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ON THE CONSTRUCTIONS OF MDS SELF-DUAL

CODES VIA CYCLOTOMY

AIXIAN ZHANG AND KEQIN FENG

Abstract. MDS self-dual codes over finite fields have attracted
a lot of attention in recent years by their theoretical interests in
coding theory and applications in cryptography and combinatorics.
In this paper we present a series of MDS self-dual codes with new
length by using generalized Reed-Solomon codes and extended gen-
eralized Reed-Solomon codes as the candidates of MDS codes and
taking their evaluation sets as an union of cyclotomic classes. The
conditions on such MDS codes being self-dual are expressed in
terms of cyclotomic numbers.

1. Introduction

Let Fq be the finite field with q elements. An [n, k, d]q linear code C
is a k-dimensional subspace of Fn

q with minimum (Hamming) distance
d. It is well known that n, k, d need satisfy the Singleton bound d ≤
n− k+1. If the equality is attained then the code is called MDS code.
The dual code C⊥ of C is defined by

C⊥ = {v ∈ Fn
q : (v, c) = 0 for all c ∈ C}

where for v = (v1, v2, . . . , vn) and c = (c1, c2, . . . , cn), (v, c) =
n∑

i=1

vici ∈

Fq is the Euclidean inner product in Fn
q . The code C is called self-dual

if C = C⊥. If C is both MDS and self-dual, C is called MDS self-dual
code.
MDS codes and self-dual codes are important families of classical

codes in coding theory. Therefore, it is of interests to investigate MDS
self-dual codes. Since the dimension and distance are determined by
the length of an MDS self-dual code, thus we usually focus on the length
and the field size of MDS self-dual codes. The problem is completely
solved by Grassl and Gulliver [4] when q is even, but not for odd q.
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One of the basic problems of this topic is to determine the existence of
MDS self-dual codes for length n and a fixed finite field Fq.
In the literature, there are many known constructions of MDS self-

dual codes. One of the method to construct MDS self-dual codes is
based on the generalized Reed-Solomon (GRS for short) codes or ex-
tended generalized Reed-Solomon (EGRS for short) codes [2], [3], [6],
[10], [11], since they are MDS codes. The codewords of GRS codes and
EGRS codes are made by evaluation of polynomials in Fq[x] at S for a
certain subset S of the projective line Fq

⋃
{∞}. The conditions on S

have been provided in order that such MDS codes constructed with S
are self-dual by Jin and Xing [6] for GRS case (S ⊆ Fq) and Yan [10]
for EGRS case (∞ ∈ S) respectively. In most of previous works, the
set S is chosen as a union of cosets of a subgroup of F∗

q or a subspace
of Fq.
In this paper, we consider the construction of MDS self-dual codes

over Fq by using the first approach. Namely, we take S as a union
of cosets of a subgroup of F∗

q. Let F∗
q = 〈θ〉 where θ is a primitive

element of F∗
q. Any subgroup of F∗

q is a cyclic group D = 〈θe〉 where
q − 1 = ef, |D| = f and all cosets of D in F∗

q are the e-th cyclotomic
classes

D
(e)
i = θiD = {θi+eλ : 0 ≤ λ ≤ f − 1} (0 ≤ i ≤ e− 1), D = D

(e)
0 .

In the previous works [2], [3], [7], [11], q is a square, q = r2, r =

pm (p ≥ 3) and S is a union of D
(e)
i with several particular i satisfying

r−1 | i. In this paper, we consider the case q, which is any prime power
and we take S being a union of cosets in more flexible way, so that we
get many new series of MDS self-dual codes with length n . For doing
this we use the properties and computations on cyclotomic numbers.
This paper is organized as follows. In Section 2, we introduce the

basic results given in [6] and [10] on criteria of MDS self-dual codes
constructed by GRS and EGRS codes being self-dual. We also intro-
duce the basic properties of cyclotomic numbers in Section 2 which are
main machinary of this paper. In Section 3, we present our general re-
sults on constructing MDS self-dual codes over Fq by using cyclotomic
classes of F∗

q . Then we show several particular cases as applications of
our general results in Section 4.
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2. Preliminaries

2.1. MDS Self-dual codes Constructed by GRS Codes and

EGRS codes. In this subsection, we briefly review some basic re-
sults on GRS codes and EGRS codes. For the details, the reader may
refer to [5] and [8].

Definition 2.1. Let q = pm,S = {a1, a2, . . . , an} be a subset of Fq

with n distinct elements, v1, v2, . . . , vn be nonzero elements in Fq (not
necessarily distinct), v = (v1, v2, . . . , vn). For 1 ≤ k ≤ n− 1, the GRS
code is defined by

Cgrs(S, v, q) = {cf = (v1f(a1), v2f(a2), . . . , vnf(an)) ∈ Fn
q :

f(x) ∈ Fq[x], deg f ≤ k − 1}.

This is an MDS (linear) code over Fq with parameters [n, k, d]q, d =
n− k + 1. The extended GRS code is defined by

Cegrs(S, v, q) = {cf = (v1f(a1), v2f(a2), . . . , vnf(an), fk−1) ∈ Fn+1
q :

f(x) ∈ Fq[x], deg f ≤ k − 1}

where fk−1 is the coefficient of xk−1 in f(x). This is also an MDS (linear)
code over Fq with parameters [n + 1, k, d]q, d = n− k + 2.

For S = {a1, a2, . . . , an} ⊆ Fq, we denote

∆S(ai) =
∏

1≤j≤n
j 6=i

(ai − aj) ∈ F∗
q .

Let ηq : F∗
q → {±1} be the quadratic (multiplicative) character of Fq.

Namely, for b ∈ F∗
q ,

ηq(b) =

{
1, if b is a square in F∗

q,
−1, otherwise.

Then ηq(b) = (−1)ϕq(b) where ϕq(b) : F
∗
q → F2 is defined by

ϕq(b) =

{
0, if b is a square in F∗

q,
1, otherwise.

Namely, if F∗
q = 〈θ〉, then ϕq(θ

l) ≡ l (mod 2) (1 ≤ l ≤ q − 1).
A sufficient condition on set S has been given in [6] and [10] for Cgrs

and Cegrs being self-dual. From the proofs we can see that the sufficient
condition is also necessary. Now we introduce the basic results given
in [6] and [10].

Theorem 2.2. Let a1, a2, . . . , an be distinct elements in Fq,S = {a1, a2,
. . . , an}.



4 AIXIAN ZHANG AND KEQIN FENG

(1) ([6]) Suppose that n is even. There exists v = (v1, v2, . . . , vn) ∈
(F∗

q)
n such that the (MDS) code Cgrs(S, v, q) is self-dual if and only if all

ηq(∆S(a)) (a ∈ S) are the same (which means that all ϕq(∆S(a)) (a ∈
S) are the same).
(2) ([10]) Suppose that n is odd. There exists v = (v1, v2, . . . , vn) ∈

(F∗
q)

n such that the (MDS) code Cegrs(S, v, q) is self-dual code if and
only if ηq(−∆S(a)) = 1 for all a ∈ S (which means that ϕq(−∆S(a)) =
0 for all a ∈ S).

Definition 2.3. Let Σ(q) be the set of all even number n ≥ 2 such
that there exists MDS self-dual code over Fq with length n. Let Σ(g, q)
and Σ(eg, q) be the set of all even number n ≥ 2 such that there
exists MDS self-dual code over Fq with length n constructed by GRS
code (Theorem 2.2 (1)) and EGRS code (Theorem 2.2 (2)) respectively.
Namely,

Σ(g, q) =

{
n :

2 | n ≥ 2, there exists a subset S of Fq, |S| = n,
such that all ηq(∆S(a)) (a ∈ S) are the same.

}
.

Σ(eg, q) =

{
n :

2 | n ≥ 2, there exists a subset S of Fq, |S| = n− 1,
such that all ηq(−∆S(a)) = 1 for all a ∈ S.

}
.

We have Σ(g, q) ∪ Σ(eg, q) ⊆ Σ(q).

2.2. Cyclotomic Numbers. A brief background on cyclotomic num-
bers is given in the following. For more details, the reader is referred
to the book [9].
Let q = pm where p is an odd prime, m ≥ 1. Let q − 1 = ef, e ≥

2,F∗
q = 〈θ〉,D = 〈θe〉. The cosets of the subgroup D in F∗

q are the
following e-th cyclotomic classes

Dλ = D
(e)
λ = θλD = {θλ+ej : 0 ≤ j ≤ f − 1} (0 ≤ λ ≤ e− 1).

Definition 2.4. For 0 ≤ i, j ≤ e− 1, the e-th cyclotomic numbers for
F∗
q = 〈θ〉 are defined by

(i, j) = (i, j)e = |(Di + 1) ∩ Dj| = ♯{x ∈ Di : x+ 1 ∈ Dj}.

Lemma 2.5. Let q = pm where p is an odd prime, m ≥ 1, q − 1 = ef
and (i, j) = (i, j)e (0 ≤ i, j ≤ e− 1) be the e-th cyclotomic numbers for
F∗
q = 〈θ〉.
(1) (i, j) = (−i, j − i) = (pi, pj).

(2) (i, j) =

{
(j, i), if 2 | f,
(j + e

2
, i+ e

2
), if 2 ∤ f.

(3)
e−1∑
j=0

(i, j) = f −θi, where θi =

{
1, if 2 | f, i = 0 or 2 ∤ f, i = e

2
,

0, otherwise.
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e−1∑
i=0

(i, j) = f − δj,0, where δj,0 =

{
1, if j = 0,
0, otherwise.

In this paper, we are concerned with the cases of even number e. The
values of e-th cyclotomic numbers for e = 2 and 4 are listed as follows.

Lemma 2.6. ([9]) Let q = pm, p ≥ 3, q − 1 = ef, (i, j) = (i, j)e be the
e-th cyclotomic numbers of F∗

q.
(1) For e = 2,
(1.1) If 2 | f, then (0, 0) = f

2
− 1, (0, 1) = (1, 0) = (1, 1) = f

2
;

(1.2) If 2 ∤ f, then (0, 1) = f+1
2
, (0, 0) = (1, 0) = (1, 1) = f−1

2
.

(2) For e = 4, we have q = s2 + 4t2 where s ∈ Z is determined by
s ≡ 1 (mod 4) and t is determined up to sign.
(2.1) If 2 | f, the values of (i, j) = (i, j)4 are listed in Table I where
16A = q − 11− 6s, 16B = q − 3 + 2s+ 8t, 16C = q − 3 + 2s, 16D =

q − 3 + 2s− 8t, 16E = q + 1− 2s.

Table I e = 4, 2 | f
❅
❅
❅i
j

0 1 2 3

0 A B C D
1 B D E E
2 C E C E
3 D E E B

Table II e = 4, 2 ∤ f
❅
❅
❅i
j

0 1 2 3

0 A B C D
1 E E D B
2 A E A E
3 E D B E

(2.2) If 2 ∤ f, the values of (i, j) = (i, j)4 are listed in Table II where
16A = q − 7 + 2s, 16B = q + 1 + 2s − 8t, 16C = q + 1 − 6s, 16D =

q + 1 + 2s+ 8t, 16E = q − 3− 2s.

3. Main Results

Let q = pm where p is an odd prime and m ≥ 1,F∗
q = 〈θ〉, q − 1 =

ef, 2 | e,D = 〈θe〉,Dλ = D
(e)
λ = θλD (0 ≤ λ ≤ e− 1). For a subset I of

Ze = {0, 1, · · · , e − 1}, |I| = l (1 ≤ l ≤ e). Let S and S̃ be subsets of
Fq defined by

(3.1) S =
⋃

λ∈I

Dλ, S̃ = S
⋃

{0},

then |S| = fl, |S̃| = fl + 1.
The following Lemma follows from the aforementioned Theorem 2.2.
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Lemma 3.1. (1) Assume that 2 | fl. If ϕq(∆S(a)) ∈ F2 = {0, 1} (a ∈
S) are the same, then fl ∈ Σ(g, q). If ϕq(∆S̃(a)) = ϕq(−1) for all

a ∈ S̃, then fl + 2 ∈ Σ(eg, q).
(2) Assume that 2 ∤ fl. If ϕq(∆S(a)) = ϕq(−1) for all a ∈ S, then

fl + 1 ∈ Σ(eg, q). If ϕq(∆S̃(a)) (a ∈ S̃) are the same, then fl + 1 ∈
Σ(g, q).

Now we compute ϕq(∆S(a)) and ϕq(∆S̃(a)) by using the e-th cy-
clotomic numbers (i, j) = (i, j)e on Fq. For two subsets I, J of Ze =
{0, 1, · · · , e− 1}, |I|, |J | ≥ l. Denote

(I, J) =
∑

i∈I
j∈J

(i, j), (i, J) = ({i}, J), (I, j) = (I, {j})

and

(I, odd) =

e−1∑

j=0
2∤j

(I, j), (I, even) =

e−1∑

j=0
2|j

(I, j)

(odd, J) and (even, J) can be defined similarly.

Lemma 3.2. Let S and S̃ be subsets of Fq defined by (3.1). Then for
each a ∈ Di, i ∈ I,

ϕq(∆S(a)) ≡ (fl − 1)(i+
ef

2
) + (odd, I − i) (mod 2)

ϕq(∆S̃(a)) ≡ ϕq(∆S(a)) + i (mod 2)

ϕq(∆S̃(0)) ≡ fl
e

2
+ f |Iodd| (mod 2)

where Iodd = {i ∈ I : 2 ∤ i}, I − i = {j − i : j ∈ I}.

Proof. For each a ∈ Di, i ∈ I,

∆S(a) =
∏

b∈S
b6=a

(a− b) =
∏

λ∈I

∏

b∈Dλ
b6=a

(a− b) (let b = ac)

=
∏

λ∈I

∏

c∈Dλ−i

c 6=1

(a− ac) = (−a)fl−1
∏

λ∈I

∏

c∈Dλ−i

c 6=1

(c− 1).
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Note 2 | e, we know that for ξ ∈ Dλ, ϕq(ξ) ≡ λ (mod 2) and ϕq(−1) =
ef

2
. Hence

ϕq(∆S(a)) ≡ (fl − 1)(
ef

2
+ i) +

∏

λ∈I

∏

c∈Dλ−i

c−1∈Dµ,2∤µ

1 (mod 2)

≡ (fl − 1)(
ef

2
+ i) + (odd, I − i) (mod 2).

On the other hand, from S̃ = S
⋃
{0}, we get ∆S̃(a) = ∆S(a)a. Thus

ϕq(∆S̃(a)) ≡ ϕq(∆S(a)) + i (mod 2).

At last, ∆S̃(0) =
∏
a∈S

(−a) = (−1)fl
∏
i∈I

∏
a∈Di

a. Therefore

ϕq(∆S̃(0)) ≡ fl
ef

2
+ f |Iodd| ≡ fl

e

2
+ f |Iodd| (mod 2).

�

The following theorem will play a central role in determining the
existence of MDS self-dual codes.

Theorem 3.3. Let q = pm (p ≥ 3), q − 1 = ef, 2 | e,F∗
q = 〈θ〉,Dλ =

θλ〈θ〉 (0 ≤ λ ≤ e− 1). Let I be a subset of Ze = {0, 1, · · · , e− 1}, |I| =

l, 1 ≤ l ≤ e, S =
⋃
λ∈I

Dλ, S̃ = S ∪{0}, so that |S| = fl and |S̃| = fl+1.

We get
Case 1: 2 | f.
(1.1) If i + (odd, I − i) (mod 2) are the same for all i ∈ I, then

fl ∈ Σ(g, q).
(1.2) If (odd, I − i) are even for all i ∈ I, then fl + 2 ∈ Σ(eg, q).
Case 2: 2 ∤ f and 2 | l.
(2.1) If i + (odd, I − i) (mod 2) are the same for all i ∈ I, then

fl ∈ Σ(g, q).
(2.2) If |Iodd| ≡

e
2
(mod 2) and (odd, I − i) ≡ 0 (mod 2) for all

i, then fl + 2 ∈ Σ(eg, q).
Case 3: 2 ∤ fl.
(3.1) If (odd, I−i) ≡ e

2
( mod 2) for all i ∈ I, then fl+1 ∈ Σ(eg, q).

(3.2) If i + (odd, I − i) ≡ e
2
+ |Iodd| (mod 2) for all i ∈ I, then

fl + 1 ∈ Σ(g, q).
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Proof. Case 1: For 2 | f. Then |S| = fl is even. By Lemma 3.2 we
have, for a ∈ Di, i ∈ I,

ϕq(∆S(a)) ≡ i+ (odd, I − i) (mod 2)

ϕq(∆S̃(a)) ≡ (odd, I − i) (mod 2)

ϕq(∆S̃(0)) ≡ 0 (mod 2).

The conclusions (1.1) and (1.2) can be derived from Lemma 3.1 (1).
Case 2: For 2 ∤ f and 2 | l. Then |S| = fl is even and for a ∈ Di, i ∈

I,

ϕq(∆S(a)) ≡ i+
e

2
+ (odd, I − i) (mod 2)

ϕq(∆S̃(a)) ≡
e

2
+ (odd, I − i) (mod 2)

ϕq(∆S̃(0)) ≡ |Iodd| (mod 2).

The conclusions (2.1) and (2.2) can be derived from Lemma 3.1 (1).
Case 3: For 2 ∤ fl, we have, for a ∈ Di, i ∈ I,

ϕq(∆S(a)) ≡ (odd, I − i) (mod 2)

ϕq(∆S̃(a)) ≡ (odd, I − i) + i (mod 2)

ϕq(∆S̃(0)) ≡
e

2
+ |Iodd| (mod 2).

The conclusions (3.1) and (3.2) can be derived from Lemma 3.1 (2).
�

At the end of this section we show several general consequences of
Theorem 3.3. For doing this we need to determine the parity of the
number (odd, I) for certain subset I of {0, 1, · · · , e− 1}.

Lemma 3.4. Let q = pm (p ≥ 3, m ≥ 1), q − 1 = ef, 2 | e ≥ 2, (i, j) =
(i, j)e (i, j ∈ Ze = Z/eZ) be the e-th cyclotomic numbers on Fq. Then
for i ∈ Ze,
(1) (odd, i) + (even, i) = f − δi,0.
(2) Assume that 2 | f.
If 2 | i, then (odd, i) = (odd,−i), (even, i) = (even,−i).
If 2 ∤ i, then (odd, i) = (even,−i), (even, i) = (odd,−i). Particularly,

if e ≡ 2 (mod 4), then (odd, e
2
) = (even, e

2
) = f

2
.

(3) Assume that 2 ∤ f.
If 2 | i+ e

2
, then (odd, i) = (odd,−i), (even, i) = (even,−i).

If 2 ∤ i+ e
2
, then (odd, i) = (even,−i). Particularly, if e ≡ 2 ( mod 4),

then (odd, 0) = (even, 0) = f−1
2
.

Proof. (1) By Lemma 2.5 (3), (odd, i) + (even, i) =
e−1∑
j=0

(j, i) = f − δi,0.
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(2) Assume that 2 | f. We have (i, j) = (j, i). Then (odd, i) =
(i, odd), (even, i) = (i, even). From (i, j) = (−i, j − i) we get

(odd, i) = (i, odd) =
∑

2∤j

(i, j) =
∑

2∤j

(−i, j − i) =
∑

2∤j

(j − i,−i)

=

{
(odd,−i), if 2 | i,
(even,−i), if 2 ∤ i.

Similarly, (even, i) =

{
(even,−i), if 2 | i,
(odd,−i), if 2 ∤ i.

If e ≡ 2 (mod 4), then e
2
is odd and (odd, e

2
) = (even,− e

2
) =

(even, e
2
). But (odd, e

2
)+(even, e

2
) = f, we get (odd, e

2
) = (even, e

2
) = f

2
.

(3) Assume that 2 ∤ f. From Lemma 2.5, we get

(j, i) = (i+
e

2
, j +

e

2
) = (−(i+

e

2
), j − i) = (j − (i+

e

2
),−i).

Therefore, if 2 ∤ i+ e
2
, then

(odd, i) =
∑

2∤j

(j, i) =
∑

2∤j

(j − (i+
e

2
),−i) = (even,−i).

Similarly, if 2 | i + e
2
, then (odd, i) = (odd,−i) and (even, i) =

(even,−i). If e ≡ 2 (mod 4), then 2 ∤ e
2
and (odd, 0) = (even, 0). But

(odd, 0) + (even, 0) = f − 1. Therefore (odd, 0) = (even, 0) = f−1
2
. �

4. Examples

After above preparation, now we show several results on the length
of MDS self-dual codes as applications of Theorem 3.3 and Lemma 3.2.
It is known that if q ≡ 3 (mod 4), and n ≡ 2 (mod 4), then n /∈ Σ(q).
Thus if q ≡ 3 (mod 4), we consider the case n = lf + a (a = 0, 1, 2)
with n 6≡ 2 (mod 4). Firstly, we consider the case l = |I| = 1 or 2.

Theorem 4.1. Let q = pm be a power of an odd prime p, q−1 = ef, 2 |
e ≥ 2.
(1) If 2 | f, then f ∈ Σ(g, q). Moreover, if (odd, 0) is even, then

f + 2 ∈ Σ(eg, q). Particularly, if e ≡ 2 (mod 4) and f ≡ 0 (mod 4),
then f + 2 ∈ Σ(eg, q).
(2) If 2 | f, then 2f + 2 ∈ Σ(eg, q). Moreover, if 4 | e, then 2f ∈

Σ(eg, q).
(3) If 2 ∤ f. If (odd, 0) ≡ e

2
(mod 2), then f + 1 ∈ Σ(g, q) and

f + 1 ∈ Σ(eg, q). Particularly, if e ≡ 2 (mod 4) and f ≡ 3 (mod 4),
then f + 1 ∈ Σ(g, q) ∩ Σ(eg, q).
(4) If 2 ∤ f and there exists i such that 1 ≡ i ≡ e

2
(mod 2) and

(odd, 0) ≡ (odd, i) (mod 2), then 2f + 2 ∈ Σ(eg, q).
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Proof. (1) Suppose that 2 | f. Take I = {0}, then l = |I| = 1 and
(odd, I − 0) = (odd, 0 − 0) = (odd, 0). From Theorem 3.3 (1.1) and
(1.2), we get f ∈ Σ(g, q) and if 2 | (odd, 0), then f + 2 ∈ Σ(eg, q).
Moreover, by Lemma 3.4 (1) and (3) we know that

(odd, i) =

{
(odd,−i), if 2 | i,
(even,−i) = f − (odd,−i) ≡ (odd,−i) (mod 2), if 2 ∤ i.

Therefore

e−1∑

i=0

(odd, i) = (odd, 0) + (odd,
e

2
) +

e
2
−1∑

i=1

((odd, i) + (odd,−i))

≡ (odd, 0) + (odd,
e

2
) (mod 2).

On the other hand,

e−1∑

i=0

(odd, i) = ♯{x ∈ D
(2)
1 : x+ 1 6= 0} =

{
q−1
2
, if q ≡ 1 (mod 4),

q−3
2
, if q ≡ 3 (mod 4).

If e ≡ 2 (mod 4) and f ≡ 0 (mod 4), then q ≡ 1 (mod 8) and
e−1∑
i=0

(odd, i) = q−1
2

≡ 0 (mod 2). Therefore (odd, 0) ≡ (odd, e
2
) (mod

2). But from Lemma 3.4 (2), (odd, e
2
) = f

2
≡ 0 (mod 2), we get 2 |

(odd, 0) and f + 2 ∈ Σ(eg, q).
(2) Assume that 2 | f. By Lemma 3.4 (2), we have

(odd, i) =

{
(odd,−i), if 2 | i,
(even,−i) = f − (odd,−i) ≡ (odd,−i) (mod 2), if 2 ∤ i.

Therefore (odd, i) ≡ (odd,−i) (mod 2) for any i. Then we get

e−1∑

i=0

(odd, i) = (odd, 0) + (odd,
e

2
) +

e
2
−1∑

i=1

((odd, i) + (odd,−i))

≡ (odd, 0) + (odd,
e

2
) (mod 2).

But
e−1∑
i=0

(odd, i) = f ≡ 0 (mod 2). Therefore (odd, 0) ≡ (odd, e
2
) (mod

2). Take I = {0, e
2
}, then l = |I| = 2, and (odd, I − 0) = (odd, I − e

2
) =

(odd, 0) + (odd, e
2
) ≡ 0 (mod 2). From Theorem 3.3 (1.2), we get

2f + 2 ∈ Σ(eg, q). Moreover, if 4 | e, then 2f ∈ Σ(eg, q).
(3) Suppose that 2 ∤ f, we also take I = {0}, l = 1. From Theorem

3.3 case 3, we know that if (odd, 0) ≡ e
2
(mod 2), then f +1 ∈ Σ(g, q)

and f +1 ∈ Σ(eg, q). Moreover, if e ≡ 2 (mod 4) and f ≡ 3 (mod 4),
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then (odd, 0) = f−1
2

≡ 1 ≡ e
2
(mod 2), we get f + 1 ∈ Σ(g, q) and

f + 1 ∈ Σ(eg, q).
(4) Assume that 2 ∤ f. By Lemma 3.4 (3), we have (odd, i) =

(odd,−i) if 2 | i + e
2
. If there exists i, 1 ≡ i ≡ e

2
(mod 2) such that

(odd, 0) ≡ (odd, 2) (mod 2), we take I = {0, i}, then |Iodd| = 1 ≡
e
2
(mod 2) and (odd, I − 0) = (odd, 0) + (odd, i) ≡ 0 ≡ (odd, 0) +

(odd,−i) = (odd, I−i) ( mod 2). By Theorem 3.3 (2.2), we get 2f+2 ∈
Σ(eg, q). �

Next we consider the semiprimitive case.

Definition 4.2. Let p be a prime, p ∤ e ≥ 2. p is called semiprimitive
module e if there exists a positive integer t such that pt ≡ −1 ( mod e).
From now on, we take t to be the least positive integer such that

pt ≡ −1 (mod e). Then the order of p module e is 2t.

Lemma 4.3. Let 2 | e ≥ 4, p be a semiprimitive prime module e and
t be the least positive integer such that pt ≡ −1 (mod e). Let r =
pm, q = r2, m = ts, q − 1 = ef, R = r(−1)s, η = R−1

e
. Then,

(1) 2 | f and η ∈ Z;
(2) Let (i, j) = (i, j)e (0 ≤ i, j ≤ e − 1) be the cyclotomic numbers

of order e on Fq. Then (odd, 0) is even and for 1 ≤ i ≤ e− 1,

(odd, i) =

{
R−1
2

(mod 2), if 2 | i,
R−1
2

+ η (mod 2), if 2 ∤ i.

Proof. (1) f = q−1
e

= (r−1)(r+1)
e

is even since 2 ∤ r and r ≡ (−1)s (mod

e). Next, R = pts(−1)s ≡ (−1)s+s ≡ 1 (mod e), we get η = R−1
e

∈ Z.
(2) For the semiprimitive case, the cyclotomic numbers have been

determined in ([10], Lemma 5) as follows
(0, 0) = η2−(e−3)η−1, (0, i) = (i, 0) = (i, i) = η2+η (1 ≤ i ≤ e−1),
(i, j) = η2 (1 ≤ i 6= j ≤ e− 1).
Then we get,

(odd, 0) =
e−1∑

i=0
2∤i

(i, 0) =
e

2
(η2 + η) ≡ 0(mod 2),

and for 1 ≤ i ≤ e− 1,

(odd, i) =

e−1∑

j=1
2∤j

(j, i) =

{
η2 e

2
≡ η e

2
= R−1

2
(mod 2), if 2 | i,

(i, i) + ( e
2
− 1)η2 ≡ R−1

2
+ η (mod 2), if 2 ∤ i.

�
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Theorem 4.4. Let p be a semiprimitive prime module e and t be the
least positive integer such that pt ≡ −1 (mod e). Let m = ts, r =
pm, q = r2, q − 1 = ef, R = r(−1)s, η = R−1

e
.

(1) If 2 | η, then lf ∈ Σ(g, q) for all 1 ≤ l ≤ e
2
and lf + 2 ∈ Σ(eg, q)

for all 1 ≤ l ≤ e.
(2) If 2 ∤ η and 4 | e, then lf ∈ Σ(g, q) for “ all odd l, 1 ≤ l ≤ e

” and “ all even l, 2 ≤ l ≤ e
2
”, and lf + 2 ∈ Σ(eg, q) for “ all even

2 ≤ l ≤ e ” and “ all odd l, 1 ≤ l ≤ e
2
− 1”.

(3) If 2 ∤ η and e ≡ 2 (mod 4), then fl ∈ Σ(g, q) for “ all odd
l,≤ l ≤ e − 1 ” and “ all even 2 ≤ l ≤ e

2
− 1”, and lf + 2 ∈ Σ(eg, q)

for “ all even l, 2 ≤ l ≤ e ”.

Proof. Remark that f is even (Lemma 9 (1)).
(1) If 2 | η = R−1

e
, then 2 | R−1

2
and by Lemma 9, (odd, i) ≡ 0(mod

2) for all 1 ≤ i ≤ e. For any l, 1 ≤ l ≤ e
2
, we take a subset I of

2Ze = {0, 2, 4, . . . , 2e−2} with size |I| = l. For each i ∈ I, i+(odd, I−
i) ≡

∑
j∈I

(odd, j − i) ≡ 0(mod 2). By Theorem 3.3 (1.1)and (1.2), we

get fl ∈ Σ(g, q) and fl + 2 ∈ Σ(eg, q) respectively.
(2) If 2 ∤ η = R−1

e
and 4 | e, then 2 | R−1

2
and for all 1 ≤ i ≤ e,

(odd, i) ≡ i(mod 2) (Lemma 9). Let 1 ≤ l ≤ e− 1 and I be a subset
of {1, 2, . . . , e} with size |I| = l. Then for each i ∈ I,

i+(odd, I−i) = i+
∑

j∈I

(odd, j−i) ≡ i+
∑

j∈I

(j+i) ≡ (l+1)i+
∑

j∈I

j ( mod 2).

If 2 ∤ l, then i + (odd, I − i) ≡
∑

j∈I j(mod 2) are the same for all

i ∈ I. By Theorem 3.3 (1.1), we get lf ∈ Σ(g, q). If 2 | l, we also take
I ⊆ 2Ze, |I| = l, 2 ≤ l ≤ e

2
, then for all i ∈ I,

i+ (odd, I − i) = i+
∑

j∈I

j ≡
∑

j∈I

j (mod 2)

are the same for all i ∈ I. By Theorem 3.3 (1,1), we get lf ∈ Σ(g, q).
On the other hand, for each I ⊆ Ze, |I| = l, (odd, I − i) ≡ li +∑
j∈I j(mod 2). If 2 | l, 2 ≤ l ≤ e, it is easy to see that we have a

subset I of Ze such that |I| = l and
∑
j∈I

j ≡ 0 (mod 2). Therefore

(odd, I − i) ≡ 0 (mod 2) for all i ∈ I. By Theorem 3.3 (1.2), we get
lf + 2 ∈ Σ(eg, q).
If 2 ∤ l and 1 ≤ l ≤ e

2
− 1, we take a subset I of 2Ze with size |I| = l.

We also have (odd, I− i) ≡ i+
∑

j∈I j ≡ 0 (mod 2) for all i ∈ I. Then

we get lf + 2 ∈ Σ(eg, q) by Theorem 3.3 (1.2).
(3) If 2 ∤ η = R−1

e
and e ≡ 2 (mod 4), then 2 ∤ R−1

2
. By Lemma 9,

2 | (odd, 0) and (odd, i) ≡ i+ 1 (mod 2) for 1 ≤ i ≤ e− 1. Let I be a
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subset of Ze with size |I| = l, 1 ≤ l ≤ e. Then

i+
∑

j∈I

(odd, J − I) ≡






∑
j∈I
2∤j

1 (mod 2), if 2 | i,

1 +
∑
j∈I
2|j

1 ≡ 1 + l +
∑
j∈I
2∤j

1 (mod 2), if 2 ∤ i.

By Theorem 3.3 (1.1), we get lf ∈ Σ(g, q) for “ odd l, 1 ≤ l ≤ e”, and
“ even l, 2 ≤ l ≤ e

2
− 1”. On the other hand, for i ∈ I,

∑

i∈I

(odd, I − i) ≡
∑

j∈I
j 6=i,2∤j−i

1 ≡

{
−1 + A (mod 2), if 2 | i,
−1 +B (mod 2), if 2 ∤ i.

where A = ♯{j ∈ I : 2 | j}, B = ♯{j ∈ I : 2 ∤ j}, |A+ B| = |I| = l. Let
2 | l and 2 ≤ l ≤ e. It is easy to find a subset I of Ze with size |I| = l
such that both of A and B are odd. Then for each i ∈ I,

∑

j∈I

(odd, I − i) ≡ A− 1 or B − 1 ≡ 0 (mod 2).

By Theorem 3.3 (1.2), lf + 2 ∈ Σ(eg, q) for all even l, 2 ≤ l ≤ e. �

5. Results for the cases e = 2 and 4

5.1. When e = 2. Let q = pn, p ≥ 3, q − 1 = 2f. The cyclotomic
numbers of order 2 are given in Lemma 2.6.

Theorem 5.1. Let q = pn, p ≥ 3, f = q−1
2
.

(1) If q ≡ 1 (mod 4), then 2f + 2 ∈ Σ(eg, q). Moreover, if q ≡
1 (mod 8), then f + 2 ∈ Σ(eg, q).
(2) If q ≡ 3 (mod 4), then 2f + 2 ∈ Σ(eg, q). Moreover, if q ≡

7 (mod 8), then f + 1 ∈ Σ(eg, q) ∩ Σ(g, q).

Proof. (1) If q ≡ 1 (mod 4), then 2 | f. Take I = {0, 1},

(odd, I−0) = (odd, I−1) = (odd, 0)+(odd, 1) = (1, 0)+(1, 1) ≡ 0 ( mod 2),

from Theorem 3.3 (1.2), we get 2f + 2 ∈ Σ(eg, q). Moreover, if q ≡
1 (mod 8), we take I = {0} or {1},

(odd, I−0) = (odd, 0) = (1, 0) =
f

2
or (odd, I−1) = (odd, 0) = (1, 0) =

f

2

are even, so f + 2 ∈ Σ(eg, q).
(2) If q ≡ 3 (mod 4), then 2 ∤ f. Take I = {0, 1}, then |Iodd| = 1 =

e
2
and (odd, I−0) = (odd, I−1) = (1, 0)+(1, 1) = f−1 ≡ 0 (mod 2),
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from Theorem 3.3 (2.2), we get 2f + 2 ∈ Σ(eg, q). Moreover, if q ≡
7 (mod 8), we take I = {0}

(odd, I − 0) = (odd, 0) = (1, 0) =
f − 1

2
≡ 1 (mod 2),

from Theorem 3.3 (3.1), we get f + 1 ∈ Σ(eg, q).
If we take I = {1},

1+(odd, I−1) = 1+(odd, 0) = 1+(1, 0) =
f + 1

2
≡

e

2
+|Iodd| ( mod 2),

from Theorem 3.3 (3.2), we get f + 1 ∈ Σ(g, q). �

5.2. When e = 4. The cyclotomic numbers of order 4 are given in
Lemma 2.6. Now we get the following constructions of self-dual MDS
codes by using cyclotomic classes of order four.

Theorem 5.2. Let q = pn ≡ 1 (mod 4), q − 1 = 4f.
(1) Assume that p ≡ 1 (mod 4).
(1.1) If 2 | f (namely q ≡ 1 (mod 8)), then f, 2f ∈ Σ(g, q) and

f + 2, 2f + 2, 4f + 2 ∈ Σ(eg, q). Moreover, if q ≡ 1 (mod 16) and
t ≡ 2 (mod 4), or q ≡ 9 (mod 16) and 4 | t, then 3f ∈ Σ(g, q). If
q ≡ 1 (mod 16) and 4 | t, or q ≡ 9 (mod 16) and t ≡ 2 (mod 4),
then 3f + 2 ∈ Σ(eg, q).
(1.2) If 2 ∤ f (namely q ≡ 5 (mod 8)), then 2f ∈ Σ(g, q) and

f + 1, 4f + 2 ∈ Σ(eg, q).
(2) Assume that p ≡ 3 (mod 4). Then n = 2m is even.
(2.1) If p ≡ 7 (mod 8) or p ≡ 3 (mod 8) and 2 | m, then f, 2f ∈

Σ(g, q) and fl + 2 ∈ Σ(eg, q) for 1 ≤ l ≤ 4.
(2.2) If p ≡ 3 (mod 8) and 2 ∤ m, then fl ∈ Σ(g, q) for 1 ≤ l ≤ 3

and fl + 2 ∈ Σ(g, q) for l = 1, 2, 4.

Proof. (1.1) If 2 | f , the conclusion f, 2f ∈ Σ(g, q) can be derived
from Theorem 3.3 (1.1) and Lemma 2.6 (2.1) by taking I = {0} and
{0, 2} respectively. The conclusion f + 2, 2f + 2, 4f + 2 ∈ Σ(eg, q)
can be derived from Theorem 3.3 (1.2) and Lemma 2.6 (2.1) by taking
I = {0}, {0, 2} and {0, 1, 2, 3} respectively.
Moreover, from q ≡ 1 (mod 8), q = s2 +4t2 and s ≡ 1 (mod 4), we

get 2 | t. If q ≡ 1 (mod 16), 4 | t or q ≡ 9 (mod 16), t ≡ 2 (mod 4),
then 8(odd, 1) = q − 1 − 4t ≡ 0 (mod 16). By Lemma 2.6, (odd, i) ≡
0 (mod 2) for all 0 ≤ i ≤ 3. From Theorem 3.3 (1,1) and (1,2), we get
3f ∈ Σ(g, q), 3f + 2 ∈ Σ(eg, q) by taking I = {0, 1, 2} respectively.
(1.2) If 2 ∤ f, the conclusion 2f ∈ Σ(g, q) can be derived from The-

orem 3.3 (II,1) and Lemma 2.6 (2.2), by taking I = {0, 1} or {0, 3}
provided (odd, 1) = 0 or (odd, 3) = 0 respectively. The conclusion
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4f + 2 ∈ Σ(eg, q) can be derived from Theorem 3.3 (II,2) and Lemma
2.6, by taking I = {0, 1, 2, 3}. The conclusion f + 1 ∈ Σ(eg, q) can be
derived from Theorem 3.3 by taking I = {0}.
(2) Assume that q ≡ 3 ≡ −1 (mod 4). This is the semiprimitive

case. Thus q = r2, r = pm, 2 | f = q−1
4

and η = (−p)m−1
4

. If p ≡
7 (mod 8) or p ≡ 3 (mod 8) and 2 | m, then 2 | η. If p ≡ 3 (mod 8)
and 2 ∤ m, then 2 ∤ η. The conclusion of (2.1) and (2.2) can be derived
directly from Theorem 4.4. �

Remark 5.3. We have examples satisfying the conditions provided in
(1.1). Let q = pn, p ≡ 1 (mod 4). For condition q ≡ 1 (mod 16)
and 4 | t, we have example q = 113 = s2 + 4t2 = (−7)2 + 4 · 42. For
condition q ≡ 9 (mod 16) and t ≡ 2 (mod 4), we have examples
q = 25 = (−3)2 + 4 · 22 and q = 41 = 52 + 4 · 22.

Remark 5.4. One of our further work is consider the existence of MDS
self-dual codes via cyclotomic numbers of order 6 and 8.
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