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SPLITTING SUBSPACES OF LINEAR OPERATORS OVER FINITE

FIELDS

DIVYA AGGARWAL AND SAMRITH RAM

Abstract. Let V be a vector space of dimension N over the finite field Fq and T be
a linear operator on V . Given an integer m that divides N , an m-dimensional subspace
W of V is T -splitting if V = W ⊕ TW ⊕ · · · ⊕ T d−1W where d = N/m. Let σ(m, d;T )
denote the number of m-dimensional T -splitting subspaces. Determining σ(m, d;T ) for an
arbitrary operator T is an open problem. We prove that σ(m, d;T ) depends only on the
similarity class type of T and give an explicit formula in the special case where T is cyclic
and nilpotent. Denote by σq(m, d; τ) the number of m-dimensional splitting subspaces for
a linear operator of similarity class type τ over an Fq-vector space of dimension md. For
fixed values of m, d and τ , we show that σq(m, d; τ) is a polynomial in q.
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1. Introduction

Let Fq denote the finite field with q elements where q is a prime power. Throughout this
paper, V will denote a finite-dimensional vector space over Fq. The variables m and d will
always denote positive integers. Let V be an md-dimensional vector space over the finite
field Fq. We begin with a definition.

Definition 1.1. Let T be a linear operator on V . A subspace W of V of dimension m is a
splitting subspace for T if

V = W ⊕ TW ⊕ · · · ⊕ T d−1W.

The above definition was motivated by the following question asked by Niederreiter [17,
p. 11]: Let α ∈ Fqmd such that α is a generator of the cyclic group F

∗
qmd of nonzero elements

in Fqmd. How many m-dimensional Fq-linear subspaces W of Fqmd satisfy

Fqmd = W ⊕ αW ⊕ · · · ⊕ αd−1W ?
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Niederreiter encountered this problem in the context of his work on the multiple-recursive
matrix method for pseudorandom number generation. This question was settled by Chen
and Tseng [9, Cor. 3.4] who proved a conjecture [12, Conj. 5.5] that the number of such
subspaces is

(1)
qmd − 1

qm − 1
qm(m−1)(d−1).

Another proof of the result of Chen and Tseng and some connections with unimodular ma-
trices may be found in [3]. Given a linear operator T on V , let σ(m, d;T ) denote the number
of m-dimensional T -splitting subspaces. Finding a formula for σ(m, d;T ) for arbitrary T is
an open problem [13, p. 54]. If T has an irreducible characteristic polynomial, then it follows
from the work of Chen and Tseng that σ(m, d;T ) is given by the expression in (1) above.

In fact, splitting subspaces are closely related to anti-invariant subspaces. A subspace W
is said to be k-fold anti-invariant if the sum

W + TW + · · ·+ T kW

is direct. Barŕıa and Halmos [4] and Sourour [19] determined the maximal dimension of
a 1-fold anti-invariant subspace for a given operator T . These results were generalized by
Knüppel and Nielsen [16] who solved the same problem for k-fold anti-invariant subspaces.

Splitting subspaces also arise in a slightly different context in the setting of finite fields.
Suppose S = {α1, . . . , αm} is a subset of V and let WS denote the linear span of S. The
Krylov subspace of order d generated by S is defined by

Kry(T, S; d) := WS + TWS + · · ·+ T d−1WS.

Let κm,d(T ) denote the probability that the Krylov subspace of order d for a randomly chosen
ordered subset S of cardinality m is all of V . Since Kry(T, S; d) = V precisely when WS is
a splitting subspace for T , it follows that

κm,d(T ) =
γm(q) · σ(m, d;T )

qm2d
,

where γm(q) = (qm − 1) . . . (qm − qm−1) denotes the number of ordered bases of an m-
dimensional vector space over Fq. The problem of solving large sparse linear systems over
finite fields arises in computer algebra and number theory. Block iterative methods such as
the Wiedemann algorithm, which are based on finding linear relations in Krylov subspaces,
are used to solve such systems. Giving bounds on the probability κm,d(T ) is a difficult and
important problem [5, p. 2] in the analysis of such algorithms. We refer to Brent, Gao and
Lauder [5] and the references therein for more on this topic.

In this paper, we are mainly interested in determining σ(m, d;T ). Building upon earlier
work by Chen and Tseng, we give a general recurrence which may be solved to obtain
an expression for the number of splitting subspaces. We prove (Corollary 3.7) that for
fixed values of m and d, the number σ(m, d;T ) depends only on the similarity class type
(see Definition 3.1) of T . A crucial ingredient in the proof is a theorem of Brickman and
Fillmore [6] on the structure of the invariant subspace lattice of a primary transformation.
Let σq(m, d; τ) denote the number of m-dimensional splitting subspaces for a linear operator
of similarity class type τ defined over an Fq-vector space of dimension md. In Section 4,
we show that there is a simple formula for the number of splitting subspaces of a cyclic
operator that is either nilpotent or unipotent. We also give an application of our results
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to the enumeration of invertible matrices having a special form. Finally, we show that, for
m, d, τ fixed, the quantity σq(m, d; τ) is a polynomial in q.

2. Counting Flags of Subspaces

To unravel the enumeration problem, we begin with some definitions and notation intro-
duced by Chen and Tseng [9, Sec. 2] to count a more general class of subspaces that includes
the T -splitting subspaces. In what follows, V denotes a vector space of dimension N over
the finite field Fq and T a linear operator on V .

Definition 2.1. Suppose S1, S2, . . . , Sk are sets of subspaces of V . Let [S1, S2, . . . , Sk]T
denote the set of all k-tuples (W1,W2, . . . ,Wk) such that

Wi ∈ Si for 1 ≤ i ≤ k,

Wi ⊇ Wi+1 + TWi+1 for 1 ≤ i ≤ k − 1.

If Si is the set of all subspaces of V of dimension di for some i, then Si is denoted
within the brackets as di. For instance, [5, 3]T denotes the set all tuples (W1,W2) such that
dim(W1) = 5, dim(W2) = 3 and W1 ⊇ W2 + TW2.

Definition 2.2. Let a, b be nonnegative integers such that N ≥ a ≥ b. Define

(a, b)T =
{

W ⊆ V : dim(W ) = a and dim(W ∩ T−1W ) = b
}

.

For instance, (3, 2)T denotes the set of 3-dimensional subspaces W for which dim(W ∩
T−1W ) = 2. Note that (a, a)T is the set of all subspaces of dimension a which are invariant
under T . We will freely use [S1, S2, . . . , Sk] to denote [S1, S2, . . . , Sk]T and (a, b) to denote
(a, b)T when there is only one operator or when the operator under consideration is clear
from the context.

Definition 2.3. Suppose [S1,1, S1,2], [S2,1, S2,2], . . . , [Sr,1, Sr,2] are sets as defined above. Then

〈[S1,1, S1,2], [S2,1, S2,2], . . . , [Sr,1, Sr,2]〉

denotes the set of 2r-tuples of subspaces (W1,1,W1,2,W2,1,W2,2, . . . ,Wr,1,Wr,2) such that

(Wi,1,Wi,2) ∈ [Si,1, Si,2] for 1 ≤ i ≤ r,

Wi,2 ⊇ Wi+1,1 for 1 ≤ i ≤ r − 1.

For instance, 〈[5, 4], [3, 2]〉 is the set of all 4-tuples of subspaces (W1,W2,W3,W4) such that

dim(W1) = 5, dim(W2) = 4, dim(W3) = 3, dim(W4) = 2,

W1 ⊇ W2 + TW2, W3 ⊇ W4 + TW4, W2 ⊇ W3.

The next definition specifies an ordering on tuples labelling sets of the form

[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)].

Definition 2.4. Define an ordering on ordered pairs (a, b) such that (a1, b1) � (a2, b2) if
a1 > a2 or a1 = a2 and b1 ≤ b2. Extend the ordering to tuples of the form

[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]

in such a way that the order is lexicographic in terms of the ordered pairs (ai,1, ai,2) from
left to right.

For instance, (5, 2) ≻ (5, 3) ≻ (2, 1) while [(8, 6), (5, 3)] ≻ [(8, 6), (5, 4)] ≻ [(7, 6), (6, 2)].
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For fixed r, the ordering � is a total order. The following proposition is used repeatedly
in constructing the recursion and follows easily from the definitions above.

Proposition 2.5. For nonnegative integers N ≥ a ≥ b, we have

[a, b] =

a
⋃

i=b

[(a, i), b]

=
b
⋃

j=0

[a, (b, j)].

The recursion in the next lemma expresses the cardinality of sets of subspaces labelled
by a tuple ν in terms of the cardinality of sets labelled by tuples µ ≺ ν in the ordering.
The base cases are of the form |[(a1, a1), (a2, a2), . . . , (ar, ar)]T |. The following lemma and
Proposition 2.7 extend results obtained by Chen and Tseng that hold for invertible operators.

Lemma 2.6. Let T be a linear operator on an N -dimensional vector space. Suppose

a0,1 = a0,2 = N ≥ a1,1 ≥ a1,2 ≥ a2,1 ≥ a2,2 ≥ . . . ≥ ar,1 ≥ ar,2 ≥ 0 = ar+1,1 = ar+1,2

and ai−1,1 ≥ 2ai,1 − ai,2 for 1 ≤ i ≤ r.

(If the conditions are not satisfied, then [(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)] is empty).

Further, let

A = {(j1, . . . , jr) : max(ai+1,2, 2ai,2 − ai,1) ≤ ji ≤ ai,2 and 1 ≤ i ≤ r} ,

B = {(k1, . . . , kr) : ai,2 ≤ ki ≤ ai,1 and 1 ≤ i ≤ r} .

Then

|[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]|

=
∑

(j1,...,jr)∈A

|[(a1,2, j1), (a2,2, j2), . . . , (ar,2, jr)]|
r
∏

i=1

[

ai−1,2 − (2ai,2 − ji)

ai,1 − (2ai,2 − ji)

]

q

−
∑

(k1,...,kr)∈B\(a1,2 ,...,ar,2)

|[(a1,1, k1), (a2,1, k2), . . . , (ar,1, kr)]|

r
∏

i=1

[

ki − ai+1,1

ai,2 − ai+1,1

]

q

.

Proof. The proof is along the lines of [9, Lem. 2.7]. The size of [(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]
is computed by applying Proposition 2.5. Consider

| 〈[a1,1, a1,2], [a2,1, a2,2], . . . , [ar,1, ar,2]〉 |

=
∑

(k1,...,kr)∈B

| 〈[(a1,1, k1), a1,2], [(a2,1, k2), a2,2], . . . , [(ar,1, kr), ar,2]〉 |

=
∑

(k1,...,kr)∈B

|[(a1,1, k1), (a2,1, k2), . . . , (ar,1, kr)]|

r
∏

i=1

[

ki − ai+1,1

ai,2 − ai+1,1

]

q

.(R)

Using Proposition 2.5 again, we have

| 〈[a1,1, a1,2], [a2,1, a2,2], . . . , [ar,1, ar,2]〉 |

=
∑

(j1,...,jr)∈A

| 〈[a1,1, (a1,2, j1)], [a2,1, (a2,2, j2)], . . . , [ar,1, (ar,2, jr)]〉 |
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=
∑

(j1,...,jr)∈A

|[(a1,2, j1), (a2,2, j2), . . . , (ar,2, jr)]|
r
∏

i=1

[

ai−1,2 − (2ai,2 − ji)

ai,1 − (2ai,2 − ji)

]

q

,(L)

where the last two equalities follow from the fact that

dim(W + TW ) = 2 dimW − dim(W ∩ T−1W )

for every subspace W . Then (L) − (R) = 0. Adding |[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]|
to both sides of this equality, we obtain the lemma. �

Proposition 2.7. Let T be any linear operator on an md-dimensional vector space V . Then

[((d− 1)m, (d− 2)m), ((d− 2)m, (d− 3)m), . . . , (2m,m), (m, 0)]T

=

{

(

d−2
⊕

i=0

T iW,

d−3
⊕

i=0

T iW, . . . , W ⊕ TW, W ) :

d−1
⊕

i=0

T iW = V

}

.

In particular,

σ(m, d;T ) = |[((d− 1)m, (d− 2)m), ((d− 2)m, (d− 3)m), . . . , (2m,m), (m, 0)]T |.

Proof. If W is an m-dimensional subspace of V such that dim(

d−1
⊕

i=0

T iW ) = md, then

(
d−2
⊕

i=0

T iW,
d−3
⊕

i=0

T iW, . . . ,W ⊕ TW,W )

∈ [((d− 1)m, (d− 2)m), ((d− 2)m, (d− 3)m), . . . , (2m,m), (m, 0)].

Conversely, suppose

(Wd−1,Wd−2, . . . ,W2,W1) ∈ [((d− 1)m, (d− 2)m), ((d− 2)m, (d− 3)m), . . . , (2m,m), (m, 0)].

Let W0 = {0} and Wd = Wd−1 + TWd−1. We claim that

Wn =

n
⊕

i=1

T i−1W1 for 1 ≤ n ≤ d.

We induct on n. The base case n = 1 is evident. Now fix 1 ≤ k ≤ d − 1 and suppose
Wj =

⊕j
i=1 T

i−1W1 for j ≤ k. By comparing dimensions, we must have dim T i−1W1 = m for
i ≤ k. We claim that Wk ∩ T kW1 = {0}. Suppose there is a nonzero vector β ∈ Wk ∩ T kW1.
Then β = Tα for some α ∈ T k−1W1 and consequently α ∈ Wk ∩ T−1Wk = Wk−1, which
contradicts the fact that Wk−1 ∩ T k−1W1 = {0}. This proves the claim.

In fact, the restriction of T to T k−1W1 is injective. For if Tα = 0 for some nonzero α ∈
T k−1W1, then α ∈ Wk ∩ T−1Wk = Wk−1, contradicting the fact that Wk−1 ∩ T k−1W1 = {0}.
Injectivity of the restriction implies that dimT kW1 = dimT k−1W1 = m.

Now Wk + TWk ⊆ Wk+1 and

dim(Wk + TWk) = dim

k+1
⊕

i=1

T i−1W1 = (k + 1)m = dimWk+1.

It follows that Wk+1 = Wk+TWk =
⊕k+1

i=1 T
i−1W1, completing the proof by induction. Since

dimWd = dimV , it follows that W1 is T -splitting. �
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3. Similarity Class Type and Splitting Subspaces

The similarity class of an operator T is determined by the isomorphism type of the associ-
ated Fq[x]-module on the vector space V in which the action of x is that of T . This module
is isomorphic to a direct sum

k
⊕

i=1

li
⊕

j=1

Fq[x]/(p
λi,j

i ),

where p1, . . . , pk are distinct monic irreducible polynomials and, for each 1 ≤ i ≤ k, the
sequence λi,1 ≥ λi,2 ≥ · · · ≥ λi,li is an integer partition of ni =

∑

j λi,j. Let λi denote
the partition of ni given by the λi,j. The similarity class of T is completely determined
by the finite set of distinct monic irreducible polynomials p1, . . . , pk and the corresponding
partitions λ1, . . . , λk.

Definition 3.1. If di denotes the degree of pi for 1 ≤ i ≤ k in the decomposition above,
then the similarity class type of T is the finite multiset {(d1, λ1), . . . , (dk, λk)}.

Thus, the similarity class type of T keeps track of only the degrees of the polynomials
and the corresponding partitions in the decomposition above. The size of a similarity class
type is the dimension of the vector space on which a corresponding operator is defined. The
notion of similarity class type goes back to the work of Green [15, p. 405] on the characters
of the finite general linear groups. Corollary 3.7 asserts that for fixed integers m and d, the
number σ(m, d;T ) depends only on the similarity class type of T . We begin by showing that
the number of splitting subspaces depends only on the similarity class of T .

Proposition 3.2. Let T and T ′ be similar linear operators on an md-dimensional vector
space V . Then σ(m, d;T ) = σ(m, d;T ′).

Proof. There exists a linear isomorphism S of V such that T ′ = S ◦ T ◦ S−1. Then W is
a splitting subspace for T if and only if SW is a splitting subspace for T ′. It follows that
σ(m, d;T ) = σ(m, d;T ′). �

We begin by recalling some basic facts about lattices. A partially ordered set P is called
a lattice if any two elements a, b ∈ P have a meet (greatest lower bound), denoted by
a ∧ b, and a join (least upper bound), denoted a ∨ b. We denote by L(T ), the set of all
T -invariant subspaces of V . Clearly, L(T ) is a lattice with subspaces ordered by inclusion,
with intersection as meet and linear sum as join. A lattice homomorphism is a mapping
between lattices that preserves meets and joins. Two lattices are isomorphic if there exists
a bijective lattice homomorphism between them.

Let p =
∏k

i=1 pi
ni denote the canonical factorization of the minimal polynomial p of an

operator T into distinct irreducible factors pi(1 ≤ i ≤ k). Let Vi = {α ∈ V : pi(T )
niα = 0}.

Then Vi is a T -invariant subspace of V and

V =
k
⊕

i=1

Vi.

This is the primary decomposition of V . We call an operator primary or p-primary if its
minimal polynomial is a power of the irreducible polynomial p. Denote by Ti the restriction
of T to Vi. Then Ti is a linear operator on Vi. It is known [6, Thm. 1] that the lattice L(T )



SPLITTING SUBSPACES OF LINEAR OPERATORS OVER FINITE FIELDS 7

is the direct product of the lattices L(Ti), i.e.,

L(T ) =

k
∏

i=1

L(Ti).

Thus, for each U ∈ L(T ), there exists precisely one sequence (U1, . . . , Uk) ∈
∏k

i=1 L(Ti) such
that U = U1 ⊕ · · · ⊕ Uk. Consequently, it suffices to study the lattices L(Ti) corresponding
to the primary components Vi, 1 ≤ i ≤ k.

Proposition 3.3. If T and T ′ are similar then there exists a dimension preserving isomor-
phism between L(T ) and L(T ′).

Proof. Let S be an invertible transformation such that T ′ = S ◦ T ◦ S−1. Then W is T -
invariant if and only if SW is T ′-invariant. Therefore the map W 7→ SW is a dimension
preserving lattice isomorphism from L(T ) to L(T ′). �

Theorem 3.4. Let T be a linear operator on a vector space V over a field F such that T is
p-primary with p separable. Let T = S + Q denote the Jordan-Chevalley decomposition of
T into its semi-simple part S and nilpotent part Q. Let K be the algebra of polynomials in
S over F . Then K is a field isomorphic to F [x]/(p(x)), V is naturally a K-vector space, T
is K-linear, and LF (T ) = LK(T ) = LK(Q).

Proof. See [6, Thm. 6]. �

The above theorem applies to every primary operator defined over a finite field since
irreducible polynomials in this setting are separable.

Theorem 3.5. Let T and T ′ be linear operators of the same similarity class type defined on
a vector space V over Fq. Then there exists a dimension preserving isomorphism between
L(T ) and L(T ′).

Proof. It suffices to prove the result when T and T ′ are primary operators. Let T be p-primary
and T ′ be p′-primary. Let T = S+Q and T ′ = S ′+Q′ where S and S ′ are semi-simple while
Q and Q′ are nilpotent. Further, let K and K ′ be the algebras of polynomials in S and S ′

respectively over Fq. Theorem 3.4 implies that the fields K and K ′ are isomorphic since p
and p′ are irreducible polynomials over Fq of the same degree. Further, LFq

(T ) = LK(Q)
and LFq

(T ′) = LK ′(Q′). Since T and T ′ are of same similarity class type, it follows that
their nilpotent parts Q and Q′ are also of the same type. Thus Q and Q′ are similar. By
Proposition 3.3 and the fact that K ∼= K ′, we obtain a dimension preserving isomorphism
between LK(Q) and LK ′(Q′). �

Remark 3.6. In light of the above theorem, given q, we may define the number of invariant
subspaces of dimension k of a similarity class type τ to be the number of invariant subspaces
of dimension k of some operator T of type τ over Fq.

Corollary 3.7. Suppose T and T ′ are two operators of the same similarity class type defined
on an md-dimensional vector space over Fq.Then σ(m, d;T ) = σ(m, d;T ′).

Proof. The sets [(a1, a1), (a2, a2), . . . , (ar, ar)]T corresponding to base cases in the recursion
of Lemma 2.6 consist of flags of invariant subspaces (W1, . . . ,Wr) such that dimWi = ai and
Wi ⊇ Wi+1 for 1 ≤ i ≤ r− 1. The existence of a dimension preserving isomorphism between
L(T ) and L(T ′) ensures that the base cases coincide:

|[(a1, a1), (a2, a2), . . . , (ar, ar)]T | = |[(a1, a1), (a2, a2), . . . , (ar, ar)]T ′|.
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Therefore

|[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]T | = |[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]T ′| ,(2)

whenever the two quantities are defined. In particular, by Proposition 2.7, we must have
σ(m, d;T ) = σ(m, d;T ′). �

Corollary 3.8. Let T be a linear operator on an md-dimensional vector space V over Fq

and suppose c ∈ Fq. If I denotes the identity on V , then σ(m, d;T ) = σ(m, d;T + cI).

Proof. This follows from Corollary 3.7 as T and T+cI have the same similarity class type. �

4. Cyclic Nilpotent Operators

In this section, we determine the number of splitting subspaces of a cyclic nilpotent opera-
tor by guessing a formula that satisfies the recursion in Lemma 2.6. The following proposition
will prove useful in the computation of base cases.

Proposition 4.1. Let T be a cyclic p-primary operator on a vector space U of dimension
ad where d = deg p. Then

L(T ) =
{

ker p(T )j : 0 ≤ j ≤ a
}

.

Proof. See [6, Lem. 2]. �

Suppose T is a cyclic nilpotent operator on V and dimV = N . By Proposition 4.1, there
is precisely one T -invariant subspace of dimension k for each integer 0 ≤ k ≤ dim V , namely,
the kernel of T k. As restrictions of cyclic operators to invariant subspaces are cyclic as well,
it follows that

|[(a1, a1), (a2, a2), . . . , (ar, ar)]T | = 1 (N ≥ a1 ≥ a2 ≥ . . . ≥ ar ≥ 0).

We require a few lemmas before we proceed to solve the recursion. In what follows, the
notation

∑

s signifies a sum taken as s varies over all integers with the convention that the
q-binomial coefficient

[

n
k

]

q
is zero whenever either n or k is negative, or when k does not lie

between 0 and n.

Lemma 4.2. For integers a, b, c, we have [1, p. 42]
[

a

b

]

q

[

b

c

]

q

=

[

a

c

]

q

[

a− c

b− c

]

q

.

Lemma 4.3. For nonnegative integers a, b, r, the q-Vandermonde identity [2, Thm. 3.4]
holds:

[

a+ b

r

]

q

=
∑

s

[

a

s

]

q

[

b

r − s

]

q

qs(b−r+s).

Lemma 4.4. For nonnegative integers a ≥ d ≥ b ≥ c, we have

∑

s

[

a− b

b− s

]

q

[

b− c

s− c

]

q

[

a− 2b+ s

d− 2b+ s

]

q

q(b−s)2 =

[

a− b

d− b

]

q

[

d− c

b− c

]

q

.
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Proof. By the q-Vandermonde identity,
∑

s

[

d

d− s

]

q

[

b− c

s

]

q

qs
2

=

[

d+ b− c

d

]

q

.

∴
∑

s

[

a

d

]

q

[

d

s

]

q

[

b− c

s

]

q

qs
2

=

[

a

d

]

q

[

d+ b− c

d

]

q

.

Now apply Lemma 4.2 and replace s by b− s to obtain

∑

s

[

a

s

]

q

[

a− s

d− s

]

q

[

b− c

s

]

q

qs
2

=

[

a

d

]

q

[

d+ b− c

d

]

q

.

∴

∑

s

[

a

b− s

]

q

[

a− b+ s

d− b+ s

]

q

[

b− c

s− c

]

q

q(b−s)2 =

[

a

d

]

q

[

d+ b− c

d

]

q

.

Replacing a by a− b and d by d− b results in the statement of the lemma. �

Lemma 4.5. For nonnegative integers a ≥ b ≥ d ≥ c,
∑

s

[

a− b

b− s

]

q

[

b− c

s− c

]

q

[

s− c

d− c

]

q

q(b−s)2 =

[

b− c

d− c

]

q

[

a− d

b− d

]

q

.

Proof. By the q-Vandermonde identity, we have

∑

s

[

a− b

b− s

]

q

[

b− d

s− d

]

q

q(b−s)2 =

[

a− d

b− d

]

q

.

∴

∑

s

[

a− b

b− s

]

q

[

b− c

d− c

]

q

[

b− d

s− d

]

q

q(b−s)2 =

[

b− c

d− c

]

q

[

a− d

b− d

]

q

.

The result follows from Lemma 4.2 since
[

b− c

d− c

]

q

[

b− d

s− d

]

q

=

[

b− c

s− c

]

q

[

s− c

d− c

]

q

.

�

We now solve the recursion stated in Lemma 2.6 for a cyclic nilpotent operator.

Theorem 4.6. Let T be a cyclic nilpotent operator on V with dimV = N and suppose

N ≥ a1,1 ≥ a1,2 ≥ a2,1 ≥ a2,2 ≥ · · · ≥ ar,1 ≥ ar,2 ≥ 0,

a0,1 = a0,2 = N, ar+1,1 = ar+1,2 = 0.

Then

|[(a1,1, a1,2), . . . , (ar,1, ar,2)]| =
r
∏

i=1

[

ai−1,1 − ai,1
ai,1 − ai,2

]

q

[

ai,1 − ai+1,1

ai,2 − ai+1,1

]

q

q(ai,1−ai,2)
2

.(3)

Proof. We show that the formula stated above satisfies the recursion of Lemma 2.6 by com-
puting separately the sums over the sets A and B defined there. Substitute the expression
for |[(a1,1, a1,2), . . . , (ar,1, ar,2)]| given by (3) into the recursion to obtain

L =
∑

(j1,...,jr)∈A

|[(a1,2, j1), (a2,2, j2), . . . , (ar,2, jr)]|
r
∏

i=1

[

ai−1,2 − (2ai,2 − ji)

ai,1 − (2ai,2 − ji)

]

q
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=
r
∏

i=1

∑

ji

[

ai−1,2 − ai,2
ai,2 − ji

]

q

[

ai,2 − ai+1,2

ji − ai+1,2

]

q

[

ai−1,2 − (2ai,2 − ji)

ai,1 − (2ai,2 − ji)

]

q

q(ai,2−ji)
2

.

Apply Lemma 4.4 to each sum in the above expression, followed by Lemma 4.2 to obtain

L =

r
∏

i=1

[

ai−1,2 − ai,2
ai,1 − ai,2

]

q

[

ai,1 − ai+1,2

ai,2 − ai+1,2

]

q

=

r
∏

i=1

[

ai−1,2

ai,1

]

q

[

ai,1
ai,2

]

q
[

ai−1,2

ai,2

]

q

[

ai,1
ai,2

]

q

[

ai,2
ai+1,2

]

q
[

ai,1
ai+1,2

]

q

=
1

[

N
a1,2

]

q

r
∏

i=1

[

ai,1
ai,2

]2

q

[

ai−1,2

ai,1

]

q
[

ai,1
ai+1,2

]

q

.

On the other hand,

R =
∑

(k1,...,kr)∈B

|[(a1,1, k1), (a2,1, k2), . . . , (ar,1, kr)]|

r
∏

i=1

[

ki − ai+1,1

ai,2 − ai+1,1

]

q

=
r
∏

i=1

∑

ki

[

ai−1,1 − ai,1
ai,1 − ki

]

q

[

ai,1 − ai+1,1

ki − ai+1,1

]

q

[

ki − ai+1,1

ai,2 − ai+1,1

]

q

q(ai,1−ki)
2

.

Apply Lemma 4.5 to each sum in the above expression, followed by Lemma 4.2 to obtain

R =

r
∏

i=1

[

ai,1 − ai+1,1

ai,2 − ai+1,1

]

q

[

ai−1,1 − ai,2
ai,1 − ai,2

]

q

=

r
∏

i=1

[

ai,1
ai,2

]

q

[

ai,2
ai+1,1

]

q
[

ai,1
ai+1,1

]

q

[

ai−1,1

ai,1

]

q

[

ai,1
ai,2

]

q
[

ai−1,1

ai,2

]

q

=

[

N

a1,1

]

q

r
∏

i=1

[

ai,1
ai,2

]2

q

[

ai,2
ai+1,1

]

q
[

ai−1,1

ai,2

]

q

.

Therefore

L

R
=

1
[

N
a1,2

]

q

[

N
a1,1

]

q

[

N

a1,1

]

q

[

N

a1,2

]

q

= 1.

Hence L = R, proving that the given expression satisfies the recurrence. The expression
in (3) satisfies the base cases since

|[(a1, a1), (a2, a2), . . . , (ar, ar)]| =

r
∏

i=1

[

ai−1 − ai
0

]

q

[

ai − ai+1

ai − ai+1

]

q

q(ai−ai)
2

= 1.

This completes the proof. �

The following result gives the number of splitting subspaces for cyclic nilpotent operators.

Corollary 4.7. When N ≥ md, we have the equality

|[((d− 1)m, (d− 2)m), . . . , (2m,m), (m, 0)]| =

[

N −md+m

m

]

q

qm
2(d−1).

In particular, when N = md,

|[((d− 1)m, (d− 2)m), . . . , (2m,m), (m, 0)]| = qm
2(d−1).
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Proof. By Theorem 4.6, we have

|[((d− 1)m, (d− 2)m), ((d− 2)m, (d− 3)m), . . . , (2m,m), (m, 0)]|

=

[

N − (d− 1)m

m

]

q

qm
2

d−1
∏

i=2

(

[

m

m

]

q

[

m

0

]

q

qm
2

)

=

[

N −md+m

m

]

q

qm
2(d−1). �

Combining the above corollary with Corollary 3.8, we obtain the following result.

Corollary 4.8. Let T be a linear operator on an md-dimensional vector space over Fq. If

T is cyclic and p-primary for some linear polynomial p, then σ(m, d;T ) = qm
2(d−1).

Remark 4.9. One of the main results of Chen and Tseng [9, Cor. 3.4] is the computation of
σ(m, d;T ) when the similarity class type of T is {(md, (1))}. The above corollary corresponds
to the similarity class type {(1, (md))}.

Our results may be used to enumerate invertible matrices of a special form. Recall that
the number of ordered bases for an m-dimensional vector space over Fq is given by γm(q) :=
(qm − 1) . . . (qm − qm−1).

Corollary 4.10. The number of invertible md×md matrices over Fq of the form

(4)



















a1,1 · · · a1,m 0 · · · 0 · · · 0 · · · 0
a2,1 · · · a2,m a1,1 · · · a1,m · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
ad,1 · · · ad,m ad−1,1 · · · ad−1,m · · · a1,1 · · · a1,m
...

...
...

...
...

...
...

...
...

...
amd,1 · · · amd,m amd−1,1 · · · amd−1,m · · · amd−d+1,1 · · · amd−d+1,m



















equals γm(q) · q
m2(d−1).

Proof. Let V = F
md
q viewed as a vector space over Fq. Let T denote the right shift operator

T (x1, . . . , xmd) = (0, x1, . . . , xmd−1). Then T is cyclic and nilpotent. If α1, . . . , αm denote the
first m columns of the matrix (4) above, then the matrix is nonsingular if and only if the set

{α1, . . . , αm, Tα1, . . . , Tαm, . . . , T
d−1α1, . . . , T

d−1αm}

is linearly independent. In other words {α1, . . . , αm}may be characterized as an ordered basis
for somem-dimensional T -splitting subspace. Since number of such bases is γm(q)·σ(m, d;T ),
the result now follows from Corollary 4.8. �

A result in a similar vein to the above corollary is proved by Gluesing-Luerssen and
Ravagnani [14, Cor. 7.2] who find an expression for the number of nonsingular matrices over
Fq whose nonzero entries lie within a Ferrers shape.

5. Polynomiality of σq(m, d; τ)

Given a positive integer n, let β(q, n) denote the number of irreducible polynomials of
degree n over Fq. It is well known that

β(q, n) =
1

n

∑

d|n

µ(d)qn/d,
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where µ denotes the classical Möbius function. In fact β(n, d) also counts the number
of so called primitive necklaces of length n over a q-ary alphabet [18, Thm. 7.1]. This
interpretation entails the fact that, for n fixed, the number β(q, n) is strictly increasing as a
function of q.

Given a similarity class type τ , let q0(τ) denote the smallest prime power q̃ for which there
exists a linear operator of type τ over the field Fq̃. If q ≥ q0(τ) is a prime power then it
follows from the property of β(q, n) mentioned above that there exists a linear operator of
type τ over Fq.

Definition 5.1. If τ is a similarity class type of size md and q ≥ q0(τ), then σq(m, d; τ)
denotes the number of m-dimensional splitting subspaces for a linear operator of similarity
class type τ defined over an Fq-vector space of dimension md.

By Corollary 3.7, the quantity σq(m, d; τ) is well-defined. We will prove that σq(m, d; τ)
is a polynomial in q. In view of (2), given a similarity class type τ , and a prime power
q ≥ q0(τ), we may define

|[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]q,τ | := |[(a1,1, a1,2), (a2,1, a2,2), . . . , (ar,1, ar,2)]T | ,

where T is an operator of similarity class type τ defined over some Fq vector space.

Theorem 5.2. For each similarity class type τ and nonnegative integers ai,j(1 ≤ i ≤ r; 1 ≤
j ≤ 2), the quantity

|[(a1,1, a1,2), . . . , (ar,1, ar,2)]q,τ |

is a polynomial in q for q ≥ q0(τ).

Proof. As the q-binomial coefficients are polynomials in q, it suffices to show that the base
cases in the recursion of Lemma 2.6 are polynomials in q for the similarity class type τ . For
any operator T , define

φ(a1, . . . , ar;T ) := |[(a1, a1), . . . , (ar, ar)]T |,

and, for each similarity class type τ , let

φq(a1, . . . , ar; τ) := |[(a1, a1), . . . , (ar, ar)]q,τ | for q ≥ q0(τ).

We first prove that φq(a1, . . . , ar; τ) is a polynomial in q whenever τ is primary by induction
on r. Suppose τ = {(d, λ)} for some partition λ. The base case is r = 1. Now φq(a1; τ) is the
number of invariant subspaces of dimension a1 corresponding to τ . It follows from the work
of Fripertinger [11, Thm. 2] that the number of invariant subspaces of a given dimension
for a primary similarity class type on an Fq-vector space is a rational function of q. Such
a function is necessarily a polynomial in q since it takes integer values at infinitely many
integers [8, Prop. X.1.1]. This settles the base case.

For the inductive step suppose r > 1. For each prime power q, let Tq be an operator of
type τ defined over Fq. For each partition µ whose Young diagram is contained in that of
λ (denoted µ ⊆ λ), let gq(λ, µ, d) denote the number of subspaces W ∈ L(Tq) for which the
similarity class type of the restriction of Tq to W is {(d, µ)}. For λ and µ fixed, the quantity
gq(λ, µ, d) is a rational function [11, Thm. 1] and, in fact, a polynomial in qd. For each
positive integer k, define

Dτ (k) := {µ : µ ⊆ λ and |µ| = k/d},
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and set δτ (k) = |Dτ (k)|. If we write Dτ (a1) = {µi}1≤i≤δτ (a1) then, by considering restrictions
of Tq to invariant subspaces of dimension a1, it follows that

φ(a1, . . . , ar;Tq) =

δτ (a1)
∑

j=1

gq(λ, µj, d) φ(a2, . . . , ar;T
(j)
q ),

where T
(j)
q is an operator of similarity class type {(d, µj)} for each j ≤ δτ (a1). Since the

above equation holds for each prime power q, it follows that

φq(a1, . . . , ar; τ) =

δτ (a1)
∑

j=1

gq(λ, µj, d) φq(a2, . . . , ar; τj),

where τj = {(d, µj)}. By the inductive hypothesis, each φq(a2, . . . , ar; τj) is a polynomial in
q. Therefore φq(a1, . . . , ar; τ) is a polynomial in q whenever τ is primary.

Now suppose τ is an arbitrary similarity class type and let q ≥ q0(τ) be a prime power. Let
T (= Tq) be an operator of similarity class type τ defined on some vector space V over Fq. Let
V = V1 ⊕ · · · ⊕ Vs denote the decomposition of V into primary parts Vi with dimVi = di for
each i. Suppose Ti denotes the restriction of T to Vi for i ≤ r. Given any flag W1 ⊇ · · · ⊇ Wr

in L(T ), with dimWi = ai, write Wi = Ui1 ⊕ · · · ⊕ Uis with Uij ∈ Vj for 1 ≤ i ≤ r and
1 ≤ j ≤ s. If dimUij = dij, then it follows that

ai =

s
∑

j=1

dij (1 ≤ i ≤ r) and dj ≥ d1j ≥ · · · ≥ drj (1 ≤ j ≤ s).

Counting flags within the primary parts and summing up, we obtain

φ(a1, . . . , ar;T ) =
∑

∑s
j=1 dij=ai
d1j≤dj

s
∏

j=1

φ(d1j, . . . , drj;Tj),

where the dij’s vary over nonnegative integers. It follows that

φq(a1, . . . , ar; τ) =
∑

∑s
j=1

dij=ai
d1j≤dj

s
∏

j=1

φq(d1j, . . . , drj; τj),

whenever q ≥ q0(τ) with τj denoting the similarity class type of Tj (1 ≤ j ≤ s). Since
τj is primary for each j ≤ s, the expression φq(d1j , . . . , drj; τj) is a polynomial in q and,
consequently, so is φq(a1, . . . , ar; τ). �

Corollary 5.3. If m, d, τ are fixed, then σq(m, d; τ) is a polynomial in q.

Proof. Follows from Theorem 5.2 and Proposition 2.7. �

Remark 5.4. The polynomial gq(λ, µ, d) appearing in the proof of the theorem above is
closely related to the number of subgroups of type µ in a finite abelian p-group of type
λ, denoted αλ(µ; p). Delsarte [10] proved that αλ(µ; p) is a polynomial in p. We refer to
the expository account of Butler [7, Lem. 1.4.1] for the details. It can be shown that
gq(λ, µ, d) = αλ(µ; q

d).
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