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Abstract

Let Fq be a finite field of q = pk elements. For any z ∈ Fq, let An(z) and
Bn(z) denote the number of solutions of the equations x31 +x32 + · · ·+x3n = z
and x31 + x32 + · · · + x3n + zx3n+1 = 0 respectively. Recently, using the gener-
ator of F∗q, Hong and Zhu gave the generating functions

∑∞
n=1An(z)xn and∑∞

n=1Bn(z)xn. In this paper, we give the generating functions
∑∞

n=1An(z)xn

and
∑∞

n=1Bn(z)xn immediately by the coefficient z. Moreover, we gave the
formulas of the number of solutions of equation a1x

3
1 + a2x

3
2 + a3x

3
3 = 0 and

our formulas are immediately determined by the coefficients a1, a2 and a3.
These extend and improve earlier results.
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1. Introduction

Let Fq be a finite field of q = pk elements. Let F∗q be the multiplica-
tive group of Fq, i.s. F∗q = Fq \ {0}. Counting the number of solutions
(x1, x2, · · · , xn) ∈ Fnq of the general diagonal equation

a1x
d1
1 + a2x

d2
2 + · · ·+ anx

dn
n = b

over Fq is an important and fundamental problem in number theory and
finite field. The special case where all the di are equal has extensively been
studied by many authors (see, for example, [6, 8, 9, 11, 12, 13]).

For any z ∈ Fq, one lets An(z) denote the number of solutions of the
following diagonal equation

x31 + x32 + · · ·+ x3n = z

over Fq. When q = p ≡ 1(mod3), Chowla, Cowles and Cowles [2] gave
the generating function

∑∞
n=0An(0)xn. Myerson [9] extended the Chowla,

Cowles and Cowles’s result to finite field Fq. He proved the following result.

Theorem 1.1 ([9]). Let Fq be a finite field of q = pk elements with q ≡
1(mod3). Then

∞∑
n=1

An(0)xn =
x

1− qx
+

(q − 1)(2 + cx)x2

1− 3qx2 − qcx3
,

where c is uniquely determined by

4q = c2 + 27d2, c ≡ 1(mod3) and if p ≡ 1(mod3), then (c, p) = 1. (1.1)

Recently, Hong and Zhu [5] consider An(z) in finite field Fq, they proved
the following result.

Theorem 1.2 ([5]). Let z ∈ F∗q = 〈g〉 and q = pk ≡ 1(mod3) with k being a
positive integer. Then

∞∑
s=1

As(z)xs =
x

1− qx
+

2x+ (c− 2)x2 − cx3

1− 3qx2 − qcx3

if z is cubic, where c is uniquely determined by (1.1), and

∞∑
s=1

As(z)xs =
x

1− qx
−
x+ 1

2
(4 + c+ 9dδz(d))x2 + cx3

1− 3qx2 − qcx3
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if z is non-cubic, where c and d are uniquely determined by (1.1) with d > 0
and

δz(q) =

{
(−1)〈indg(d)〉3 · sgn

(
Im(r1 + 3

√
3r2i)

k
)
, if k ≡ 1(mod2);

0, if k ≡ 0(mod2).
(1.2)

where r1 and r2 are uniquely determined by

4p = r21 + 27r22, r1 ≡ 1(mod3), 9r2 ≡ (2NFq/Fp(g)
p−1
3 + 1)r1(modp).

Suppose that z ∈ F∗q be non-cubic. Let Bn(z) be the number of solutions
of diagonal cubic equation

x31 + x32 + · · ·+ x3n + zx3n+1 = 0

over Fq. In [5], Hong and Zhu also consider Bn(z). They showed the following
result.

Theorem 1.3 ([5]). Let z ∈ F∗q be non-cubic and q = pk ≡ 1(mod3) with k
being a positive integer. Then

∞∑
s=1

Bs(z)xs =
qx

1− qx
−

(q − 1)x+ 1
2
(q − 1)(c− 9d)x2

1− 3qx2 − qcx3
,

where c and d are uniquely determined by (1.1) with d > 0 and δz(q) is given
as in (1.2).

Indeed, The key of these problems is to determine the sign of d. In Hong
and Zhu’s results, they use the generator of group F∗q to determine the sign
of d. However, for a large prime p, it is not easy to find a generator of group
F∗q. In this paper, by calculating the Jacobi sum of finite field, we determine
the sign of d immediately by the coefficient z. We give the following two
results.

Theorem 1.4. Let Fq be a finite field of q = pk elements with q ≡ 1( mod 3).
Then

∞∑
n=1

An(z)xn =
x

1− qx
+

2x+ (c− 2)x2 − cx3

1− 3qx2 − qcx3

if z is cubic, and

∞∑
n=1

An(z)xn =
x

1− qx
−
x+ 1

2
(4 + c− 9d)x2 + cx3

1− 3qx2 − qcx3

3



if z is non-cubic, where c and d are uniquely determined by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1, 9d ≡ c(2z
q−1
3 + 1)(modp). (1.3)

Theorem 1.5. Let Fq be a finite field of q = pk elements with q ≡ 1(mod3)
and z ∈ F∗q be non-cubic. Then we have

∞∑
n=0

Bn(z)xn =
1

1− qx
−

(q − 1)x+ 1
2
(q − 1)(c− 9d)x2

1− 3qx2 − qcx3
,

where c and d are uniquely determined by (1.3).

Remark 1.6. When q ≡ 2(mod3), it is known that every element is a cube,
so Nn(z) = qn−1. If q ≡ 1(mod3) with p ≡ 2(mod3), then Wolfmann [14]
gave a formula for Nn(z). By Theorem 16 of [10], we have

c =

{
−2pk/2, if k ≡ 0(mod4);
2pk/2, if k ≡ 2(mod4),

and d = 0. Then for this case, Theorem 1.4 and 1.5 immediately follow from
Theorem 1.2 and 1.3. So in the rest of this paper, we focus on the case
q ≡ 1(mod3) with p ≡ 1(mod3).

For a1, a2, a3 ∈ F∗q, let Mk(a1, a2, a3) be the number of solutions of

a1x
3
1 + a2x

3
2 + a3x

3
3 = 0

over Fq and let Nk(a1, a2, a3) be the number of solutions of

a1x
3
1 + a2x

3
2 = a3

over Fq. For the case q = p ≡ 1(mod3), Chowla, Cowles and Cowles [2]
showed that M1(1, 1, 1) = p2 + c(p− 1). As pointed out in [3], the following
is essentially included in the derivation of the cubic equation of periods by
Gauss [4]: Let a prime p ≡ 1(mod3) and z be non-cubic in Fp. Then one
has

M1(1, 1, z) = p2 +
1

2
(p− 1)(9d− c),

where c and d are uniquely determined by (1.1) (except for the sign of d).
Chowla, Cowles and Cowles [3] determined the sign of d for the case of 2

being non-cubic in Fp.
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Theorem 1.7 ([3]). Let a prime p ≡ 1( mod 3). If 2 is non-cubic in Fp, then
for any non-cubic element z, one has

M1(1, 1, z) = p2 +
1

2
(p− 1)(9d− c),

where c and d are uniquely determined by (1.1) with

d ≡ c(mod4) if 4z is cubic

and
d ≡ −c(mod4) if 2z is cubic.

In [5], Hong and Zhu solved the Gauss sign problem. In fact, they gave
the following result.

Theorem 1.8 ([5]). Let z ∈ F∗q = 〈g〉 be non-cubic and q = pk ≡ 1(mod3).
Then

Mk(1, 1, z) = q2 +
1

2
(q − 1)(−c− 9δz(q)d),

where c and d are uniquely determined by (1.1) with d > 0 and δz(q) is given
as in (1.2).

In this paper, we consider Mk(a1, a2, a3), Nk(a1, a2, a3) and determine the
sign of d immediately by the coefficients a1, a2 and a3. We have the following
more general results.

Theorem 1.9. Let Fq be a finite field of q = pk elements with the prime
p ≡ 1(mod3), and a1, a2, a3 ∈ F∗q. Then

Mk(a1, a2, a3) =

{
q2 + c(q − 1), if a1a2a3 is cubic;
q2 + 1

2
(q − 1)(9d− c), if a1a2a3 is non-cubic,

where c and d are uniquely determined by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1, 9d ≡ c(2(a1a2a3)
q−1
3 + 1)(modp).

(1.4)

Theorem 1.10. Let Fq be a finite field of q = pk elements with the prime
p ≡ 1(mod3), and a1, a2, a3 ∈ F∗q.

5



(1) For the case of a1a2a3 being cubic, we have

N(a1, a2, a3) =

{
q − 2 + c, if a1a

−1
2 is cubic;

q + 1 + c, otherwise.

(2) For the case of a1a2a3 being non-cubic, we have

N(a1, a2, a3) =

{
q − 2 + 1

2
(9d− c), if a1a

−1
2 is cubic;

q + 1 + 1
2
(9d− c), otherwise,

where c and d are uniquely determined by (1.4).

2. Auxiliary Lemmas

Lemma 2.1 ([7]). Let Fq be a finite field. Let χ be a nontrivial multiplicative
character of Fq and ψ be a nontrivial additive character of Fq. Then for any
a ∈ Fq, we have∑

x∈F∗q

χ(x) = 0,
∑
x∈Fq

ψ(ax) =

{
q, if a = 0;
0, if a 6= 0.

For any a ∈ F∗q, we defined the sums

S(a) =
∑
x∈Fq

ψ(ax3)

and

G(χ, ψ) =
∑
x∈F∗q

χ(x)ψ(x),

where χ is a multiplicative character of Fq and ψ is an additive character of
Fq. Both S(a) and G(χ) are called Gauss sums.

Lemma 2.2 ([7]). Let χ be a nontrivial multiplicative character and ψ a non-
trivial additive character of Fq. Then |G(χ, ψ)| = √q and G(χ, ψ)G(χ, ψ) =
χ(−1)q.

Let Fq be the finite extension of Fp with [Fq : Fp] = k. Recall that the
trace TrFq/Fp(α) and norm NFq/Fp(α) of α ∈ Fq over Fp are defined by

TrFq/Fp(α) = α + αp + · · ·+ αp
k−1

and

NFq/Fp(α) = α× αp × · · · × αpk−1

= α
q−1
p−1 .

6



Lemma 2.3 (Hasse-Davenport Theorem [7]). Let Fq be the finite extension
of Fp with [Fq : Fp] = k. Let χ′ be a multiplicative character and ψ′ an
additive character of Fp, not both of them trivial. Suppose that χ and ψ are
the lifts of χ′ and ψ′ from Fp to Fq, i.e. χ = χ′ ◦NFq/Fp and ψ = ψ′ ◦TrFq/Fp.
Then

G(χ, ψ) = (−1)k−1Gk(χ′, ψ′).

Lemma 2.4 ([7]). Let Fq be the finite extension of Fp. Then a multiplicative
character χ of Fq can be lifted by a multiplicative character χ′ of Fp if and
only if χp−1 is trivial.

Let χ1, χ2, · · · , χs be nontrivial multiplicative characters of Fq. The Ja-
cobi sum in Fq is defined by

J(χ1, χ2, · · · , χs) =
∑

(x1,x2,··· ,xs)∈Fsq
x1+x2+···+xs=1

χ1(x1)χ2(x2) · · ·χs(xs).

The following gives a relation between Gauss sun and Jacobi sum.

Lemma 2.5 ([7]). Let χ1, χ2, · · · , χs be nontrivial multiplicative characters
of Fq with the product χ1χ2 · · ·χs is nontrivial. Let ψ be a nontrivial additive
character of Fq. Then

J(χ1, χ2, · · · , χs) =
G(χ1, ψ) · · ·G(χs, ψ)

G(χ1 · · ·χs, ψ)
.

Lemma 2.6 ([10]). Let Fq be the finite field of q = pk elements with the
prime p ≡ 1(mod3), and z is non-cubic in F∗q, Then S(1), S(z) and S(z2)
are the roots of the cubic equation

x3 − 3qx− qc = 0,

where c is uniquely determined by

4p = c2 + 27d2, c ≡ 1(mod3), (p, c) = 1.

Lemma 2.7 (Theorem 3.1.3 of [1]). Let p ≡ 1(mod3) and χ′ be a multi-
plicative character of order 3 over Fp. Then

J(χ′, χ′) =
c0 + 3

√
3d0i

2
,

7



where c0 and d0 are uniquely determined by

4p = c20 + 27d20, c0 ≡ 1(mod3), 9d0 ≡ c0(2g
p−1
3 + 1)(modp)

with g being the generator of the multiplicative group F∗p of non-zero residues

(modp) such that χ′(g) = −1+
√
3i

2
.

In the rest of this paper, we let χ be a multiplicative character of order 3
of Fq and ψ be the canonical additive character which is defined by

ψ(x) = e2πiTrFq/Fp (x)/p.

We denote χ the conjugate character of χ. For convenience, we let G(χ) :=
G(χ, ψ). By Lemma 2.2, we have G(χ)G(χ) = χ(−1)q = q and |G(χ)| =
|G(χ)| = √q. We have the following three results for the Gauss sums of order
3.

Lemma 2.8. Let Fq be the finite field of q = pk elements with the prime
p ≡ 1(mod3). If z is non-cubic in F∗q, then there is a unique multiplicative
character χ of order 3 over Fq such that

χ(z) = ω, J(χ, χ) =
c+ 3

√
3di

2
, G3(χ) = q · c+ 3

√
3di

2
,

where ω = −1+
√
3i

2
, c and d are uniquely determined by

4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1, 9d ≡ c(2z
q−1
3 + 1)(modp).

Proof. Let g′ be a generator of the multiplicative group F∗q. Note that z is
non-cubic. So we have indg′z ≡ ±1(mod3). If indg′z ≡ 1(mod3), we take
g = g′; If indg′z ≡ −1(mod3), we take g = (g′)−1. Hence g also a generator
of the group F∗q and indgz ≡ 1(mod3). Thus we have

z
q−1
3 =

(
gindgz

) q−1
3 = g

q−1
3

indgz = g
q−1
3 . (2.1)

We take the multiplicative character χ(·) = e
(

indg(·)
3

)
. Obviously, we have

χ(z) = e

(
indgz

3

)
= χ(g) = e

(
1

3

)
= ω.

8



Since p ≡ 1(mod3), then χp−1 is trivial. By Lemma 2.4, the cubic mul-
tiplicative character χ can be lifted by a cubic multiplicative character χ′ of

F∗p. It is easy to see that NFq/Fp(g) = g
q−1
p−1 is a generator of F∗p and

χ(g) = χ′(NFq/Fp(g)) = ω.

By Lemma 2.7, we have

J(χ′, χ′) =
c0 + 3

√
3d0i

2
,

where c0 and d0 are uniquely determined by

4p = c20 + 27d20, c0 ≡ 1(mod3), 9d0 ≡ c0(2(NFq/Fp(g))
p−1
3 + 1)(modp).

By the Davenport-Hasse Theorem (Lemma 2.3) and Lemma 2.5, we have

J(χ, χ) = (−1)k−1Jk(χ′, χ′)

= (−1)k−1

(
c0 + 3

√
3d0i

2

)k

:=
c+ 3

√
3di

2
. (2.2)

So we have 4q = 4pk = c2 + 27d2 and

c = 2 · (−1)k−1Re

(
c0 + 3

√
3d0i

2

)k

= 2 · (−1)k−1Re

(
c0 + 3d0

2
+ 3d0ω

)k
≡ (−1)k

(
c0 + 3d0

2

)k
≡ ck0 ≡ 1(mod3).

Let K = Q(ω). Note that p ≡ 1(mod3). By the prime ideal decomposi-
tion of cubic cyclotomic field K = Q(ω), we have

pOK =

(
c0 + 3

√
3d0i

2

)
OK ·

(
c0 − 3

√
3d0i

2

)
OK := P1P2. (2.3)

Thus in K = Q(ω), we have the unique decomposition

q =

(
c+ 3

√
3di

2

)
·

(
c− 3

√
3di

2

)
=

(
c0 + 3

√
3d0i

2

)k

·

(
c0 − 3

√
3d0i

2

)k

.

9



Then c is uniquely determined by 4q = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1.
Now we begin to determine the sign of d. Note that OK/Pj is isomor-

phic to Fp for j = 1, 2 and NFq/Fp(g) + Pj is a generator of (OK/Pj)
∗.(

NFq/Fp(g)
) p−1

3 + Pj is a cubic root of unity in OK/Pj. Then there is one
of the prime ideals P1 and P2 (rewrite it as P ), satisfying(

NFq/Fp(g)
) p−1

3 ≡ ω(modP ).

Thus we have

g
q−1
3 ≡ ω(modP ). (2.4)

Define the multiplicative character χP on (OK/P )∗ by

χP (NFq/Fp(g) + P ) = ω.

Thus we view χ′ as the character χP on the finite field OK/P by identifying
the generator

χ′(NFq/Fp(g)) = χP (NFq/Fp(g) + P ) = ω.

Then we have J(χ′, χ′) = J(χP , χP ). By Theorem 2.1.14 of [1], we have
J(χP , χP ) ≡ 0(modP ). Thus we have

J(χ′, χ′) ≡ 0(modP ).

So by (2.2), we have

J(χ, χ) =
c+ 3

√
3di

2
=
c+ 3d(2ω + 1)

2
≡ 0(modP )

Then 3d(2ω + 1) ≡ −c(modP ). Multiplying −(2ω + 1), by (2.4), we have

9d ≡ −3d(2ω + 1)2 ≡ c(2ω + 1) ≡ c(2g
q−1
3 + 1)(modP ).

Hence by (2.1) and (2.3), we have

9d ≡ c(2g
q−1
3 + 1) ≡ c(2z

q−1
3 + 1)(modp).

Since χ is a multiplicative character of order 3, by Lemma 2.5, we have

G3(χ) = J(χ, χ)G(χ2)G(χ) = J(χ, χ)G(χ)G(χ) = qJ(χ, χ).

This completes the proof of Lemma 2.8.

10



Lemma 2.9. Let χ be a multiplicative character of order 3 of Fq. Then for
any a ∈ F∗q, we have

S(a) = χ(a)G(χ) + χ(a)G(χ). (2.5)

Proof. Note that χ be the multiplicative character of order 3. Then we have

1 + χ(k) + χ(k) =

{
3, if k is cubic;
0, if k is non-cubic.

Thus for any a ∈ F∗q, we have

S(a) =
∑
k∈F∗q

ψ(ak3) = 1 +
∑
k∈F∗q

(1 + χ(k) + χ(k))ψ(ak)

= 1 +
∑
k∈F∗q

ψ(ak) +
∑
k∈F∗q

χ(k)ψ(ak) +
∑
k∈F∗q

χ(k)ψ(ak)

= χ(a)
∑
k∈F∗q

χ(ak)ψ(ak) + χ(a)
∑
k∈F∗q

χ(ak)ψ(ak)

= χ(a)G(χ) + χ(a)G(χ).

Lemma 2.10. Let Fq be the finite field of q = pk elements with the prime
p ≡ 1(mod3). If z is non-cubic in F∗q, then

S(1)2S(z) + S(z)2S(z2) + S(z2)2S(1) =
3

2
q(9d− c),

where c and d are uniquely determined by (1.3).

Proof. Since p ≡ 1(mod3), the non-zero cubic elements form a multiplica-
tive subgroup H of order 1

3
(q− 1) and index 3 which partitions F∗q into three

cosets H, zH and z2H. Then for any a ∈ zjH, we have S(a) = S(zj) and
S(az) = S(zj+1). Thus we have∑
a∈F∗q

S(a)2S(az) =
∑
a∈H

S(a)2S(az) +
∑
a∈zH

S(a)2S(az) +
∑
a∈zH

S(a)2S(az)

=
1

3
(q − 1)

(
S(1)2S(z) + S(z)2S(z2) + S(z2)2S(1)

)
. (2.6)
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On the other hand, by Lemma 2.8, there is a unique multiplicative character
χ of order 3 over Fq such that

χ(z) =
−1 +

√
3i

2
, G3(χ) = q · c+ 3

√
3di

2
,

where c and d are uniquely determined by (1.3). By Lemmas 2.1 and 2.9, we
have ∑

a∈F∗q

S(a)2S(az)

=
∑
a∈F∗q

(χ(a)G(χ) + χ(a)G(χ))2(χ(az)G(χ) + χ(az)G(χ))

= (q − 1)
(
χ(z)G3(χ) + χ(z)G3(χ)

)
= q(q − 1)

(
−1−

√
3i

2
· c+ 3

√
3di

2
+
−1 +

√
3i

2
· c− 3

√
3di

2

)
=

1

2
q(q − 1)(9d− c). (2.7)

Then Lemma 2.10 immediately follows from (2.6) and (2.7).

3. Proofs of Theorems 1.4 and 1.5

In this section, we prove Theorem 1.4 and 1.5. First, we begin with the
proof of Theorem 1.5.

Proof of Theorem 1.5. By Remark 1.6, we only need to consider the case
q ≡ 1(mod3) with p ≡ 1(mod3). By Lemma 2.1, we have

Bn(z) =
1

q

∑
a∈Fq

∑
(x1,x2,··· ,xn+1)∈Fs+1

q

ψ
(
a(x31 + · · ·+ x3n + zx3n+1)

)
= qn +

1

q

∑
a∈F∗q

(S(a))nS(az).

12



Then

∞∑
n=0

Bn(z)xn =
∞∑
n=0

qnxn +
1

q

∑
a∈F∗q

S(az)
∞∑
n=0

(S(a))nxn

=
1

1− qx
+

1

q

∑
a∈F∗q

S(az)

1− S(a)x
.

Since p ≡ 1(mod3), the non-zero cubic elements form a multiplicative sub-
group H of order 1

3
(q − 1) and index 3. Then by the proof of Lemma 2.10,

we have

∞∑
n=0

Bn(z)xn

=
1

1− qx
+

1

q

(∑
a∈H

S(az)

1− S(a)x
+
∑
a∈zH

S(az)

1− S(a)x
+
∑
a∈z2H

S(az)

1− S(a)x

)

=
1

1− qx
+
q − 1

3q

(
S(z)

1− S(1)x
+

S(z2)

1− S(z)x
+

S(1)

1− S(z2)x

)
=

1

1− qx
+
q − 1

3q
· α− (α2 − β)x+ γx2

1− αx+ βx2 − δx3
,

Where α = S(1) + S(z) + S(z2), β = S(1)S(z) + S(z)S(z2) + S(z2)S(1),
γ = S(1)2S(z)+S(z)2S(z2)+S(z2)2S(1) and δ = S(1)S(z)S(z2). By Lemmas
2.6 and 2.10, we have

α = 0, β = −3q, γ =
3

2
q(9d− c), δ = qc.

Thus we have

∞∑
n=0

Bn(z)xn =
1

1− qx
+
q − 1

3q
·
−3qx+ 3

2
q(9d− c)x2

1− 3qx2 − qcx3

=
1

1− qx
−

(q − 1)x+ 1
2
(q − 1)(c− 9d)x2

1− 3qx2 − qcx3
.

This completes the proof of the Theorem 1.5.
Proof of Theorem 1.4. By the proof of Theorem 1.3 in [5], it is easy to

see that
Bn(z) = An(0) + (q − 1)An(z).
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Thus we have

An(z) =
1

(q − 1)
(Bn(z)− An(0)).

If z is non-cubic, then by Theorems 1.1 and 1.5, we have

∞∑
n=1

An(z)xn =
1

(q − 1)

(
∞∑
n=1

Bn(z)xn −
∞∑
n=1

An(0)xn

)

=
1

(q − 1)

(
1

1− qx
−

(q − 1)x+ 1
2
(q − 1)(c− 9d)x2

1− 3qx2 − qcx3
−B0(z)

)
− 1

(q − 1)

(
x

1− qx
+

(q − 1)(2 + cx)x2

1− 3qx2 − qcx3

)
=

x

1− qx
−
x+ 1

2
(4 + c− 9d)x2 + cx3

1− 3qx2 − qcx3
.

If z is cubic, we have Bn(z) = An+1(0). By Theorem 1.1, we have

∞∑
n=1

An(z)xn =
1

(q − 1)

(
∞∑
n=1

An+1(0)xn −
∞∑
n=1

An(0)xn

)

=
1

(q − 1)

(
1

x

∞∑
n=1

An(0)xn − A1(0)−
∞∑
n=1

An(0)xn

)

=
1

(q − 1)

(
1− x
x

∞∑
n=1

An(0)xn − 1

)

=
x

1− qx
+

2x+ (c− 2)x2 − cx3

1− 3qx2 − qcx3
.

This completes the proof of the Theorem 1.4.

4. Proofs of Theorems 1.9 and 1.10 and an example

In this section, we prove Theorem 1.9 and 1.10. First, we begin with the
proof of Theorem 1.9.

Proof of Theorem 1.9.
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By Lemma 2.1, we have

Mk(a1, a2, a3) =
1

q

∑
m∈Fq

∑
(x1,x2,x3)∈F3

q

ψ
(
m(a1x

3
1 + a2x

3
2 + a3x

3
3)
)

= q2 +
1

q

∑
m∈F∗q

S(a1m)S(a2m)S(a3m).

Then by Lemma 2.9, for any multiplicative character χ of order 3, we
have

Mk(a1, a2, a3) = q2 +
1

q

∑
m∈F∗q

[
3∏
j=1

(χ(maj)G(χ) + χ(maj)G(χ))

]

= q2 +
1

q

∑
m∈F∗q

[
χ(a1a2a3)G

3(χ) + χ(a1a2a3)G
3(χ)

]
+G(χ)(χ(a−11 a−12 a3) + χ(a−11 a2a

−1
3 ) + χ(a1a

−1
2 a−13 ))

∑
m∈F∗q

χ(m)

+G(χ)(χ(a−11 a2a3) + χ(a1a
−1
2 a3) + χ(a1a2a

−1
3 ))

∑
m∈F∗q

χ(m)

= q2 +
q − 1

q

[
χ(a1a2a3)G

3(χ) + χ(a1a2a3)G
3(χ)

]
.

If a1a2a3 is cubic, thus we have χ(a1a2a3) = χ(a1a2a3) = 1. then by Lemma
2.8, we have

Mk(a1, a2, a3) = q2 +
q − 1

q
(G3(χ) +G3(χ))

= q2 + (q − 1)

[
c+ 3

√
3di

2
+
c− 3

√
3di

2

]
= q2 + c(q − 1).

If a1a2a3 is non-cubic, then by Lemma 2.8, we can take multiplicative char-
acter χ of order 3 satisfying

χ(a1a2a3) =
−1 +

√
3i

2
, G3(χ) = q · c+ 3

√
3di

2
,
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where c and d are uniquely determined by (1.4). Thus we have

Mk(a1, a2, a3) = q2 + (q − 1)

(
−1−

√
3i

2
· c+ 3

√
3di

2
+
−1 +

√
3i

2
· c− 3

√
3di

2

)
= q2 +

1

2
(q − 1)(9d− c).

This completes the proof of the Theorem 1.9.
Proof of Theorem 1.10. We have

Mk(a1, a2, a3) =
∑

(x1,x2,x3)∈F3q
a1x

3
1+a2x

3
2+a3x

3
3=0

1

=
∑

(x1,x2)∈F2q,x3∈F∗q
a1x

3
1+a2x

3
2+a3x

3
3=0

1 +
∑

(x1,x2)∈F2q
a1x

3
1+a2x

3
2=0

1

=
∑

(x1,x2)∈F2q,x3∈F∗q
a1(−x1x

−1
3 )3+a2(−x2x

−1
3 )3=a3

1 +
∑

x1∈F∗q ,x2∈Fq
a1x

3
1+a2x

3
2=0

1 + 1

= (q − 1)
∑

(x1,x2)∈F2q
a1x

3
1+a2x

3
2=a3

1 + (q − 1)
∑
x∈Fq

x3=−a1a
−1
2

1 + 1

= (q − 1)Nk(a1, a2, a3) + 1 + (q − 1)
∑
x∈Fq

x3=−a1a
−1
2

1.

If a1a
−1
2 is cubic, the number of solutions of the equation x3 = −a1a−12 is

exactly 3. Thus we have

Mk(a1, a2, a3) = (q−1)Nk(a1, a2, a3)+1+3(q−1) = (q−1)Nk(a1, a2, a3)+3q−2.

If a1a
−1
2 is non-cubic, the equation x3 = −a1a−12 has no solution. Thus

we have
Mk(a1, a2, a3) = (p− 1)Nk(a1, a2, a3) + 1.

Hence Theorem 1.10 immediately follows from Theorem 1.9.

Example 4.1. We take F72 := F7[u]/(u2 + 1). One can check that u + 1

is non-cubic in F7[u]/(u2 + 1) and (u + 1)
72−1

3 = 4. If the integers c and
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d satisfying that 4 · 72 = c2 + 27d2, c ≡ 1(mod3), (c, p) = 1, 9d ≡ c(2(u +

1)
q−1
3 + 1)(modp), then c = 13, d = −1. Thus we have

N2(1, 1, u+ 1) = 72 − 2 +
1

2
(−9− 13) = 36

and

M2(1, 1, u+ 1) = 492 +
1

2
(−9− 13) = 1873.

We list the solutions of equation x31+x32 = u+1 over F7[u]/(u2+1) as belove:

(1, 3u); (1, 5u); (1, 6u); (2, 3u); (2, 5u); (2, 6u); (4, 3u); (4, 5u); (4, 6u);

(u+ 4, 3u+ 6); (u+ 4, 5u+ 3); (u+ 4, 6u+ 5); (2u+ 1, 3u+ 6); (2u+ 1, 5u+ 3);

(2u+ 1, 6u+ 5); (4u+ 2, 3u+ 6); (4u+ 2, 5u+ 3); (4u+ 2, 6u+ 5),

and one can get the remaining 18 solutions by exchanging coordinates.
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