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Cyclic arcs of Singer type and strongly regular

Cayley graphs over finite fields

Koji Momihara∗ and Qing Xiang†

Abstract. In [32], the first author gave a construction of strongly regular Cayley graphs
on the additive group of finite fields by using three-valued Gauss periods. In particular,
together with the result in [4], it was shown that there exists a strongly regular Cayley
graph with negative Latin square type parameters (q6, r(q3 + 1),−q3 + r2 + 3r, r2 + r),
where r = M(q2 − 1)/2, in the following cases: (i) M = 1 and q ≡ 3 (mod 4); (ii) M = 3
and q ≡ 7 (mod 24); and (iii) M = 7 and q ≡ 11, 51 (mod 56). The existence of strongly
regular Cayley graphs with the above parameters for odd M > 7 was left open. In this
paper, we prove that if there is an h, 1 6 h 6 M − 1, such that M | (h2 + h + 1) and
the order of 2 in (Z/MZ)× is odd, then there exist infinitely many primes q such that
strongly regular Cayley graphs with the aforementioned parameters exist.

1. Introduction

A strongly regular graph srg(v, k, λ, µ) is a simple and undirected graph, neither com-
plete nor edgeless, that has the following properties:

(1) It is a regular graph of order v and valency k.
(2) For each pair of adjacent vertices x, y, there are exactly λ vertices adjacent to

both x and y.
(3) For each pair of nonadjacent vertices x, y, there are exactly µ vertices adjacent

to both x and y.

For example, the pentagon is an srg(5, 2, 0, 1) and the Petersen graph is an srg(10, 3, 0, 1).
The following spectral characterization of srgs is well known. Let Γ be a simple connected
k-regular graph that is neither complete nor edgeless. Then Γ is strongly regular if and
only if its adjacency matrix has exactly two distinct eigenvalues different from k.

An srg(u2, r(u− ǫ), ǫu+ r2− 3ǫr, r2− ǫr) is said to be of Latin square type or negative

Latin square type according as ǫ = 1 or −1. Typical examples of strongly regular graphs
of Latin square type or negative Latin square type come from nonsingular quadrics in the
projective space PG(n, q) of odd dimension n over the finite field Fq of order q [30]. It
seems that more examples of strongly regular graphs of Latin square type are known than
those of negative Latin square type [13].

Let G be an additively written abelian group, and let D be an inverse-closed subset
of G such that 0G 6∈ D. The Cayley graph on G with connection set D, denoted by
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Cay(G,D), is the graph with the elements of G as vertices; two vertices are adjacent if
and only if their difference belongs to D. It is known that the eigenvalues of Cay(G,D)
are the character values of D. More precisely, for a (complex) character ψ of G, define

ψ(D) =
∑

x∈D
ψ(x).

Then all the eigenvalues of Cay(G,D) are given by ψ(D), ψ ∈ Ĝ, where Ĝ is the (complex)
character group of G.

During the past two decades, strongly regular Cayley graphs on the additive groups
of finite fields have been extensively studied due to their close connections with certain
substructures in finite geometries. If the connection set D of Cay(Fqn , D) is invariant
under multiplication by elements of the multiplicative group F∗

q, then the subset D =
{xF∗

q : x ∈ D} of F∗
qn/F

∗
q can be viewed as a set of points of PG(n − 1, q); in this case,

Cay(Fqn, D) is strongly regular if and only if D is a projective two-intersection set, or a
two-character set, in PG(n− 1, q). Further links between strongly regular Cayley graphs
and substructures in finite classical polar spaces such as m-ovoids and i-tight sets are
known [2, 3, 22]. In this paper we will only consider strongly regular Cayley graphs
related to m-ovoids. Let S be a finite classical polar space and M be a set of points in
S. We say that M is an m-ovoid if every generator of S meets M in exactly m points.
There are many known constructions of m-ovoids [3, 8, 9, 11, 16, 17, 20, 22, 25].

An elliptic quadric Q−(5, q) of PG(5, q) is trivially a (q+1)-ovoid, which gives rise to a
negative Latin square type srg(q6, r(q3+1),−q3+ r2+3r, r2+ r) with r = q2− 1. On the
other hand, it is known that nontrivial m-ovoids in Q−(5, q) exist whenever q is an odd
prime power and m = (q + 1)/2. Since the dual of Q−(5, q) as a generalized quadrangle

is H(3, q2), such a (q+1)
2

-ovoid in Q−(5, q) can be interpreted as a hemisystem in H(3, q2),

which consists of (q+1)(q3+1)
2

lines containing exactly half of the lines through every point of
H(3, q2). Hemisystems have been studied extensively in [1, 4, 10, 12, 27, 35]. They give
rise to negative Latin square type srg(q6, r(q3+1),−q3+r2+3r, r2+r) with r = (q2−1)/2.

In [4], the authors constructed a new (q+1)
2

-ovoid for q ≡ 3 (mod 4) in Q−(5, q) by choosing
2(q +1) cosets from the 4(q2 + q +1)th cyclotomic classes of Fq6. The first author of this
paper could generalize the construction of strongly regular Cayley graphs in [4] by using
three-valued Gauss periods [32]. In particular, the following theorem was proved.

Theorem 1.1. ([32]) Let q be an odd prime power. There exists an srg(q6, r(q3 +
1),−q3 + r2 + 3r, r2 + r) with r = (q2 − 1)M/2, in the following cases:

(1) M = 3 and q ≡ 7 (mod 24);
(2) M = 7 and q ≡ 11, 51 (mod 56).

The three-valued Gauss periods used in [32] all arise from cyclic arcs of Singer type
in PG(2, q). An M-arc in PG(2, q) is a set of M points no three of which are collinear.
An arc is said to be cyclic if it is a point orbit under the action of a cyclic collineation
group H of PG(2, q) on the point set of PG(2, q). If H is a subgroup of a Singer group of
PG(2, q) the arc is said to be of Singer type. It turns out that besides the cyclic arcs of
Singer type of size 3 and 7 used in [32], there are a lot more “small” cyclic arcs of Singer
type known [31, 37] in PG(2, q). A natural question arises: Can these cyclic M-arcs of
Singer type with M > 7 give rise to strongly regular Cayley graphs? In this paper, we
investigate this problem and come up with sufficient conditions for these cyclic M-arcs of
Singer type to give rise to srg(q6, r(q3 + 1),−q3 + r2 + 3r, r2 + r) with r = (q2 − 1)M/2
and M > 7. For the detailed statement of our results, see Theorem 2.7.
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We further investigate to what extent our construction in Theorem 2.7 works. Let
M,h be positive integers such that M is odd, 1 6 h 6 M − 1 and M | (h2 + h + 1), and
let PM,h be the set of primes p ≡ h (mod M). We use ΨM,h to denote the set of primes
p ≡ h (mod M) with p ≡ 3 (mod 4) such that there exists a strongly regular Cayley graph
on (Fp6,+) with parameters (p6, r(p3 + 1),−p3 + r2 + 3r, r2 + r), where r = (p2 − 1)M/2.
Furthermore, for the quadratic character η of Fp3 and a fixed primitive element ω ∈ Fp3,
define

ΨM,h,α,β = {p ∈ PM,h : η(1+ω
(p3−1)i

M ) = α, 1 6 i 6M −1, η(2) = −α, η(−1) = β in Fp3},
where α, β ∈ {1,−1}. In this paper, we will prove that ΨM,h contains almost all primes
in

⋃

α∈{1,−1} ΨM,h,α,−1. In particular, the following theorem is proved.

Theorem 1.2. If the order of 2 in (Z/MZ)× is odd, then ΨM,h contains infinitely

many primes.

The values of M < 200 satisfying the condition in Theorem 1.2 are

7, 31, 49, 73, 79, 103, 127, 151, 199.

Thus, using the M ’s listed above and Theorem 1.2 we obtain many new infinite families
of strongly regular Cayley graphs of negative Latin square type.

The organization of this paper is as follows. In Section 2, we review a construction
of strongly regular Cayley graphs based on three-valued Gauss periods given in [32].
Furthermore, we state Chebotarëv’s density theorem, which will be used to prove Theo-
rem 1.2. In Section 3, we give a lower bound on primes p such that the Gauss periods in
Fq3 of characteristic p are guaranteed to take exactly three values forming an arithmetic
progression. This result is needed for applying our construction of strongly regular Cayley
graphs in Theorem 2.7. In Section 4, we show that ΨM,h contains almost all primes in
⋃

α∈{1,−1}ΨM,h,α,−1. Furthermore, we study conditions under which ΨM,h,α,β is an infinite
set. In particular, we determine ΨM,h,α,β in the cases where M = 3, 7, or 21. In Section 5,
we study the structure of the Galois group Gal(EM/Q), where EM is obtained by adjoin-

ing
√

1 + ζ iM , 0 6 i 6 M − 1, and ζ4 to Q. Finally we give a proof of Theorem 1.2. In
Section 6, we propose a few open problems for future work.

2. Preliminaries

2.1. Cyclotomic classes, Gauss periods, and Gauss sums. Let p be a prime
and let ζp = exp(2πi/p) ∈ C be a primitive pth root of unity. For positive integers f and
n, let q = pf and let Fqn denote the finite field of order qn. Define

ψFqn
: Fqn → C∗, ψFqn

(x) = ζ
Trqn/p(x)
p , ∀x ∈ Fqn

where Trqn/p is the trace map from Fqn to Fp. It can be easily shown that ψFqn
is a

nontrivial character of the additive group of Fqn . All characters of (Fqn ,+) are given by
ψa, a ∈ Fqn , where ψa(x) = ψFqn

(ax), ∀x ∈ Fqn .
Let ω be a fixed primitive element of Fqn and N be a positive integer dividing qn − 1.

The cosets C
(N,qn)
i = ωi〈ωN〉, 0 6 i 6 N − 1, of 〈ωN〉 in F∗

qn are called the N th cyclotomic

classes of Fqn . The numbers (i, j)N := |(C(N,qn)
i +1)∩C(N,qn)

j |, 0 6 i, j 6 N−1, are called
cyclotomic numbers.

The N th Gauss periods of Fqn are defined as the character values of cyclotomic classes:

ψFqn
(C

(N,qn)
i ) =

∑

x∈C(N,qn)
i

ψFqn
(x), 0 6 i 6 N − 1.
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On the other hand, for a multiplicative character χ of Fqn , the Gauss sum is defined by

Gqn(χ) =
∑

x∈F∗
qn

χ(x)ψFqn
(x).

By the orthogonality relations of characters, theN th Gauss periods of Fqn can be expressed
as a linear combination of Gauss sums:

(2.1) ψFqn
(C

(N,qn)
i ) =

1

N

N−1
∑

j=0

Gqn(χ
j
N)χ

−j
N (ωi), 0 6 i 6 N − 1,

where χN is a fixed multiplicative character of order N of Fqn.
The following is a well-known result on Eisenstein sums.

Theorem 2.1. ([5, Theorem 12.1.1]) Let χ be a nontrivial multiplicative character of

Fqn whose restriction to Fq is trivial. Let L be a system of coset representatives of F∗
q

in F∗
qn such that Trqn/q maps L onto {0, 1} ⊆ Fp. Define L0 = {x ∈ L : Trqn/q(x) =

0}, and L1 = L \ L0. Then
∑

x∈L0

χ(x) =
1

q
Gqn(χ).

Let S = {i (mod qn−1
q−1

) : ωi ∈ L0}. Then S is a Singer difference set in Z(qn−1)/(q−1),

and all the hyperplanes of PG(n − 1, q) can be obtained by cyclically shifting S. Let χN

be a multiplicative character of order N of Fqn. In the rest of this subsection we always
assume that N | (qn − 1)/(q − 1). Under this assumption, the restriction of χN to Fq is
trivial; by (2.1) and Theorem 2.1, we have

ψFqn
(C

(N,qn)
i ) = − 1

N
+

1

N

N−1
∑

j=1

Gqn(χ
j
N)χ

−j
N (ωi)

= − qn − 1

N(q − 1)
+

q

N

N−1
∑

j=0

∑

ℓ∈S
χj
N(ω

ℓ−i).(2.2)

Let SN denote the multiset ρ(S), where ρ is the natural epimorphism ρ : Z(qn−1)/(q−1) →
ZN . We identify SN with the group ring element SN =

∑N−1
i=0 ci[i] ∈ Z[ZN ], where

ci = |S ∩ {jN + i : j = 0, 1, . . . ,
(qn − 1)

N(q − 1)
− 1}|, 0 6 i 6 N − 1.

These numbers are the intersection sizes of C
(N,qn)
0 /F∗

q with the hyperplanes of PG(n−1, q).
Define

(2.3) FN = {ci : 0 6 i 6 N − 1}.

That is, FN consists of distinct intersection sizes of C
(N,qn)
0 /F∗

q with the hyperplanes of
PG(n− 1, q). Also let

(2.4) Iβ = {i ∈ ZN : ci = β}, β ∈ FN .

Then, we have

(2.5) SN =
∑

β∈FN

βIβ ∈ Z[ZN ].
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By (2.2), the Gauss period ψFqn
(C

(N,qn)
i ) with i ∈ Iβ is related to hyperplane intersection

size by

(2.6) ψFqn
(C

(N,qn)
i ) = − qn − 1

N(q − 1)
+ qβ.

In [21], the authors studied the question of when the Gauss periods ψFqn
(C

(N,qn)
i ),

i = 0, 1, . . . , N − 1, with N | (qn − 1)/(q − 1) take exactly three values forming an arith-
metic progression in relation to the existence of circulant weighing matrices and 3-class
translation association schemes. One important special case where the Gauss periods

ψFqn
(C

(N,qn)
i ), i = 0, 1, . . . , N −1, with N | (qn−1)/(q−1) take exactly three values form-

ing an arithmetic progression is when n = 3 and C
(N,q3)
0 /F∗

q is a cyclic arc of Singer type

in PG(2, q). Both Maruta [31] and Szönyi [37] studied the question of when C
(N,q3)
0 /F∗

q is
a cyclic arc of Singer type in PG(2, q).

Let n = 3, N |(q2 + q + 1), and M = (q2 + q + 1)/N . Assume that C
(N,q3)
0 /F∗

q is an

M-arc in PG(2, q). Then each line of PG(2, q) meets C
(N,q3)
0 /F∗

q in 0, 1, or 2 points. So
we have β1 = 2, β2 = 1, β3 = 0 using the notation introduced above. Hence by (2.6),

the Gauss periods ψFqn
(C

(N,qn)
i ) take exactly three values α1, α2, α3, with (α1, α2, α3) =

(−M + 2q,−M + q,−M). To simplify notation we write Ii := Iβi
. Then, by Lemma 2.5

in [21], we have

(2.7) |I1| =
M − 1

2
, |I2| = q −M + 2, |I3| =

q2 + q + 1

M
− q +

M − 3

2
.

Furthermore, by (2.5), we have

(2.8) SN = 2I1 + I2 ∈ Z[ZN ].

2.2. A construction of srgs based on three-valued Gauss periods. Let q ≡
3 (mod 4) be a prime power and ω be a fixed primitive element of Fq3 . Let N be an odd

positive integer dividing q2 + q + 1, and let C
(N,q3)
i = ωi〈ωN〉, i = 0, 1, . . . , N − 1. We

suppose that the Gauss periods ψFq3
(C

(N,q3)
i ), i = 0, 1, . . . , N−1, take exactly three values

α1 = −M + 2q, α2 = −M + q, α3 = −M . Recall that

Ij = {i (mod N) |ψFq3
(C

(N,q3)
i ) = αj}, j = 1, 2, 3.

Let T1, T2 be a partition of I2, and let T ′
i ≡ 4−1Ti (mod N) for i = 1, 2. Define

(2.9) X = 2T ′
1 ∪ (2T ′

2 +N) (mod 2N)

and

YX = {Ni+ 4j (mod 4N) : (i, j) ∈ ({0, 3} × T ′
1) ∪ ({1, 2} × T ′

2)}
∪ {Ni+ 4j (mod 4N) : i = 0, 1, 2, 3, j ∈ 4−1I1 (mod N)}.(2.10)

Let γ be a fixed primitive element of Fq6 such that γq
3+1 = ω. Define

(2.11) DX =
⋃

i∈YX

C
(4N,q6)
i ,

where C
(4N,q6)
i = γi〈γ4N〉, i = 0, 1, . . . , 4N − 1. It is clear that |DX | = (q6 − 1)(2|I1| +

|I2|)/2N = (q2 − 1)(q3 + 1)M/2.
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Proposition 2.2. ([32, Proposition 4.2]) For a ∈ Z4N , define b ≡ 4−1a (mod N) and
c ≡ 2b (mod 2N). Let η be the quadratic character of Fq3. If X defined in (2.9) satisfies
the condition:

2ψFq3
(ωc

⋃

ℓ∈X
C

(2N,q3)
ℓ )− ψFq3

(ωc
⋃

ℓ∈2−1I2

C
(N,q3)
ℓ )(2.12)

=

{

±Gq3(η), if c ∈ 2−1I2 (mod N),
0, otherwise,

then Cay(Fq6 , DX) is a strongly regular graph with negative Latin square type parameters

(q6, r(q3 + 1),−q3 + r2 + 3r, r2 + r) with r = (q2 − 1)M/2.

2.3. A partition of a conic and its reduction modulo 2N . Viewing Fq3 as a
3-dimensional vector space over Fq, we will use Fq3 as the underlying vector space of
PG(2, q). The points of PG(2, q) are 〈ωi〉 := ωiF∗

q, 0 6 i 6 q2 + q. Define a quadratic

form Q : Fq3 → Fq by setting Q(x) = Trq3/q(x
2). It is straightforward to check that Q

is nonsingular. Therefore, Q defines a conic Q in PG(2, q), which contains q + 1 points.
Consequently each line of PG(2, q) meets Q in 0, 1 or 2 points. Consider the following
subset of Zq2+q+1:

WQ = {i (mod q2 + q + 1) : Q(ωi) = 0} = {d0, d1, . . . , dq},
where the elements are numbered in any unspecified order. Then, the conic Q is equal
to {〈ωdi〉 : 0 6 i 6 q}. Furthermore, WQ ≡ 2−1S (mod q2 + q + 1), where S =
{i (mod q2 + q + 1) : Trq3/q(ω

i) = 0} is a Singer difference set in Zq2+q+1. Hence,

(2.13) WQW
(−1)
Q = Zq2+q+1 + q[0] ∈ Z[Zq2+q+1],

where W
(−1)
Q = {−x (mod q2 + q + 1) : x ∈ WQ}.

We consider a partition of WQ. For d0 ∈ WQ, we define

(2.14) XQ := {ωdiTrq3/q(ω
d0+di) : 1 6 i 6 q} ∪ {2ωd0}

and

XQ := {logω(x) (mod 2(q2 + q + 1)) : x ∈ XQ} ⊆ Z2(q2+q+1).

It is clear that XQ (mod q2 + q + 1) = WQ. The subset XQ ⊆ Z2(q2+q+1) can be written
as

XQ ≡ 2E1 ∪ (2E2 + (q2 + q + 1)) (mod 2(q2 + q + 1))

for some E1, E2 ⊆ Zq2+q+1 with |E1|+ |E2| = q + 1. That is, we are partitioning XQ into
its even and odd parts. It follows that

WQ ≡ 2(E1 ∪ E2) (mod q2 + q + 1)

and

S ≡ 4(E1 ∪ E2) (mod q2 + q + 1),

i.e., the partition of XQ into its even and odd parts induces partitions of WQ and S,
respectively. We give the following important properties of XQ.

Lemma 2.3. ([19, Lemma 3.4]) If we use any other di in place of d0 in the definition

of XQ, then the resulting set X ′
Q has the property that X ′

Q ≡ XQ or XQ + (q2 + q +
1) (mod 2(q2 + q + 1)).
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Proposition 2.4. ([19, Theorem 3.7, Remark 3.8], [4, Theorem 3.4]) With notation

as above,

2ψFq3
(ωc

⋃

i∈XQ

C
(2(q2+q+1),q3)
i )− ψFq3

(ωc
⋃

i∈WQ

C
(q2+q+1,q3)
i )

=

{

±Gq3(η), if c (mod q2 + q + 1) ∈ WQ,
0, otherwise.

where η is the quadratic character of Fq3.

Remark 2.5. Assume that N = q2 + q + 1 (hence M = 1). Then, ψFq3
(C

(N,q3)
i ),

i = 0, 1, . . . , N − 1, take exactly two values −M + q and −M . This can be viewed as
the situation where I1 = ∅ and I2 = S in the setting of Subsection 2.2. Hence, by
Propositions 2.2 and 2.4, Cay(Fq6, DXQ

) is a strongly regular graph with negative Latin
square type parameters (q6, r(q3 + 1),−q3 + r2 + 3r, r2 + r) with r = (q2 − 1)/2.

We next consider the reduction of XQ modulo 2N . Let N |(q2 + q + 1) and M =

(q2+ q+1)/N . Assume that C
(N,q3)
0 /F∗

q is an M-arc in PG(2, q). Then, the Gauss periods

ψFq3
(C

(N,q3)
i ), i = 0, 1, . . . , N − 1, take exactly three values −M +2q,−M + q,−M . Since

XQ ≡ WQ ≡ 2−1S (mod q2 + q + 1), the reduction of XQ modulo N (as a multiset) is
2−1SN = 2−1(I1 ∪ I1 ∪ I2) as seen in (2.8). Define

(2.15) Xi = [x (mod 2N) : x ∈ XQ, x (mod N) ∈ 2−1Ii], i = 1, 2,

where we use [. . .] to indicate that theXi are multisets. Then, as multisets, X1 (mod N) =
2−1(I1 ∪ I1) and X2 (mod N) = 2−1I2. We say that a multiset defined over a group G
is purely a subset of G if each element in G appears in the multiset with multiplicity at
most one. Clearly, X2 defined above is purely a subset of Z2N , but X1 may not be purely
a subset of Z2N .

Proposition 2.6. ([32, Proposition 5.5]) If X1 is purely a subset of Z2N , it holds that

2ψFq3
(ωc

⋃

ℓ∈X2

C
(2N,q3)
ℓ )− ψFq3

(ωc
⋃

ℓ∈2−1I2

C
(N,q3)
ℓ ) =

{

±Gq3(η), if c ∈ 2−1I2 (mod N),
0, otherwise.

In summary, we have the following theorem.

Theorem 2.7. Let q ≡ 3 (mod 4) be a prime power, N be a positive integer dividing

q2 + q + 1, and M = (q2 + q + 1)/N . Assume that

(1) ψFq3
(C

(N,q3)
i ), i = 0, 1, . . . , N−1, take exactly three values −M,−M+q,−M+2q;

and

(2) X1 is purely a subset of Z2N .

Then Cay(Fq6 , DX2) is a strongly regular graph with parameters (q6, r(q3 + 1),−q3 + r2 +
3r, r2 + r), where r = (q2 − 1)M/2. Here, Xi, i = 1, 2, are defined in (2.15) and DX is

defined in (2.11).

Proof: Apply Propositions 2.2 and 2.6 with X = X2. �

2.4. Chebotarëv’s density theorem. Let M be an odd positive integer. Let h be
a positive integer such that M | (h2 + h + 1), and PM,h be the set of primes such that
p ≡ h (mod M). For α, β ∈ {1,−1},

define
(2.16)

ΨM,h,α,β = {p ∈ PM,h : η(1+ω
(p3−1)i

M ) = α, 1 6 i 6M −1, η(2) = −α, η(−1) = β in Fp3},
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where η is the quadratic character of Fp3. In this paper, we will consider the question of
whether there are infinitely many primes in ΨM,h,α,β. In particular, we will show that ΨM,h

contains almost all primes in
⋃

α∈{1,−1} ΨM,h,α,−1, where ΨM,h is defined in Section 1. To
study this problem, we will use the Chebotarëv density theorem, which is a generalization
of the well-known Dirichlet theorem on primes in arithmetic progressions.

Let F be a finite Galois extension of an algebraic number field E. Let OF and
OE be the rings of integers in F and E, respectively. Let p be a prime ideal in E
unramified in F and P be a prime ideal in F lying over p. Then, there is a unique
monomorphism h from Gal((OF/P)/(OE/p)) to Gal(F/E) such that h(σ)(P) = P for
any σ ∈ Gal((OF/P)/(OE/p)) and the map from OF/P to itself induced by h(σ) :
OF → OF coincides with σ. In particular, the image σP of the Frobenius automorphism
x 7→ x|OE/p| by h is called the Frobenius substitution with respect to P in F/E. The
Frobenius substitution depends on the choice of P lying over p only up to conjugation,
i.e., στP = τσPτ

−1 for any τ ∈ Gal(F/E).
Let P (E) be the set of prime ideals in E, and let P ′(E) be the set of prime ideals in

E unramified in F . For any σ ∈ Gal(F/E), we use Cσ to denote the conjugacy class of
σ ∈ Gal(F/E), i.e., Cσ = {τ−1στ : τ ∈ Gal(F/E)}; and let Sσ be the set of prime ideals
of E defined by

Sσ = {P ∩ E ∈ P ′(E) : P is a prime ideal in F such that σP ∈ Cσ}.

For any subset S of P (E), we define the natural density of S to be

lim
x→∞

|{p ∈ S : N(p) 6 x}|
|{p ∈ P (E) : N(p) 6 x}|

if this limit exists, where N(p) is the absolute norm of p. If the natural density of S
exists, then it is actually equal to the Dirichlet density of S defined by

lim
s→1+

(

∑

p∈S

1

N(p)s

)/(

∑

p∈P (E)

1

N(p)s

)

.

The following is known as Chebotarëv’s density theorem [36].

Theorem 2.8. The density of Sσ is equal to
|Cσ|
|G| ; in particular, if |Cσ| 6= 0, then

there are infinitely many prime ideals in Sσ. Here the claim is valid with either notion of

density.

We denote both the Dirichlet density and the natural density of Sσ by δ(Sσ). We will
use Theorem 2.8 in Section 5.

3. Cyclic arcs of Singer type in PG(2, q)

In this section, we consider the question of when the first assumption in Theorem 2.7

is satisfied. That is, we consider the question of when the Gauss periods ψFq3
(C

(N,q3)
i ),

i = 0, 1, . . . , N−1, take exactly three values −M+2q,−M+q,−M . Note that the Gauss

periods ψFq3
(C

(N,q3)
i ), i = 0, 1, . . . , N−1, take exactly three values −M+2q,−M+q,−M

if and only if C
(N,q3)
0 /F∗

q is an M-arc in PG(2, q). Furthermore, it is clear that C
(N,q3)
0 /F∗

q

is an M-arc in PG(2, q) if and only if ωj1N , ωj2N , ωj3N are linearly independent over Fq for
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all distinct 0 6 j1, j2, j3 6M − 1. Observe that

a1ω
j1N + a2ω

j2N + a3ω
j3N 6= 0 for all (a1, a2, a3) ∈ F3

q \ {(0, 0, 0)}
and for all distinct 0 6 j1, j2, j3 6M − 1

⇐⇒ 1 + b1ω
i1N 6= b2ω

i2N for all (b1, b2) ∈ F2
q \ {(0, 0)}

and for all distinct 1 6 i1, i2 6M − 1

⇐⇒ (1 + C
(N,q3)
0 ) ∩ C(N,q3)

0 = F∗
q \ {1}, i.e., (0, 0)N = q − 2.

Thus, there is a close relationship between cyclic arcs of Singer type in PG(2, q) and
cyclotomic numbers. The following is our main theorem in this section.

Theorem 3.1. Let M,h be positive integers such that 1 6 h 6 M − 1 and M | (h2 +
h + 1). Let q be a power of a prime p such that q ≡ h (mod M). Let N = q2+q+1

M
and ω

be a primitive element of Fq3. Suppose that

p >
( 18M

φ(M)

)φ(M)/2ordM (p)

,

where φ is the Euler totient function. Then C
(N,q3)
0 /F∗

q is an M-arc in PG(2, q).

Remark 3.2. The theorem above was essentially proved by Maruta [31] and Szönyi
[37], where they did not give an explicit lower bound on p. We will give a proof by using
a couple of recent results in the study of cyclotomic numbers [15].

Proposition 3.3. ([15, Theorem 4.1]) Let q be a power of a prime p and M, e be

positive integers such that q = eM + 1. Let ω be a primitive element of Fq, ζM = e2πi/M ,

and let f(x) =
∑M−1

i=0 aix
i ∈ Z[x]. Suppose that

p >
( M

φ(M)

M−1
∑

i=0

a2i

)φ(M)/2ordM (p)

.

Then f(ωe) = 0 in Fq if and only if f(ζM) = 0 in C.

Proposition 3.4. ([15, Proposition 5.8]) Let M > 3 be a positive integer. Let si, ti,
i = 1, 2, 3, be integers modulo M such that the si’s are pairwise distinct, the ti’s are

pairwise distinct, and the (si − ti)’s modulo M are pairwise distinct. Then,

ζs1+t2
M + ζs2+t3

M + ζs3+t1
M − ζs1+t3

M − ζs2+t1
M − ζs3+t2

M 6= 0.

Proof of Theorem 3.1: The set C
(N,q3)
0 /F∗

q of points in PG(2, q) is an M-arc if and
only if

Mj1,j2,j3 =





ωj1N ωj2N ωj3N

ωj1Nq ωj2Nq ωj3Nq

ωj1Nq2 ωj2Nq2 ωj3Nq2





is nonsingular for all distinct j1, j2, j3 ∈ {0, 1, . . . ,M − 1}.
Define g

(h)
i,j (x) = xj + xi(h+1) + xi+j(h+1) − xi − xj(h+1) − xj+i(h+1) ∈ Z[x], where the

exponents j, i(h + 1), i + j(h + 1), i, j(h + 1), j + i(h + 1) are reduced modulo M . Let
A1 = {j, i(h+ 1), i+ j(h+ 1)} and A2 = {i, j(h+ 1), j + i(h+ 1)}, where each element is
reduced moduloM . Assume that i, j 6≡ 0 (mod M) and i 6≡ j (mod M). Then, A1∩A2 = ∅
since gcd (M,h) = gcd (M,h+ 1) = 1. Furthermore, it is easily checked that if two
elements in A1 (resp. A2) are equal, so are all three elements in A1 (resp. A2). Hence, by

writing g
(h)
i,j (x) =

∑M−1
i=0 aix

i, ai ∈ Z, ∀i, we have
∑M−1

i=0 a2i = 6, 12 or 18.
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Noting that ωN(q−1)(q+1) = ωN(q−1)(h+1), we have

det(Mj1,j2,j3) = ωj1N(q2+q−1)+Nj2+Nj3g
(h)
j2−j1,j3−j1

(ωN(q−1)).

Hence Mj1,j2,j3 is nonsingular if and only if g
(h)
j2−j1,j3−j1

(ωN(q−1)) 6= 0. Moreover, by

applying Proposition 3.3 with
∑M−1

i=0 a2i = 18, g
(h)
j2−j1,j3−j1

(ωN(q−1)) 6= 0 if and only if

g
(h)
j2−j1,j3−j1

(ζM) 6= 0.
We now set

(s1, s2, s3) = (0, (j2 − j1)h, (j2 − j1)(1 + h))

and

(t1, t2, t3) = (j3(1 + h)− j1 − j2h, j3 − j1, j2 − j1).

Then the si are pairwise distinct, and the ti are pairwise distinct. Furthermore, s1 − t1 =
−j3(1 + h) + j1 + j2h, s2 − t2 = (j2 − j1)h− (j3 − j1) and s3 − t3 = (j2 − j1)h, which are

all distinct. Hence, by Proposition 3.4, we have g
(h)
j2−j1,j3−j1

(ζM) 6= 0. This completes the
proof of the theorem. �

4. Conditions for X1 to be purely a subset of Z2N

In this section, we consider the question of when the other assumption in Theorem 2.7
is satisfied; that is, we consider when the multiset X1 is purely a subset of Z2N . We will
use the same notation introduced in Section 2.3. (The results in this section are valid for
all odd prime power q.)

Recall that

WQ := {i (mod q2 + q + 1) : Q(ωi) = 0} = {d0, d1, . . . , dq},
which satisfies WQ ≡ 2(E1 ∪ E2) (mod q2 + q + 1). For each u ∈ WQ with u (mod N) ∈
2−1I1, since WQ ≡ 2−1(I1 ∪ I1 ∪ I2) (mod N), there is exactly one ℓu ∈ {1, 2, . . . ,M − 1}
such that u+ ℓuN ∈ WQ. Define

gM(ωu) = Trq3/q(ω
2u+ℓuN)ωℓuN .

Lemma 4.1. Let η be the quadratic character of Fq3. Then, X1 is purely a subset in

Z2N if and only if η(2) 6= η(gM(ωu)) for all u ∈ WQ with u (mod N) ∈ 2−1I1.

Proof: In the definition of XQ (see (2.14)), we take d0 to be u. Then, by Lemma 2.3,

we have 2ωu, gM(ωu)ωu ∈ XQ or 2ωu+q2+q+1, gM(ωu)ωu+q2+q+1 ∈ XQ. In either case,
X1 is purely a subset of Z2N if and only if η(2) 6= η(gM(ωu)) for all u ∈ WQ with
u (mod N) ∈ 2−1I1. �

Lemma 4.2. ([32, Lemma 5.8]) For u ∈ WQ with u (mod N) ∈ 2−1I1, it holds that

(4.1) η(gM(ωu)) = η(−1)η(1− ω
ℓu(q+1)(q3−1)

M )η(1− ω
2ℓuq(q3−1)

M ).

In [32], by using Lemmas 4.1 and 4.2, conditions on q that guarantee X1 is purely
a subset of Z2N were determined in the cases where M = 3, 7. We now generalize that
result by using the following proposition.

Proposition 4.3. Let η be the quadratic character of Fq3. Then, X1 is purely a subset

of Z2N if and only if η(2) 6= η(1 + ω
ℓ(q3−1)

M ) for all ℓ ∈ {1, 2, . . . ,M − 1}.
Proof: First we note that

η(1− ω
ℓu(q+1)(q3−1)

M ) = η(1− ω
ℓu(q2+q)(q3−1)

M ) = η(1− ω− ℓu(q3−1)
M ) = η(−1)η(1− ω

ℓu(q3−1)
M ).
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Simplifiying (4.1), we obtain

η(gM(ωu)) = η(1 + ω
ℓu(q3−1)

M ).

Let L be the set of all ℓu’s, i.e., L = {ℓu : u, u+ ℓuN ∈ WQ, u (mod N) ∈ 2−1I1}. Then,
|L| 6M − 1 since |I1| = M−1

2
.

We now show that |L| = M − 1. If ℓu1 = ℓu2 for some u1, u2 ∈ WQ, we have u1, u1 +
ℓu1N, u2, u2 + ℓu2N ∈ WQ and u1 − (u1 + ℓu1N) = u2 − (u2 + ℓu2N), a contradiction to
(2.13). Hence L = {1, 2, . . . ,M − 1}, and the conclusion of the proposition follows from
Lemma 4.1. �

By Lemma 4.1 and Proposition 4.3, we need to study the question of whether ΨM,h,α,β

is an infinite set, where ΨM,h,α,β is defined in (2.16).

4.1. Multiplicative relations between the
(

1 + ω
ℓ(q3−1)

M

)

’s. In this subsection, in

view of Proposition 4.3, we study the question of whether η(1 +ω
ℓ(q3−1)

M ), 1 6 ℓ 6M − 1,

are all equal. To this end, we first give multiplicative relations between 1 + ω
ℓ(q3−1)

M ,

1 6 ℓ 6M − 1. Let ǫM denote either ω
q3−1
M or ζM = e2πi/M .

For a positive inetegr n let ζn be a primitive (complex) nth root of unity, and let D(n)

be the multiplicative group generated by 1 − ζ in, i ∈ {1, 2, . . . , n − 1}, modulo roots of
unity. This group and its subgroups, in particular the subgroup of cyclotomic units, have
been studied in [7, 18, 23, 24, 26, 28, 34, 6]. In particular, nontrivial relations, called
Ennola relations, between (1 − ζ in)’s in D(n) were studied in [7, 18, 26]. The following
relations in D(n) are said to be trivial relations.

1. 1− ζ in = −ζ in(1− ζ−i
n ).

2. A relation derived from the polynomial identity
∏p−1

i=0 (1− xζ ip) = 1− xp for any
prime p.

Ennola [18] gave for n = 105 a relation which is not obtained from the trivial relations.
Furthermore, he proved that twice any relation is a consequence of the trivial relations.
Algorithms for finding Ennola relations were studied in [7, 26]. Note that if we find an
Ennola relation R = 1 for odd n, we have a relation on (1 + ζ in)’s by dividing σ2(R)
by R, where R is a product of some integral power of (1 − ζ in)’s and a root of unity,
and σ2 ∈ Gal(Q(ζn)/Q) is defined by σ2 : ζn 7→ ζ2n. However, it is difficult to find Ennola
relations in general. Furthermore, the signs or roots of unity involved in the multiplicative
relations were usually ignored in those studies while here we need to be concerned about
the signs. Moreover, our problem is weaker than that treated in the previous studies since
we are interested in characterizing pairs (q,M) such that η(1 + ǫM ) = · · · = η(1 + ǫM−1

M ).

Proposition 4.4. Let η be the quadratic character of Fq3 and ℓ be an integer, 1 6

ℓ 6M − 1 such that gcd (ℓ,M) = 1. Then, the following hold:

(1) η(1 + ǫℓM) = η(1 + ǫ−ℓ
M ).

(2) Let s and t be odd positive integers such that t 6 |s. Then, η(1+ ǫsℓt ) =
∏s−1

i=0 η(1+
ǫisǫ

ℓ
t). In particular, if M = pe is a prime power with p a prime and e > 2,

∏pj−1
i=0 η(1 + ǫipjǫ

ℓ
M ) = η(1 + ǫp

jℓ
M ) for 1 6 j 6 e− 1.

(3)
∏ordM (2)−1

i=0 η(1 + ǫ2
iℓ

M ) = 1.

(4)
∏ordM (2)/2−1

i=0 η(1 + ǫ2
iℓ

M ) = η(−1) if −1 ∈ 〈2〉 (mod M).

Proof: Note that η(ǫℓM) = 1. The claims (1) and (2) follow from the trivial relations.
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We now prove the claim in (3). Since 2ordM (2) ≡ 1 (mod M), we have

ordM (2)−1
∏

i=0

(1 + ǫ2
iℓ

M ) =

ordM (2)−1
∏

i=0

1− ǫ2
i+1ℓ

M

1− ǫ2
iℓ

M

=
1− ǫ2

ordM (2)ℓ
M

1− ǫℓM
= 1.

Next, we prove the claim in (4). Since 2ordM (2)/2 ≡ −1 (mod M), we have

ordM (2)/2−1
∏

i=0

(1 + ǫ2
iℓ

M ) =

ordM (2)/2−1
∏

i=0

1− ǫ2
i+1ℓ

M

1− ǫ2
iℓ

M

=
1− ǫ2

ordM (2)/2ℓ
M

1− ǫℓM

=
1− ǫ−ℓ

M

1− ǫℓM
= −ǫ−ℓ

M

The proof of the proposition is now complete. �

Remark 4.5. In the case where M is a prime power, say M = pe, all η(1 + ǫiM) with
gcd (M, i) 6= 1 are determined from η(1 + ǫiM ) with gcd (M, i) = 1 by Proposition 4.4 (2).
In particular, if η(1 + ǫiM) = α for all i with gcd (i,M) = 1, then η(1 + ǫiM) = α for all i
with gcd (i,M) 6= 1.

In the case where M is not a prime power, we have the following nontrivial identity.

Proposition 4.6. Let M be a positive integer and UM = {x : 1 6 x 6 M −
1, gcd (x,M) = 1}. Assume that M is not a prime power, −1 6∈ 〈2〉 (mod M) and

|〈2〉 (mod M)| is even. For any
φ(M)

4
-subset X of UM such that

(4.2) X ∪ −X ∪ 2X ∪ −2X = UM

and any integer ℓ with gcd (ℓ,M) = 1, we have

(4.3)
∏

x∈X
η(1 + ǫ2xℓM ) = η(−1)

φ(M)
4

+c,

where c = |{x ∈ X ∪ 2X (mod M) : (M + 1)/2 6 x < M}}|.
Proof: It is clear that

(4.4)
∏

x∈X
(1 + ζ2xℓM ) =

∏

x∈X

1− ζ4xℓM

1− ζ2xℓM

=

∏

x∈X∪2X ζ
−xℓ
M

∏

x∈X∪2X(1− ζ2xℓM )
∏

x∈X∪2X ζ
−xℓ
M

∏

x∈X(1− ζ2xℓM )2
.

We note that
∏

x∈X∪2X ζ
−xℓ
M

∏

x∈X∪2X(1−ζ2xℓM ) = −1 or 1. Indeed, by noting that ΦM (1) =
1 for the Mth cyclotomic polynomial ΦM (x), we have

∏

x∈X∪2X
ζ−2xℓ
M

∏

x∈X∪2X
(1− ζ2xℓM )2 =

∏

x∈UM

(1− ζ2xℓM ) = ΦM(1) = 1.

On the other hand,
∏

x∈X∪2X
ζ−xℓ
M

∏

x∈X∪2X
(1− ζ2xℓM ) =

∏

x∈X∪2X
(ζxℓM − ζ−xℓ

M )

= (−4)|X|
∏

x∈X∪2X
sin(2πxℓ/M) = (−4)

φ(M)
4 (−1)cX∪2X,ℓr

for some positive r ∈ R, where cX∪2X,ℓ = |{x ∈ X ∪ 2X (mod M) : (M + 1)/2 6 xℓ <

M}}|. Hence, we obtain
∏

x∈X∪2X ζ
−xℓ
M

∏

x∈X∪2X(1− ζ2xℓM ) = (−1)
φ(M)

4
+cX∪2X,ℓ and

(4.5)
∏

x∈X
(1 + ζ2xℓM ) =

(−1)
φ(M)

4
+cX∪2X,ℓ

∏

x∈X∪2X ζ
−xℓ
M

∏

x∈X(1− ζ2xℓM )2
.
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Next, we show that the parity of cX∪2X,ℓ does not depend on the choice of ℓ (and
also the choice of X as a stronger claim). Let X ′ be an arbitrary union of cosets of
〈4〉 (mod M) satisfying the condition (4.2). This is well defined since −1 6∈ 〈2〉 (mod M)
and |〈2〉 (mod M)| is even. Noting that cX∪2X,ℓ = cℓX∪2ℓX,1, it is enough to see that
cX∪2X,1 ≡ cX′∪2X′,1 (mod 2) for any X satisfying the condition (4.2).

Assume that X ′ =
⋃

a∈A a〈4〉 for some A ⊆ UM . For any a ∈ A, we have a〈2〉 ⊆
(X ′ ∪ 2X ′) and −a〈2〉 ∩ (X ′ ∪ 2X ′) = ∅. On the other hand, we can write −a〈2〉 ∩
(X ∪ 2X) =

⋃

x∈Sa
{x, 2x} for some Sa ⊆ −a〈2〉. By letting Y =

⋃

a∈A Sa, we have
X ′ ∪ 2X ′ = ((X ∪ 2X) \ (Y ∪ 2Y )) ∪ (−Y ∪ −2Y ). Since

c(X∪2X)\{x,2x}∪{−x,−2x},1 ∈ {cX∪2X,1, cX∪2X,1 − 2, cX∪2X,1 + 2}
for any x ∈ X , we have

cX∪2X,1 ≡ c((X∪2X)\(Y ∪2Y ))∪(−Y ∪−2Y ),1 = cX′∪2X′,1 (mod 2).

Finally, since (4.5) is also valid over Fq, the conclusion of the proposition follows. �

Let PM be the set of all prime powers q such that M | (q2 + q + 1). Define

ΨM,α,β = {q ∈ PM : η(1 + ǫiM) = α, 1 6 i < M, η(−1) = β}
for α, β ∈ {1,−1}. In view of Proposition 4.3, we consider when ΨM,α,β is empty.

Proposition 4.7. (1) If −1 ∈ 〈2〉 (mod M), then ΨM,1,−1 = ∅.
(2) If −1 ∈ 〈2〉 (mod M) and ordM(2)/2 is even, then ΨM,−1,−1 = ∅.
(3) If −1 ∈ 〈2〉 (mod M) and ordM(2)/2 is odd, then ΨM,−1,1 = ∅.
(4) If ordM(2) is odd, then ΨM,−1,β = ∅ for both β = 1,−1.

Proof: (1) If q ≡ 3 (mod 4) and −1 ∈ 〈2〉 (mod M), by Proposition 4.4 (4), we

have
∏ordM (2)/2−1

i=0 η(1 + ǫ2
i

M) = −1. So it impossible to have η(1 + ǫiM) = 1 for all i =
1, 2, . . . ,M − 1.

(2) If q ≡ 3 (mod 4) and −1 ∈ 〈2〉 (mod M), by Proposition 4.4 (4), we have

ordM (2)/2−1
∏

i=0

η(1 + ǫ2
i

M) = −1.

On the other hand, if ordM(2)/2 is even and η(1 + ǫiM) = −1 for all i = 1, 2, . . . ,M − 1,

we have
∏ordM (2)/2−1

i=0 η(1 + ǫ2
i

M) = 1, a contradiction.
(3) If q ≡ 1 (mod 4) and −1 ∈ 〈2〉 (mod M), by Proposition 4.4 (4), we have

ordM (2)/2−1
∏

i=0

η(1 + ǫ2
i

M ) = 1.

On the other hand, if ordM(2)/2 is odd and η(1 + ǫiM ) = −1 for all i = 1, 2, . . . ,M − 1,

we have
∏ordM (2)/2−1

i=0 η(1 + ǫ2
i

M) = −1, a contradiction.

(4) By Proposition 4.4 (3), we have
∏ordM (2)−1

i=0 η(1 + ǫ2
i

M) = 1. On the other hand,

if η(1 + ǫiM ) = −1 for all i = 1, 2, . . . ,M − 1, we have
∏ordM (2)−1

i=0 η(1 + ǫ2
i

M) = −1, a
contradiction. �

4.2. Determination of ΨM,h,α,β in the cases where M = 3, 7, 21. Below we de-
termine prime powers q such that η(2) 6= η(1 + ǫℓM) for all 1 6 ℓ < M in the cases where
M = 3, 7, 21. Here the result in the case where M = 21 is new.

Proposition 4.8. ([32, Proposition 5.9]) Let q ≡ 1 (mod 3) and ǫ3 ∈ Fq3. Then,

η(2) 6= η(1 + ǫi3) for i = 1, 2 if and only if q ≡ 7, 13 (mod 24).
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Proof: Since 1+ ǫ23 = −ǫ3 and 1+ ǫ3 = −ǫ23, we have η(1+ ǫ3) = η(1+ ǫ23) = η(−1) =

(−1)
q−1
2 . On the other hand, by the supplementary law of the quadratic reciprocity, we

have η(2) = (−1)
p2−1

8 . Hence, η(2) 6= η(1 + ǫi3) for i = 1, 2 if and only if q ≡ 5, 7 (mod 8).
Combining with the assumption that q ≡ 1 (mod 3), we see that the conclusion of the
proposition follows. �

Proposition 4.9. ([32, Proposition 5.10]) Let q ≡ 2 or 4 (mod 7) and ǫ7 ∈ Fq3.

Then, η(2) 6= η(1 + ǫi7) for i = 1, 2, . . . , 6 if and only if q ≡ 11, 37, 51, 53 (mod 54).

Proof: Since 1 + ǫℓ7 = 1 + ǫqℓ7 = 1 + ǫq
2ℓ

7 and
∏2

i=0 η(1 + ǫ2
iℓ

7 ) = 1 for ℓ ∈ {1,−1}
by Proposition 4.4 (3), we have η(1 + ǫi7) = 1 for all i = 1, 2, . . . , 6. Hence, η(2) 6=
η(1 + ǫi7) for i = 1, 2, . . . , 6 if and only if q ≡ 3, 5 (mod 8) by the supplementary law of
the quadratic reciprocity. Combining with the assumption that q ≡ 2, 4 (mod 7), we see
that the conclusion of the proposition follows. �

Proposition 4.10. Let q ≡ 4 or 16 (mod 21) and ǫ21 ∈ Fq3. Then, η(2) 6= η(1 + ǫi21)
for i = 1, 2, . . . , 20 if and only if q ≡ 37, 109 (mod 168).

Proof: Let X = {1, 4, 16}. By Proposition 4.6, we have
∏

i∈X η(1 + ǫiℓ21) = η(−1)
for any ℓ with gcd (ℓ, 21) = 1. On the other hand, η(1 + ǫℓ21) = η(1 + ǫ4ℓ21) = η(1 + ǫ16ℓ21 ).
Hence η(1 + ǫℓ21) = η(−1) for all ℓ with gcd (ℓ, 21) = 1. Furthermore, as in the proof of
Proposition 4.9, we have η(1 + ǫi7) = 1 for i = 1, 2, . . . , 6. Moreover, as in the proof of
Proposition 4.8, we have η(1 + ǫi3) = η(−1) for i = 1, 2. Hence, η(2) 6= η(1 + ǫi21) for
i = 1, 2, . . . , 20 if and only if q ≡ 5 (mod 8) by the supplementary law of the quadratic
reciprocity. Combining with the assumption that q ≡ 4, 16 (mod 21), we see that the
conclusion of the proposition follows. �

Remark 4.11. In the case where M = 21, Proposition 4.4 (1)–(4) imply the follow-
ing relations between η(1 + ǫi21)’s with gcd (i,M) = 1:

∏

i∈{1,2,4,8,16,11} η(1 + ǫiℓ21) = 1,
∏

i∈{1,8} η(1 + ǫiℓ21) = 1,
∏

i∈{1,4,10,13,16,19} η(1 + ǫiℓ21) = 1, η(1 + ǫℓ21) = η(1 + ǫ−ℓ
21 ) for any ℓ

with gcd (ℓ,M) = 1. Since it is impossible to derive
∏

i∈{1,4,16} η(1 + ǫi21) = η(−1) from

these relations, Proposition 4.6 is not a consequence of Proposition 4.4 (1)–(4).

5. Existence of primes in ΨM,h,α,β: Proof of Theorem 1.2

Throughout this section, we assume that M > 3 is an odd integer and there is an h,
1 6 h 6M−1, such thatM | (h2+h+1). Let xi,j = (−1)j

√

1 + ζ iM for i = 0, 1, . . . ,M−1
and j = 0, 1, and let ZM = {xi,j : i = 0, 1, . . . ,M − 1, j = 0, 1}. Let EM denote the
Galois extension of Q obtained by adjoining all elements of ZM and ζ4 to Q. We now
explain how to use Theorem 2.8 to prove Theorem 1.2.

Let OEM
be the ring of integers of EM . For a fixed integer 1 6 h 6 M − 1 such that

M | (h2+h+1), let p ≡ h (mod M) be an odd prime unramified in EM and P be a prime
ideal lying over (p) in EM . Let πp be the Frobenius automorphism of (OEM

/P)/(Z/(p)),
i.e., πp : x 7→ xp, and let σP be the Frobenius substitution with respect to P in EM/Q.
Here, we note that OEM

/P contains the subfield {x+P : x ∈ Z[ζM ]} of order p3, which
is isomorphic to Z[ζM ]/p for p = P∩Z[ζM ]. Let η be the quadratic character of Z[ζM ]/p.

By using the correspondence between πp and σP and the facts that
√

1 + ζ iM and ζ4 are
units in EM and P is lying over p( 6= 2), it is straightforward to see that
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p ≡ h (mod M), η(1 + ζ iM) = α, 1 6 i 6M − 1,

η(2) = −α and η(−1) = β in Z[ζM ]/p

⇔ πp(ζM +P) = ζhM +P, π3
p(xi,0 +P) = αxi,0 +P, 1 6 i 6M − 1,

π3
p(
√
2 +P) = −α

√
2 +P and π3

p(ζ4 +P) = βζ4 +P

⇔ σP(ζM) = ζhM , σ3
P(xi,0) = αxi,0, 1 6 i 6M − 1,

σ3
P(
√
2) = −α

√
2 and σ3

P(ζ4) = βζ4.(5.1)

Here, the conditions above are not depending on the choice of P lying over p.
By this correspondence and Theorem 2.8 with F = EM , E = Q, G = Gal(EM/Q)

and σP above, ΨM,h,α,β is an infinite set if there is σ ∈ G satisfying that σ(ζM) = ζhM ,

σ3(xi,0) = αxi,0, 1 6 i 6 M − 1, σ3(
√
2) = −α

√
2 and σ3(ζ4) = βζ4. Thus we need to

study the structure of Gal(EM/Q).
We first list a few basic properties of Gal(EM/Q(ζM)) from Galois theory.

Fact 5.1. (i) Gal(EM/Q(ζM)) is a normal subgroup of Gal(EM/Q) since Q(ζM)
is a normal extension of Q.

(ii) Gal(EM/Q(ζM)) is an abelian 2-group since all the extensions Q(ζM , xi,0)/Q(ζM),
i = 0, 1, . . . ,M − 1, and Q(ζM , ζ4)/Q(ζM) are of degree at most 2. In particular,
Gal(EM/Q(ζM)) is an elementary abelian 2-group since it is isomorphic to a

subgroup of
∏M−1

i=0 Gal(Q(ζM , xi,0)/Q(ζM))×Gal(Q(ζM , ζ4)/Q(ζM)).

We next use the following fundamental result in Kummer’s theory. See, e.g., [29,
Chapter XI].

Theorem 5.2. Let K be a field of characteristic 0 containing ζn and K∗ = K \{0} be

the multiplicative group of K. Let R be a subgroup of K∗ containing (K∗)n = {an : a ∈
K∗}, and K( n

√
R) denote the field extension of K obtained by adjoining all elements in

{ n
√
a : a ∈ R}. Assume that K( n

√
R)/K is an abelian extension and R/(K∗)n is finite.

Then Gal(K( n
√
R)/K) is isomorphic to R/(K∗)n.

Lemma 5.3. Let R = 〈2,−1, 1 + ζ iM , y : i = 1, 2, . . . ,M − 1, y ∈ (Q(ζM)∗)2〉. Then,

Gal(EM/Q(ζM)) is isomorphic to R/(Q(ζM)∗)2.

Proof: Noting that Gal(EM/Q(ζM)) is abelian, apply Theorem 5.2 with K = Q(ζM)
and n = 2. �

Lemma 5.4. It holds that 2 6∈ 〈−1, 1 + ζ iM , y : i = 1, 2, . . . ,M − 1, y ∈ (Q(ζM)∗)2〉.
Proof: Assume that 2 = (−1)i0

∏M−1
i=1 (1 + ζ iM)ci · x2 for some x ∈ Q(ζM). Since

(−1)i0
∏M−1

i=1 (1 + ζ iM)ci is a unit, x ∈ Z[ζM ] and x is not a unit in Q(ζM). Thus (2) is
ramified in Q(ζM). On the other hand, it is well known that (2) is ramified in Q(ζM) if
and only if 4 |M , a contradiction. �

Lemma 5.5. −1 ∈ 〈1 + ζ iM , y : i = 1, 2, . . . ,M − 1, y ∈ (Q(ζM)∗)2〉 if and only if

−1 ∈ 〈2〉 (mod M ′) for some divisor M ′ > 1 of M .

Proof: Assume that −1 6∈ 〈2〉 (mod M ′) for all divisors M ′ > 1 of M , and −1 =
∏M−1

i=1 (1 + ζ iM)ci · x2 for some integers ci and x ∈ Q(ζM). Let σ ∈ Gal(Q(ζM)/Q) be
defined by σ : ζM 7→ ζ2M . Since ordM(2) is odd, we have

ordM (2)−1
∏

i=0

σi(−1) = −1.
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On the other hand, since
∏ordM (2)−1

i=0 (1 + ζ2
iℓ

M ) = 1 as in the proof of Proposition 4.4 (3),

ordM (2)−1
∏

i=0

(

M−1
∏

j=1

σi(1 + ζjM)cj
)

σi(x)2 =

ordM (2)−1
∏

i=0

σi(x)2.

Hence, −1 is a square in Q(ζM), which is impossible since M is odd.
Conversely, if −1 ∈ 〈2〉 (mod M ′) for some divisor M ′ > 1 of M , we have −1 =

ζM ′

∏ordM′ (2)/2−1
i=0 σi(1 + ζM ′) as in the proof of Proposition 4.4 (4). �

Note that the condition that −1 6∈ 〈2〉 (mod M ′) for all divisors M ′ > 1 of M is
equivalent to that the order of 2 ∈ Z is odd in (Z/MZ)×. Let DM be the field obtained
by adjoining all xi,0, 1 6 i 6M − 1, to Q. Furthermore, let D′

M be the field obtained by
adjoining ζ4 to DM . Summarizing the previous lemmas, we have the following.

Proposition 5.6. (1) Gal(EM/Q(ζM)) is isomorphic to Gal(Q(ζM ,
√
2)/Q(ζM))×

Gal(D′
M/Q(ζM)).

(2) If the order of 2 ∈ Z is odd in (Z/MZ)×, then Gal(EM/Q(ζM)) is isomorphic to

Gal(Q(ζM ,
√
2)/Q(ζM))×Gal(Q(ζM , ζ4)/Q(ζM))×Gal(DM/Q(ζM)).

Proof: Note that Gal(EM/Q(ζM)) is isomorphic to a subgroup of index at most 2 of
Gal(Q(ζM ,

√
2)/Q(ζM))×Gal(D′

M/Q(ζM)). By Lemmas 5.3 and 5.4, we have

|Gal(EM/Q(ζM))| 6= |Gal(D′
M/Q(ζM))|,

which implies that Gal(EM/Q(ζM)) is isomorphic to Gal(Q(ζM ,
√
2)/Q(ζM))×Gal(D′

M/Q(ζM)).
Similarly, Gal(D′

M/Q(ζM)) is isomorphic to a subgroup of index at most 2 of Gal(Q(ζM ,
√
−1)/Q(ζM))×

Gal(DM/Q(ζM)). Then, by Lemmas 5.3 and 5.5, Gal(D′
M/Q(ζM)) is isomorphic to

Gal(Q(ζM , ζ4)/Q(ζM))×Gal(DM/Q(ζM)) if the order of 2 ∈ Z is odd in (Z/MZ)×. �

Let K be any subfield of EM . For any σ ∈ Gal(EM/Q), let σ|K denote the restriction
of σ to K.

Corollary 5.7. (1) Gal(EM/Q) is isomorphic to Gal(Q(
√
2)/Q)×Gal(D′

M/Q).
In particular, the group embedding ϕ : Gal(EM/Q) → Gal(Q(

√
2)/Q)×Gal(D′

M/Q)
defined by ϕ(σ) = (σ|Q(

√
2), σ|D′

M
) gives the isomorphism.

(2) If the order of 2 in (Z/MZ)× is odd, then Gal(EM/Q) is isomorphic to Gal(Q(
√
2)/Q)×

Gal(Q(ζ4)/Q)×Gal(DM/Q). In particular, the group embedding ϕ : Gal(EM/Q) →
Gal(Q(

√
2)/Q)×Gal(Q(ζ4)/Q)×Gal(DM/Q) defined by ϕ(σ) = (σ|Q(

√
2), σ|Q(

√
−1), σ|DM

)
gives the isomorphism.

Proof: We only give a proof of Part (1) of the corollary. Part (2) can be proved
similarly. As in the proof of Proposition 5.6, we have EM 6= D′

M , which implies that
Q(

√
2)∩D′

M = Q. Then, by Galois theory, ϕ gives the isomorphism between Gal(EM/Q)
and Gal(Q(

√
2)/Q)×Gal(D′

M/Q). �

The following is our main theorem in this section.

Theorem 5.8. Let h be a positive integer such that 1 6 h 6M−1 andM | (h2+h+1).
Then the following hold:

(1) ΨM,h,1,1 ∪ΨM,h,1,−1 is an infinite set.

(2) If the order of 2 in (Z/MZ)× is odd, both ΨM,h,1,1 and ΨM,h,1,−1 are infinite sets.

Proof: By (5.1) and Theorem 2.8, we will show that there exists a σ ∈ Gal(EM/Q)
such that σ(ζM) = ζhM , σ3(xi,0) = xi,0, 1 6 i 6 M − 1, σ3(

√
2) = −

√
2 (and σ3(ζ4) = βζ4

for each β ∈ {1,−1} for the latter statement).
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(1) Let σ1 ∈ Gal(Q(
√
2)/Q) such that σ1(

√
2) = −

√
2. Since the exponent of

Gal(D′
M/Q(ζM)) is 2, there is a σ2 ∈ Gal(D′

M/Q) such that σ2(ζM) = ζhM and σ3
2 = id or

of order 2. If σ3
2 is of order 2, we use σ4

2 in the place of σ2. The newly named σ2 satis-
fies σ2(ζM) = ζhM and σ3

2 = id. Therefore the element σ = (σ1, σ2) ∈ Gal(Q(
√
2)/Q) ×

Gal(D′
M/Q) ≃ Gal(EM/Q) has the required property mentioned above.

(2) Let σ1 be the same as in (1) above. Furthermore, fix β ∈ {1,−1} and let σ2 ∈
Gal(Q(ζ4)/Q) be such that σ2(ζ4) = βζ4. Similar to (1), there is a σ3 ∈ Gal(DM/Q) such
that σ3(ζM) = ζhM and σ3

3 = id. Therefore the element σ = (σ1, σ2, σ3) ∈ Gal(Q(
√
2)/Q)×

Gal(Q(ζ4)/Q) ×Gal(DM/Q) ≃ Gal(EM/Q) has the required property mentioned above.
�

Proof of Theorem 1.2: In order to apply Theorem 2.7, we require q ≡ 3 (mod 4);
so we set β = −1, and consider ΨM,h,1,−1. By Theorem 5.8 (2), ΨM,h,1,−1 is an infinite set
if the order of 2 in (Z/MZ)× is odd. Therefore by applying Theorem 2.7 together with
Theorem 3.1 and Proposition 4.3, the conclusion of the theorem follows. �

6. Concluding Remarks

In this paper, we gave a sufficient condition for the existence of strongly regular Cayley
graphs with parameters (v, k, λ, µ) = (p6, r(p3 + 1),−p3 + r2 + 3r, r2 + r), where r =
(p2 − 1)M/2 and M |(p2 + p + 1). In particular, we proved that strongly regular graphs
with the above parameters exist for sufficiently large primes p ∈ ΨM,h,α,−1. Further, we
considered the question for which M,h and α, ΨM,h,α,−1 is an infinite set. In fact, we
proved that ΨM,h,α,−1 is an infinite set if the order of 2 in (Z/MZ)× is odd. A few natural
questions arise.

Problem 6.1. Find other classes of M such that ΨM,h,α,−1 is an infinite set.

Problem 6.2. Evaluate the density of ΨM,h,α,−1 when it is an infinite set.

We studied these problems in the case where M is a prime power with certain extra
conditions in the supplementary note [33]. However, the problems above are fully open
in the case where M is not a prime power and the order of 2 in (Z/MZ)× is even except
for the case M = 21.
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[36] P. Stevenhagen, H. W. Lenstra, Jr., Chebotarëv and his density theorem, Math. Intelligencer 18,

26–37, (1996).
[37] T. Szönyi, On cyclic caps in projective spaces, Des. Codes Cryptogr. 8, 327–332, (1996).

Division of Natural Science, Faculty of Advanced Science and Technology, Ku-

mamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan

Email address : momihara@educ.kumamoto-u.ac.jp

Department of Mathematics and National Center for Applied Mathematics Shenzhen,

Southern University of Science and Technology, Shenzhen 518055, China

Email address : xiangq@sustech.edu.cn


	1. Introduction
	2. Preliminaries
	3. Cyclic arcs of Singer type in PG(2,q)
	4. Conditions for X1 to be purely a subset of Z2N
	5. Existence of primes in M,h,,: Proof of Theorem 1.2
	6. Concluding Remarks
	References

