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Investigating the exceptionality of scattered polynomials

Daniele Bartoli∗, Giovanni Zini†, and Ferdinando Zullo‡

Abstract

Scattered polynomials over a finite field Fqn have been introduced by Sheekey in
2016, and a central open problem regards the classification of those that are excep-
tional. So far, only two families of exceptional scattered polynomials are known. Very
recently, Longobardi and Zanella weakened the property of being scattered by intro-
ducing the notion of L-qt-partially scattered and R-qt-partially scattered polynomials,
for t a divisor of n. Indeed, a polynomial is scattered if and only if it is both L-qt-
partially scattered and R-qt-partially scattered. In this paper, by using techniques from
algebraic geometry over finite fields and function fields theory, we show that the prop-
erty which is is the hardest to be preserved is the L-qt-partially scattered one. On
the one hand, we are able to extend the classification results of exceptional scattered
polynomials to exceptional L-qt-partially scattered polynomials. On the other hand,
the R-qt-partially scattered property seems more stable. We present a large family of
R-qt-partially scattered polynomials, containing examples of exceptional R-qt-partially
scattered polynomials, which turn out to be connected with linear sets of so-called pseu-
doregulus type. In order to detect new examples of polynomials which are R-qt-partially
scattered, we introduce two different notions of equivalence preserving this property and
concerning natural actions of the groups ΓL(2, qn) and ΓL(2n/t, qt). In particular, our
family contains many examples of inequivalent polynomials, and geometric arguments
are used to determine the equivalence classes under the action of ΓL(2n/t, qt).

Keywords: Linearized polynomial, scattered polynomial, exceptionality, equivalence, lin-
ear set.
2020 Mathematics Subject Classification: 11T06, 51E20, 51E22, 05B25.

1 Introduction

Let q be a prime power, n be a positive integer, and f(x) =
∑k

i=0 aix
qi ∈ Fqn [x] be an

Fq-linearized polynomial over the finite field Fqn . We also assume that the q-degree k of
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f(x) is smaller than n, so that the identification with the map x 7→ f(x) defines a one-to-one
correspondence between such polynomials and Fq-linear maps over Fqn .

An Fq-linearized polynomial f(x) ∈ Fqn [x] is said to be scattered of index ℓ ∈ {0, . . . , n−
1} over Fqn if, for any y, z ∈ F∗

qn ,

f(y)

yqℓ
=

f(z)

zqℓ
=⇒ y

z
∈ Fq; (1)

see [8]. Scattered polynomials f(x) ∈ Fqn [x] yield scattered subspaces Uf (w.r.t. a Desar-
guesian spread) in Fqn × Fqn by defining

Uf = {(xqℓ , f(x)) : x ∈ Fqn}.

Scattered subspaces of maximum dimension have many applications, such as translation
hyperovals [17], translation caps in affine spaces [4], two-intersection sets [10], blocking
sets [1], translation spreads of the Cayley generalized hexagon [29], finite semifields [20],
coding theory [37,42], and graph theory [11].

Starting from [8], a much stronger property regarding scattered polynomials, namely
their exceptionality, has been defined and deeply investigated. An Fq-linearized polynomial
f(x) ∈ Fqn [x] is said to be exceptional scattered of index ℓ ∈ {0, . . . , n − 1} if there exist
infinitely many m ∈ N such that, for any y, z ∈ Fqnm, Condition (1) holds.

While several families of scattered polynomials have been constructed in recent years,
only two families of exceptional scattered polynomials are known:

• f(x) = xq
s
of index 0, with gcd(s, n) = 1 (polynomials of so-called pseudoregulus

type);

• f(x) = x + δxq
2s

of index s, with gcd(s, n) = 1 and Nqn/q(δ) 6= 1 (so-called LP
polynomials).

Several tools have already been proposed in the study of exceptional scattered polynomials,
related to certain algebraic curves or Galois extensions of function fields; see [2, 6, 8, 16].
However, their classification is still unknown when the index is greater than 1. In this paper
we investigate the exceptional scatteredness of a polynomial by considering separately the
exceptionality of two weaker properties defined in [24], namely the L-qt-partial scatteredness
and the R-qt-partial scatteredness.

Let f(x) be an Fq-linearized polynomial over Fqn , t be a divisor of n, and ℓ ∈ {0, . . . , n−
1}. We say that f(x) is L-qt-partially scattered of index ℓ if for any y, z ∈ F∗

qn ,

f(y)

yq
ℓ =

f(z)

zq
ℓ =⇒ y

z
∈ Fqt , (2)

and that f(x) is R-qt-partially scattered of index ℓ if for any y, z ∈ F∗
qn ,

f(y)

yqℓ
=

f(z)

zqℓ
and

y

z
∈ Fqt =⇒

y

z
∈ Fq. (3)
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From now on, whenever the index is not specified, we mean ℓ = 0.
We say that f(x) is exceptional L-qt-partially scattered of index ℓ (resp. exceptional

R-qt-partially scattered of index ℓ) if there exist infinitely many m ∈ N such that Condition
(2) (resp. Condition (3)) holds for any y, z ∈ F∗

qnm . Clearly, for any t, f(x) is (exceptional)
scattered of index ℓ if and only if it is (exceptional) both L- and R-qt-partially scattered of
index ℓ.

Some results on, and characterizations of L- and R-qt-partially scattered polynomials
have been provided in [24]; see Section 2.

In this paper, we start the investigation of such properties by those families that contain
the known examples of exceptional scattered polynomials, namely the monomials xq

u
of

index 0 and the LP polynomials x + δxq
2s

of index s. In this way we obtain exceptional
L- and R-qt-partially scattered monomials which are not scattered, and other results for L-
and R-qt-partially scattered polynomials of LP type; see Section 3.

Afterwards, we prove in Section 4 several necessary conditions for a polynomial to be
exceptional L-qt-partially scattered, classifying for instance those of index at most 1. This is
done by means of tools already exploited in the literature in connection with the exceptional
scatteredness, such as algebraic curves and function fields over finite fields, also exploiting
a method due to G. Micheli in [31, 32]. Interestingly, such connections can be generalized
to exceptional L-qt-partial scatteredness.

Turning to the R- side of qt-partial scatteredness, we detect in Section 5 an explicit large
family of R-qt-partially scattered polynomials of the form

f(x) =

n/t−1
∑

i=0

aix
qit+s ∈ Fqn [x], (4)

which extends previously known examples and whose exact number we are able to count.
As a byproduct, we provide families of exceptional R-qt-partially scattered binomials of
the shape xq

kt+s
+ αxq

s
. Such a construction suggests that the existence of exceptional

L-qt-partially scattered polynomials is much harder to prove than that of exceptional R-qt-
partially scattered ones.

We further investigate the family (4) in Section 6 from a geometric point of view: indeed,
this family can be alternatively constructed by considering linear sets of pseudoregulus type
in the projective space PG(2n/t− 1, qt).

The search for new R-qt-partially scattered polynomials naturally requires the investi-
gation of the equivalence issue, in the sense of a suitable group action on the polynomials
f(x) ∈ Fqtt′ [x] preserving the desired property. To this aim, we analyse in Section 7 the

equivalence defined by a natural action of the group ΓL(2, qtt
′
) on the elements (xq

ℓ
, f(x)).

In Section 8 we study a weaker equivalence defined by a natural action of the larger group
ΓL(2t′, qt). We solve the weak equivalence issue for the family of R-qt-partially scattered
polynomials described in Section 5. Some open problems in different directions conclude
the paper.
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2 Preliminaries

Let V be an r-dimensional Fqn-vector space and let S be an n-spread of V , seen as an
Fq-vector space. An Fq-subspace U of V is called scattered w.r.t. S if U meets every
element of S in an Fq-subspace of dimension at most one; see [10]. If we consider V as an
rn-dimensional Fq-vector space, then

{〈v〉Fqn
: v ∈ V \ {0}}

is an n-spread of V , called a Desarguesian spread. In this paper we always study scattered
Fq-subspaces w.r.t. this Desarguesian spread, simply called scattered subspaces. For such
subspaces Blokhuis and Lavrauw showed that their dimension is bounded above by rn/2
and it is now known that when rn is even there always exist scattered subspaces of this
dimension [1, 4, 10,14].

Recently, much focus has been placed on scattered Fq-subspaces of dimension n in
V = Fqn × Fqn , especially because of their connections with MRD codes; see [38]. For any
Fq-subspace U of dimension n in Fqn × Fqn and any non-negative integer ℓ < n there exist
a basis and an Fq-linearized polynomial over Fqn , that is a polynomial f(x) of the form
∑n−1

i=0 aix
qi ∈ Fqn [x], such that

U = Uf = {(xqℓ , f(x)) : x ∈ Fqn}.

When Uf is scattered, we say that f(x) is a scattered polynomial of index ℓ. Scattered
polynomials were introduced in [38] for ℓ = 0, and in [8] for any ℓ; note that this definition
is equivalent to the one in Equation (1).

In [24], the authors weaken the property of being scattered for a polynomial as in
Equations (2) and (3). In the following we resume the results contained in [24] which will
be useful for our purposes. For any Fq-linearized polynomial f(x) ∈ Fqn [x] and any ρ ∈ F∗

qn ,
define

fρ(x) := f(ρx)− ρf(x).

Proposition 2.1. [24, Proposition 2.6]

1. An Fq-linearized polynomial f(x) is R-qt-partially scattered if and only if the map
fρ(x) is bijective over Fqn for any ρ ∈ Fqt \ Fq.

2. An Fq-linearized polynomial f(x) is L-qt-partially scattered if and only if the map
fρ(x) is bijective over Fqn for any ρ ∈ Fqn \ Fqt.

3. An Fq-linearized polynomial f(x) is scattered if and only if the map fρ(x) is bijective
over Fqn for any ρ ∈ Fqn \ Fq.

It is possible to translate the property of being R-qt-partially scattered in terms of
scattered subspaces.
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Theorem 2.2. [24, Theorem 2.3] Let f(x) ∈ Fqn [x] be an Fq-linearized polynomial and
define Uf = {(y, f(y)) : y ∈ Fqn}. The polynomial f(x) is R-qt-partially scattered if and
only if Uf is a scattered Fq-subspace of the Fqt-vector space Fqn × Fqn.

For any a = (a0, . . . , at′−1) ∈ Ft′
qn define ga(x) =

∑t′−1
i=0 aix

qit ∈ Fqn [x]. It is possible to
construct new R-qt-partially scattered polynomials from an already known one.

Proposition 2.3. [24, Proposition 2.10] For any R-qt-partially scattered Fq-linearized
polynomial ϕ(x), the polynomial f(x) = (ga ◦ϕ)(x) is R-qt-partially scattered if and only if
ga(x) is invertible over Fqn.

Consider the non-degenerate symmetric bilinear form of Fqn over Fq defined by

〈x, y〉 = Trqn/q(xy),

for every x, y ∈ Fqn .

The adjoint f̂ of the Fq-linearized polynomial f(x) =
n−1
∑

i=0

aix
qi ∈ Fqn [x] with respect to the

bilinear form 〈·, ·〉, i.e. the unique function over Fqn satisfying

Trqn/q(yf(z)) = Trqn/q(zf̂(y))

for every y, z ∈ Fqn , is given by

f̂(x) =
n−1
∑

i=0

aq
n−i

i xq
n−i

. (5)

The adjoint operation preserves both the properties of being L-qt-partially and R-qt-
partially scattered.

Proposition 2.4. [24, Proposition 2.20] Let f(x) be a Fq-linearized polynomial over Fqn.

Then f(x) is L-qt-partially scattered (resp. R-qt-partially scattered) if and only if f̂(x) is
L-qt-partially scattered (resp. R-qt-partially scattered).

3 First examples

In this section we characterize monomials which are L-qt-partially or R-qt-partially scattered
and we deal with the well known class of LP-polynomials.

Proposition 3.1. Let u ≥ 1 and f(x) = xq
u ∈ Fqn [x]. Then

• f(x) is L-qt-partially scattered if and only if gcd(u, n) | t;

• f(x) is R-qt-partially scattered if and only if gcd(u, t) = 1;
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• f(x) is scattered if and only if gcd(u, n) = 1.

Proof. For any ρ ∈ Fqn , fρ(x) = f(ρx) − ρf(x) = (ρq
u − ρ)xq

u
is bijective if and only if

ρq
u − ρ 6= 0, i.e. ρ /∈ Fqu ∩ Fqn = Fqgcd(u,n) . So, by Proposition 2.1, f(x) is L-qt-partially

scattered if and only if Fqgcd(u,n) ⊆ Fqt , i.e. gcd(u, n) | t. Also, f(x) is R-qt-partially
scattered if and only if Fqgcd(u,n) ∩Fqt = Fq, i.e. gcd(u, t) = 1. Thus, f(x) is scattered if and
only if gcd(u, n) = 1.

Therefore, a characterization of exceptional partially scattered monomials is obtained.

Corollary 3.2. Let u ≥ 1 and f(x) = xq
u ∈ Fqn [x].

• f(x) is exceptional L-qt-partially scattered, but not scattered, if and only if 1 6=
gcd(u, n) | t;

• f(x) is exceptional R-qt-partially scattered, but not scattered, if and only if 1 =
gcd(u, t) < gcd(u, n).

Let f(x) = xq
s(n−1)

+δxq
s ∈ Fqn [x], where s satisfies gcd(s, n) = 1. The polynomial f(x)

is called LP-polynomial after Lunardon and Polverino who first introduced it in [27].
After a series of papers, Zanella in [39] characterized those δ ∈ Fqn for which f(x) is

scattered and hence both L-qt-partially and R-qt-partially scattered.

Theorem 3.3. [39, Theorem 3.4]Let δ ∈ Fqn, gcd(s, n) = 1, f(x) = xq
s(n−1)

+δxq
s ∈ Fqn [x].

The polynomial f(x) is scattered if and only if Nqn/q(δ) 6= 1.

The proof of the next proposition follows the ones of [19, Lemma 4.4] and [5, Proposition
7.4].

Proposition 3.4. Let n = tt′ with t, t′ ∈ N, δ ∈ Fqn, gcd(s, n) = 1, f(x) = xq
s(n−1)

+δxq
s ∈

Fqn [x]. Assume that n is odd and Nqn/q(δ) = 1. Then f(x) is neither L-qt-partially scattered
nor R-qt-partially scattered.

Proof. Let ρ ∈ Fqt \ Fq. The identity f(x)
x = f(ρx)

ρx reads

ρ(xq
s(n−1)

+ δxq
s
) = (ρx)q

s(n−1)
+ δ(ρx)q

s
,

that is

xq
2s−1 =

1

δqs(ρ− ρqs)qs−1
. (6)

Since n is odd and Nqn/q(δ) = 1, there exists x0 ∈ F∗
qn satisfying Equation (6). So, f(x)

is not R-qt-partially scattered since ρ /∈ Fq. Similar arguments show that f(x) is not L-qt-
partially scattered.
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4 Exceptional L-qt-partially scattered polynomials

Inspired by the results in [6, 8], we provide an inequality involving the parameters of an
L-qt-partially scattered polynomial. As a byproduct, we obtain a non-existence result for
exceptional L-qt-partially scattered polynomials.

Remark 4.1. In the study of L-qt-partially scattered polynomials of index ℓ, we can assume
that f(x) is ℓ-normalized, in the following sense (see [8, p. 511]):

(i) the q-degree k of f(x) is smaller than n;

(ii) f(x) is monic;

(iii) the coefficient at of x
qt in f(x) is zero;

(iv) if ℓ > 0, then the coefficient of x in f(x) is nonzero, i.e. f(x) is separable.

In fact, f(x) is L-qt-partially scattered of index ℓ if and only if the monic polynomial 1
ak
f(x)

is L-qt-partially scattered of index ℓ. Also, f(x)

xqℓ
equals f(x)−aℓx

qℓ

xqℓ
+ aℓ, so that f(x) is L-

qt-partially scattered of index ℓ if and only if f(x) − aℓx
qℓ is L-qt-partially scattered of

index ℓ. Finally, if ℓ > 0 and qv is the smallest degree of a monomial in f(x), then

f(x)

xqℓ
=

(∑
aq

n−v

i xqi−v

xqℓ−v

)qv

. Therefore, f(x) is L-qt-partially scattered of index ℓ if and only

if
∑

ai
qn−v

xq
i−v

is L-qt-partially scattered of index ℓ− v.

The following useful lemma generalizes [8, Lemma 2.1] and is obtained in a similar way.

Lemma 4.2. Let C be the plane curve with affine equation

C : f(X)Y qℓ − f(Y )Xqℓ

XqY −XY q
= 0. (7)

The polynomial f(x) is L-qt-partially scattered of index ℓ if and only if every affine Fqn-
rational point (x̄, ȳ) ∈ C with x̄, ȳ 6= 0 satisfies ȳ/x̄ ∈ Fqt.

Now we can prove a bound on the parameters of L-qt-partially scattered polynomials.

Theorem 4.3. Let f(x) =
∑k

j=0 ajx
qj ∈ Fqn [x] be a non-monomial ℓ-normalized L-qt-

partially scattered polynomial, and let v = min{j : aj 6= 0}.
If ℓ = 0, then

qn − (qk − q − 1)(qk − q − 2)
√
qn − qt(qk − q)− 2(qk−v − 1) ≤ 0.

If one of the following two conditions holds:

(i) ℓ = 1 and k ≥ 3;
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(ii) ℓ ≥ 2, with k ≥ 3ℓ if ℓ | k or k ≥ 2ℓ− 1 if ℓ ∤ k, and either

– f(x) = a0x+ a1x
q +

∑

j>ℓ ajx
qj with k ≥ ℓ+ 2, or

– f(x) = a0x+
∑

j>ℓ ajx
qj ;

then
qn − (qk + qℓ − q − 2)(qk + qℓ − q − 3)

√
qn − qt(qk + qℓ − q − 1) ≤ 0.

Proof. As proved in [6,8] (see in particular [6, Proposition 3.6 and Section 4] and [8, Theo-
rems 3.1 and 3.5]), the curve C defined as in (7) contains an absolutely irreducible component
X defined over Fqn . By the Hasse-Weil bound, the number Nqn of Fqn-rational points of X
satisfies

Nqn ≥ qn + 1− (qk + qℓ − q − 2)(qk + qℓ − q − 3)
√
qn.

Since f(x) is L-qt-partially scattered of index ℓ, Lemma 4.2 implies that the Fqn-rational
points of C lie either on the line at infinity r∞, or on the line rX : X = 0, or on the line
rY : Y = 0, or on the line rλ : Y = λX for some λ ∈ F∗

qt .
As shown in the proof of [5, Theorem 3.3], the origin (0, 0) is a point of C if and only

if either ℓ = 0 and v > 1, or ℓ > 1. Also, the number of affine Fqn-rational points of
((C ∩ rX) ∪ (C ∩ rY )) \ {(0, 0)} is zero if ℓ > 0 and at most 2(qk−v − 1) if ℓ = 0. Finally, for
every λ ∈ F∗

qt, we have |C ∩ rλ| ≤ qk + qℓ − q − 1, as well as |C ∩ r∞| ≤ qk + qℓ − q − 1.
Therefore, if ℓ = 0 then

qn + 1− (qk − q − 1)(qk − q − 2)
√
qn ≤ qt(qk − q) + 2(qk−v − 1) + χv>1,

where χv>1 is 1 if v > 1 and 0 otherwise. If ℓ > 0 then

qn + 1− (qk + qℓ − q − 2)(qk + qℓ − q − 3)
√
qn ≤ qt(qk + qℓ − q − 1) + χv>1.

The claim follows.

By direct computation, Theorem 4.3 has the following consequence.

Corollary 4.4. Let f(x) =
∑k

j=0 ajx
qj ∈ Fqn [x] be a non-monomial ℓ-normalized L-qt-

partially scattered polynomial. Suppose that one of the following conditions holds:

• ℓ = 0;

• ℓ = 1 and k ≥ 3;

• ℓ ≥ 2, with k ≥ 3ℓ if ℓ | k or k ≥ 2ℓ− 1 if ℓ ∤ k, and either

– f(x) = a0x+ a1x
q +

∑

j>ℓ ajx
qj with k ≥ ℓ+ 2, or

– f(x) = a0x+
∑

j>ℓ ajx
qj .

8



Then
n

2
≤ max

{

2k, 2ℓ,
k + t

2
,
ℓ+ t

2

}

.

In particular, f(x) is not exceptional L-qt-partially scattered.

As a consequence of Corollary 4.4 and Proposition 3.1, we get a classification of excep-
tional L-qt-partially scattered polynomials of small index.

Corollary 4.5. Let f(x) ∈ Fqn [x] be an ℓ-normalized exceptional L-qt-partially scattered
polynomial. Then the following holds:

• if ℓ = 0, then f(x) = xq
s
with gcd(s, n) | t;

• if ℓ = 1, then f(x) = δx+ xq
2
with δ ∈ Fqn.

When n is odd, Proposition 3.4 implies the following result.

Corollary 4.6. Let n be an odd positive integer and f(x) ∈ Fqn [x] be a 1-normalized

exceptional L-qt-partially scattered polynomial. Then f(x) = δx+ xq
2
with Nqn/q(δ) 6= 1.

Exceptional L-qt-partially scattered polynomials f(x) can also be investigated in con-
nection with the Galois groups of certain extensions of function fields, similarly to what is
done in [5, 16] for exceptional scattered polynomials.

For the notations we refer to [16, Section 2]. In particular, for an ℓ-normalized Fq-
linearized polynomial f(x) ∈ Fqn [x], let s be a transcendental over Fqn and M be the

splitting field of f(x)−sxq
ℓ
over Fqn(s). For any positive integer m, Mm is the compositum

function field M ·Fqnm, km is the field of constants of Mm, Garith
m and Ggeom

m are respectively
the arithmetic and the geometric Galois group of Mm/Fqnm(s), and ϕm is the isomorphism
Garith

m /Ggeom
m → Gal(km/Fqnm). Moreover, there exists a constant C > 0 depending on

M/Fqn(s) such that for any m satisfying qnm > C the following property holds: every
γ ∈ Garith

m such that ϕm(γ) is the Frobenius automorphism for the extension km/Fqnm is
also a Frobenius at an unramified place at finite of degree 1 of Fqnm(s).

Theorem 4.7. Let ℓ ≥ 1 and f(x) ∈ Fqn [x] be an ℓ-normalized Fq-linearized polynomial.
Let d := max{k, ℓ} < n. With the above notation, let m ≥ 1 be such that qnm > C. For
any positive integer t < d, the following are equivalent:

(i) for every z ∈ F∗
qnm there exists a t-dimensional Fq-subspace Uz of Fqnm such that, for

any y ∈ F∗
qnm,

f(y)

yqℓ
=

f(z)

zqℓ
=⇒ y

z
∈ Uz; (8)

(ii) for every γ ∈ Garith
m such that ϕm(γ) is a Frobenius for km/Fqnm and every h ∈ Ggeom

m ,
the following condition holds:

rk(hγ − Id) ≥ d− t.

9



In particular, if f(x) is L-qt-partially scattered, then Garith
m 6= Ggeom

m .

Proof. The proof generalizes the one of [16, Theorem 2.7].
(i) ⇒ (ii). Let h ∈ Ggeom

m and γ ∈ Garith
m be such that ϕm(γ) is the Frobenius automor-

phism for km/Fqnm . Since qnm > C, there exists s0 ∈ Fqnm such that the degree-1 zero P
of s− s0 in Fqnm(s) is unramified under Mm and hγ is a Frobenius at P . By Condition (i),

f(x)/x− s0x
qℓ−1 has at most qt− 1 roots in Fqnm , so that there are at most qt− 1 places of

degree 1 in Lm := Fqnm [x]/(f(x)/x − sxq
ℓ−1) lying over P . Let R be a place of Mm lying

over P and V be the d-dimensional Fq-vector space of roots of f(x)−sxq
ℓ
. By [16, Corollary

2.5], the decomposition group D(R|P ) has at most qt − 1 fixed points on V \ {0}. As R is
unramified over P , D(R|P ) is cyclic and generated by hγ. Then hγ has at most qt−1 fixed
points on V \ {0}, and hence hγ − Id has rank at least d− t.

(ii) ⇒ (i). Suppose by way of contradiction that Condition (i) does not hold. Then

there exists s0 ∈ Fqnm such that f(x)/x− s0x
qℓ−1 has at least qt+1− 1 roots in Fqnm. Let P

be the zero of s− s0 in Fqnm(s). Then all places at finite of Lm lying over P are unramified

(because the polynomial f(x)− s0x
qℓ is separable), and there are at least qt+1 − 1 of them

having degree 1. Let R be a place of Mm over P . By [16, Corollary 2.5], D(R|P ) has at
least qt+1 − 1 fixed points on V \ {0}. This holds in particular for an element γ ∈ D(R|P )
whose image in the surjective homomorphism D(R|P ) → Gal(kR/Fqnm) is the Frobenius for
km/Fqnm (notice that Gal(km/Fqnm) is a subgroup of Gal(kR/Fqnm) of index the degree of
R). Therefore ϕm(γ) is the Frobenius of km/Fqnm , and γ − Id has rank at most d− (t+1).
This is a contradiction to (ii).

Note that the case t = 1 is Theorem 2.6 in [16] and corresponds to f(x) being scattered
over Fqnm . Also, L-qt-partially scattered polynomials over Fqnm satisfy Condition (8), with
Uz = Fqt for every z.

Corollary 4.8. Under the same notation as in Theorem 4.7, suppose that d is prime. Then
the following hold:

• if f(x) is not a monomial and q is odd, then f(x) is not exceptional L-qt-partially
scattered;

• if f(x) is a monomial and gcd(d, n) = 1, then f(x) is exceptional scattered;

• if f(x) is a monomial and 1 < gcd(d, n) | t, then f(x) is exceptional L-qt-partially
scattered but not exceptional scattered.

Proof. If f(x) is not a monomial, suppose by way of contradiction that f(x) is exceptional
L-qt-partially scattered. Then, by Theorem 4.7, Garith

m 6= Ggeom
m for any m ≥ 1 big enough.

Then, as in [16, Lemma 4.1], |Ggeom
m | = qd − 1 and Garith

m
∼= GL(1, qd) ⋊ Cd, and a contra-

diction is obtained as in [16, Page 700]. If f(x) is a monomial, then the claim follows from
Proposition 3.1.
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It is worth noting that we do not know so far exceptional L-qt-partially scattered poly-
nomials which are not exceptional scattered, other than in the monomial case.

A possible machinery to obtain suitable examples involves the group-theoretical struc-
ture of Ggeom

m and Garith
m , and is currently under investigation in [9].

5 A family of R-qt-partially scattered polynomials

In this section, via Proposition 2.3, we consider a new family of R-qt-partially scattered
polynomials.

Proposition 5.1. Let n = tt′, for some t, t′ ∈ N, and let s ∈ N be such that gcd(s, t) = 1.
Then

f(x) =
t′−1
∑

i=0

aix
qit+s ∈ Fqn [x] (9)

is R-qt-partially scattered if and only if f(x) is invertible over Fqn.

Proof. Consider ϕ(x) = xq
s
, with gcd(s, t) = 1. The polynomial ϕ(x) is R-qt-partially

scattered, because of Proposition 3.1, and invertible over Fqn . Let ga(x) =
∑t′−1

i=0 aix
qit . By

Proposition 2.3 we have that f(x) = (ga ◦ ϕ)(x) is R-qt-partially scattered if and only if
ga(x) is invertible over Fqn .

Corollary 5.2. Let n = tt′, for some t, t′ ∈ N, and let s, k > 0 be such that gcd(s, t) = 1

and kt + s < n. Then f(x) = xq
kt+s

+ αxq
s ∈ Fqn [x] is R-qt-partially scattered if and only

if Nqn/qt·gcd(k,t
′)(−α) 6= 1. In this case, f(x) is exceptional R-qt-partially scattered.

Proof. As f(x) = (ga ◦ ϕ)(x), where ga(x) = xq
kt
+ αx and ϕ(x) = xq

s
, by Proposition 5.1,

f(x) is R-qt-partially scattered if and only if Nqn/qt·gcd(k,t
′)(−α) 6= 1. In this case we have

Nqmn/qt·gcd(k,mt′)(−α) = Nqmn/qn(Nqn/qt·gcd(k,t
′)(−α)) 6= 1 for any m ∈ N with gcd(m,k(qn −

1)) = 1, and the claim follows.

Corollary 5.3. Let n = 3t, for some t ∈ N, and let s ∈ N be such that gcd(s, t) = 1.
Then f(x) = xq

2t+s
+ βxq

t+s
+ αxq

s
is R-qt-partially scattered if and only if Nq3t/qt(α) +

Nq3t/qt(β)− Trq3t/qt(αβ
qt) + 1 6= 0.

Proof. By Proposition 5.1, f(x) is R-qt-partially scattered if and only if the Fqt-linearized

polynomial g(x) = αx+ βxq
t
+ xq

2t ∈ Fqn [x] is invertible. This happens if and only if

det





α β 1

1 αqt βqt

βq2t 1 αq2t



 6= 0,

from which the assertion follows.
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We are able to determine and count all the polynomials in (9) which are R-qt-partially
scattered. To this aim, we recall the following result.

Theorem 5.4. [41, Theorem 2.1 and Corollary 2.3] Let α be any primitive element in
Fqn. Every invertible Fq-linearized polynomial f(x) over Fqn (of q-degree smaller than n)
has the following form:

f(x) =

n−1
∑

i=0

(α0 + αqiα1 + . . .+ α(n−1)qiαn−1)x
qi ∈ Fqn [x], (10)

where {α0, . . . , αn−1} is any Fq-basis of Fqn. Conversely, every polynomial over Fqn of the
form (10) is invertible. In particular, the number of invertible Fq-linearized polynomials
over Fqn (of q-degree smaller than n) is

(qn − 1) · (qn − q) · . . . · (qn − qn−1). (11)

This allows us to prove the following result.

Theorem 5.5. Let n = tt′, for some t, t′ ∈ N, and let s ∈ N be such that gcd(s, t) = 1. The
R-qt-partially scattered linearized polynomials of the form (9) are those of the shape

f(x) =

t′−1
∑

i=0

(α0 + αqitα1 + . . . + α(t′−1)qitαt′−1)x
qit+s

,

where α is any primitive element in Fqn and {α0, . . . , αt′−1} is any Fqt-basis of Fqn. In
particular the number of R-qt-partially scattered polynomials of the form (9) is

(qn − 1) · (qn − qt) · . . . · (qn − qn−t).

Proof. By Proposition 5.1, the problem of determining which linearized polynomials of
Form (9) are R-qt-partially scattered may be translated in determining the invertible Fqt-
linearized polynomials ga(x) over Fqn . By Theorem 5.4, ga(x) is invertible if and only
if

ga(x) =

n−1
∑

i=0

(α0 + αqiα1 + . . .+ α(n−1)qiαn−1)x
qi ,

for some primitive element α in Fqn and Fqt-basis {α0, . . . , αt′−1} of Fqn . Also, two linearized

polynomials f(x) =
∑t′−1

i=0 aix
qs+it

and h(x) =
∑t′−1

i=0 bix
qs+it

of the form (9) coincide if and
only if ai = bi for every i ∈ {0, . . . , t′ − 1}, so that the last part of the assertion follows by
(11).

For Fq-linearized binomials of the form (9) with t′ = 2, we may use the results in [35] to
get examples of linearized binomials which are R-qt-partially scattered but not scattered.
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Proposition 5.6. Let n = 2t, for some t ∈ N and let s ∈ N be such that gcd(s, t) = 1. If

n ≥
{

4s + 2 if q = 3 and s > 1, or q = 2 and s > 2,
4s + 1 otherwise,

then the linearized polynomial

f(x) = δxq
s
+ xq

t+s ∈ Fqn [x],

with Nq2t/qt(δ) 6= 1, is R-qt-scattered but not scattered.

Proof. By [35, Theorem 4.1], it follows the existence of m ∈ F∗
qn such that

dimFq(ker(f(x)−mx)) = 2,

which implies the existence of y, z ∈ F∗
qn such that y/z /∈ Fq and

f(y)

y
= m =

f(z)

z
,

that is f(x) is not scattered. The assertion then follows by Corollary 5.2.

Remark 5.7. The family presented in Proposition 5.1 contains the examples of R-qt-
partially scattered given in [24]:

• f(x) = δxq
s
+ xq

t+s ∈ Fq2t[x] with gcd(2t, s) = 1 and Nq2t/qt(δ) 6= 1, see [24, Proposi-
tion 2.12];

• f(x) = xq
s
+xq

t+s
+ δxq

2t+s ∈ Fq3t with gcd(3t, s) = 1 and Trq3t/qt(δ)−Nq3t/qt(δ) 6= 2,
see [24, Proposition 2.16];

• f(x) = xq
s
+ xq

t+s
+ xq

k − xq
t+k ∈ Fq2t [x] with q odd, gcd(s, 2t) = gcd(k, 2t) = 1 and

0 ≤ s, k ≤ 2t − 1, see [24, Proposition 2.18]. This family generalizes the example
in [25], which for 2t = 6 may be rewritten as in (9), see [7, Proposition 3.9] and see
also [40].

Remark 5.8. The family of R-qt-partially scattered polynomials introduced in this section
is closed under the adjoint operation. Indeed, let

f(x) = a0x
qs + a1x

qt+s
+ . . .+ at′−1x

q(t
′−1)t+s ∈ Fqn [x]

be such that ga(x) = a0x+ a1x
qt + . . . + at′−1x

q(t
′−1)t

is invertible. Then

f̂(x) = aq
n−s

0 xq
n−s

+ aq
t(t′−1)−s

1 xq
t(t′−1)−s

+ . . . + aq
t−s

t′−1x
qt−s

,

see (5). Define s′ = t− s, then gcd(s′, t) = 1 and

f̂(x) = aq
s′

t′−1x
qs

′

+ aq
t+s′

t′−2 x
qt+s′

+ . . .+ aq
t(t′−1)+s′

0 xq
t(t′−1)+s′

,

hence f̂(x) is of the form (9), because of Proposition 2.4.
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6 A geometric description

A point set L of Λ = PG(V,Fqn) = PG(r− 1, qn) is said to be an Fq-linear set of Λ of rank
k if it is defined by the non-zero vectors of a k-dimensional Fq-vector subspace U of V , i.e.

L = LU := {〈u〉Fqn
: u ∈ U \ {0}}.

For any subspace S = PG(Z,Fqn) of Λ, the weight of S in LU is defined as wLU
(S) =

dimFq(U ∩ Z). We also recall that two linear sets LU and LW of PG(r − 1, qn) are said to
be PΓL-equivalent (or simply equivalent) if there is an element ϕ in PΓL(r, qn) such that
Lϕ
U = LW . An important family of linear set is given by the so called scattered linear sets,

that is linear sets defined by scattered subspaces. Clearly, the rank of a scattered linear set
is bounded above by rn

2 . For further details on linear sets see [22,34].
In [26], generalizing [18, 21, 30], a class of scattered linear sets of maximum rank in

PG(t′ − 1, qt) was presented. Let LU be a scattered Fq-linear set of Λ = PG(2t′ − 1, qt) of
rank tt′, with t, t′ ≥ 2. We say that LU is of pseudoregulus type if

• there exist m = qtt
′
−1

qt−1 pairwise disjoint lines s1, . . . , sm of Λ such that wLU
(si) = t for

every i ∈ {1, . . . ,m};

• there exist exactly two (t′−1)-dimensional subspaces T1 and T2 of Λ disjoint from LU

and such that Tj ∩ si 6= ∅, for every j ∈ {1, 2} and i ∈ {1, . . . ,m}.

The set PLU
= {s1, . . . , sm} is called pseudoregulus of Λ associated with LU , and T1 and

T2 are called transversal spaces of PLU
. See [33] for a generalization. In [26], an algebraic

characterization of linear sets of pseudoregulus type has been provided.

Theorem 6.1. [26, Theorem 3.5] Let T1 = PG(U1,Fqt) and T2 = PG(U2,Fqt) be two dis-
joint (t′−1)-subspaces of Λ = PG(2t′−1, qt) and let φf be the strictly semilinear collineation
between T1 and T2 defined by an invertible Fqt-semilinear map f with companion automor-
phism σ ∈ Aut(Fqt) such that Fix(σ) = Fq. Then for each ρ ∈ F∗

qt, the set

Lρ,f = {〈u+ ρf(u)〉Fqt
: u ∈ U1 \ {0}}

is an Fq-linear set of pseudoregulus type of Λ whose associated pseudoregulus is PLρ,f
=

{〈P,P φf 〉 : P ∈ T1} and whose transversal spaces are T1 and T2. Conversely, each Fq-linear
set of pseudoregulus type of Λ can be obtained as above.

Now, let V = Fqtt′×Fqtt′ , which can be seen simultaneously as both a 2-dimensional Fqtt′ -
vector space and a 2t′-dimensional Fqt-vector space. Consider U1 = {(x, 0): x ∈ Fqtt′} =

V (t′, qt) and U2 = {(0, y) : y ∈ Fqtt′} = V (t′, qt), and let Ti = PG(Ui,Fqt) = PG(t′ − 1, qt).

By Theorem 6.1, the Fq-linear sets of pseudoregulus type in Λ = PG(V,Fqt) = PG(2t′−1, qt)
with transversal spaces T1 and T2 are exactly those of the form

Lf = {〈(x, f(x))〉Fqt
: x ∈ F∗

qtt′
},
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where f(x) is a strictly Fqt-semilinear function of Fqtt′ with companion automorphism σ ∈
Aut(Fqt) with Fix(σ) = Fq, that is

f(x) =

t′−1
∑

i=0

aix
σqit ∈ Fqtt′ [x],

where σ : x ∈ Fqtt′ 7→ xq
s ∈ Fqtt′ with gcd(s, t) = 1 and f(x) is invertible.

Therefore, using Proposition 5.1, the following holds.

Corollary 6.2. Let n = tt′, for some t, t′ ∈ N, and let

f(x) =

t′−1
∑

i=0

aix
σqit ∈ Fqn [x],

where σ : x ∈ Fqn 7→ xq
s ∈ Fqn with gcd(s, t) = 1 and f(x). Then f(x) is R-qt-partially

scattered if and only if

Lf = {〈(x, f(x))〉Fqt
: x ∈ F∗

qtt′
} ⊆ Λ = PG(2t′ − 1, qt)

is an Fq-linear set of pseudoregulus type.

Remark 6.3. If f(x) is as in (9), by Theorem 6.1, Lf is a scattered Fq-linear set of rank
tt′ in PG(2t′ − 1, qt), and hence, by Theorem 2.2, f(x) is R-qt-partially scattered. This in
an alternative proof of one implication in Proposition 5.1.

7 Equivalence issue

We start by defining a natural equivalence between two linearized polynomials. Let f(x)
and g(x) be two Fq-linearized polynomials over Fqn and consider the two Fq-subspaces

Uf = {(x, f(x)) : x ∈ Fqn} and Ug = {(x, g(x)) : x ∈ Fqn}

of Fqn × Fqn . We say that f(x) and g(x) are equivalent if there exists ϕ ∈ ΓL(2, qn) such
that Uϕ

f = Ug, that is, there exist A ∈ GL(2, qn) and σ ∈ Aut(Fqn) with the property that
for each x ∈ Fqn there exists y ∈ Fqn satisfying

A

(

xσ

f(x)σ

)

=

(

y
g(y)

)

,

see [5, Section 1] and [12, Section 1].
This definition of equivalence preserves the property of being R-qt-partially scattered.

Proposition 7.1. Let f(x) and g(x) be two equivalent Fq-linearized polynomials of Fqn [x].
If f(x) is R-qt-partially scattered, then g(x) is R-qt-partially scattered.
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Proof. Since Uf and Ug are ΓL(2, qn)-equivalent, Uf and Ug are also ΓL(2t′, qt)-equivalent.
If f(x) is R-qt-partially scattered, Theorem 2.2 implies that Uf is a scattered subspace of
Fqn × Fqn = V (2t′, qt). Therefore Ug is a scattered subspace of Fqn × Fqn = V (2t′, qt), and
hence g(x) is R-qt-partially scattered by Theorem 2.2.

In order to establish whether two Fq-linearized polynomial are equivalent or not the
following definition may help. Let f(x) be an Fq-linearized polynomial, then we define the
linear automorphism group of f(x) as follows

G(f) =
{

A ∈ GL(2, qn) | ∀x ∈ Fqn ∃y ∈ Fqn : A

(

x
f(x)

)

=

(

y
f(y)

)}

.

The following lemma clearly holds.

Lemma 7.2. Let f(x) and g(x) be two Fq-linearized polynomials over Fqn. If f(x) and
g(x) are equivalent then G(f) and G(g) are isomorphic. In particular, if |G(f)| 6= |G(g)|,
then f(x) and g(x) are not equivalent.

The linear automorphism group has been determined in the following cases:

• f(x) = xq
s ∈ Fqn [x] with gcd(s, n) = 1, then |G(f)| = qn − 1, see [13, Section 6];

• f(x) = δxq
s
+ xq

n(s−1) ∈ Fqn [x] with gcd(s, n) = 1 and n ≥ 4, then |G(f)| = q2 − 1 if
n is even and |G(f)| = q − 1 if n is odd, see [13, Section 6];

• f(x) = δxq
s
+ xq

s+n/2 ∈ Fqn [x] with n even and gcd(s, n) = 1, then |G(f)| = qn/2 − 1,
see [13, Corollary 5.2];

• f(x) = xq + xq
3
+ δxq

5 ∈ Fq6 [x] with q odd and δ2 + δ = 1, then |G(f)| = q2 − 1,
see [15, Proposition 5.2] and [28, Section 4.4.].

Now we determine the linear automorphism group of the binomial over Fqn given in
Corollary 5.2 .

Proposition 7.3. Let n = tt′, for some t, t′ ∈ N with t > 1, and let s, k > 0 be such that
gcd(s, t) = 1 and kt+ s < n. Let α ∈ F∗

qn be such that Nqn/qt·gcd(k,t
′)(−α) 6= 1. Denote by G

the group
{(

a 0
0 aq

s

)

: a ∈ F∗
qt·gcd(k,t

′)

}

.

1. G(xqkt+s
+ αxq

s
) ⊃ G.

2. Assume also that t′ 6= 2k. Then G(xqkt+s
+ αxq

s
) = G.

In particular, |G(xqkt+s
+ αxq

s
)| ≥ qt·gcd(k,t

′) − 1.
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Proof. The first part is straightforward. Now we show the second part. Let

(

a b
c d

)

∈
GL(2, qn) have the property that for each x ∈ Fqn there exists y ∈ Fqn such that

(

a b
c d

)(

x

xq
kt+s

+ αxq
s

)

=

(

y

yq
kt+s

+ αyq
s

)

.

Then
cx+ d(xq

tk+s
+ αxq

s
) =

aq
kt+s

xq
kt+s

+ bq
kt+s

(xq
2(tk+s)

+ αqkt+s
xq

kt+2s
) + α[aq

s
xq

s
+ bq

s
(xq

kt+2s
+ αqsxq

2s
)].

The powers of x in the above equality are q0, qs, qkt+s, q2(kt+s), qkt+2s, q2s. Consider

T = {0 modn, s modn, kt+ s modn, 2(kt+ s) modn, kt+ 2s modn, 2s modn}.

Two elements in T may coincide if and only if

• 2(tk + s) ≡ 0 (mod n) (which happens if and only if t = 2 and t′ = 2k + s);

• tk + 2s ≡ 0 (mod n) (which happens if and only if t = 2 and t′ = k + s);

• 2s ≡ 0 (mod n) (which happens if and only if t = 2 and t′ = s).

• 2(tk + s) ≡ 2s (mod n) (which happens if and only if t′ = 2k, a contradiction to the
assumptions).

If t 6= 2, or t = 2 and t′ /∈ {2k + s, k + s, s}, then T has size 6. By looking at the

coefficients of x and of xq
2(kt+s)

, we get b = c = 0. From the coefficients of xq
s
and xq

kt+s

we get d = aq
s
and d = aq

tk+s
, whence a ∈ Fqt·gcd(k,t

′) and the statement is proved.

If t = 2 and t′ equals at least one among s, k+ s, and 2k+ s, then T has size 5. In fact,
at most one among t′ = 2k+ s, t′ = k+ s and t′ = s can occur. We distinguish three cases.

1. t′ = 2k + s. By looking at the coefficient of xq
2s
, we get b = 0.

2. t′ = k + s. By looking at the coefficient of xq
2s
, we get b = 0.

3. t′ = s. By looking at the coefficient of xq
2(tk+s)

, we get b = 0.

Now, by looking at the coefficient of x, xq
s
and xq

kt+s
, we get c = 0, d = aq

s
, and a ∈

Fqt·gcd(k,t
′) .

We can determine a subgroup of the linear automorphism group of a polynomial of the
form (9).
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Proposition 7.4. Let n = tt′, for some t, t′ ∈ N, and let s ∈ N be such that gcd(s, t) = 1.
For a polynomial

f(x) =
t′−1
∑

i=0

aix
qit+s ∈ Fqn [x].

we have that

G(f(x)) ⊇
{(

a 0
0 aq

s

)

: a ∈ F∗
qt

}

.

In particular, |G(f(x))| ≥ qt − 1.

In [36, Remark 7.2], it was pointed out that when t = 2 and n = 2t′, an LP-polynomial
can be written in the form (9). Here we generalize it to a larger family.

Corollary 7.5. Let n = tt′, for some t, t′ ∈ N with t > 1, and let s, k ∈ N be such
that gcd(s, t) = 1 and kt + s < n. Let α ∈ Fqn be such that Nqn/qgcd(kt,n)(−α) 6= 1. If

f(x) = xq
kt+s

+αxq
s
is equivalent to an LP-polynomial, then t = 2 and n = 2t′. Conversely,

if t = 2, n = 2t′, and gcd(k, 2t′) = 1, then f(x) is equivalent to an LP-polynomial.

Proof. If f(x) is equivalent to an LP-polynomial, then by Lemma 7.2 and Proposition 7.3
we have in particular that t = 2 and gcd(k, t′) = 1. The converse follows by [36, Remark
7.2].

In the case n = 6 and t = 3, we determine the number of inequivalent linearized
binomials of the form (9) which are either scattered, or R-qt-partially scattered but not
scattered.

Proposition 7.6. Let q = pe, for some prime p and positive integer e. The number of in-
equivalent scattered Fq-linearized binomials in the set ∆ := {δxqs+xq

s+3
: s ∈ {1, 2, 4, 5}, δ ∈

Fq6}, is

Γ =
|(q2 + q + 1)(q − 2)/2|

3e
.

The number of inequivalent f(x) ∈ ∆ which are R-qt-scattered but not scattered is

q3 − 1− Γ.

In particular, there is only one equivalence class of binomials of the form (9) which are
neither scattered nor R-qt-partially scattered.

Proof. By [3, Introduction] (see also [13, Proposition 5.1]), it is enough to study the case
s = 1, then by applying [3, Theorem 1.3] we get the first part of the assertion. The second
part follows from the fact that f(x) = δxq + xq

4
is R-qt-partially scattered if and only if

Nq6/q3(δ) 6= 1, see [24, Proposition 2.12].

Regarding the R-qt-partially scattered quadrinomials introduced in [24, Proposition 2.18]
we can prove the following.
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Proposition 7.7. Let t, s, k ∈ N be such that gcd(s, 2t) = gcd(k, 2t) = 1 and t ≥ 2, and let
n = 2t. Suppose that {0, s, t+ s, k, t+ k, 2s, t+2s, k+ s, t+ k+ s, 2k, t+2k} has size 11 as
a subset of Z/nZ.

If q is odd, then

G(xqs + xq
t+s

+ xq
k − xq

t+k
) =

{(

a 0
0 aq

s

)

: a ∈ F∗
qgcd(t,|k−s|)

}

;

In particular, |G(xqs + xq
t+s

+ xq
k − xq

t+k
)| = qgcd(t,|k−s|) − 1.

If q is even, then

G(xqs + xq
t+s

+ xq
k
+ xq

t+k
) =

{(

a b
0 aq

s

)

: a ∈ F∗
qgcd(t,|k−s|) , b

qt = b

}

;

In particular, |G(xqs + xq
t+s

+ xq
k
+ xq

t+k
)| = qt(qgcd(t,|k−s|) − 1).

Proof. Let

(

a b
c d

)

∈ GL(2, qn) with the property that for each x ∈ Fqn there exists

y ∈ Fqn such that

(

a b
c d

)(

x

xq
s
+ xq

t+s
+ xq

k − xq
t+k

)

=

(

y

yq
s
+ yq

t+s
+ yq

k − yq
t+k

)

.

Then

cx+ d(xq
s
+ xq

t+s
+ xq

k − xq
t+k

) = aq
s
xq

s
+ bq

s
(xq

2s
+ xq

t+2s
+ xq

k+s − xq
t+k+s

)

−aq
t+k

xq
t+k

+ aq
t+s

xq
t+s

+ bq
t+s

(xq
t+2s

+ xq
2s
+ xq

t+k+s − xq
k+s

) + aq
k
xq

k

+bq
k
(xq

k+s
+ xq

t+k+s
+ xq

2k − xq
t+2k

)− bq
t+k

(xq
t+k+s

+ xq
k+s

+ xq
t+2k − xq

2k
). (12)

From the coefficient of x we get c = 0 and from the coefficients of xq
s
, xq

t+s
, xq

k
, and xq

t+k

we obtain d = aq
s
and a ∈ Fqgcd(t,|k−s|) .

If q is odd, then by the coefficients of xq
2s
, xq

k+s
and xq

t+k+s
one gets b = 0. If q is even,

then by the coefficient of xq
2s

one gets bq
t
= b. Together with a ∈ F∗

qgcd(t,|k−s|) , c = 0, and

d = aq
s
, this is enough to satisfy the polynomial identity (12).

Corollary 7.8. Let t, s, k ∈ N be such that gcd(s, 2t) = gcd(k, 2t) = 1 and t ≥ 2, and let
n = 2t. Assume also that 2s < t, 2k < t, and s 6= k. If q is odd, then

G(xqs + xq
t+s

+ xq
k − xq

t+k
) =

{(

a 0
0 aq

s

)

: a ∈ F∗
qgcd(t,|k−s|)

}

;

and if q is even

G(xqs + xq
t+s

+ xq
k
+ xq

t+k
) =

{(

a b
0 aq

s

)

: a ∈ F∗
qgcd(t,|k−s|) , b

qt = b

}

.

In particular, xq
s
+ xq

t+s
+ xq

k − xq
t+k

is not equivalent to any polynomial of the form (9).
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Proof. Since s and k are odd, s < t/2, and s 6= k, {0, s, t+ s, k, t+ k, 2s, t+2s, k+ s, t+ k+

s, 2k, t+2k} has size 11 and the group G(xqs +xq
t+s

+xq
k
+xq

t+k
) follows from Proposition

7.7. Since its order is not divisible by qt − 1, the claim follows by Proposition 7.4.

Regarding the scattered polynomials presented in [25] the linear automorphism group
can be completely determined.

Corollary 7.9. Let q be an odd prime power. Let t, k, n ∈ N with n = 2t be such that either
k = 1 and t ≥ 5, or k > 1, gcd(k, 2t) = 1, and t > 2k. Then

G(xqt−k
+ xq

2t−k
+ xq

k − xq
t+k

) =

{(

a 0
0 aq

)

: a ∈ F∗
q2

}

,

if t is even, and

G(xqt−k
+ xq

2t−k
+ xq

k − xq
t+k

) =

{(

a b
−4b a

)

: a ∈ Fq, b
q + b = 0, a2 + 4b2 6= 0

}

,

if t is odd.

Proof. The polynomial identity (12) reads

cx+ d(xq
t−k

+ xq
2t−k

+ xq
k − xq

t+k
) = aq

t−k
xq

t−k
+ bq

t−k
(xq

2t−2k
+ xq

t−2k
+ xq

t − x)

+aq
2t−k

xq
2t−k

+ bq
2t−k

(xq
t−2k

+ xq
2t−2k

+ x− xq
t
) + aq

k
xq

k
+ bq

k
(xq

t
+ x+ xq

2k − xq
t+2k

)

−aq
t+k

xq
t+k − bq

t+k
(x+ xq

t
+ xq

t+2k − xq
2k
).

By our assumptions on t and k we have that the set

T = {0, t− k, 2t− k, k, t+ k, 2t− 2k, t− 2k, t, 2k, t + 2k} ⊆ Z/nZ

has size 10. So, a, b, c, d have to satisfy the following system














































c = −bq
t−k

+ bq
2t−k

+ bq
k − bq

t+k
,

d = aq
t−k

,

d = aq
2t−k

,

d = aq
k
,

d = aq
t+k

,

bq
t−k

+ bq
2t−k

= 0,

bq
t−k − bq

2t−k
+ bq

k − bq
t+k

= 0,

(13)

By the last equation we have bq
t
+ b = 0, which replaced in the seventh equation of (13)

implies bq
t+2k

+ b = 0, that is bq
2k

= b. Since gcd(k, 2t) = 1, this implies that b ∈ Fq2 . If

t is even, then bq
t
+ b = 0 implies b = 0 and c = 0, because of the first equation in (13).

When t is odd, we have bq = −b, c = −4b. Hence, all equations of System (13) but the
second, third, and fourth ones are satisfied. The second, third, and fourth equations of
(13) together imply d = aq

k
and a ∈ Fqgcd(t,t−2k) . The assertion then follows noting that

gcd(t, t− 2k) = 2 if t is even and gcd(t, t− 2k) = 1 if t is odd.
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Remark 7.10. In [23, Section 4], when t ≥ 5 and q is odd, the authors find the same
results as in Corollaries 7.8 and 7.9, but with a different approach.

8 A weaker equivalence

In this section we present a weaker definition of equivalence between two linearized poly-
nomials of Fqn [x] which preserves the property of being R-qt-partially scattered. Let f(x)
and g(x) be two Fq-linearized polynomials in Fqn [x]. We say that f(x) and g(x) are weakly
equivalent if there exists ϕ ∈ ΓL(2t′, qt) such that Uϕ

f = Ug.

Clearly ΓL(2, qn) is a subgroup of ΓL(2t′, qt) (as ΓL(2, qn) is the stabiliser of a Desarsgue-
sian spread of V (2t′, qt) in ΓL(2t′, qt)), and hence two equivalent Fq-linearized polynomials
are also weakly equivalent.

Proposition 8.1. Let f(x) and g(x) be two weakly equivalent Fq-linearized polynomials in
Fqn [x]. If f(x) is R-qt-partially scattered, then also g(x) is R-qt-partially scattered.

Proof. By hypothesis Uf and Ug are ΓL(2t
′, qt)-equivalent and Uf is a scattered Fq-subspace

of V (2t′, qt), so that also Ug is a scattered Fq-subspace of V (2t′, qt) and hence g(x) is R-qt-
partially scattered because of Theorem 2.2.

The two notions of equivalence do not coincide. To show this, we make use of the
following result.

Theorem 8.2. Let n = tt′, for some t, t′ ∈ N and let s, s′ ∈ N be such that gcd(s, t) =

gcd(s′, t) = 1. Let f(x) =
∑t′−1

i=0 aix
qit+s

and g(x) =
∑t′−1

i=0 bix
qit+s′

two R-qt-partially
scattered polynomials. Then f(x) and g(x) are weakly equivalent if and only if s ≡ ±s′

(mod t).

Proof. If f(x) and g(x) are weakly equivalent then the Fq-linear sets LUf
and LUg are

PΓL(t′, qt)-equivalent. By Theorem 6.1, LUf
and LUg are of pseudoregulus type and [26,

Theorem 3.7] implies that the companion automorphisms σf and σg of f(x) and g(x),
respectively, are such that σf = σ±1

g , that is s ≡ ±s′ (mod t). Assume now that s ≡ s′

(mod t). Consider the Fqt-linear map F of Fqn × Fqn defined by

F (x, y) = (x, g(f−1(y))),

for every x, y ∈ Fqn . Clearly, F (Uf ) = Ug. If s ≡ −s′ (mod t), then consider the Fqt-
semilinear map F of Fqn × Fqn defined by

F (x, y) = (f−1(y), g(x)),

for every x, y ∈ Fqn . Again, F (Uf ) = Ug.

By Proposition 7.6, we know that there exist at least two non-equivalent binomials in
the family of Proposition 5.1 when t = 3 and t′ = 2.

21



Corollary 8.3. Let t = 3 and t′ = 2 and let f(x) and g(x) be two R-qt-partially scattered
non-equivalent binomials belonging to family of Proposition 5.1. Then f(x) and g(x) are
weakly equivalent.

Proof. Consider the Fq-linear sets LUf
and LUg of PG(3, q3). By Theorem 6.1, LUf

and LUg

are of pseudoregulus type. Thus f(x) and g(x) are weakly equivalent by Theorem 8.2.

Corollary 8.3 shows that the equivalence defined in Section 7 and the weak equivalence
defined in this section are different. Moreover, using Theorem 8.2, we can determine the
number of weakly inequivalent R-qt-partially scattered polynomials of the form (9).

Corollary 8.4. The number of weakly inequivalent R-qt-partially scattered polynomials of
the form (9) is ϕ(t)/2, where ϕ is the Euler totient function.

9 Open problems

We conclude the papers by pointing out some open problems.

• In Proposition 3.4 we characterize LP-polynomials which are L-qt-partially scattered
or R-qt-partially scattered when n is odd. The techniques developed in [39] may be
useful to extend this characterization when n is even.

• It would be interesting to find non-monomial exceptional L-qt-partially scattered poly-
nomials f(x) which are not exceptional scattered. As already noted in Section 4,
this may be done through the investigation of the structure of the Galois group of
f(x)− sxq

ℓ
.

• Regarding the family of polynomials introduced in Section 5, the weak equivalence
issue has been completely solved in Section 8, whereas less is known when considering
the equivalence defined in Section 7. Therefore it would be of interest to determine
the equivalence classes of the family in Section 5 under the latter equivalence.

• Proposition 2.3 provides a practical machinery to construct families of R-qt-partially
scattered polynomials. Indeed, we use such a proposition to construct the family
in Section 5 by means of the R-qt-partially scattered polynomials of monomial type.
Other examples of R-qt-partially scattered polynomials could arise from non-monomial
ones.
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