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AVERAGES AND MAXIMAL AVERAGES OVER PRODUCT j-VARIETIES IN

FINITE FIELDS

DOOWON KOH AND SUJIN LEE

ABSTRACT. We study both averaging and maximal averaging problems for Product j-

varieties defined by Π j = {x ∈ F
d
q :

∏d
k=1

xk = j} for j ∈ F
∗
q, where F

d
q denotes a d-dimensional

vector space over the finite field Fq with q elements. We prove the sharp Lp → Lr bounded-

ness of averaging operators associated to Product j-varieties. We also obtain the optimal

Lp estimate for a maximal averaging operator related to a family of Product j-varieties

{Π j} j∈F∗q
.

1. INTRODUCTION

In recent year, problems in Euclidean Harmonic analysis have been studied in the finite

field setting, where the Euclidean structure is replaced by that of a vector space over

a finite field. This approach may be efficient to relate analysis problems to well-studied

problems in other areas such as the number theory and additive combinatorics. Moreover,

problems in finite fields give us unique, interesting points as well as difficulties inherent

in them.

In 1996, Wolff [21] suggested the finite field analogue of the Kakeya conjecture. In 2008,

Dvir [3] solved this conjecture by using the polynomial method which is based on work

in computer science. It has been applied to the Euclidean problems (for example, see

[7, 5, 6]). In 2002, Mockenhaupt and Tao [18] initially posed and studied the finite field re-

striction problem for algebraic varieties. Much attention has been given to this problem,

in part because there exist some different restriction phenomena between the Euclidean

problem and its finite field analog. We refer readers to [4, 15, 17, 13, 16, 12, 10, 20, 11, 14]

for background and recent development on the finite field restriction estimates for alge-

braic varieties. For the setting of rings of integers, see [8, 9].

More recently, Carbery, Stones, and Wright [2] introduced further harmonic analysis

problems in the finite field setting. Among other things, they provided sharp results on
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the finite field (maximal) averaging problems associated to certain k-dimensional vari-

eties generated by vector-valued polynomials. Stones [19] addressed a sharp maximal

theorem for dilation of quadratic surfaces in finite fields.

In this paper we will extend their work to more complicated varieties than quadratic

surfaces. To precisely state our results, we need some notation and the definitions of the

finite field averaging and maximal averaging problems. Let Fd
q be a d-dimensional vector

space over a finite field with q elements. Throughout this paper, we assume that q is an

odd prime power. Namely, the characteristic of Fq is strictly greater than two. We endow

the space F
d
q with normalized counting measure, denoted by dx, which satisfies

∫

x∈Fd
q

f (x) dx= q−d
∑

x∈Fd
q

f (x),

where f is a complex valued function on F
d
q . For 1≤ s<∞, we define

‖ f ‖Ls(Fd
q ) :=


q−d

∑

x∈Fd
q

| f (x)|s




1/s

and ‖ f ‖L∞(Fd
q ) :=maxx∈Fd

q
| f (x)|.

Let V ⊂ F
d
q be an algebraic variety, a set of common solutions to polynomial equations.

Normalized surface measure on V , denoted by dσ, is associated to the variety V . Recall

that the surface measure dσ is defined by the relation
∫

F
d
q

f (x) dσ(x)=
1

|V |

∑

x∈V

f (x),

where |V | denotes the cardinality of V .

The convolution function f ∗ g of functions f , g on F
d
q is defined by

f ∗ g(x) :=
1

qd

∑

y∈Fd
q

f (x− y)g(y).

Taking g = dσ, we see that

f ∗dσ(x)=
1

|V |

∑

y∈V

f (x− y).

With the notation above, the averaging operator AV associated to V is defined by

AV f (x) := f ∗dσ(x),

where both f and AV f are complex-valued functions defined on F
d
q .

The following averaging problem for V is first posed by Carbery-Stones-Wright [2].
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Problem 1.1 (Averaging Problem). Let dσ denote normalized surface measure on an

algebraic variety V in F
d
q . Find all exponents 1 ≤ p, r ≤∞ such that for some constant C

depending only on p, r, d, and V , the inequality

(1.1) ‖ f ∗dσ‖Lr(Fd
q ) ≤ C‖ f ‖Lp(Fd

q ),

holds for all functions f on F
d
q .

The most important condition in the finite field averaging problem is that the operator

norm is independent of the size of the underlying finite field Fq. We will write AV (p →

r). 1 if the averaging estimate (1.1) holds.

For each 1 ≤ k ≤ d −1, Carbery-Stones-Wright [2] provided concrete k-dimensional sur-

faces in F
d
q for which they obtained the optimal result on the averaging problem. In-

deed, for 1 ≤ k ≤ d−1, they considered a variety Vk as the image of the polynomial map

Pk : Fk
q → F

d
q defined by

(1.2) Pk(t)= (t1, t2, . . . , tk, t2
1+·· ·+ t2

k, t3
1+·· ·+ t3

k, . . . , td−k+1
1 +·· ·+ td−k+1

k ),

and proved that AVk
(p → r) . 1 if and only if (1/p,1/r) is contained in the convex hull

of points (0,0), (0,1), (1.1), and ( d
2d−k

, d−k
2d−k

). We notice that the following Fourier decay

estimate of the surface measure dσk on Vk was one of the most important ingredients in

proving the optimal averaging estimate related to Vk:

(1.3) max
m∈Fd

q\{(0,...,0)}

∣∣(dσk)∨(m)
∣∣ := max

m∈Fd
q\{(0,...,0)}

∣∣∣∣∣
1

qk

∑

x∈Vk

χ(m · x)

∣∣∣∣∣≤ Cq− k
2 ,

where C is independent of q, and χ denotes a nontrivial additive character of Fq.

In [2], Carbery-Stones-Wright also posed the maximal averaging problem for a family

of algebraic varieties in F
d
q . Let A be an indexing set. For each α ∈ A, let dσα denote

normalized surface measure on an algebraic variety Vα in F
d
q . Given any function f :

F
d
q →C, the maximal averaging operator M is defined by

M f (x) := sup
α∈A

| f ∗dσα(x)| for x ∈ F
d
q .

Problem 1.2 (Maximal Averaging Problem). Find all exponents 1≤ p ≤∞ such that the

inequality

‖M f ‖Lp(Fd
q ) ≤ C‖ f ‖Lp(Fd

q )

holds for all complex-valued functions f on F
d
q , where the constant C is independent of q.

Carbery-Stones-Wright [2] introduced a family of varieties in F
d
q for which they deduced

the optimal result on the maximal averaging problem. More precisely, they first consid-

ered an indexing set A with |A| = qr for some 0≤ r ≤ d−k. For each α ∈A, letting Mα be
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an invertible d × d matrix over Fq and letting bα be a vector in F
d
q , they considered the

following k-dimensional variety

Vk,α := {Mαx+bα ∈ F
d
q : x ∈Vk},

where Vk denotes the variety defined as in (1.2) and we identify a vector x ∈ F
d
q with a

d×1 matrix. With the notation above, Carbery-Stones-Wright [2] proved that
∥∥∥∥sup
α∈A

| f ∗dσk,α|

∥∥∥∥
Lp(Fd

q )

≤ C‖ f ‖Lp(Fd
q )

if and only if r ≤ k and p ≥
r+k

k
, where dσk,α denotes the normalized surface measure on

the variety Vk,α. Like the averaging problem for Vk, the Fourier decay estimate (1.3) was

mainly used in deducing the optimal result on the maximal averaging problem.

The main purpose of this paper is to provide a complete solution of the averaging and

maximal averaging problems related to certain varieties for which the Fourier decay es-

timate (1.3) is not satisfied. To this end, for each j ∈ F
∗
q, we consider an algebraic variety

Π j in F
d
q defined by

Π j := {x= (x1, x2, . . . , xd) ∈ F
d
q :

d∏

k=1

xk = j}.

We will call the variety Π j as Product j-variety. For each j ∈ F
∗
q, let dµ j be normalized

surface measure on Product j-variety Π j. Unlike the Fourier decay estimate given in

(1.3), the bound of |(dµ j)
∨(m)| becomes worse whenever we take any vector m such that

the number of zero components of m= (m1, m2, . . . , md) is large.

Definition 1.3. For each m ∈ F
d
q , we denote by ℓm the number of zero components of m.

In fact, the inverse Fourier transform of the surface measure was explicitly computed as

follows.

Lemma 1.4 ([1], Lemma 3.1). For each j ∈ F
∗
q, let dµ j denote normalized surface measure

on Product j-variety Π j in F
d
q . Then we have

(1.4) (dµ j)
∨(m)= (−1)d−ℓm (q−1)−(d−ℓm) if 1≤ ℓm ≤ d.

In addition, if ℓm = 0, then |(dµ j)
∨(m)|. q−

(d−1)
2 .

We may consider Product j-variety Π j in F
d
q as a (d−1)-dimensional surface since |Π j| ∼

qd−1. Notice that Lemma 1.4 implies that for every j 6= 0,

max
m∈Fd

q\{(0,...,0)}

∣∣(dµ j)
∨(m)

∣∣∼ q−1.
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Comparing this estimate with (1.3), we see that if d > 3, then the Fourier decay on Prod-

uct j-variety Π j is much worse than that on Vd−1. For this reason, the same argument

used by Carbery-Stones-Wright [2] may not give us optimal results on both the averag-

ing and maximal averaging problem related to Product j-varieties Π j. However, our first

result below indicates that even though the Fourier decay estimate on Product j-variety

Π j is worse than that on the Vd−1, both varieties have the same mapping properties of

the averaging operators.

Theorem 1.5. For each j ∈ F
∗
q, let dµ j denote the normalized surface measure on Product

j-variety Π j. Then AΠ j
(p → r) . 1 if and only if (1/p,1/r) lies on the convex hull of points

(0,0), (0,1), (1.1), and ( d
d+1

, 1
d+1

).

Our next result is related to maximal averages associated to a family {Π j} j∈F∗q of Product

j-varieties Π j.

Theorem 1.6. For each j ∈ F
∗
q, let dµ j denote the normalized surface measure on Product

j-variety Π j. Then there is a constant C independent of q such that
∥∥∥∥∥sup

j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
Lp(Fd

q )

≤ C‖ f ‖Lp(Fd
q )

if and only if p ≥
d

d−1
.

2. NECESSARY CONDITIONS

In this section, we prove the necessary conditions for the averaging and maximal averag-

ing estimates given in Theorem 1.5 and Theorem 1.6, respectively. We begin by proving

the following necessary conditions for the boundedness of the averaging operator AΠ j

associated with Product j-variety Π j.

Proposition 2.1. For each j ∈ F
∗
q, let dµ j denote the normalized surface measure on Prod-

uct j-variety Π j. Suppose that the following inequality

(2.1) ‖ f ∗dµ j‖Lr(Fd
q ) . ‖ f ‖Lp(Fd

q )

holds for all functions f on F
d
q . Then (1/p,1/r) is contained in the convex hull of points

(0,0), (0,1), (1.1), and ( d
d+1

, 1
d+1

).
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Proof. We test the inequality (2.1) with f = δ0, where δ0(x) = 1 if x = (0, . . . ,0), and 0

otherwise. Taking f = δ0, we have

‖ f ‖Lp(Fd
q ) =


 1

qd

∑

x∈Fd
q

|δ0(x)|p




1
p

= q
− d

p

and

‖ f ∗dµ j‖Lr(Fd
q ) =


 1

qd

∑

x∈Fd
q

|(δ0∗dµ j)(x)|r




1
r

=

(
1

qd

∑

x∈Π j

|Π j|
−r

) 1
r

∼ q−
d
r +

(d−1)(1−r)
r .

Hence, invoking the assumption (2.1) we obtain a necessary condition:

(2.2)
1

r
≥

d

p
−d+1.

Since the averaging operator is self-adjoint, we also have

1

p′
≥

d

r′
−d+1

which is equivalent to

(2.3)
1

r
≥

1

dp
.

Since 1≤ p, r ≤∞, the proposition follows from (2.2) and (2.3). �

We now state and prove the necessary conditions for the boundedness of the maximal

averaging operator given in Theorem 1.6.

Proposition 2.2. Assume that the following maximal averaging estimate for a family of

Product j-varietiesΠ j holds for all functions f on F
d
q :

(2.4)

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
Lp(Fd

q )

. ‖ f ‖Lp(Fd
q ).

Then we have

p ≥
d

d−1
.

Proof. As in the proof of Proposition 2.1, we test the inequality (2.4) with f = δ0. Then it

follows that

‖ f ‖Lp(Fd
q ) = q

−
d
p .
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On the other hand, we have

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
Lp(Fd

q )

≥




1

qd

∑

x∈
⋃

j∈F∗q

Π j

(
sup
j∈F∗q

|(δ0 ∗dµ j)(x)|

)p




1
p

Since (δ0∗dµ j)(x)= 1
|Π j |

1Π j
(x)∼ q−(d−1)1Π j

(x), we have

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
Lp(Fd

q )

≫ q
−

d
p q−d+1




∑

x∈
⋃

j∈F∗q

Π j

(
sup
j∈F∗q

1Π j
(x)

)p




1
p

∼ q
−

d
p q−d+1q

d
p = q−d+1.

Thus, the proposition follows from the hypothesis (2.4). �

3. SUFFICIENT CONDITIONS

Theorem 3.1. If (1/p,1/r) is contained in the convex hull of points (0,0), (0,1), (1,1) and

( d
d+1

, 1
d+1

), then the averaging inequality

(3.1) ‖ f ∗dµ j‖Lr(Fd
q ) . ‖ f ‖Lp(Fd

q )

holds for all functions f on F
d
q and all j 6= 0.

Proof. Since ( f ∗ dµ j)(x) = |Π j|
−1 ∑

x∈Π j
f (x) for all x ∈ F

d
q , it is clear that the inequality

(3.1) holds in the case when (1/p,1/r) = (0,0). By a direct computation, it is also true for

(1/p,1/r)= (1,1). Thus, by using an interpolation theorem and nesting property of norms,

we only need to verify the inequality (3.1) for p =
d+1

d
and r = d +1. In other words, we

aim to prove that the averaging estimate

(3.2) ‖ f ∗dµ j‖Ld+1(Fd
q ) . ‖ f ‖

L
d+1

d (Fd
q )

holds for all function f on F
d
q . For each m ∈ F

d
q , let ℓm be the number of zero components

of the vector m. Now, for each k = 0,1, . . ., d, we define

Nk := {m ∈ F
d
q : ℓm = k}.

It is obvious that Fd
q =

d⋃
k=0

Nk. Since (dµ j)
∨
= 1N0

(dµ j)
∨+

d∑
k=1

1Nk
(dµ j)

∨, we can decompose

dµ j as

(3.3) dµ j = 1̂N0
∗dµ j +

d∑

k=1

1̂Nk
∗dµ j.

By the definition of Nk and the first part (1.4) of Lemma 1.4, we see that for k = 1,2, . . ., d,

1Nk
(dµ j)

∨
= (−1)d−k(q−1)−d+k1Nk

,
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which in turn gives us

1̂Nk
∗dµ j = (−1)d−k(q−1)−d+k1̂Nk

.

This can be combined with (3.3) to see that

(3.4) dµ j = 1̂N0
∗dµ j +

d∑

k=1

(−1)d−k(q−1)−d+k1̂Nk
.

For each j 6= 0, let Ω j = 1̂N0
∗dµ j. We have

‖ f ∗dµ j‖Ld+1(Fd
q ) ≤ ‖ f ∗Ω j‖Ld+1(Fd

q )+

d∑

k=1

(q−1)−d+k
‖ f ∗ 1̂Nk

‖Ld+1(Fd
q ).

Hence, to prove (3.2), it will be enough to verify the following estimates:

(3.5) ‖ f ∗Ω j‖Ld+1(Fd
q ) . ‖ f ‖

L
d+1

d (Fd
q )

,

and for every k = 1,2, . . ., d,

(3.6) (q−1)−d+k
‖ f ∗ 1̂Nk

‖Ld+1(Fd
q ) . ‖ f ‖

L
d+1

d (Fd
q )

.

3.1. proof of the inequality (3.5). We notice that the inequality (3.5) can be obtained

by interpolating the following two estimates:

(3.7) ‖ f ∗Ω j‖L2(Fd
q ) . q− d−1

2 ‖ f ‖L2(Fd
q ),

(3.8) ‖ f ∗Ω j‖L∞(Fd
q ) . q‖ f ‖L1(Fd

q ).

Thus, we only need to show that the inequalities (3.8) and (3.7) hold for any functions f

on F
d
q . We can easily verify the inequality (3.7) by applying the Plancherel theorem and

the second conclusion of Lemma 1.4 as follows:

‖ f ∗Ω j‖L2(Fd
q ) = ‖ f ∨Ω∨

j ‖ℓ2(Fd
q )

=

(
∑

m∈N0

| f ∨(m)|2|(dµ j)
∨(m)|2

) 1
2

. q− d−1
2

(
∑

m∈N0

| f̂ (m)|2

) 1
2

. q− d−1
2 ‖ f̂ ‖ℓ2(Fd

q ) = q− d−1
2 ‖ f ‖L2(Fd

q ).

To prove the inequality (3.8), we first notice by Young’s inequality for convolution func-

tions that

‖ f ∗Ω j‖L∞(Fd
q ) ≤ ‖1̂N0

∗dµ j‖L∞(Fd
q ) ‖ f ‖L1(Fd

q ).
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Then the inequality (3.8) will be established by showing that the inequality

(3.9) max
x∈Fd

q

|(1̂N0
∗dµ j)(x)|. q

holds for all j ∈ F
∗
q. To prove this inequality, we fix x ∈ F

d
q , j ∈ F

∗
q, and observe that

|(1̂N0
∗dµ j)(x)| =

∣∣∣∣∣
1

|Π j|

∑

y∈Π j

1̂N0
(x− y)

∣∣∣∣∣=
∣∣∣∣∣

1

|Π j|

∑

y∈Π j

∑

m∈N0

χ(m · (y− x))

∣∣∣∣∣

≤ |Π j|
−1

∑

y∈Fd
q

∣∣∣∣∣
∑

m∈N0

χ(m · (y− x))

∣∣∣∣∣ = |Π j|
−1

∑

z∈Fd
q

∣∣∣∣∣
∑

m∈N0

χ(m · z)

∣∣∣∣∣

∼ q−d+1
d∑

k=0

∑

y∈Nk

∣∣∣∣∣∣
∑

m1,m2,...,md∈F
∗
q

χ(m · z)

∣∣∣∣∣∣
.

By using the orthogonality of χ and the definition of Nk, we conclude

|(1̂N0
∗dµ j)(x)|. q−d+1

d∑

k=0

|Nk|(q−1)k
∼ q,

where the above similarity follows from the fact that |Nk| ∼ qd−k. This proves the in-

equality (3.9), as required. We have finished the proof of the inequality (3.5).

3.2. proof of the inequality (3.6). By Young’s inequality for convolution functions, we

have

(q−1)−d+k
‖ f ∗ 1̂Nk

‖Ld+1(Fd
q ) ≤ q−d+k

‖ f ‖
L

d+1
d (Fd

q )
‖1̂Nk

‖
L

d+1
2 (Fd

q )
.

Hence, to prove the inequality (3.6), it suffices to show that for each k = 1,2, . . ., d,

‖1̂Nk
‖

L
d+1

2 (Fd
q )
. qd−k.

We will prove this inequality separately in the cases of d = 2 and d ≥ 3.

Case 1: Let d ≥ 3. Since 2 ≤ (d+1)/2 <∞ for d ≥ 3, we can invoke the Hausdorff-Young

inequality to deduce the required estimate. More precisely, we have

‖1̂Nk
‖

L
d+1

2 (Fd
q )
≤ ‖1Nk

‖
ℓ

d+1
d−1 (Fd

q )
= |Nk|

d−1
d+1 ∼ q(d−k) d−1

d+1 ≤ qd−k,

as desired.

Case 2: Let d = 2. We aim to prove that for k = 1,2,

‖1̂Nk
‖

L
3
2 (F2

q)
. q2−k.

For k = 2, it is clear that N2 = {(0,0)}. Hence, the above inequality follows by observing

1̂N2
(x)= 1 for all x ∈ F

2
q. To prove the above inequality for the case of k = 1, we first notice



10 DOOWON KOH AND SUJIN LEE

that

N1 =
(
F
∗
q × {0}

)
∪

(
{0}×F

∗
q

)

which implies that |N1| = 2(q−1). For any x ∈ F
2
q, we have

|N̂1(x)| ≤ |N1| ∼ q.

Therefore, it follows that

‖1̂N1
‖

L
3
2 (F2

q)
≤max

x∈F2
q

|1̂N1
(x)| ∼ q.

This completes the proof of the inequality (3.6). �

Theorem 3.2. If p ≥
d

d−1
, then the following maximal averaging estimate for a family

{Π j} j∈F∗q
of Product j-varieties Π j holds for all functions f on F

d
q :

(3.10)

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
Lp(Fd

q )

. ‖ f ‖Lp(Fd
q ).

Proof. It is not hard to check that for every x ∈ F
d
q ,

sup
j∈F∗q

|( f ∗dµ j)(x)| ≤max
y∈Fd

q

| f (y)|.

Hence, the inequality (3.10) is true for p =∞. By interpolation theorem, it therefore suf-

fices to prove the inequality (3.10) for p =
d

d−1
. Namely, our task is to verify the following

estimate:

(3.11)

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
L

d
d−1 (Fd

q )

. ‖ f ‖
L

d
d−1 (Fd

q )
.

As in (3.4), for each j ∈ F
∗
q, we can write

dµ j =Ω j +

d∑

k=1

(−1)d−k(q−1)−d+k1̂Nk
,

where Ω j := 1̂N0
∗dµ j. Thus we have

∥∥∥∥∥sup
j∈F∗q

| f ∗dµ j|

∥∥∥∥∥
L

d
d−1 (Fd

q )

≤

∥∥∥∥∥sup
j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L

d
d−1 (Fd

q )

+

d∑

k=1

(q−1)−d+k
∥∥ f ∗ 1̂Nk

∥∥
L

d
d−1 (Fd

q )
.

Therefore, to prove (3.11) (namely, to complete the proof of Theorem 3.2), it suffices to

prove the following estimates:

(3.12)

∥∥∥∥∥sup
j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L

d
d−1 (Fd

q )

. ‖ f ‖
L

d
d−1 (Fd

q )
,
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and for every k = 1,2, . . ., d,

(3.13) (q−1)−d+k
∥∥ f ∗ 1̂Nk

∥∥
L

d
d−1 (Fd

q )
. ‖ f ‖

L
d

d−1 (Fd
q )

.

First, let us verify the inequality (3.13). Notice by the Hőlder inequality that if 1 ≤ t1 ≤

t2 ≤∞, then

‖ f ‖Lt1 (Fd
q ) ≤ ‖ f ‖Lt2 (Fd

q ).

By this nesting property of norms, it is not hard to see that the inequality (3.13) follows

from the inequality (3.6).

Finally, we prove the inequality (3.12) which is a direct consequence from interpolating

the following two estimates:

(3.14)

∥∥∥∥∥sup
j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L1(Fd

q )

. q‖ f ‖L1(Fd
q ),

(3.15)

∥∥∥∥∥sup
j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L2(Fd

q )

. q
2−d

2 ‖ f ‖L2(Fd
q ).

�

Hence, to finish the proof, it remains to prove the inequalities (3.14) and (3.15), which

can be done by adapting an argument from [2]. The details are as follows. The inequality

(3.14) follows, because we have
∥∥∥∥∥sup

j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L1(Fd

q )

≤

∥∥∥∥∥| f |∗sup
j∈F∗q

|Ω j|

∥∥∥∥∥
L1(Fd

q )

≤ ‖ f ‖L1(Fd
q )

∥∥∥∥∥sup
j∈F∗q

|Ω j|

∥∥∥∥∥
L1(Fd

q )

. q‖ f ‖L1(Fd
q ),

where the last inequality . is a direct consequence from the inequality (3.9).

For the inequality (3.15), we have

∥∥∥∥∥sup
j∈F∗q

| f ∗Ω j|

∥∥∥∥∥
L2(Fd

q )

≤

∥∥∥∥∥∥∥


 ∑

j∈F∗q

| f ∗Ω j|
2




1
2

∥∥∥∥∥∥∥
L2(Fd

q )

=


 ∑

j∈F∗q

‖ f ∗Ω j‖
2

L2(Fd
q )




1
2

≤


 ∑

j∈F∗q

(
max
m∈Fd

q

|Ω
∨
j (m)|2

)
‖ f ∨‖2

ℓ2(Fd
q )




1
2

≤

(
max

j∈F∗q,m∈Fd
q

|Ω
∨
j (m)|

)
q

1
2 ‖ f ‖L2(Fd

q ).
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Since Ω
∨
j
= 1N0

(dµ j)
∨, the second part of Lemma 1.4 implies that the maximum value

above is dominated by ∼ q−
d−1

2 , and hence the inequality (3.15) is obtained, as desired.

We have finished the proof of Theorem 1.6.
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