by the quadratic reciprocity
law, we have

∏

i∈J ′

(pi
p

)ℓi
=

∏

i∈J ′

(−1)
(p−1)(pi−1)ℓi

4 .
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Let h be the number of i ∈ J ′ such that pi ≡ 3 (mod 4) and ℓi is odd. Then, we have

η2(v) = (−1)h(p−1)/2. On the other hand, η
v−1
2

2 (−1) = 1 if and only if p ≡ 1 (mod 4)

or p ≡ 3 (mod 4) and v ≡ 1 (mod 4) (i.e., h is even). Hence, η2(v) = η
v−1
2

2 (−1). This
completes the proof of the proposition. �

Remark 4.14. (1) Recall that η2mJ
= η

nJ ·inv(nJ ,2mJ )
2m . Let

(4.7) A = s1m2 · · ·mr + · · ·+ srm1 · · ·mr−1.

Then, we have

η2mJ
(ω2A) =

r
∏

i=1

ζsinJ ·inv(nJ ,2mJ )
mi

=
∏

i∈J
ζsinJ ·inv(nJ ,2mJ )
mi

.

Since nJ · inv(nJ , 2mJ) ≡ 1 (mod mi) for i ∈ J , we have η2mJ
(ω2A) =

∏

i∈J ζ
si
mi
.

Hence, by Propositions 4.12 and 4.13, for any odd j such that p1 | N
gcd (j,N)

,

(4.8) Gpf (η
j
N) = ηjN (ω

2A)Gpf (η2).

(2) If (N, p, f) satisfies the condition of Theorem 4.6, ηN(ω
2A) is a cubic root of unity.

In fact, the condition −2 ∈ 〈p〉 (mod m/m1) implies that gcd (mi, p− 1) = 1 or
3 for any i = 2, 3, . . . , r. Then, by Lemma 4.11 and Proposition 4.12, the claim
follows.

4.3. A construction of skew Hadamard difference sets. In this subsection, we
show that if (N, f, p) ∈ P∗ with property (⋆), there are nontrivial choices of I satisfying
the conditions (1) and (2) of Proposition 4.1. Furthermore, we can determine the dual of
D in this case. First, we illustrate our construction giving one example below.

Example 4.15. As in Table 1, we have (42, 3, 67) ∈ P∗ and (14, 3, 67) ∈ P, i.e., it
satisfies the condition (⋆) as m1 = 7. Note that (6, 3, 67) 6∈ P, i.e., (42, 3, 67) ∈ P∗ belongs
to the class (2) of Proposition 4.3. Let I be any 21-subset of {0, 1, . . . , 41} satisfying the
following conditions:

(1) {x (mod 21) | x ∈ I} = {0, 1, . . . , 20};
(2)

∑

x∈I ζ
x
6 = 0.

For example, we can take

I = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 40}.
Then, for every odd positive integer s,

D =
⋃

x∈I
C

(42,673s)
i

forms a skew Hadamard difference set in (F673s ,+). Furthermore, its dual is given as

D⊥ = {ψa ∈ G⊥ | a ∈ ⋃

i∈I′ C
(N,pfs)
i }, where I ′ = −I + 14s.

Theorem 4.16. With notations as in Proposition 4.1, assume that (N, f, p) ∈ P∗ with
property (⋆). Furthermore, redefine Y as

Y = {h > 1 | h is a divisor of
∏r

i=2mi}.
Then, for every odd positive integer s, the set D defined in (4.1) forms a skew Hadamard
difference set in (Fpfs,+). In particular, its dual is given as D⊥ = {ψa ∈ G⊥ | a ∈
⋃

i∈I′ C
(N,pfs)
i }, where I ′ = −I + 2As, where A is defined as in (4.7).
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Proof. Let γ be a primitive element of Fpfs and let ω = γ(p
fs−1)/(pf−1). Furthermore,

let ηN be a fixed multiplicative character of order N of Fpf such that ηN(ω) = ζN , and
let η′N be the lift of ηN to Fpfs. Continuing from (4.2), we have by Theorem 2.5 that

ψF
pfs

(γaD) = −1

2
+

1

N

∑

j∈Z

∑

i∈I
(Gpf (η

j
N))

sη−j
N (ωa+i).(4.9)

By Proposition 4.13 and Remark 4.14, for any j ∈ Z

Gpf (η
j
N) = ηjN (ω

2A)Gpf (η2).

Hence, continuing from (4.9), we have

ψF
pfs

(γaD) = − 1

2
+

(Gpf (η2))
s

N

∑

j∈Z

∑

i∈I
η−j
N (ωa+i)ηjsN (ω2A)

= − 1

2
+
Gpfs(η

′
2)

N

N−1
∑

j=1

∑

i∈I
η−j
N (ωa−2As+i)

= − 1

2
+
Gpfs(η

′
2)

N
·
{

m if −a + 2As ∈ I,

−m otherwise,

where η′2 is the quadratic character of Fpfs. Hence, by (2.4), we obtain ψF
pfs

(γaD) ∈

{−1±
√

−pfs

2
}. This implies that D is a skew Hadamard difference set. Furthermore, its

dual is determined as desired. �

Remark 4.17. There are nontrivial choices of I satisfying the conditions of Theo-
rem 4.16. For example, let Si = {2im/m1+ j | 0 6 j 6 2m/m1−1} for i = 0, 1, . . . , (m1−
3)/2 and let A0, A1 be an arbitrary partition of J = {0, 1, . . . , (m1 − 3)/2}. Then, we can
take

I =

{

x | x ∈
⋃

i∈A0

Si

}

∪
{

x+m | x ∈
⋃

i∈A1

Si

}

∪
{

(m1 − 1)m

m1

+ 2i | i = 0, 1, . . . ,
m/m1 − 1

2

}

∪
{

(m1 − 1)m

m1
+m+ 2i− 1 | i = 1, 2, . . . ,

m/m1 − 1

2

}

.

This is a generalization of I in Example 4.15.

The following result is immediately obtained by applying Theorem 4.16 to the class
P(2).

Corollary 4.18. Assume that 2 ∈ 〈p〉 (mod m). Let Y = {h > 1 | h is a divisor of
∏r

i=2mi},
and let I be an arbitrary m-subset of {0, 1, . . . , N − 1} such that {x (mod m) | x ∈ I} =
{0, 1, . . . , m− 1} and

∑

x∈I ζ
x
2h = 0 for any h ∈ Y . Then, for any odd positive integer s,

D =
⋃

x∈I C
(N,pfs)
i forms a skew Hadamard difference set in (Fpfs,+).

Proof. The assumption that 2 ∈ 〈p〉 (mod m) implies that (N, f, p) ∈ P(2) with
property (⋆) belonging to the class (1) of Proposition 4.3 by Theorem 4.5. Then, by
Theorem 4.16, the claim follows. �

Note that the result above is contained in Theorem 2.16. In fact, the construction
given in Theorem 2.16 allows I as an arbitrary subset of {0, 1, . . . , N − 1} satisfying the
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condition (1) but not necessarily satisfying the condition (2) since (2m′, f, p) ∈ P∗ for any
divisor m′ of m. This also follows from Proposition 4.1 as Y = ∅.

The following is a new result not within the framework of Theorem 2.16.

Corollary 4.19. Assume that fi are all odd and gcd (f1, fi) = 1 for any i ∈
{2, 3, . . . , r}. If (N, f, p) satisfies that φ(m1)/f1 = 2, 2 ∈ 〈p〉 (mod m1), 2 ∈ −〈p〉 (mod m/m1)
and p1 ∈ 〈p〉 (mod m/m1), Let Y = {h > 1 | h is a divisor of

∏r
i=2mi}, and let I be an

arbitrary m-subset of {0, 1, . . . , N − 1} such that {x (mod m) | x ∈ I} = {0, 1, . . . , m− 1}
and

∑

x∈I ζ
x
2h = 0 for any h ∈ Y . Then, for any odd positive integer s, D =

⋃

x∈I C
(N,pfs)
i

forms a skew Hadamard difference set in (Fpfs,+).

Proof. The assumptions imply that (N, f, p) ∈ P∗ with property (⋆) belonging to
the class (2) of Proposition 4.3 by Theorem 4.6. Then, by Theorem 4.16, the claim
follows. �

Remark 4.20. We remark that any (N, f, p) ∈ P∗ satisfying the condition of Propo-
sition 3.12 (2) or 3.13 (3)-ii) also satisfies the condition of Corollary 4.19. Hence, by
Tables 1 and 2, there exist (N, f, p) ∈ P∗ satisfying the condition of Corollary 4.19 in
abundance.

Remark 4.21. In this remark, we discuss the inequivalence problem on skew Hadamard
difference sets obtained from Theorem 4.16. Two skew Hadamard difference sets D1 and
D2 in an abelian group G are called equivalent if there exists an automorphism σ ∈ Aut(G)
and an element x ∈ G such that σ(D1) + x = D2.

Let D be a skew Hadamard difference set in (Fq,+). For a fixed a ∈ F∗
p, define

Tx,a(D) := |D ∩ (D − x) ∩ (D − a · x)|, x ∈ F∗
q ,

and
na(D) = |{Tx,a(D) | x ∈ F∗

q}|.
It is known that na(D) is an invariant of the equivalence of skew Hadamard difference
sets in (Fq,+), cf. [27].

It is clear that the Paley difference set DP satisfies that na(DP ) 6 2 for any a ∈ F∗
p.

If a skew Hadamard difference set D satisfies na(D) > 3 for some a ∈ F∗
p, then D is

inequivalent to DP . Let D0 ⊆ F673 be the skew Hadamard difference set in Example 4.15.
We checked by a computer that na(D0) > 3 for a = 3. On the other hand, since (N, f, p) =

(14, 3, 67) ∈ P(2), the set D =
⋃

i∈I C
(14,673)
i is also a skew Hadamard difference set for

any 7-subset I of {0, 1, . . . , 13} such that I ∩ {x+ 7 (mod 14) | x ∈ I} = ∅. Let
I1 = {0, 1, 2, 3, 4, 5, 6}, I2 = {0, 1, 2, 3, 4, 6, 12},
I3 = {0, 1, 6, 9, 10, 11, 12}, I4 = {0, 1, 2, 4, 6, 10, 12}

and define Dj =
⋃

i∈Ij C
(14,673)
i for j = 1, 2, 3, 4. We checked by a computer that Dj, j =

1, 2, 3, 4, are mutually inequivalent and they are also inequivalent to the Paley difference
set. Furthermore, it holds that n3(D0) 6= n3(Dj) for any j = 1, 2, 3, 4. Hence, D0 is
inequivalent to Dj’s. Thus, Corollary 4.19 can give rise to skew Hadamard difference sets
not obtained from Theorem 2.16.

5. Concluding remarks

In this section, we give a comment on Proposition 4.1. The author could not find
any nontrivial example of skew Hadamard difference sets fitting the general construction
given in Proposition 4.1 other than those obtained from Theorem 4.16. Let us consider
pure Gauss sums not satisfying property (⋆), e.g., Gauss sums in the r = 2 case such
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that (2pi, f, p) 6∈ P for each i = 1, 2 and (2p1p2, f, p) ∈ P. Note that the pure Gauss
sums in Proposition 3.13 (2) belong to this class. Then, the conditions (1) and (2) in
Proposition 4.1 are equivalent to that

∑

i∈I ζ
i
t = 0 for any t ∈ {p1, p2, p1p2, 2p1, 2p2}. By

identifying the subset I with the polynomial f(x) =
∑

i∈I x
i (mod xN − 1), the condition

above is equivalent to

(5.1) f(x) ≡ 0 (mod Φt), ∀t ∈ {p1, p2, p1p2, 2p1, 2p2},
where Φt is the tth cyclotomic polynomial. The problem is whether there is a polynomial
f(x) (mod xN − 1) with coefficients from {0, 1} and with exactly p1p2 nonzero coefficients
such that f(x) 6≡ 0 (mod Φ2p1p2) and (5.1) is satisfied. For example, we checked by a
computer that there is no such f(x) for (p1, p2) = (3, 5), (3, 7). This problem remains
open in general, which is difficult but interesting besides evaluating Gauss sums.
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Appendix

In this appendix, we list all (N, p) ∈ P∗
f for N 6 5000 and odd f in Tables 1 and 2.

Table 1. (N, p) ∈ P∗
f for N 6 5000 and odd f

[N, f, p] Ref.

[14, 3, 9] Prop. 3.10
[42, 3, 25] Prop. 3.12 (2)
[46, 11, 3] Prop. 3.10
[62, 15, 7] Prop. 3.10
[62, 5, 33] Prop. 3.11
[78, 3, 55] Prop. 3.13 (2)
[94, 23, 3] Prop. 3.10
[98, 21, 9] Prop. 3.10
[110, 5, 31] Prop. 3.13 (2)
[142, 35, 3] Prop. 3.10
[146, 9, 37] Prop. 3.13 (1)
[158, 39, 5] Prop. 3.10
[178, 11, 39] Prop. 3.13 (1)
[186, 15, 7] Prop. 3.12 (2)
[206, 51, 7] Prop. 3.10
[254, 63, 9] Prop. 3.10
[254, 21, 25] Prop. 3.11

[254, 7, 129] P(2)

[294, 21, 25] Prop. 3.12 (2)
[302, 75, 5] Prop. 3.10

[302, 15, 85] P(2)

[322, 33, 9] Prop. 3.12 i)
[334, 83, 3] Prop. 3.10
[382, 95, 3] Prop. 3.10
[398, 99, 7] Prop. 3.10

[434, 15, 39] P(2)

[446, 37, 7] Prop. 3.11
[446, 111, 9] Prop. 3.10
[462, 15, 25] Prop. 3.13 (3)-iii)
[466, 29, 19] Prop. 3.13 (1)
[474, 39, 13] Prop. 3.12 (2)
[478, 119, 3] Prop. 3.10
[506, 55, 3] Prop. 3.12 (2)
[526, 131, 3] Prop. 3.10
[542, 135, 7] Prop. 3.10
[618, 51, 7] Prop. 3.12 (2)
[622, 155, 3] Prop. 3.10
[654, 27, 7] Prop. 3.13 (2)
[658, 69, 9] Prop. 3.12 (1)

[674, 21, 13] P(2)

[686, 147, 9] Prop. 3.10
[718, 179, 3] Prop. 3.10
[734, 183, 13] Prop. 3.10
[762, 63, 13] Prop. 3.12 (2)
[766, 191, 3] Prop. 3.10

[N, f, p] Ref.

[826, 87, 9] Prop. 3.12 (2)

[862, 43, 3] P(2)

[862, 215, 5] Prop. 3.10

[874, 99, 9] Prop. 3.12 (2)
[878, 219, 5] Prop. 3.10
[878, 73, 7] Prop. 3.11
[906, 75, 25] Prop. 3.12 (2)
[926, 231, 9] Prop. 3.10
[958, 239, 3] Prop. 3.10
[974, 243, 9] Prop. 3.10
[994, 105, 9] Prop. 3.12 (1)
[1006, 251, 3] Prop. 3.10
[1014, 39, 55] Prop. 3.13 (2)

[1022, 9, 513] P(2)

[1034, 115, 3] Prop. 3.12 (2)
[1058, 253, 3] Prop. 3.10
[1086, 45, 13] Prop. 3.13 (2)

[1106, 39, 11] P(2)

[1162, 123, 9] Prop. 3.12 (2)
[1194, 99, 7] Prop. 3.12 (2)
[1198, 299, 3] Prop. 3.10
[1202, 75, 3] Prop. 3.13 (1)

[1202, 25, 27] P(2)

[1210, 55, 31] Prop. 3.13 (2)
[1214, 303, 9] Prop. 3.10

[1246, 33, 39] P(2)

[1262, 315, 9] Prop. 3.10

[1262, 45, 47] P(2)

[1294, 323, 3] Prop. 3.10

[1310, 65, 11] Prop. 3.13 (2)
[1338, 111, 19] Prop. 3.12 (2)
[1374, 57, 19] Prop. 3.13 (2)
[1426, 165, 9] Prop. 3.12 (1)

[1426, 55, 35] P(2)

[1438, 359, 3] Prop. 3.10

[1442, 51, 121] P(2)

[1454, 363, 7] Prop. 3.10
[1454, 121, 9] Prop. 3.11
[1486, 371, 3] Prop. 3.10
[1502, 375, 5] Prop. 3.10
[1626, 135, 7] Prop. 3.12 (2)
[1646, 411, 9] Prop. 3.10
[1662, 69, 49] Prop. 3.13 (2)
[1678, 419, 3] Prop. 3.10
[1726, 431, 3] Prop. 3.10

[N, f, p] Ref.

[1762, 55, 21] P(2)

[1774, 443, 3] Prop. 3.10

[1778, 21, 135] P(2)

[1786, 207, 9] Prop. 3.12 (2)
[1822, 455, 3] Prop. 3.10

[1822, 91, 15] P(2)

[1834, 195, 9] Prop. 3.12 (2)
[1838, 459, 5] Prop. 3.10
[1838, 153, 9] Prop. 3.11
[1874, 117, 9] Prop. 3.13 (1)
[1922, 465, 7] Prop. 3.10
[1922, 155, 33] Prop. 3.11
[1934, 483, 21] Prop. 3.10
[1966, 491, 3] Prop. 3.10
[1978, 231, 9] Prop. 3.12 (2)
[1982, 495, 5] Prop. 3.10
[2058, 147, 25] Prop. 3.12 (2)
[2062, 515, 3] Prop. 3.10
[2078, 519, 7] Prop. 3.10
[2110, 105, 51] Prop. 3.13 (2)

[2114, 75, 25] P(2)

[2114, 15, 529] P(2)

[2126, 531, 9] Prop. 3.10
[2162, 253, 3] Prop. 3.12 (1)
[2174, 543, 9] Prop. 3.10
[2202, 183, 13] Prop. 3.12 (2)
[2206, 551, 3] Prop. 3.10

[2206, 29, 69] P(2)

[2254, 231, 9] Prop. 3.12 (1)
[2266, 255, 15] Prop. 3.12 (2)
[2302, 575, 3] Prop. 3.10
[2338, 249, 9] Prop. 3.12 (1)
[2446, 611, 7] Prop. 3.10
[2462, 615, 5] Prop. 3.10
[2478, 87, 25] Prop. 3.13 (3)-ii)
[2510, 125, 21] Prop. 3.13 (2)
[2526, 105, 25] Prop. 3.13 (2)
[2558, 639, 5] Prop. 3.10
[2578, 161, 29] Prop. 3.13 (1)
[2606, 651, 23] Prop. 3.10
[2622, 99, 25] Prop. 3.13 (3)-iii)
[2634, 219, 13] Prop. 3.12 (2)
[2638, 659, 3] Prop. 3.10

[2654, 663, 9] Prop. 3.10
[2654, 221, 43] Prop. 3.11
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Table 2. (N, p) ∈ P∗
f for N 6 5000 and odd f

[N, f, p] Ref.

[2674, 285, 9] Prop. 3.12 (2)
[2734, 683, 3] Prop. 3.10
[2778, 231, 25] Prop. 3.12 (2)
[2782, 159, 3] Prop. 3.13 (2)

[2786, 99, 23] P(2)

[2798, 699, 5] Prop. 3.10
[2798, 233, 9] Prop. 3.11
[2846, 711, 9] Prop. 3.10
[2846, 237, 23] Prop. 3.11
[2866, 179, 15] Prop. 3.13 (1)
[2878, 719, 3] Prop. 3.10
[2894, 723, 9] Prop. 3.10
[2914, 345, 7] Prop. 3.12 (1)

[2914, 115, 97] P(2)

[2922, 243, 31] Prop. 3.12 (2)
[2942, 735, 5] Prop. 3.10
[2942, 245, 19] Prop. 3.11
[2974, 743, 3] Prop. 3.10
[3022, 755, 5] Prop. 3.10
[3038, 105, 39] Prop. 3.12 (1)
[3086, 771, 13] Prop. 3.10
[3118, 779, 3] Prop. 3.10

[3122, 111, 289] P(2)

[3134, 783, 7] Prop. 3.10
[3166, 791, 11] Prop. 3.10
[3178, 339, 9] Prop. 3.12 (2)
[3214, 803, 3] Prop. 3.10
[3218, 201, 11] Prop. 3.13 (1)
[3234, 105, 25] Prop. 3.13 (3)-iii)
[3246, 135, 25] Prop. 3.13 (2)

[3262, 87, 23] P(2)

[3266, 385, 3] Prop. 3.12 (1)
[3310, 165, 21] Prop. 3.13 (2)
[3326, 831, 9] Prop. 3.10
[3346, 357, 9] Prop. 3.12 (1)

[3358, 99, 55] P(2)

[3406, 195, 3] Prop. 3.13 (2)
[3422, 203, 7] Prop. 3.13 (2)
[3442, 215, 17] Prop. 3.13 (1)

[N, f, p] Ref.

[3454, 195, 9] Prop. 3.13 (2)
[3486, 123, 25] Prop. 3.13 (3)-ii)
[3514, 375, 9] Prop. 3.12 (2)
[3518, 879, 11] Prop. 3.10
[3566, 891, 7] Prop. 3.10
[3602, 225, 9] Prop. 3.13 (1)

[3602, 75, 21] P(2)

[3602, 25, 175] P(2)

[3634, 429, 9] Prop. 3.12 (1)
[3642, 303, 13] Prop. 3.12 (2)
[3646, 911, 3] Prop. 3.10
[3662, 305, 5] Prop. 3.11
[3662, 915, 9] Prop. 3.10
[3682, 393, 9] Prop. 3.12 (1)
[3694, 923, 3] Prop. 3.10
[3742, 935, 5] Prop. 3.10
[3758, 939, 5] Prop. 3.10
[3786, 315, 31] Prop. 3.12 (2)

[3794, 135, 37] P(2)

[3818, 451, 3] Prop. 3.12 (2)
[3826, 239, 17] Prop. 3.13 (1)
[3838, 225, 5] Prop. 3.13 (2)
[3902, 975, 5] Prop. 3.10
[3998, 999, 5] Prop. 3.10
[3998, 333, 13] Prop. 3.11
[4042, 483, 9] Prop. 3.12 (2)
[4042, 161, 21] Exception
[4078, 1019, 3] Prop. 3.10

[4094, 11, 2049] P(2)

[4126, 1031, 3] Prop. 3.10
[4174, 1043, 3] Prop. 3.10
[4178, 261, 15] Prop. 3.13 (1)

[4178, 87, 85] P(2)

[4178, 29, 457] P(2)

[4222, 1055, 5] Prop. 3.10
[4254, 177, 7] Prop. 3.13 (2)
[4286, 1071, 9] Prop. 3.10
[4286, 357, 15] Prop. 3.11

[4286, 51, 67] P(2)

[N, f, p] Ref.

[4286, 153, 121] P(2)

[4354, 465, 9] Prop. 3.12 (1)
[4362, 363, 7] Prop. 3.12 (2)
[4378, 495, 9] Prop. 3.12 (2)
[4398, 183, 31] Prop. 3.13 (2)

[4402, 105, 19] P(2)

[4402, 35, 225] P(2)

[4414, 1103, 3] Prop. 3.10
[4418, 1081, 3] Prop. 3.10
[4478, 1119, 9] Prop. 3.10
[4494, 159, 25] Prop. 3.13 (3)-iii)
[4506, 375, 13] Prop. 3.12 (2)

[4526, 45, 221] P(2)

[4542, 189, 7] Prop. 3.13 (2)
[4574, 1143, 7] Prop. 3.10
[4574, 381, 9] Prop. 3.11
[4606, 483, 9] Prop. 3.12 (1)
[4622, 1155, 9] Prop. 3.10
[4702, 1175, 3] Prop. 3.10

[4702, 235, 11] P(2)

[4702, 47, 15] P(2)

[4718, 21, 1115] P(2)

[4738, 561, 25] Prop. 3.12 (1)
[4766, 397, 7] Prop. 3.11

[4766, 1191, 13] Prop. 3.10
[4798, 1199, 3] Prop. 3.10
[4802, 1029, 9] Prop. 3.10
[4814, 287, 7] Prop. 3.13 (2)
[4846, 1211, 3] Prop. 3.10
[4882, 305, 5] Prop. 3.13 (1)
[4894, 1223, 3] Prop. 3.10

[4898, 195, 95] P(2)

[4906, 555, 9] Prop. 3.12 (2)
[4910, 245, 11] Prop. 3.13 (2)
[4922, 583, 3] Prop. 3.12 (2)
[4938, 411, 13] Prop. 3.12 (2)
[4974, 207, 55] Prop. 3.13 (2)
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