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ON INCIDENCE BOUNDS WITH MÖBIUS HYPERBOLAE IN
POSITIVE CHARACTERISTIC

MISHA RUDNEV, JAMES WHEELER

Abstract. We prove new incidence bounds between a plane point set, which is a

Cartesian product, and a set of translates H of the hyperbola xy = λ 6= 0, over a field of

asymptotically large positive characteristic p. They improve recent bounds by Shkredov,

which are based on using explicit incidence estimates in the early terminated procedure

of repeated applications of the Cauchy-Schwarz inequality, underlying many qualitative

results related to growth and expansion in groups. The improvement – both quantitative,

plus we are able to deal with a general H , rather than a Cartesian product – is mostly

due to a non-trivial “intermediate” bound on the number of k-rich Möbius hyperbolae

in positive characteristic. In addition, we make an observation that a certain energy-

type quantity in the context of H can be bounded via the L2-moment of the Minkowski

distance in H and can therefore fetch the corresponding estimates apropos of the Erdős

distinct distance problem.

1. Introduction

Let F be a field of characteristic p. We are interested in positive and large (in particular

odd) p, and the particular case F = Fp. We will also briefly address the case F = R.

Let A ⊂ F be a finite point set with cardinality |A|. We identify A with its characteristic

function 1A(x). Consider the set H of translates of the hyperbola xy = −1, in the form

y = a +
1

b− x
: (a, b) = h ∈ H .

We identify H with the set of Möbius transformations

h(x) = a+
1

b− x
. (1)

and define

σ(A,H) :=
∑

h∈H

∑

x∈A

1A(h(x))

as the number of incidences between points in A × A ⊂ F2 and hyperbolae in H . Our

analysis extends trivially to the case when −1 in xy = −1 be replaced by any other

nonzero λ ∈ F.

Clearly, no hyperbola in H can support more than |A| points. In addition, as a trivial

example one can take the hyperbola xy = −1, choose an arithmetic progression A1 of

the values of x, set A2 = 1/A1 and A = A1 ∪A2. Translating the hyperbola horizontally

by elements of A1 yields other hyperbolae supporting ≫ |A| points of A × A. Thus for
1
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|H| ≪ |A| one cannot do better than the trivial estimate σ(A,H) ≫ |A||H|. But this

construction is trivial, for the horizontal translates of the hyperbola do not intersect.

When |H| is essentially bigger than |A| (by which we mean |H| > |A|1+ǫ for some

ǫ > 0), one can expect a better than trivial bound for σ(A,H). If F is the field of real

(complex) numbers, then one has the Szemerédi-Trotter type bound

σ(A,H) ≪ |A|2 + |H|+ (|A|2|H|)2/3 , (2)

which is nontrivial for |A| ≪ |H| ≪ |A|4 . The first instance of a similar bound for a set

of points and a set of unit circles was shown by Spencer, Szemerédi and Trotter [18], who

pointed out that the proof of the Szemerédi-Trotter point-line incidence theorem allows

for replacing affine lines with curves that can be viewed as “pseudolines” that would

include, in particular, translates of a circle or a hyperbola.

Above and throughout, we use the Vinogradov symbols X ≫ Y to indicate that there

is an absolute constant C > 0 such that X > CY and similarly define Y ≪ X. The

notations .,& hide, on top of this, powers of log(|A||H|).
We will also use the standard sum/product set and representation function notations,

such as

rAB(x) := |{(a, b) ∈ A× B : ab = x}|
and use the word “energy” for L2-moment type quantities, such as the standard additive

energy over F

E+(A,B) =
∑

x

r2A−B(x).

Our notations will pertain to non-commutative multiplication in the Möbius group.

In positive characteristic, the theorem of Stevens and de Zeeuw [19] gives a reasonably

strong Szemerédi-Trotter type bound for the number of incidences between a Cartesian

product point set and a set of affine lines in F2. The theorem has been responsible for

much recent progress in sum-product estimates in positive characteristic. However, unlike

the Euclidean Szemerédi-Trotter theorem, its proof does not readily enable one to replace

straight lines with curves, say translates of the unit circle or hyperbola xy = −1.

The last generation of incidence bounds in positive characteristic (that would apply

to a wide range of set cardinalities, sufficiently small in terms of p) has been based on

blending a renowned algebraic theorem by Guth and Katz [4, Theorem 4.1] on pairwise

line intersections in three dimensions with classical concepts from line geometry in the

projective three-space, see e.g. [12], [20], [13]. Heuristically, these incidence bounds can

directly embrace only so much nonlinearity as one can feed into the Guth-Katz theorem

in question.

The existence of a qualitatively nontrivial bound for the quantity σ(A,H) has been es-

tablished in much generality by Bourgain [1], see the forthcoming Theorem 1.1. However,

Bourgain’s theorem does not enable one, realistically, to estimate its saving to the trivial

bound σ(A,H) 6 |A||H|.
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In contrast, Shkredov in his recent paper [16] has shown that incidence theorems from

[12] and [19] can be fetched to yield quantitative bounds for σ(A,H), given that the

set of translates H is also a Cartesian product, see the forthcoming Theorem 1.2. An

opportunity to do so arose after Shkredov composed the translates of xy = −1 with each

other three times: compositions of hyperbolae as Möbius transformations come about

naturally as one applies the Cauchy-Schwarz inequality to the quantity σ(A,H).

Repeated applications of Cauchy-Schwarz, yielding some non-trivial saving on every

step, owing to the Bourgain-Gamburd L2-smoothing lemma [2] constitute the basis for

the proof of Bourgain’s Theorem 1.1.

This paper strengthens Shkredov’s incidence bounds in Theorem 1.2 and removes the

assumption that H be a Cartesian product. Strengthening comes mostly by proving an

“intermediate” incidence bound for A × A and any set of Möbius hyperbolae, which is

then fed into the first two applications of the Cauchy-Schwarz inequality to the quantity

σ(A,H) in the iterative procedure. Removing the assumption that H be a Cartesian

product is partially due to recognising the appearance of the L2-moment of the Minkowski

distance in the set H , arising as the result of Shkredov’s triple composition.

Just like [1] and [16], our paper relies crucially on the group structure of the set of linear-

fractional transformations. It is inherent therefore in this viewpoint that the plane point

set, forming incidences with hyperbolae be a Cartesian product. This, unfortunately,

restricts the applicability of our results even to, say turning the hyperbolae by 45◦, which

would be interesting apropos of the unit distance count.

We proceed by formulating the aforementioned results by Bourgain and Shkredov,

followed by the main theorem in this paper.

Theorem 1.1. [1, Bourgain] For all ε > 0, there is δ > 0, as follows. Let A ⊂ Fp,

H ⊂ SL2(p) satisfy the conditions: 1 ≪ |A| < p1−ε, |H| > |A|1+ε, and |H ∩ gS| < |H|1−ε

for any proper subgroup S ⊂ SL2(p) and g ∈ SL2(p). For g =

(

a b

c d

)

∈ SL2(p), let

h ∈ H be identified with the curve cxy − ax+ dy − b = 0.

Then the number of incidences

σ(A,H) < |A|1−δ|H|.

Note that in Theorem 1.1, H is a general three-parameter, set of hyperbolae, rather

than the two-parameter set of translates of y = −1/x in the next two theorems. Theorem

1.1 says that there is a nontrivial incidence estimate for σ(A,H) in the Fp-context, as

long as A is essentially smaller than Fp itself (that is |A| < p1−ε) and the number of

Möbius hyperbolae is essentially greater than |A|. It involves an additional assumption

that much of H cannot lie in a coset of a proper subgroup of SL2(p). This assumption

can be weakened to the subgroup being abelian, owing to the recent energy bounds in

the affine group by Petridis et al, [10].
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Shkredov has more recently proved what can be regarded a special case of a quantitative

version1 of Theorem 1.1.

Theorem 1.2. [16, Shkredov, Theorem 16] Let A ⊆ Fp and H = B×B ⊆ F2
p be a set of

translates of the hyperbola xy = −1. Then
∣

∣

∣

∣

σ(A,H)− |A|2|H|
p

∣

∣

∣

∣

. min
(

|A|1/2|H|+ |A|3/2|H|3/4 ,

|A|3/4|H|+ |A|5/4|H|41/48
)

.

(3)

The first line in the right-hand side of (3) (where the second term is viewed as the

main one) provides a nontrivial estimate only for |H| > |A|2, while the second line for

|H| & |A|12/7. The logarithmic factor subsumed by the . symbol is present only in the

second line of (3).

Our main result is the following improvement of Theorem 1.2.

Theorem 1.3. Let A ⊂ F, with |A| < √
p if F has positive characteristic p. For a set of

translates H of the hyperbola y = −1/x, with |H| > |A|, suppose at most M translates

(a, b) ∈ H have the same abscissa or ordinate. Then with

M1 =

{

M, if |H| 6 |A|3/2 ,
|H|2/11|A|8/11 otherwise

,

one has the estimate

σ(A,H) ≪ |A|1/2|H|+ |A| 65 |H| 45M
1

10

1 . (4)

Furthermore, with

M2 =

{

M, if |H| 6 |A|4/3 ,
|H|3/22|A|9/11 otherwise

,

one has the estimate

σ(A,H) ≪ |A|3/4|H|+ |A|11/10|H|17/20(M1/10
2 + |H|1/15) (5)

where (M
1/10
2 + |H|1/15) can be replaced by |H|1/16 if H = B × B.

Estimate (4) is nontrivial for H > |A|3/2, as well as for |H| > |A|4/3, assuming M 6

|H|1/2 as is the case in Theorem 1.2. Estimate (5) generalises and improves the second line

of Shkredov’s estimate (3). It adds to (4) by yielding a better bound for rich hyperbolae.

Hence, it is always nontrivial for |H| > |A|4/3, as well as for |H| > |A|6/5, assuming

M 6 |H|2/3.
Other than that, for a few applications we show, we will only use the bound (4), which

is stronger in the most interesting regime |H| ∼ |A|2. However, the proof of bound (5)

1In Shkredov’s original formulation the two Cartesian products involve four scalar sets, we quote only a
symmetric variant.
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generalising the second line of Shkredov’s bound (3) reveals an interesting connection

with the Erdős distinct distance problem, apropos of the Minkowski distance, naturally

associated with hyperbolae.

We conclude the introduction by discussing the structure of the proofs.

The proof of Bourgain’s Theorem 1.1 is based on a series of repeated applications of

the Cauchy-Schwarz inequality, after each one of which replaces its input H , viewed as a

set of SL2-transformations, by H ′ = H ◦H−1 (further we just write HH−1 and do not

make a distinction between SL2 and PSL2). After each Cauchy-Schwarz application, one

splits (also by Cauchy-Schwarz) the count into estimating the energy

E(H) :=
∣

∣

∣

{

(h1, h2, h
′
1, h

′
2) ∈ H4 : h1h

−1
2 = h′

1h
′
2
−1
}
∣

∣

∣
. (6)

of the set of Möbius transformations and, separately, the quantity σ(H ′, A), for which

both Bourgain and Shkredov just use a trivial bound. It is estimating the quantity E(H)

and its further iterates

Tk(H) :=
∣

∣

∣

{

(h1, . . . hk, h
′
1, . . . h

′
k) ∈ H2k : h1h

−1
2 h3 · · · = h′

1h
′−1
2 h′

3 . . .
}
∣

∣

∣

that underlies nontrivial savings. In Bourgain’s proof it comes from repeatedly applying

the L2-smoothing lemma of Bourgain and Gamburd [2], accumulating very small savings

at each step. (For a proof see also [15, Appendix].) Each such saving is due to combining

Helfgott’s theorem on growth and expansion in SL2(p) [6] with the (non-commutative)

Balog-Szemerédi-Gowers theorem in SL2(p). Taking sufficiently many iterations leads to

Bourgain’s claim. Getting a quantitative lower bound on the saving δ in Theorem 1.1

seems forbidding.

In the proof of Shkredov’s Theorem 1.2, two applications of Cauchy-Schwarz suffice to

yield a quantitative bound for σ(A,H), but technically this seems only feasible so far when

H is a two-parameter family. (See also [10] and [9] for other non-commutative energy

estimates.) The main observation is that on the second step of the iteration procedure

beginning with the set H = B × B, apropos of H ′ = HH−1HH−1, one has a much

stronger explicit sum-product type L2-estimate quantity (see the forthcoming Lemma

5.1). Shkredov still used just a trivial estimate for σ(H ′, A). Fetching these explicit L2

estimates seems to be contingent on the set of translates H being two-dimensional, as we

currently – and regrettably – do not know a quantitative estimate for E(H), where H is

a (sufficiently small relative to p) general set of SL2(p) transformations. Having such an

estimate would directly imply a variant of Helfgott’s theorem on growth and expansion

in SL2(p), with much of the machinery that its proof uses made redundant.

The proof of our Theorem 1.3 follows Shkredov, with two main innovations. One is a

new “intermediate” incidence bound in Theorem 3.2, which despite being a rather crude

corollary of the Stevens - de Zeeuw incidence bound for lines and points, works efficiently

even after one application of Cauchy-Schwarz in the iterative procedure, resulting in

estimate (4), which is much better than the first term in the right-hand side of estimate
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(3). Furthermore, after one more application of Cauchy-Schwarz we note the connection

of the quantity T3(H) with the L2-moment of the Minkowski distance in the set H , see

Lemma 5.3. Shkredov’s sum-product type bound, see Lemma 5.1 is a particular case of

this bound when H = B × B (in which case the estimate is slightly stronger). A sharp

Euclidean bound for the quantity in question was central for resolution, by Guth-Katz

[4] of the Erdős distinct distance problem [3]; it was adapted to the Minkowski (alias

pseudoeuclidean) distance in [11].

We note that in contrast with Bourgain’s proof, iterating further would not create new

savings for us, since we do not know a way of getting stronger quantitative estimates for

Tn(H) with n > 3, except fetching the L2-smoothing lemma. Moreover, it is inherent

in the iteration procedure that the efficiency of using a nontrivial incidence bound for

σ(A,H ′) decreases with the number of iterates, as well as that on the kth step of the

iteration one can only get a nontrivial bound on the number of hyperbolae in H , which are

|A|1−2−k

-rich. This is evinced by the very first terms in the right-hand side of estimates

(4), (5).

Finally, we present an adaptation of Theorem 1.3 to the case F = Fp, providing ad-

ditional estimates, covering the case |A| > √
p. As the sets A,H get bigger, one should

bear in mind the character sum estimate by Iosevich et al. [5], which is best possible for

|A|2|H| > p3, yet trivial when |H| < p:

σ(A,H) 6
|A|2|H|

p
+ 2|A|

√

p|H| .

We also address in passing the case F = R, as it merely requires a recalculation,

using the the sate of the art incidence theorem for modular hyperbolae due to Sharir

and Solomon [14]. The reason for doing this is that under the assumption that the

number of translates (a, b) ∈ H with the same abscissa or ordinate is O(|H|1/2), then

for |A| ≪ |H| . |A|19/13, estimate (7) is stronger than the Szemerédi-Trotter estimate

σ(A,H) ≪ |A|4/3|H|2/3. Moreover, if |H| . |A|16/13 this becomes the case without any

assumptions on H . (Ideally, of course, one would like to be able to be able to beat the

Szemerédi-Trotter estimate in the range |H| ∼ |A|2.)

Theorem 1.4. Assume the notations of Theorem 1.3.

Let F = Fp. If |A||H|2 6 p3, one can remove the constraint |A| < √
p as to (4) and

have it with the extra term
|A|5/4|H|

p1/4
in the right-hand side.

Furthermore,2 if |A||H|4 6 p5, one can remove the constraint |A| < √
p as to estimate

(5) and have it with the extra term
|A|9/8|H|

p1/8
in the right-hand side.

If A ⊂ R, then

2One can add more intermediate range estimates by fetching more cases from the forthcoming Lemma
5.4 but they do not appear to be sufficiently enlightening.
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σ(A,H) . |A|1/2|H|+ |A|7/6|H|2/3M1/6
1 + |A| 2322 |H| 9

11M
1

11

1 . (7)

2. Some applications

For a point set P ∈ F2 and q = (x, y), q′ = (x′, y′) ∈ P we refer to the quantity

Dm(q, q
′) := (x− x′)2 − (y − y′)2 (8)

as the Minkowski distance between q and q′.

Corollary 2.1. Let A ⊂ F, with |A + A|, |A − A| 6 K|A| < √
p. Then the number of

realisations of a nonzero Minkowski distance between points of A×A is O(K6/5|A|29/10).

Proof. If |A+A|, |A−A| 6 K|A| then after the transformation (x, y) 7→ (x+y
2
, x−y

2
), the

number of realisations of a nonzero Minkowski distance is bounded via the number of

incidences between (A+ A) × (A− A) with |A|2 translates of the hyperbola xy = 1.

The claim follows after applying estimate (4) of Theorem 1.3, with M1 = |A|.
�

Unfortunately, we do not see a way to extend the claim to get an unconditional non-

trivial bound for the number of realisations of a single distance, the “bad” example being

A = A1 ∪ A2, with small A1 + A1 and A2 + A2 but large A1 + A2.

We are not aware of a nontrivial, that is better than O(|P |3/2), bound on the number

of realisations of a nonzero distance between pairs of a point set P ⊂ F2 in positive

characteristic, where say |P | < p. In contrast, a recent paper of Zahl [20] vindicates the

latter exponent 3/2 for P being a set in three, rather than two dimensions (when −1 is

not a square in F and |P | < p2).

Estimate (4) of Theorem 1.3 also has the following sum-product type implications.

Corollary 2.2. Let A ⊂ F, with |A| < √
p. Then

|{(a1, a2, a3, a4) ∈ A4 : (a1 + a2)(a3 + a4) = 1}| ,
|{(a1, a2, a3, a4) ∈ A4 : (a1 + a2 − a4)(a3 + a2 + a4) = 1}| ,

|{(a1, a2, a3, a4) ∈ A4 : (a1 + a2)(a3 + a2a4) = 1}| ,
|{(a1, a2, a3, a4) ∈ A4 : (a1 + a2 + a4)(a3 + a2a4) = 1}|

are all O(|A|29/10).
Furthermore, if |A + A| < K|A| < √

p, then the number of points of A × A on the

hyperbola xy = λ 6= 0 is O(K6/5|A|29/10).

Proof. The first group of estimates follows directly by applying estimate (4) with M1 =

|A|, and |H| = |A|2.
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For the last estimate, WLOG λ = −1; we write

|{(a1, a2) ∈ A2 : a1a2 = −1}| 6
1

|A|2 |{(a1, a2; s1, s2) ∈ A2 × (A+ A)2 : (s1 − a1)(s2 − a2) = −1}|

and applying estimate (4) to the set A+ A, with M1 = |A|, and |H| = |A|2.
�

3. Incidence bounds for Möbius hyperbolae

As in the formulation of Theorem 1.1, a Möbius Hyperbola is identified with a SL2

(or PSL2) transformation. We say that a hyperbola (transformation) h is k-rich if it

supports > k points of A×A, namely |A ∩ h(A)| > k.

Over the reals, the best known bound for incidences between points and Möbius hy-

perbolae is due to Solomon and Sharir [14].

Theorem 3.1. Let A ⊂ R be a set of n real numbers, and consider the set of Möbius

transformations on R, the number of k-rich transformations is bounded by

mk ≪
|A|4
k3

+
|A|6
k11/2

log k .

We remark that over C the best known to our knowledge bound is

mk ≪ |A|6
k5

,

due to Solymosi and Tardos [17].

We now prove a weaker analogue in positive characteristic, that we have referred to as

the intermediate incidence bound.

Theorem 3.2. Let A ⊂ F = Fp and H be a set of m > |A| Möbius hyperbolae in F2.

Then the number of incidences between P = A×A and H satisfies

σ(A,H) ≪ |H||A|2
p

+ |A|1/2|H|+min
(

|A|7/5|H|4/5, p1/3|A|4/3|H|2/3
)

. (9)

Moreover, if k >
√

|A| and |A| < √
p, then for any F of positive characteristic p, the

maximum number of k-rich Möbius hyperbolae is O
(

|A|7

k5

)

.

To prove the theorem we will need the following two incidence statements: the Stevens

- de Zeeuw theorem [19] and its corollary from [7], specific of F = Fp.

Theorem 3.3. The number of incidences between the point set P = A× A and a set L

of affine lines in F2, with |A||L| < p2 is

I(P, L) ≪ |A|5/4|L|3/4 + |L|+ |A|2 .
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Lemma 3.1. Let A ⊂ Fp and let 2|A|2/p 6 k 6 |A| be an integer that is greater than 1.

The number lk of k-rich lines satisfies

lk ≪ min

(

p|A|2
k2

,
|A|5
k4

)

.

Note that (non-horizontal and non-vertical) lines in A×A can be viewed as affine, that

is a particular case of Möbius transformations. This fact underlies the following proof.

Proof of Theorem 3.2. Let q = (a, a′) ∈ A × A = P be a point in our point set. Let

Hq ⊆ H be the subset of hyperbolae incident to the point q. Similarly to above, for

k > 1, refer to a hyperbola of Hq as k-rich if it supports at least k points of A × A

different from q = (a, a′). Next, we identify Hq with the set of Möbius transformations,

Mq (that is liner-fractional maps f(z) = az+b
cz+d

with ad − bc 6= 0) mapping a to a′. We

note Mq lies in a coset of the normal affine subgroup PSL2(Fp), the subgroup of upper-

triangular matrices. Also for a g ∈ Mp we have that 1
a′−z

◦ g ◦ (a − 1
z
) maps infinity to

infinity.

This shows that the number of incidences between Hq and points in P other than q

is equal to the number of incidences between m = |Hq| affine lines and the point set

B × C := 1
a−A

× (a′ −A−1). Note |B| = |C| = |A|.
Next, we use Lemma 3.1 to bound the number of k-rich lines when max

(

2|A|2

p
, 2
)

6

k 6 |A|. Note that unless F = Fp, we have taken |A| < √
p, so 2|A|2

p
≤ 2. Over Fp, when

2 6 k < 2|A|2

p
one cannot have any nontrivial incidence bound, which accounts for the

first term in estimate (9). We also add the trivial Cauchy-Schwarz bound lk ≤ |A|4/k2.

Combining this with Lemma 3.1 yields the following bound on the number of k-rich

transformations in Hq by

≪ min

( |A|5
k4

,
p|A|2
k2

,
|A|4
k2

)

.

The third term in the latter estimate is smaller than the first one if k 6
√

|A|. We

proceed, assuming that k >
√

|A|, accounting for the case to the contrary by including

the second term in the estimate of the theorem.

To continue, we sum over q ∈ A×A = P observing that we count each k-rich hyperbola

in H at least k times. This bounds mk, the number of k-rich hyperbolae in H as follows:

mk ≪ min

( |A|7
k5

,
p|A|4
k3

)

. (10)

The proof is concluded by the standard conversion of the latte estimate into an inci-

dence bound. Assuming mk ≪ |A|7/k5 and we take some k = k∗ and optimise between

the estimate ≪ |A|7

k5
∗

for the number of incidences, supported on k∗-rich hyperbolae and

≪ mk∗ for the rest of the hyperbolae. Choosing k∗ = |A|7/5|H|−1/5 accounts for the

first term under the minimum in the theorem’s claim. Doing the same thing assuming

mk ≪ p|A|2

k2
accounts for the remaining term and completes the proof in the case F = Fp.
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In the case of general F we note that once we are only interested in k >
√

|A|, the

constraint |A| < p and the trivial estimate |A|4/k2 on the number of k-rich lines guarantee

that the condition |A||L| < p2 of Theorem 3.3 is satisfied as to the set L of k-rich lines,

and hence one has |L| ≪ |A|5/k4 as was used above.

�

4. Proof of Theorems 1.3, 1.4

We present the proof of Theorem 1.3, making additional remarks in the special case

F = Fp, pertaining to Theorem 1.4: this is when we allow |A|2/p ≫ 1.

Proof. To prove the bound (4) we start out with pruning away the set of translates of the

hyperbola that lie on the union of a small number of very rich vertical or horizontal lines.

This is done only if M > |A|, otherwise at this stage we do nothing. Let H1 denote the

translates, lying on at most |H|/(x|A|), say vertical lines with at least (x|A|) translates

per line, for some x > 1. They contribute, trivially, at most |A||H|/x to the quantity

σ(A,H). Assuming M = (x|A|) we determine x by setting

|A||H|/x = |A|6/5|H|4/5(x|A|)1/10 ,

the right-hand side being the bound we will prove in the immediate sequel. This means

x = |H|2/11/|A|3/11. This is exceeds 1 only if |H| > |A|3/2, in which case we have a saving

that determines the choice of M1 apropos of estimate (4), hence x|A| = |H|2/11|A|8/11.
This determines the choice of M1.

We do the same thing concerning the bound (5), where we interpolate

|A||H|/x = |A|11/10|H|17/20(x|A|)1/10 ,

then x = |H|3/22/|A|2/11 > 1 if |H| > |A|4/3, this determines the choice of M2.

We now move on the proving (4). Retaining the notation H for the remaining set of

translates, apply Cauchy-Schwarz to the summation over A, with a shortcut σ = σ(A,H):

σ2 =

(

∑

h∈H,a∈A

1A(ha)

)2

6 |A|
∑

u∈HH−1

rHH−1(u)
∑

a∈A

1A(ua) (11)

Set

∆ :=
σ2

3|A||H|2 . (12)

By the pigeonhole principle, since
∑

u∈HH−1 rHH−1(u) = |H|2, a positive proportion of

the set of incidences is supported on the set Ω of Möbius hyperbola, such that for u ∈ Ω

we have

∀u ∈ Ω ,
∑

a∈A

1A(ua) > ∆.

Henceforth we assume ∆ ≫ 1, for otherwise

σ ≪ |A|1/2|H| ,
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which accounts for the first term in estimate (4).

Applying Cauchy-Schwarz to the summation in u, restricted to Ω in (11), yields

σ4 ≪ |A|2E(H)
∑

u∈Ω

(

∑

a∈A

1A(ua)

)2

, (13)

where E(H) is the energy, defined by (6).

Using formula (10), we conclude that if ∆ ≫ |A|2

p
, that is unless

σ ≪ |A|3/2|H|
p1/2

, (14)

one has (after dyadic summation in k > ∆ in formula (10))

∑

u∈Ω

(

∑

a∈A

1A(ua)

)2

≪ min

( |A|7
∆3

,
p|A|4
∆

)

.

Observe that from definition of ∆ the minimum being achieved on the second term means

that

σ ≪ |A||H| |A|
1/4

p1/4
, (15)

which accounts for the corresponding additional term in the statement of Theorem 1.4.

Assuming that the minimum is achieved on the first term and applying the bound

E(H) ≪ |H|2M1 from the forthcoming Lemma 5.2 (with the quantity M1 having been

defined in the pruning procedure at the outset) gives

σ10 ≪ |A|12|H|8M1

and completes the proof of estimate 4.

To address the real case in estimate (7) in Theorem 1.4 we merely recalculate the

quantity
∑

u∈Ω

(

∑

a∈A

1A(ua)

)2

using Theorem 3.1, and estimate (7) follows.

We proceed towards proving estimate (5) by another application of Cauchy-Schwarz

to the summation in A in (11): This yields

σ4 ≪ |A|3
∑

u∈HH−1HH−1

rHH−1HH−1(u)
∑

a∈A

1A(ua).

As above, a positive proportion of the set of incidences must be supported on the set

Ω of Möbius hyperbolae u, supporting at least

∆ :=
σ4

3|A|3|H|4

points of A × A, thus redefining ∆. We proceed under assumption ∆ ≫ 1, or else

σ ≪ |A|3/4|H|.
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Hence, again by Cauchy-Schwarz,

σ8 ≪ |A|6T4(H)
∑

u∈Ω

(

∑

a∈A

1A(ua)

)2

. (16)

Applying (10) to estimate the incidence term we assume that the minimum is achieved

on its first term, or else by definition of ∆ one has

σ ≪ (|A||H)(|A|/p)1/8 ,

which enters the statement of Theorem 1.4 in F = Fp case.

Hence,
∑

u∈Ω

(

∑

a∈A

1A(ua)

)

≪ |A|16|H|12
σ12

.

Furthermore, by Lemma 5.4, we have

T4(H) 6 |H|2T3(H) ≪ |H|6+1/3

in F of characteristic p, with |H| < p, and in the specific case F = Fp

T4(H) 6 |H|2T3(H) ≪ |H|5M2
2 +















|H|7

p
, if |H| > p5/4

p2/3|H|5+2/3, if p 6 |H| 6 p5/4

|H|6+1/3, if |H| < p

.

Note that the quantity M2, corresponding to the maximum number of translates in H ,

lying on a horizontal/vertical line has been redefined according to the pruning procedure

at the outset of the proof.

Combining the last two estimates finishes the proof of Theorems 1.3 and 1.4.

�

5. Energy bounds for H

This section generalises, from H being a Cartesian product to the general H , following

statement that Shkredov’s Theorem 1.2 relied on.

Lemma 5.1. [16, Lemma 14] For H = B ×B the following estimates hold.

E(H) 6 |B|2E+(B) ,

and

T3(H) 6 |B|2
∑

x

r2(B−B)(B−B)(x) + |B|8 . (17)

In positive characteristic, for |B| < p1/2, then
∑

x

r2(B−B)(B−B)(x) . |B|5(E+(B))1/2 ,
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if F = Fp the constraint |B| < p1/2, can be removed by adding the extra term |B|8/p to

the right-hand side of the latter estimate.

The generalisation we prove is as follows (we split the statement into two).

Lemma 5.2. The energy of a set H of translates of the hyperbola y = −1/x is bounded

by

E(H) ≪ |H|2M ,

where M is the maximum number of translates (a, b) ∈ H having the same abscissa or

ordinate.

Lemma 5.3. Let H be a set of translates of the hyperbola y = −1/x. Then

T3(H) :=
∑

x

r2HH−1H(x) 6 2|H|Q(H) + 2|H|4 ,

where

Q(H) = |{(h1, h2, h
′
1, h

′
2) ∈ H4 : D(h1, h

′
1) = D(h2, h

′
2)}| ,

with

D(h, h′) = D((a, b), (a′, b′)′) := (a− a′)(b− b′) .

The quantity D(h, h′), with h, h′ ∈ H becomes the Minkowski distance Dm, defined be

(8) after rotating H by 45◦; in [11] quadruples in Q(H) were referred to as rectangular

quadruples, we also use this term in the sequel.

Hence, the relation (17) in Lemma 5.1 is a particular case of the claim of Lemma 5.3.

However, the sum-product type bound, following (17) in Lemma 5.1 (for proof see e.g.

[15]) is slightly stronger than the general one we provide below in Theorem 5.1.

Proof of Lemma 5.2. The proof is merely mimicking the corresponding part of the proof

of Shkredov’s Lemma 5.1.

We represent the hyperbola y = a+ 1/(b− x) by the SL2 matrix h =

(

−a ab+ 1

−1 b

)

.

Without loss of generality we may assume that none of a, b are ever zero.

We have, with w1 = b1 − b2.

h1h
−1
2 =

(

1 + a1w1 a1 − a2 − a1a2w1

w1 1− a2w1

)

.

Hence, E(H) can be seen to equal the number of solutions to the following set of

equations.

a1 = a′1,

b1 − b2 = b′1 − b′2,

a2 = a′2

or

b1 = b′1,

a1 − a2 = a′1 − a′2,

b2 = b′2 .

(18)

This completes the proof. �
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Proof of Lemma 5.3. We will reuse the matrix notation from the previous proof. Note

that there is always a trivial bound T3(H) 6 |H|2E(H), thus from Lemma 5.2 T3(H) 6

|H|4M .

The following argument is somewhat more involved than Shkredov’s proof of (17),

where the Cartesian product scenario enables one to easily switch between various h’s

appearing in the T3 quantity.

However, the claim one ends up with is in the same spirit: in both estimates for

T3(H) the first term pertains to the rectangular quadruple count, while the second term

estimates separately the contribution coming from the Borel subgroup of SL2.

To start we prove the following Lemma to estimate

XB := max
g 6∈B

∑

x∈gB

r2HH−1(x) ,

where B is the Borel subgroup of upper-triangular matrices.

Let us show that

XB 6 |H|2 . (19)

Indeed, a left coset of B, which is not B itself, is defined by a matrix g =

(

1 0

c 1

)

,

with c 6= 0.

gB =

(

s t

cs ct+ s−1

)

, (s, t) ∈ F
2, s 6= 0 .

Suppose g1g
−1
2 = g′1(g

′
2)

−1 ∈ gB. This means, since c = 0 that w1 = w′
1 6= 0, and

therefore, by equating the diagonal entries in g1g
−1
2 , that a1 = a′1 and a2 = a′2.

Furthermore, since c(1 + a1w1) = w1, we can determine w1 = w′
1, unless ca1 = 1

which we will show cannot happen else we reach a contradiction as we have that w1 =

ca1w1 + c = w1 + c. So returning to the case ca1 6= 1, given g1 = (a1, b1) and (a′2, b
′
2)

we know w1 = w′
1, hence b2, b1, as well as a2, a

′
1. This accounts for the claim in estimate

(19), for ca1 = 1 would imply c = 0.

We are now ready to finish the proof of the claim of Lemma 5.3. Partition

T3 =
∑

x∈B

r2HH−1H(x) +
∑

x 6∈B

r2HH−1H(x) := YB + Y B,

where YB is the part of T3, corresponding to x ∈ B, and Y B the complement.

It follows from (19) that

YB 6 |H|4 .
Indeed, let us write

YB =
∑

x∈B

(

∑

h3∈H

rHH−1h3
(x)

)2

6 |H|
∑

x∈B,h3∈H

r2HH−1h3
(x) .
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Observe that for each value of h3, one has

r2HH−1h3
(x) = |{(h1, h2, h

′
1, h

′
2) ∈ H4 : h1h

−1
2 = h′

1(h
′
2)

−1 ∈ h−1
3 B}| .

Now apply estimate 19, for each h3, also observe that h3 6∈ B.

The Borel case considered above has contributed |H|4 to the bound of the lemma. It

remains to estimate the quantity Y B.

By Cauchy-Schwarz,

∑

x 6∈B

r2HH−1H(x) =
∑

x 6∈B

(

∑

h2∈H

rHh−1

2
H(x)

)2

6 |H|
∑

x 6∈B,h2∈H

r2
Hh−1

2
H
(x) .

The product appearing in T3 equals

h1h
−1
2 h3 =

(

−a1(w1w2 + 1)− w2 1 + a1w1 + b3(w2 + a1(1 + w1w2))

−(1 + w1w2) w1 + b3(1 + w1w2)

)

,

with an extra notation w2 = a3 − a2. In addition, we have 1 + w1w2 6= 0. And we have

h1h
−1
2 h3 = h′

1h
−1
2 h′

3, with the corresponding notations w′
1 = b′1 − b2, w

′
2 = a′3 − a2.

It follows that

c = w1w2 = w′
1w

′
2, (a′1 − a1)c = w2 − w′

2 = (a3 − a′3), (b3 − b′3)c = b′1 − b1 . (20)

Since c 6= 0, this implies

(a1 − a′1)(b1 − b′1) = (a3 − a′3)(b3 − b′3) .

This is a rectangular quadruple, with (a2, b2) having been eliminated.

It remains to show that given a nontrivial rectangular quadruple, there is only at

most two (a2, b2), corresponding to it. Of course, if the quadruple is trivial, that is

h1 = h′
1, h3 = h′

3, then there are |H| choices for h2.

Suppose, we have a fixed nontrivial quadruple (h1, h3, h
′
1, h

′
3), which means from equa-

tions (20) we know c. Thus (a2, b2) is on the intersection of H with the hyperbola

(a3 − x)(b1 − y) = c, as well as the hyperbola (a′3 − x)(b′1 − y) = c. The intersection is at

most two points, unless this is the same hyperbola, namely a3 = a′3, b1 = b′1.

Furthermore, from equalising the top right entries of h1h
−1
2 h3 = h′

1h
−1
2 h′

3, we have

b3w2− b′3w
′
2 = s, where the right-hand side s is known from the quadruple. Therefore, we

can determine a2, and hence have at most two h2, unless in addition to already having

a3 = a′3, b1 = b′1 we have b3 = b′3.

But then we have h3 = h′
3, and therefore h1 = h′

1, so are in the trivial quadruple case.

This adds another |H|4 to the bound of the lemma and completes the proof. �

5.1. Minkowski distance L2 bound. By Lemma 5.3

T3(H) . |H|Q(H) + |H|4 , (21)
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where Q(H) is the number of rectangular quadruples in H . After changing variables

(a, b) →
(

a+b
2
, a−b

2

)

, with Hm replacing H in the new variables one has, with now h1 =

(a1, b1), . . . , h
′
2 = (a′2, b

′
2) in Hm, that Q(H) equals the number of solutions of

(a1 − a′1)
2 − (b1 − b′1)

2 = (a2 − a′2)
2 − (b2 − b′2)

2 .

Clearly, if −1 is a square in F, one is free to change − to + in the quadratic form,

becoming the analogue of the Euclidean distance ‖ · ‖ in F2.

In this respect, we take advantage of the following result by Murphy et al. in [8].

Theorem 5.1 (Theorem 4 [8]). Let Hm ⊆ F2
p. Set

Q∗(Hm) = |{(h1, h2, h
′
1, h

′
2) ∈ H4

m : ‖h1 − h′
1‖ = ‖h2 − h′

2‖ 6= 0}| .

Then

Q∗(Hm) ≪















|Hm|4

p
, if |Hm| > p5/4

p2/3|Hm|8/3, if p 6 |Hm| 6 p5/4

|Hm|10/3, if |Hm| < p .

Moreover, Q∗(Hm, ) ≪ |Hm|10/3, for |Hm| < p in any field of characteristic p.

Since Theorem 5.1 allows for −1 being a square in F, it applies to the distance D as

well. (Besides, in the case |Hm| < p we can always pass to an extension of F.)

Hence, in order to bound the quantity T3 we will just need to add to the above bound

on Q∗(Hm) the count of rectangular quadruples in H , contributed by the case D(h1, h
′
1) =

D(h2, h
′
2) = 0. If M is the maximum number of points in H on a horizontal or vertical

line, their number is trivially at most M2|H|2. After multiplying by |H| according to

(21), this term will dominate the |H|4 term.

We have therefore established the following lemma.

Lemma 5.4. For a set H of translates of the hyperbola y = −1/x in F2
p, such that at

most M translates (a, b) ∈ H have the same abscissa or ordinate, one has

T3(H) ≪ |H|3M2 +















|H|5

p
, if |H| > p5/4

p2/3|H|3+2/3, if p 6 |H| 6 p5/4

|H|4+1/3, if |H| < p .

The bound

T3(H) ≪ |H|3M2 + |H|4+1/3 .

holds over a general F of characteristic p, provided that |H| < p.

This was all that remained to complete the proof of estimate (5) as well as the Fp

claims of Theorem 1.4.
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