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ON THE CONSTRUCTIONS OF MDS SELF-DUAL
CODES VIA CYCLOTOMY

AIXTAN ZHANG AND KEQIN FENG

ABSTRACT. MDS self-dual codes over finite fields have attracted
a lot of attention in recent years by their theoretical interests in
coding theory and applications in cryptography and combinatorics.
In this paper we present a series of MDS self-dual codes with new
length by using generalized Reed-Solomon codes and extended gen-
eralized Reed-Solomon codes as the candidates of MDS codes and
taking their evaluation sets as an union of cyclotomic classes. The
conditions on such MDS codes being self-dual are expressed in
terms of cyclotomic numbers.

1. INTRODUCTION

Let F, be the finite field with ¢ elements. An [n, k, d], linear code C
is a k-dimensional subspace of Fj with minimum (Hamming) distance
d. It is well known that n, k,d need satisfy the Singleton bound d <
n — k + 1. If the equality is attained then the code is called MDS code.
The dual code C* of C is defined by

Ct={velF}: (v,c)=0forallceC}

n
where for v = (v, v, ...,v,) and ¢ = (c1, ¢, ..., ¢n), (v,¢) = > vie; €
i—1

[, is the Euclidean inner product in Fy. The code C is called self-dual
if C = C*. If C is both MDS and self-dual, C is called MDS self-dual
code.

MDS codes and self-dual codes are important families of classical
codes in coding theory. Therefore, it is of interests to investigate MDS
self-dual codes. Since the dimension and distance are determined by
the length of an MDS self-dual code, thus we usually focus on the length
and the field size of MDS self-dual codes. The problem is completely
solved by Grassl and Gulliver [4] when ¢ is even, but not for odd g.
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One of the basic problems of this topic is to determine the existence of
MDS self-dual codes for length n and a fixed finite field F,.

In the literature, there are many known constructions of MDS self-
dual codes. One of the method to construct MDS self-dual codes is
based on the generalized Reed-Solomon (GRS for short) codes or ex-
tended generalized Reed-Solomon (EGRS for short) codes [2], [3], [6],
[10], [11], since they are MDS codes. The codewords of GRS codes and
EGRS codes are made by evaluation of polynomials in F,[z] at S for a
certain subset S of the projective line F, [ J{oo}. The conditions on S
have been provided in order that such MDS codes constructed with &
are self-dual by Jin and Xing [6] for GRS case (S C F,) and Yan [10]
for EGRS case (0o € S) respectively. In most of previous works, the
set S is chosen as a union of cosets of a subgroup of F; or a subspace
of F,.

In this paper, we consider the construction of MDS self-dual codes
over [F, by using the first approach. Namely, we take S as a union
of cosets of a subgroup of F;. Let F; = (f) where 6 is a primitive
element of ;. Any subgroup of F} is a cyclic group D = (0°) where
q—1=ef,|D| = f and all cosets of D in I, are the e-th cyclotomic
classes

DY =D ={"*:0< < f—1} (0<i<e—1), D=D.

In the previous works [2], [3], [7], [11], ¢ is a square, ¢ = 7%, r =

p™ (p > 3) and S is a union of DZ-(E) with several particular i satisfying
r—1 | 4. In this paper, we consider the case ¢, which is any prime power
and we take S§ being a union of cosets in more flexible way, so that we
get many new series of MDS self-dual codes with length n . For doing
this we use the properties and computations on cyclotomic numbers.

This paper is organized as follows. In Section 2, we introduce the
basic results given in [6] and [10] on criteria of MDS self-dual codes
constructed by GRS and EGRS codes being self-dual. We also intro-
duce the basic properties of cyclotomic numbers in Section 2 which are
main machinary of this paper. In Section 3, we present our general re-
sults on constructing MDS self-dual codes over F, by using cyclotomic
classes of ;. Then we show several particular cases as applications of
our general results in Section 4.
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2. PRELIMINARIES

2.1. MDS Self-dual codes Constructed by GRS Codes and
EGRS codes. In this subsection, we briefly review some basic re-
sults on GRS codes and EGRS codes. For the details, the reader may
refer to [5] and [8].

Definition 2.1. Let ¢ = p™, S = {aj,a9,...,a,} be a subset of F,
with n distinct elements, vy, vo, ..., v, be nonzero elements in F, (not
necessarily distinct), v = (vy,vg,...,v,). For 1 <k <n — 1, the GRS
code is defined by
Cgrs(Sa v, q) = {Cf = (Ulf(@l),'l/gf(ag), s avnf(an)) S FZL .
f(x) € Ffu), deg f < k—1}.

This is an MDS (linear) code over F, with parameters [n,k,d],, d =
n — k4 1. The extended GRS code is defined by

Cegrs(Sv v, q) - {Cf = (Ulf(a1)7 U2f(a2)7 s 7Unf(an>7 fk—l) € FZ+1 :
f(z) € Fola] deg f <k —1}
where f;,_; is the coefficient of z*~* in f(z). This is also an MDS (linear)

code over I, with parameters [n + 1,k,d],,d =n —k + 2.

For § = {ay,as,...,a,} CF,, we denote

As(ai) = H (CL,’ - Clj) c F;
1<j<n
J#i
Let 1, : F; — {&1} be the quadratic (multiplicative) character of F,.
Namely, for b € Fy,

_J 1, ifbis asquare in Fy,
a(b) = { —1, otherwise.

Then 74(b) = (—1)?*®) where ¢,(b) : F; — F5 is defined by

_J 0, it bis asquare in [},
a(b) = { 1, otherwise.

Namely, if F; = (0), then ¢,(0') =1 (mod 2) (1<1<q—1).
A sufficient condition on set S has been given in [6] and [10] for C,,
and Ccg,s being self-dual. From the proofs we can see that the sufficient

condition is also necessary. Now we introduce the basic results given
in [6] and [10].

Theorem 2.2. Let ay, as, ..., a, be distinct elements inF,, S = {ay, as,
coant
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(1) (16]) Suppose that n is even. There ezists v = (v1,va,...,V,) €
(F7)™ such that the (MDS) code Cyys(S, v, q) is self-dual if and only if all
ne(As(a)) (a € S) are the same (which means that all p,(As(a)) (a €
S) are the same).

(2) ([10]) Suppose that n is odd. There exists v = (v, vVa,...,0,) €
(F;)" such that the (MDS) code Ceg,s(S,v,q) is self-dual code if and
only if n,(—As(a)) =1 for alla € S (which means that p,(—As(a)) =
0 for alla € S).

Definition 2.3. Let X(q) be the set of all even number n > 2 such
that there exists MDS self-dual code over F, with length n. Let (g, q)
and X(eg,q) be the set of all even number n > 2 such that there
exists MDS self-dual code over F, with length n constructed by GRS
code (Theorem 2.2 (1)) and EGRS code (Theorem 2.2 (2)) respectively.
Namely,

S(g.q) = 2| n > 2, there exists a subset S of F,, |S| = n,
929 = 1™ such that all ny(As(a)) (a € S) are the same. '

S(egrq) = 4n - 2 | n > 2, there exists a subset S of Fy,|S| =n —1,
€99 =1™" such that all ny(—As(a)) =1 for all a€S. ’

We have Y(g,q) U X(eg, q) € X(q).

2.2. Cyclotomic Numbers. A brief background on cyclotomic num-
bers is given in the following. For more details, the reader is referred
to the book [9].

Let ¢ = p™ where p is an odd prime, m > 1. Let ¢ — 1 = ef,e >
2, = (0),D = (0°). The cosets of the subgroup D in I} are the
following e-th cyclotomic classes

Dy,=D =D={7:0<j<f—1} 0<A<e—1)

Definition 2.4. For 0 <14, < e — 1, the e-th cyclotomic numbers for
Fy = (0) are defined by

(1,7) = (6:7)e = (Pi + 1) NDj| =t{z € Di s w +1 € Dy},

Lemma 2.5. Let ¢ = p™ where p is an odd prime, m > 1,q — 1 =ef
and (i,7) = (i,7)e (0 <i,7 < e—1) be the e-th cyclotomic numbers for

Fy = (0).
(2) (i,7) = { (?Jr’%,pr ), if21f

L if2|fi=0o0r2¢4fi=5,

0, otherwise.

(9) S (1.7) = f— 01, where 6 — {
i=0



ON THE CONSTRUCTIONS OF MDS SELF-DUAL CODES VIA CYCLOTOMY 5

SN 1, =0,
;(Z’]) = [ =050, where 050 = { 0, otherwise.

In this paper, we are concerned with the cases of even number e. The
values of e-th cyclotomic numbers for e = 2 and 4 are listed as follows.

Lemma 2.6. ([9]) Let q =p™,p>3,q—1=-ef,(i,5) = (i,7) be the
e-th cyclotomic numbers of ;.
(1) Fore =2,
_f _ _ _ [f.
13) 1317, thon 0.3) = B (0.0) 2 (10) 2 1 1) 2 8
° 7 7 2 ) ) ) 2 "
(2) For e = 4, we have q = s> + 4t? where s € Z is determined by
s=1 (mod 4) andt is determined up to sign.
(2.1) If 2 | f, the values of (i,7) = (i,7)s are listed in Table I where
16A=¢q—11—-6s,16B=q—3+ 25+ 8t,16C =q— 3+ 2s,16D =
§—3+2s—8,16E =g+ 1— 2s.

Table I e=4, 2| f Table II e =4, 21 f

Z,Joz 2 3 2.901 2 3
0|4 B C D 0 |A B c D
i1 |\B D E E i1 |EE D B
2 |C E ¢ E 2 1A E A E
s |DE E B s |'ED B E

(2.2) If 24 f, the values of (i,7) = (i,7)4 are listed in Table II where
16A=q—T7+2516B=q+1+2s—8,16C =q+1—6s,16D =
g+1+25+816E=q—3— 2s.

3. MAIN RESULTS
Let ¢ = p™ where p is an odd prime and m > 1,F; = (0),q — 1 =
ef.2] e, D= {6°),Dy =D =D (0 < XA <e—1). For a subset I of
Z.={0,1,---,e—1},|I| =1 (1 <l <e). Let S and S be subsets of
[F, defined by

(3.1) S=|Jpy S=8J{o},

el

then |S| = f1,|S| = fl+ 1.
The following Lemma follows from the aforementioned Theorem 2.2.
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Lemma 3.1. (1) Assume that 2 | fl. If p,(As(a)) € Fy = {0,1} (a €
S) are the same, then fl € X(g,q). If ¢,(Ag(a)) = @4(=1) for all

a €S, then fl+2 € Y(eg, q).
(2) Assume that 2 1 fl. If p,(As(a)) = p,(—1) for all a € S, then

fl+1 € X(eg,q). If ¢4(Ag(a)) (a € S) are the same, then fl+1 €
(9, q)-

Now we compute ¢,(Ags(a)) and ¢,(Ag(a)) by using the e-th cy-
clotomic numbers (4,j) = (4,j). on F,. For two subsets I,J of Z, =
{0,1,--- ;e —1},|1|,|J| > [. Denote

(L, J) =Y (). (i, ]) = ({i}, ), (1.5) = (1. {j})

icl
jeJ
and
e—1 e—1
(I,0dd) = Z (I,even) = Z([,j)
7=0 7=0
2tj 2|j

(odd, J) and (even, J) can be defined similarly.

Lemma 3.2. Let S and S be subsets of F, defined by (5.1). Then for
each a € D;,i € 1,

v, (As(a)) = (fl—-1)(+ %) + (odd, I — i) (mod 2)
0q(Agz(a)) = ¢4(As(a)) +i (mod 2)
0 (A5(0) = fngr T ,q4 (mod 2)

where I, qq=1{i€l:24i}, [ —i={j—i:j€l}.

Proof. For each a € D;,i € 1,

As(a) = Ha—b HH (a—1>b) (let b= ac)

beS AEI bEDy,
b#a b#a

= II II (e-ac)= (=)' ] I] (c- D).
ANl ceDy_; ANel ceDy_;

c#1 c#1
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Note 2 | e, we know that for £ € Dy, p,(§) = A (mod 2) and ¢, (—1) =
%. Hence

(ﬂ-1)(%+i)+]‘[ IT 1 (mod 2
At 0—6166%,;;(#

vq(As(a))

(fl— 1)(% +14) + (odd, I — i) (mod 2).

On the other hand, from S = S| J{0}, we get Agz(a) = As(a)a. Thus
pq(Ag(a)) = p4(As(a)) +i (mod 2).

At last, Ag(0) = [[(=a) = (=1)/'TT II a. Therefore

aeS i€l aeD;

2o As0) = FI 4 fllaql = 115 + Flloqal (mod 2).
U

The following theorem will play a central role in determining the
existence of MDS self-dual codes.

Theorem 3.3. Let ¢ = p™ (p > 3),q—1=ef,2 | ¢, F; = (0),D\ =
MO (0< A <e—1). Let I be a subset of Ze = {0,1,---,e—1},[I| =
L1<i<e, S=J Dy S=8U{0}, sothat |S| = fl and |S| = fl+1.

AT

We get

Case 1: 2| f.

(1.1) If i + (odd, I — i) (mod 2) are the same for all i € I, then
fleX(g,q).

(1.2) If (odd, I — i) are even for alli € I, then fl+2 € X(eg,q).

Case 2: 21 f and 2 | L.

(2.1) If i + (odd, I — i) (mod 2) are the same for all i € I, then
fl e S(g,q).

(2.2) If |I,34l = § (mod 2) and (odd, I —i) =0 (mod 2) for all
i, then fl+2 € X(eg,q).

Case 3: 21 fl.

(3.1) If (odd, I —i) = §

(3.2) If i + (odd, I — 1)
fl+1€X(g,9).

(mod 2) foralli € I, then fl4+1 € X(eg,q).
= 5+ 1,44 (mod 2) for alli € I, then
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Proof. Case 1: For 2 | f. Then |S| = fl is even. By Lemma 3.2 we
have, for a € D;,7 € I,

0,(As(a)) = i+ (odd,I —i) (mod 2)
©qe(Ag(a)) = (odd, I —1i) (mod 2)
©q,(Ag(0)) = 0 (mod 2).

The conclusions (1.1) and (1.2) can be derived from Lemma 3.1 (1).
Case 2: For 21 f and 2 | [. Then |S| = fl is even and for a € D;,i €
1,

pa(As(a)) = i+§+(odd,l—z’) (mod 2)

‘Pq(A (
(

va(A5(0)) = pgql (mod 2).
The conclusions (2.1) and (2.2) can be derived from Lemma 3.1 (1).
Case 3: For 21 fl, we have, for a € D;,i € I,

0,(As(a)) = (odd, I —i) (mod 2)

sla) = §+ (odd, I — i) (mod 2)

©(Ag(a)) = (odd, ] —i)+ (mod 2)
e
pe(B3(0)) = 5 +Lqql (mod 2).
The conclusions (3.1) and (3.2) can be derived from Lemma 3.1 (2).
U

At the end of this section we show several general consequences of
Theorem 3.3. For doing this we need to determine the parity of the
number (odd, I) for certain subset I of {0,1,--- e — 1}.

Lemma 3.4. Let q=p™ (p>3,m>1),g—1=ef,2]|e>2(i,j) =
(i,7)e (4,) € Zo = Z/eZ) be the e-th cyclotomic numbers on F,. Then
fori € Z,

(1) (odd, i) + (even,i) = f — ;.

(2) Assume that 2| f.

If 2 |1, then (odd,i) = (odd, —i), (even, i) = (even, —i).

If 211, then (odd, i) = (even, —i), (even,i) = (odd, —i). Particularly,
if e =2 (mod 4), then (odd, ) = (even, ) = g

(3) Assume that 21 f.

If 2| i+ 5, then (odd, i) = (odd, —i), (even, i) = (even, —i).

If2¢ Z—!—e then (odd, i) = (even, —i). Particularly, if e = 2 (mod 4),
then (odd, O) (even,0) = 2

Proof. (1) By Lemma 2.5 (3), (odd, i) + (even,i) = > (j,7) = f — dip.
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(2) Assume that 2 | f. We have (i,j) = (j,7). Then (odd,i) =
(7,0dd), (even, i) = (i,even). From (i,7) = (—i,j — i) we get

(0dd,i) = (i,0dd) =Y (i,5) = (—i,j—i) =D (j—i,—i)
2tj 2tj 21j
B (odd, —7), if 21,
N (even, —1), if 211.
o ~ | (even,—i), if 2|1,
Similarly, (even, i) = { (odd, —i), if2+i.
If e = 2 (mod 4), then § is odd and (odd,§) = (even,—5) =
(even, £). But (odd, §)+ (even, §) = f, we get (odd, §) = (even, §) = g
(3) Assume that 2 { f. From Lemma 2.5, we get
.. . e . € . €, . . . . .
G 0)=(i+57+5)=(=+5)j-0)=0~(+5) )

Therefore, if 217 + £, then

(0dd. ) = 371) = 320 — (i + ). ~4) = even, —i).
25 21
Similarly, if 2 | 7 4+ §, then (odd,i) = (odd, —i) and (even,i) =
(even, —i). If e = 2 (mod 4), then 2 { 5 and (odd,0) = (even, 0). But
(odd, 0) + (even, 0) = f — 1. Therefore (odd,0) = (even,0) = fgl. O

4. EXAMPLES

After above preparation, now we show several results on the length
of MDS self-dual codes as applications of Theorem 3.3 and Lemma 3.2.
It is known that if ¢ = 3 (mod 4), and n =2 (mod 4), then n ¢ 3(q).
Thus if ¢ = 3 (mod 4), we consider the case n = If +a (a = 0,1,2)
with n # 2 (mod 4). Firstly, we consider the case [ = |I| =1 or 2.

Theorem 4.1. Let g = p™ be a power of an odd prime p,q—1 =ef,2 |
e> 2.

(1) If 2 | f, then f € ¥(g,q). Moreover, if (0dd,0) is even, then
f+2 € X(eg,q). Particularly, if e =2 (mod 4) and f =0 (mod 4),
then f+2 € X(eg, q).

(2) If 2| f, then 2f + 2 € X(eg,q). Moreover, if 4 | e, then 2f €
X(eg, q).

(3) If 2 1 f. If (0dd,0) = 5 (mod 2), then f+ 1 € X(g,q) and
f+1€ X(eg,q). Particularly, if e =2 (mod 4) and f =3 (mod 4),
then f+1 € X(g,q) N X(eg, q).

(4) If 2 1 f and there exists i such that 1 =i = § (mod 2) and
(0dd,0) = (odd,i) (mod 2), then 2f + 2 € X(eg, q).
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Proof. (1) Suppose that 2 | f. Take I = {0}, then [ = |I| = 1 and
(odd, I —0) = (0odd,0 — 0) = (0odd,0). From Theorem 3.3 (1.1) and
(1.2), we get f € X(g,q) and if 2 | (odd,0), then f + 2 € ¥(eg, q).
Moreover, by Lemma 3.4 (1) and (3) we know that

~ [ (odd, —i), if 2|4,
lodd, i) = { (even, —i) = f — (odd, i) = (odd, —i) (mod 2), if214.

Therefore

—_
o
|

—_

e—

(odd,i) = (odd,O)+(odd,§)+§:((odd,i)+(odd,—i))

@
Il

=)
.
|

—

= (odd,0) + (odd, g) (mod 2).
On the other hand,

e—1 q—1 : —
o @ [ &=, ifg=1 (mod 4),
Z;(odd,z)—jj{xepl .:17+17é0}—{ %7 if g=3 (mod 4)

Ife =2 (mod 4) and f = 0 (mod 4), then ¢ = 1 (mod 8) and
e—1
> (odd,i) = %= = 0 (mod 2). Therefore (odd,0) = (odd, §) (mod
1=0
2). But from Lemma 3.4 (2), (odd,§) = g = 0 (mod 2), we get 2 |
(0odd,0) and f+ 2 € X(eg, q).

(2) Assume that 2 | f. By Lemma 3.4 (2), we have

[ (odd,—i), if 2|4,
(odd, i) = { (even, —i) = f — (odd, —i) = (odd, —i) (mod 2), if21i.
Therefore (odd, i) = (odd, —i) (mod 2) for any ¢. Then we get
e—1 ’_1

> (odd,i) = (odd,0)+ (odd, - +Z ((odd, i) + (odd, —i))

1=0

= (odd,0) + (odd, 5) (mod 2).

But E(Odd i) = f =0 (mod 2). Therefore (odd,0) = (odd, §) (mod

2). Take I'={0,5}, then [ = |I| = 2, and (odd, ] —0) = (odd, ] —§) =
(0dd,0) + (odd,5) = 0 (mod 2). From Theorem 3.3 (1.2), we get
2f+2¢€ Z(eg,q). Moreover, if 4 | e, then 2f € ¥(eg, q).

(3) Suppose that 2 1 f, we also take I = {0},l = 1. From Theorem
3.3 case 3, we know that if (odd,0) = § (mod 2), then f+1 € %(g,q)
and f+1 € X(eg, q). Moreover, if e = 2 (mod 4) and f =3 (mod 4),
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then (0dd,0) = L2 =1 = £ (mod 2), we get f+ 1 € %(g,q) and
f+1€eX(eg,q)

(4) Assume that 2 { f. By Lemma 3.4 (3), we have (odd,i) =
(odd, —i) if 2 | i 4 5. If there exists 4,1 = ¢ = §(mod 2) such that
(0dd,0) = (odd,2) (mod 2), we take I = {0,i}, then [[ qq| = 1 =
$ (mod 2) and (odd,! — 0) = (odd,0) + (odd,i) = 0 = (odd,0) +
(odd, —i) = (odd, I—i) ( mod 2). By Theorem 3.3 (2.2), we get 2f+2 €
(eg, q)- O

Next we consider the semiprimitive case.

Definition 4.2. Let p be a prime, p{ e > 2. p is called semiprimitive
module e if there exists a positive integer ¢ such that p' = —1 (mod e).

From now on, we take ¢ to be the least positive integer such that
p' = —1 (mod e). Then the order of p module e is 2t.

Lemma 4.3. Let 2 | e > 4,p be a semiprimitive prime module e and
t be the least positive integer such that p* = —1 (mod e). Let r =
prg=r1*m=ts,q—1=ef R=r(-1)%,n =1L Then,

(1) 2| f andn € Z;

(2) Let (i,7) = (i,7)e (0 < 4,5 < e—1) be the cyclotomic numbers
of order e on F,. Then (o0dd,0) is even and for 1 <i<e—1,

[ E2L (mod 2), if 2| i,
(odd, i) = { B4 (mod 2), if21i.
Proof. (1) f =21 = % is even since 2 ¢ r and r = (—1)* (mod
e). Next, R =p'*(—1)* = (=1)*"* =1 (mod e), we get n = £=L € Z.
(2) For the semiprimitive case, the cyclotomic numbers have been
determined in ([10], Lemma 5) as follows
(070) = 772_(6_3)77_17 (O,Z) = (7'70) = (sz> = 772+77 (1 RS 6_1>7
(i) =P (1<i#j<e—1).
Then we get,

e—1

(0dd, 0) = 3 (i,0) = g(qf + 1) = 0(mod 2),

0

and for 1 <i<e—1,

— 2e — e R—1 . .

. . n°s =ns == (mod 2), if 2 | 1,

odd, ) = J1) = 2 2 2 N T . .

( ) ;(] ) {(Z,Z)+(§—1n2:71+n(mod 2), if 21i.
2fj
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Theorem 4.4. Let p be a semiprimitive prime module ¢ and t be the
least positive integer such that p* = —1 (mod e). Let m = ts,r =
prg=r*q—1=ef R=r(-1)"n=%L

(1) If 2 | n, then If € X(g,q) for all1 <1< § and If 42 € X(eg, q)
foralll <l <e.

(2) If 24 mn and 4 | e, then If € 3(qg,q) for “all odd 1,1 <[ < e
7and “all even 1,2 <1 < 57, and If +2 € X(eg,q) for “ all even
2<i<e”and “all odd 1,1 <1< 5—1"

(3) If 2t n and e = 2 (mod 4), then fl € X(g,q) for “ all odd
[, <l1<e—17and “all even 2 <1< 517, and If +2 € X(eg,q)
for “all even 1,2 <[ <e 7.

Proof. Remark that f is even (Lemma 9 (1)).
(1) If 2 | n = £=4, then 2 | 1 and by Lemma 9, (odd, i) = 0(mod

2) forall 1 < i < e Foranyl, 1 <1 < £, we take a subset I of
27.=10,2,4,...,2¢—2} with size |I| = [. For each i € I, i+ (odd, [ —
i) = Y. (odd,j — i) = 0(mod 2). By Theorem 3.3 (1.1)and (1.2), we
jel

get fl € X(g,q) and fl+ 2 € X(eg, q) respectively.

(2)If2+n =22 and 4 | ¢, then 2 | L1 and for all 1 < i < e,
(odd,i) = i(mod 2) (Lemma 9). Let 1 <l <e—1 and I be a subset
of {1,2,...,e} with size |I| = [. Then for each i € I,

i+(odd, I—i) = i+ (odd, j—i) =i+ Y _(j+i) = (I+1)i+» _j (mod 2).
jel jel jel

If 2 41, then i + (odd, [ — i) = > ,;j(mod 2) are the same for all

i € I. By Theorem 3.3 (1.1), we get If € %(g,q). If 2| [, we also take

I C27,|I|=1,2<1<%, then foralli €I,

z’—l—(odd,]—z’):i—l—ZjEZj (mod 2)
jel jel
are the same for all ¢ € I. By Theorem 3.3 (1,1), we get [f € ¥(g,q).

On the other hand, for each I C Z., |I| = [,(odd, I — i) = li +
> jerd(mod 2). If 2 | 1,2 < 1 < e, it is easy to see that we have a
subset I of Z. such that |[I| = [ and ) j = 0 (mod 2). Therefore

jel
(odd,I —i) =0 (mod 2) for all ¢ € I. By Theorem 3.3 (1.2), we get
If +2¢€ X(eg,q).

If 247 and 1 <1 < £ —1, we take a subset I of 2Z, with size [I| = [.
We also have (odd, I —i) =i+> ;c;j =0 (mod 2) foralli € I. Then
we get [f + 2 € X(eg,q) by Theorem 3.3 (1.2).

(3)If 247 =21 and e = 2 (mod 4), then 21 £, By Lemma 9,
2| (0odd,0) and (odd,7) =i+ 1 (mod 2) for 1 <i<e—1.Let I be a
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subset of Z. with size |I| =1,1 <1 <e. Then

S 1 (mod 2), if 2114,
jzif
. 7y = J
i+ §_ (odd, J = 1) =4 7 SS1=1+41+ > 1 (mod 2), if21i.
Jel jer jel
25 2ty

By Theorem 3.3 (1.1), we get [f € ¥(g,q) for “odd [,1 <[ < ¢”, and
“even [,2 <1 <5 —17. On the other hand, for ¢ € I,

N _ | =14+ A (mod 2), if2]q,
D (odd, I—i)= Y~ 1:{ —~1+ B (mod 2), if2¢4i.

icl jel
J#i,20j—

where A=#{jel:2|j},B=t{jel:21j},|A+B|=|I| =1 Let
2|land 2 <[ <e. Itis easy to find a subset I of Z, with size [I| =
such that both of A and B are odd. Then for each i € I,

Z(odd,[—i)zA—lorB—le(mod 2).
jel

By Theorem 3.3 (1.2), If +2 € ¥(eg,q) for all even [,2 <[ <e. O

5. RESULTS FOR THE CASES € = 2 AND 4

5.1. When e = 2. Let ¢ = p",p > 3,9 — 1 = 2f. The cyclotomic
numbers of order 2 are given in Lemma 2.6.

Theorem 5.1. Let q=p",p>3,f = "2;1.
(1) If ¢ = 1 (mod 4), then 2f + 2 € X(eg,q). Moreover, if ¢ =
1 (mod 8), then f+2 € X(eg,q).
(2) If ¢ = 3 (mod 4), then 2f + 2 € X(eg,q). Moreover, if ¢ =

7 (mod 8), then f+1 € X(eg,q) NX(g,q).
Proof. (1) If g=1 (mod 4), then 2| f. Take I ={0,1},
(odd, I-0) = (odd, I—1) = (odd, 0)+(odd, 1) = (1,0)+(1,1) = 0 ( mod 2),

from Theorem 3.3 (1.2), we get 2f + 2 € X(eg, q). Moreover, if ¢ =
1 (mod 8), we take I = {0} or {1},

(odd, I—0) = (odd,0) = (1,0) = gor (odd, I—1) = (odd, 0) = (1,0) = /

[\

are even, so f + 2 € X(eg, q).
(2) If g =3 (mod 4), then 21 f. Take I = {0, 1}, then |[I 44/ =1 =
5 and (odd, I —0) = (odd, I —1) = (1,0)+(1,1) = f =1 =0 (mod 2),
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from Theorem 3.3 (2.2), we get 2f + 2 € X(eg, q). Moreover, if ¢ =
7 (mod 8), we take I = {0}

(0dd, I — 0) = (0dd, 0) = (1,0) = =L =1 (mod 2),

2
from Theorem 3.3 (3.1), we get f + 1 € X(eg, q).
If we take I = {1},

+1

~~

14+(odd, I—1) = 14(odd, 0) = 1+(1,0) = +115qql ( mod 2),

¢
2
from Theorem 3.3 (3.2), we get f +1 € ¥(g,q). O

5.2. When e = 4. The cyclotomic numbers of order 4 are given in
Lemma 2.6. Now we get the following constructions of self-dual MDS
codes by using cyclotomic classes of order four.

Theorem 5.2. Let g =p" =1 (mod 4),q—1=4f.

(1) Assume that p=1 (mod 4).

(1.1) If 2 | f (namely ¢ = 1 (mod 8)), then f,2f € X(g,q) and
f+2,2f 4+ 2,4f +2 € X(eg,q). Moreover, if ¢ = 1 (mod 16) and
t =2 (mod 4), or g =9 (mod 16) and 4 | t, then 3f € X(g,q). If
g =1 (mod 16) and 4 | t, or ¢ =9 (mod 16) and t = 2 (mod 4),
then 3f +2 € X(eg, q).

(1.2) If 2 t [ (namely ¢ = 5 (mod 8)), then 2f € X(g,q) and
f+1,4f +2 € X(eg,q).

(2) Assume that p =3 (mod 4). Then n = 2m is even.

(2.1) If p="7 (mod 8) or p =3 (mod 8) and 2 | m, then f,2f €
¥(g,q) and fl+2 € X(eg,q) for 1 <1< 4.

(2.2) If p = 3 (mod 8) and 2 { m, then fl € ¥(g,q) for 1 <1 <3
and fl+2 € X(g,q) forl=1,24.

Proof. (1.1) If 2 | f, the conclusion f,2f € ¥(g,q) can be derived
from Theorem 3.3 (1.1) and Lemma 2.6 (2.1) by taking I = {0} and
{0,2} respectively. The conclusion f + 2,2f + 2,4f + 2 € X(eg,q)
can be derived from Theorem 3.3 (1.2) and Lemma 2.6 (2.1) by taking
I ={0},{0,2} and {0, 1, 2, 3} respectively.

Moreover, from ¢ = 1 (mod 8),q = s*+4t* and s =1 (mod 4), we
get 2 |t. If g =1 (mod 16),4 |t or ¢ =9 (mod 16),t =2 (mod 4),
then 8(odd,1) = ¢ —1—4¢t =0 (mod 16). By Lemma 2.6, (odd, i) =
0 (mod 2) for all 0 < ¢ < 3. From Theorem 3.3 (1,1) and (1,2), we get
3f € X(g,q),3f + 2 € X(eg, q) by taking I = {0, 1,2} respectively.

(1.2) If 21 £, the conclusion 2f € ¥(g,q) can be derived from The-
orem 3.3 (II,1) and Lemma 2.6 (2.2), by taking / = {0,1} or {0, 3}
provided (odd,1) = 0 or (odd,3) = 0 respectively. The conclusion
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4f + 2 € X(eg, q) can be derived from Theorem 3.3 (I,2) and Lemma
2.6, by taking I = {0,1,2,3}. The conclusion f + 1 € X(eg, q) can be
derived from Theorem 3.3 by taking I = {0}.

(2) Assume that ¢ = 3 = —1 (mod 4). This is the semiprimitive
case. Thus ¢ = r2,r = p™2 | f = 2L and n = (_p{#. If p =
7 (mod 8) or p =3 (mod 8) and 2 | m, then 2 | n. If p =3 (mod 8)
and 21 m, then 2 7. The conclusion of (2.1) and (2.2) can be derived
directly from Theorem 4.4. O

Remark 5.3. We have examples satisfying the conditions provided in
(1.1). Let ¢ = p™,p = 1 (mod 4). For condition ¢ = 1 (mod 16)
and 4 | ¢, we have example ¢ = 113 = s? + 4t = (=7)? + 4 - 4% For
condition ¢ = 9 (mod 16) and ¢t = 2 (mod 4), we have examples
q=25=(-3)?+4-2%and ¢ =41 =5%+4-2%

Remark 5.4. One of our further work is consider the existence of MDS
self-dual codes via cyclotomic numbers of order 6 and 8.
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