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Abstract

The c-differential uniformity is recently proposed to reflect resistance against some variants of
differential attack. Finding functions with low c-differential uniformity is attracting attention from
many researchers. For even characteristic, it is known that permutations of low Carlitz rank have
good cryptographic parameters, for example, low differential uniformity, high nonlinearity, etc.
In this paper we show that permutations with low Carlitz rank have low c-differential uniformity.
We also investigate c-differential uniformity of permutations with Carlitz rank 3 in detail.
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1 Introduction

Functions with good cryptographic parameters have many applications in cryptographic purpose.
Very recently, Ellinsen et. al. [7] proposed a new cryptographic parameter, c-differential uniformity,
which is useful to measure the resistance against some variants of differential attack [4]. Functions
with low c-differential uniformity are resistant against differential attacks of this type. Finding func-
tions with low c-differential uniformity has been a good research topic to many researchers, and many
classes of functions with low c-differential uniformity were proposed. [2,3,8,16,19–26] It is known [16]
that some functions of low differential uniformity have high c-differential uniformity. Hence it is also
important to investigate c-differential uniformity of known functions with low differential uniformity.

For even characteristic, some cryptographic properties of permutations of low Carlitz rank have
been investigated in several researches, and we can see that they have good cryptographic parameters.
For example, the multiplicative inverse function of Carlitz rank 1 has low differential uniformity [17],
high nonlinearity [12], low boomerang uniformity [5], low differential-linear uniformity [6], low c-
differential uniformity [7], and low c-boomerang uniformity [18]. Furthermore, it is used as the
S-box of the AES(Advanced Encryption Standard) cryptosystem. Cryptographic parameters of
permutations of Carlitz rank 2 also have been widely investigated. It is known that they have low

1

http://arxiv.org/abs/2202.02185v1


differential uniformity [14], high nonlinearity [14], low boomerang uniformity [13], low differential-
linear uniformity [10], low c-differential uniformity [19], and low c-boomerang uniformity [19]. Several
classes of differentially 4-uniform involutions with low Carlitz rank were proposed in [11].

Permutations with Carlitz rank 3 also have good cryptographic parameters, for example, high
nonliearity [14], and low differential-uniformity [10]. Differentially 4-uniform permutations with
Carlitz rank 3 are characterized in [9,14]. The boomerang uniformities of permutations with Carlitz
rank 3 were investigated in [9]. Permutations with low Carlitz rank are known to have low differential
uniformity, but it does not imply low c-differential uniformity as mentioned above.

In this paper, we show that for binary finite fields the c-differential uniformity of permutations
with Carlitz rank m is upper bounded by m+2 with c 6= 1. Furthermore, we investigate c-differential
uniformity of permutations of Carlitz rank 3 in detail.

The rest of this paper is organized as follows. In section 2, we introduce some basic preliminaries
and previous results which are necessary in subsequent sections. In section 3, we propose an upper
bound of c-differential uniformity depending on Carlitz rank of given permutation. We investigate c-
differential uniformity of permutations with Carlitz rank 3 in section 4. Finally we give the concluding
remark in Section 5.

2 Preliminaries

We only consider the even characteristic case. Throughout this paper, we let :

• F2n be the finite field of 2n elements and F
∗

2n be the multiplicative group of F2n

• Tr : F2n −→ F2 be the field trace from F2n onto F2 given by Tr(x) = x+ x2 + x2
2

+ · · ·+ x2
n−1

• Inv be the multiplicative inverse function on F2n , and x−1 = Inv(x) for all x ∈ F
∗

2n and 0−1 = 0

Next we introduce c-differential uniformity which is the subject of this paper.

Definition 2.1. ( [7]) Let F : F2n −→ F2n be a function and c ∈ F2n .
(i) We denote the c-differential of F by cDaF (x) = F (x+ a)− cF (x).
(ii) Let a, b ∈ F2n . We denote c∆F (a, b) by the number of solutions in F2n of cDaF (x) = b.
(iii) The c-differential uniformity of F is defined by c∆F = max{c∆F (a, b) : a, b ∈ F2n and a 6=
0 if c = 1}.
(iv) F is called a perfect c-nonlinear(PcN) function if c∆F = 1.
(v) F is called a almost perfect c-nonlinear(APcN) function if c∆F = 2.

It is known [15] that, for any permutation F : F2n −→ F2n , there is m ≥ 0 and ai ∈ F2n (0 ≤ i ≤
m+ 1) such that

F (x) = (· · · ((a0x+ a1)
2n−2 + a2)

2n−2 · · · + am)2
n
−2 + am+1, (1)

where a0, a2, · · · , am 6= 0. The above expression means that any permutation on F2n is generated by
the inverse function x2

n
−2 and linear functions ax + b (a 6= 0). The Carlitz rank of F is the least

nonnegative integer m satisfying the above expression [1].
It is easy to see that if F has the Carlitz rank 1 then F is affine equivalent to Inv. The c-

differential uniformity of Inv was investigated in [7].
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Theorem 2.2. ( [7]) Let c 6= 0, 1. Then Inv is APcN if and only if Tr(c) = Tr(1/c) = 1. Otherwise,

c∆Inv = 3.

The c-differential uniformity of Inv◦(0, 1) was investigated in [19], where (0, 1) is the transposition
that 0 and 1 are swapped. As observed in [9] that this case is related with permutations of Carlitz
rank 2.

Theorem 2.3. ( [19]) Let c 6= 0, 1 and F = Inv ◦ (0, 1) on F2n.
(i) If n = 2, then c∆F = 1.
(ii) If n = 3, then c∆F ≤ 3.
(iii) If n ≥ 4, then c∆F ≤ 4.

Next we introduce a well-known lemma about the number of solutions of quadratic equations.

Lemma 2.4. Let p = 2, a2 ∈ F
∗

2n and a1, a0 ∈ F2n . Then,

#{x ∈ F2n : a2x
2 + a1x+ a0 = 0} =















2 if a1 6= 0 and Tr
(

a0a2
a2
1

)

= 0,

1 if a1 = 0,

0 if a1 6= 0 and Tr
(

a0a2
a2
1

)

= 1.

The following lemma is very simple and useful to our results.

Lemma 2.5. Let c 6= 0. Then c∆F (a, b) = c−1∆F (a, bc
−1) for all a ∈ F

∗

2n and b ∈ F2n . If F is a
permutation then c∆F = c−1∆F .

Proof. Let a ∈ F
∗

2n and b ∈ F2n . Then, it is easy to see that x is a solution of cDaF (x) = b if and
only if x+ a is a solution of c−1Da(x) = bc−1. Thus we have c∆F (a, b) = c−1∆F (a, bc

−1). If F is a
permutation then c∆F (0, b) = 1 for all b ∈ F2n and hence we get c∆F = c−1∆F .

3 Upper bound on c-differential uniformity of permutations with

low Carlitz rank

There are many differentially 4-uniform permutations obtained from modifying some points in the
multiplicative inverse function(see [10] and its references) defined on F2n . In this section we give an
upper bound of c-differential uniformity of such differentially 4-uniform permutations when c 6= 1.

Theorem 3.1. Let F and G be permutations on F2n such that F (x) = G(x) for all x ∈ F2n \ P for
some nonempty P ⊆ F2n. If c 6= 1 then c∆F ≤ c∆G +#P .

Proof. Let Pa = P ∪ {x + a : x ∈ P}. It is enough to show that c∆F (a, b) ≤ #Pa

2 + c∆F (a, b) for
all a ∈ F

∗

2n and b ∈ F2n . Then for x ∈ F2n \ Pa, all solutions of cDaF (x) = b are also solutions of

cDaG(x) = b since cDaF (x) = cDaG(x). Thus we have cDaF (x) = b has at most c∆G solutions in
F2n \ Pa.
Let x ∈ Pa. If cDaF (x) = F (x + a) + cF (x) = F (x) + cF (x + a) = cDaF (x + a) then we have
0 = F (x+ a) + cF (x) +F (x) + cF (x+ a) = (c+1)(F (x+ a) +F (x)). Since F is a permutation, we
have c = 1, which contradicts to the assumption. This means that

cDaF (x) 6= cDaF (x+ a) for all x ∈ Pa. (2)
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If there are #Pa

2 + 1 solutions in Pa of cDaF (x) = b for some a, b ∈ F2n then there is x ∈ Pa such
that both x and x+ a are solutions of cDaF (x) = b, a contradiction to cDaF (x) 6= cDaF (x+ a) for
all x ∈ Pa. Hence there are at most #Pa

2 solutions in Pa of cDaF (x) = b.

Therefore, c∆F (a, b) ≤ c∆G(a, b) +
#Pa

2 for all a, b ∈ F2n , which completes the proof.

Example. Let F = Inv ◦ (1, γ) where γ ∈ F2n \ F2. The differential uniformity of this function is
characterized in [14]. We have G = Inv and P = {1, γ} and hence we get c∆F ≤ 5 by Theorem 2.2
and Theorem 3.2 when c 6= 1.

By the above theorem, we can see that if G has a low c-differential uniformity and #P is small
then F has also a low c-differential uniformity. Next theorem shows that this upper bound can be
slightly reduced when G = Inv and 0 ∈ P .

Theorem 3.2. Let F be a permutation on F2n such that F (x) = Inv(x) for all x ∈ F2n \P for some
nonempty P ⊆ F2n with 0 ∈ P . If c 6= 1 then c∆F ≤ #P + 2.

Proof. Let Pa = P ∪ {x+ a : x ∈ P}. It is enough to show that

c∆F (a, b) ≤
#Pa

2
+ 2 (3)

for all a ∈ F
∗

2n and b ∈ F2n . By the same argument in Theorem 3.1, there are at most #Pa

2
solutions in Pa of cDaF (x) = b. For x ∈ F2n \ Pa, we have cDaF (x) = cDaInv(x). Since 0, a ∈ Pa,

cDaF (x) = b implies bx2 + (ab + c + 1)x + ca = 0 which has at most two solutions. Therefore, we
have c∆F (a, b) ≤

#Pa

2 + 2 for all a, b ∈ F2n , which completes the proof.

It is known [8] that F and F ◦ A has the same c-differential spectrum, where A is an affine
permutation. However, it is not trivial to show F and A ◦F have the same c-differential uniformity,
rather, it seems that it does not generally hold. For example, if F24 = F2[X]/〈X4 + X + 1〉 and
g4 + g + 1 = 0 and A(x) = x4 + gx, then A is an affine permutation. Then we have g∆A◦Inv = 4
and g∆Inv = 3 and hence g∆A◦Inv 6= g∆Inv. However we show that the c-differential uniformity is
also invariant in some specific affine equivalence. For convenience we call A(x) = ux + v an affine
permutation of degree one if u ∈ F

∗

2n and v ∈ F2n (here degree does not mean algebraic degree). We
also call two permutations F and F ′ are affine equivalent of degree one if there are affine permutations
A1 and A2 of degree one such that F = A1 ◦ F ′ ◦ A2. It is clear that affine equivalence of degree
one is an equivalence relation. Next we show that two permutations which are affine equivalent of
degree one has the same c-differential uniformity.

Lemma 3.3. Let F and F ′ be permutations on F2n which are affine equivalent of degree one. Then

c∆F = c∆F ′ for all c ∈ F2n.

Proof. We denote F = A1 ◦ F ′ ◦ A2 and F ′′ = F ′ ◦ A2, where A1 and A2 are affine permutations
of degree one. Then we already see that c∆F ′′ = c∆F ′ in [8]. Hence it is sufficient to show that

c∆F ′′ = c∆F . We denote A1(x) = u1x + v1 where u1 ∈ F
∗

2n and v1 ∈ F2n . Let a, b ∈ F2n . Then
b = cDaF (x) implies that

b = F (x+ a) + cF (x) = (A1 ◦ F
′′)(x+ a) + c(A1 ◦ F

′′)(x) = A1(F
′′(x+ a)) + cA1(F

′′(x))

= u1F
′′(x+ a) + v1 + c(u1F

′′(x) + v) = u1(F
′′(x+ a) + cF ′′(x)) + (c+ 1)v1
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Hence we have cDaF
′′(x) = u−1

1 b+u−1
1 v1(c+1). It is clear that a map from b to u−1

1 b+u−1
1 v1(c+1)

is bijective on F2n for all c ∈ F2n and therefore we have c∆F ′′ = c∆F .

Now let F be defined as (1). For recurrence relations αi = aiαi−1 + αi−2 and βi = aiβi−1 + βi−2

with α0 = 0, α1 = a0, β0 = 1, β1 = a1 where 2 ≤ i ≤ m+ 1, we denote

Rm(x) =
αm+1x+ βm+1

αmx+ βm

and Om =
{

xi : xi =
βi

αi
, 1 ≤ i ≤ m

}

. Then it is known [1] that F (x) = Rm(x) for all x ∈ F2n \Om.

Next we recall Lemma 3.3 of [9] with some additional properties we need.

Lemma 3.4. Let F be defined as (1) and αi, βi defined as above.
(i) If αm 6= 0 then there is a permutation G such that G is affine equivalent of degree one to F and
G(x) = Inv(x) for all x ∈ F2n \ P where P ⊆ F2n with #P ≤ m and 0 ∈ P .
(ii) If αm = 0 then there is a permutation G such that G is affine equivalent of degree one to F and
G(x) = x for all x ∈ F2n \ P where P ⊆ F2n with #P ≤ m.

Proof. For (i) we denote A1(x) = a0x+βm

αm
and A2(x) = αmx + αm+1 then A1 and A2 are affine

permutations of degree one. Let P = {yi : yi = A−1
1 (xi), xi ∈ Om} then #P ≤ m. Since αiβi+1 +

αi+1βi = αi(aiβi + βi−1) + βi(aiαi + αi−1) = αi−1βi + αiβi−1, we have αmβm+1 + αm+1βm =
α0β1 + α1β0 = a0 recursively. Using a0 = αmβm+1 + αm+1βm, for all x ∈ F2n \ P

(F ◦ A1)(x) = Rm (A1(x)) =
αm+1 ·

a0x+βm

αm
+ βm+1

αm · a0x+βm

αm
+ βm

=
αm+1(a0x+ βm) + αmβm+1

a0αmx

=
a0αm+1x+ (αm+1βm + αmβm+1)

a0αmx
=

a0αm+1x+ a0
a0αmx

=
1

αm

(

αm+1 +
1

x

)

(A2 ◦ F ◦ A1)(x) = A2 ((F ◦ A1)(x)) = αm ·
1

αm

(

αm+1 +
1

x

)

+ αm+1 =
1

x
= Inv(x).

Since A1(0) = βm

αm
, we can see that 0 = A−1

1

(

βm

αm

)

∈ P . The proof of (ii) is clear by substituting

αm = 0 in Rm(x).

Now we are ready to get an upper bound on c-differential uniformity of permutations with Carlitz
rank m.

Theorem 3.5. Let F be a permutation on F2n with Carlitz rank m, and c 6= 1. Then c∆F ≤ m+2.

Proof. The case αm 6= 0 is directly from Theorem 3.2, Lemma 3.3 and Lemma 3.4 (i). If αm = 0
then there is a permutation G such that G(x) = x for all x ∈ F2n \ P with #P ≤ m, by Lemma
3.4 (ii). Thus cDaG(x) = b has at most #Pa

2 solutions in Pa = P ∪ {x + a : x ∈ P} similarly with
Theorem 3.1. For x ∈ F2n \Pa, cDaG(x) = b implies (c+1)x = a+ b which has exactly one solution
if c 6= 1. Thus we have c∆G(a, b) ≤

#Pa

2 + 1 ≤ m + 1. Therefore we have c∆G ≤ m + 1 ≤ m + 2,
which completes the proof, by Lemma 3.3.

It is easy to see that permutations of Carlitz rank 1 are affine equivalent of degree one to Inv. We
observed in [9] that permutations of Carlitz rank 2 are affine equivalent of degree one to Inv ◦ (0, 1).
Using Lemma 3.3, we can see that the upper bound in the above theorem is tight when m = 1 and
m = 2 by Theorem 2.2 and Theorem 2.3, respectively. In next section, we show that it is also tight
when m = 3.
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4 c-differential uniformity of permutations with Carlitz rank 3

Let F be (1) with m = 3 as follows :

F (x) = (((a0x+ a1)
2n−2 + a2)

2n−2 + a3)
2n−2 + a4 (4)

If A1(x) =
x+a1a2
a0a2

and A2(x) =
x+a4
a2

then we can easily check

F3(x) = (A2 ◦ F ◦ A1)(x) = ((x2
n
−2 + 1)2

n
−2 + a2a3)

2n−2.

Now we denote γ = a2a3. If γ = 1, then F3 can be expressed by

F3(x) =

{

x+ 1 if x 6∈ {0, 1}

x if x ∈ {0, 1}

which is not an interesting case. When γ 6= 0, 1, as observed in [9], if we denote A3(x) =
x+γ
γ+1 and

A4(x) = (γ + 1)x + 1 then we have A4 ◦ F3 ◦ A3 = Inv ◦ (0, 1, γ) where (0, 1, γ) is a cycle of length
3. Thus we can see that F in (4) is affine equivalent of degree one to Inv ◦ (0, 1, γ) with γ = a2a3.
From now on, we investigate c-differential uniformity of Inv ◦ (0, 1, γ) where γ ∈ F2n \ F2.

Remark 4.1. For small n, we obtain the following results from the exhaustive search.
(i) If n = 2 then F is PcN for all c ∈ F4 \ F2

(ii) If n = 3 with F23 = F2[x]/〈x
3 + x+ 1〉 then we have

c∆F =

{

2 if γ3 + γ + 1 = 0,

3 otherwise.

We investigate the c-differential uniformity of Inv ◦ (0, 1, γ) when n ≥ 4. If c = 0 then 0∆F = 1
since F is a permutation. The case c = 1 was already investigated in [9, 14]. Hence we assume that

F = Inv ◦ (0, 1, γ), c, γ 6∈ {0, 1}, n ≥ 4 (5)

throughout this section unless otherwise noted. By Theorem 3.2, F has c-differential uniformity at
most 5. We investigate c-differential uniformity of F in detail. We denote a set

Pa = P ∪ {x+ a : x ∈ P} = {0, 1, γ, a, a + 1, a+ γ}.

We first characterize the condition that cDaF (x) = b has two solutions in F2n \ Pa.

Lemma 4.2. Let a ∈ F
∗

2n and b ∈ F2n. Then cDaF (x) = b has at most two solutions in F2n \ Pa.
Furthermore, cDaF (x) = b has two solutions in F2n \ Pa if and only if b 6= 0, ab + c + 1 6= 0,

Tr
(

abc
(ab+c+1)2

)

= 0, (b+ c)a+ b+ c+ 1 6= 0, (b+ 1)a + b+ c+ 1 6= 0, (bγ + c)a+ γ(bγ + c+ 1) 6= 0

and (bγ + 1)a+ γ(bγ + c+ 1) 6= 0.

Proof. If x ∈ F2n \Pa then b = cDaF (x) = cDaInv(x) implies that bx2+(ab+ c+1)x+ac = 0 which
has at most 2 solutions. Hence cDaF (x) = b has at most two solutions in F2n \ Pa.
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cDaF (x) = b has 2 solutions in F2n \ Pa implies that bx2 + (ab + c + 1)x + ac = 0 has 2 solutions
which is equivalent to

Tr

(

abc

(ab+ c+ 1)2

)

= 0, b 6= 0 and ab+ c+ 1 6= 0. (6)

by Lemma 2.4. If there is a solution x0 ∈ Pa of bx
2+(ab+c+1)x+ac = 0 then x0 cannot be a solution

of cDaF (x) = b. Hence we need to check that there is no solutions of bx2 + (ab+ c+1)x+ ac = 0 in
Pa.

• If x = 0 or x = a then we have a = 0 which is a contradiction to a ∈ F
∗

2n .

• If x = 1 then we have (b+ c)a+ b+ c+ 1 = 0 or equivalently a = b+c+1
b+c

.

• If x = a+ 1 then we have (b+ 1)a+ b+ c+ 1 = 0 or equivalently a = b+c+1
b+1 .

• If x = γ then we have (bγ + c)a+ γ(bγ + c+ 1) = 0 or equivalently a = γ(bγ+c+1)
bγ+c

.

• If x = a+ γ then we have (bγ + 1)a+ γ(bγ + c+ 1) = 0 or equivalently a = γ(bγ+c+1)
bγ+1 .

Hence we can see that there are no solutions in Pa of bx2 + (ab+ c+ 1)x+ ac = 0 if and only if

(b+ c)a+ b+ c+ 1 6= 0, (bγ + c)a+ γ(bγ + c+ 1) 6= 0,
(b+ 1)a+ b+ c+ 1 6= 0, (bγ + 1)a+ γ(bγ + c+ 1) 6= 0.

(7)

If all conditions in the above theorem hold, then bx2 + (ab + c + 1)x + ac = 0 has two solutions
in F2n \ Pa. Since all solutions are not belong to Pa we can say that they are also solutions of

cDaF (x) = b.

Next we show that F in (5) is not APcN when c 6= 0.

Theorem 4.3. Under the same assumption as in (5) we have 3 ≤ c∆F ≤ 5.

Proof. By Theorem 3.2, c∆F ≤ 5 is straightforward. Next we show that c∆F ≥ 3. We set b =

cDaF (0) = c+a−1. Then x = 0 is a solution of cDaF (x) = b. We use Lemma 4.2 to show that there
is a ∈ F2n such that cDcF (x) = b has two solutions in F2n \ Pa. It is easy to see that b 6= 0 since
c 6= a−1, and ab+ c+1 = a(a−1 + c) + c+1 = c(a+1) 6= 0 if a 6= 1. Now we assume that a 6= 1. We
require

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr

(

ac(a−1 + c)

c2(a2 + 1)

)

= Tr

(

ca+ 1

c(a2 + 1)

)

= Tr

(

c(a+ 1) + c+ 1

c(a2 + 1)

)

= Tr

(

1

a+ 1
+

1

(a+ 1)2
+

1

c(a+ 1)2

)

= Tr

(

1

c(a+ 1)2

)

.

Using b+ c+ 1 = a−1 + 1 and bγ + c = a−1γ + c(γ + 1) and γ(bγ + c+ 1) = a−1γ2 + cγ(γ + 1) + γ
we check (7)

(b+ c)a+ b+ c+ 1 = a−1 · a+ a−1 + 1 = a−1

(b+ 1)a+ b+ c+ 1 = a(a−1 + c+ 1) + a−1 + 1 = a−1
(

(c+ 1)a2 + 1
)

7



❍
❍
❍
❍
❍❍c∆F

n
4 5 6 7 8

3 32 10 28 196 672

4 164 820 3576 15176 62880

5 0 70 240 504 964

Table 1: Distribution of c∆F when 4 ≤ n ≤ 8.

(bγ + c)a+ γ(bγ + c+ 1) = a(a−1γ + c(γ + 1)) + a−1γ2 + cγ(γ + 1) + γ

= a−1
(

c(γ + 1)a2 + cγ(γ + 1)a+ γ2
)

(bγ + 1)a+ γ(bγ + c+ 1) = a(a−1γ + cγ + 1) + a−1γ2 + cγ(γ + 1) + γ

= a−1
(

(cγ + 1)a2 + cγ(γ + 1)a+ γ2
)

We set S = {0, 1

c2
n−1+1

} ∪ {x ∈ F2n : c(γ + 1)x2 + cγ(γ + 1)x + γ2 = 0} ∪ {x ∈ F2n : (cγ + 1)x2 +

cγ(γ +1)x+ γ2 = 0}. By Lemma 4.2, cDaF (x) = c+ a−1 has two solutions in F2n \Pa if and only if

Tr
(

1
c(a+1)2

)

= 0 and a ∈ F2n \ (S ∪ {1}). Since the map a 7→ 1
c(a+1)2 is an injection from F2n \ {1}

to F
∗

2n and Tr(·) is a balanced map, we have #
{

a ∈ F2n \ {1} : Tr
(

1
c(a+1)2

)

= 0
}

= 2n−1 − 1. Since

#S ≤ 6, we have #
({

a ∈ F2n \ {1} : Tr
(

1
c(a+1)2

)

= 0
}

\ S
)

≥ 2n−1 − 7 ≥ 1 if n ≥ 4. Therefore,

there exists a ∈
{

a ∈ F2n \ {1} : Tr
(

1
c(a+1)2

)

= 0
}

\S such that cDaF (x) = c+a−1 has two solutions

in F2n \ Pa and hence c∆F (a, c+ a−1) ≥ 3.

We summarize in Table 1 the distribution of c∆F by computing the number of pairs (c, γ) ∈
(F2n \ F2) × (F2n \ F2) such that c∆F equals to each value in {3, 4, 5}, where the column sum is
(2n − 2)2. We can see that we have c∆F = 4 in most cases, and the cases c∆F = 3 or c∆F = 5
are relatively rare. So we characterize the cases that c∆F = 3 or c∆F = 5. First we give a
characterization for the case c∆F = 5.

Theorem 4.4. Under the same assumption as in (5) we have c∆F = 5 if and only if at least one of
the following conditions is satisfied :

(i) c ∈
{

γ3

(γ+1)2
, (γ+1)2

γ3

}

and Tr
(

1
γ(γ+1)2

)

= 0 and γ 6∈ F4 and γ4 + γ3 + 1 6= 0 and γ5 + γ2 + 1 6= 0.

(ii) c ∈
{

γ+1
γ3+γ2+γ

, γ
3+γ2+γ
γ+1

}

and Tr
(

1 + 1
γ3

)

= 0 and γ 6∈ F4 and γ5 + γ3 + 1 6= 0.

(iii) c ∈

{

γ2
n−1

+1+γ2
n−1

+γ
γ(γ+1) , γ(γ+1)

γ2n−1+1+γ2n−1+γ

}

and Tr
(

γ+1
γ2(γ2+γ+1)

)

= 0 and γ 6∈ F4 and γ5 6= 1.

(iv) n ≡ 0 (mod 8) and c, γ ∈ F4 \ F2.
(v) c ∈ {x ∈ F2n : γ3x3 + γ2x2 + (γ + 1)x+ 1 = 0} \ {γ, 1

γ2n−1+γ
}, γ3c2 + (γ2 + γ + 1)c+ γ2 6= 0 and

Tr
(

(cγ+c+1)(c2γ+1)
c(c+γ)2

)

= 0 and γ 6∈ F4.

(vi) c ∈ {x ∈ F2n : x3 + (γ + 1)x2 + γ2x+ γ3 = 0} \ {γ−1, γ2
n−1

+ γ}, γ2c2 + (γ2 + γ + 1)c+ γ3 6= 0.

and Tr
(

(c+γ+1)(c2+γ)
(cγ+1)2

)

= 0 and γ 6∈ F4.

Proof. Assume that c∆F = 5. When a ∈ {0, 1, γ, γ + 1}, we have #Pa = 4 and hence c∆F (a, b) ≤ 4
by (3). Thus we assume that a ∈ F2n \ {0, 1, γ, γ + 1}, and then we have #Pa = 6. We can see in
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the proof of Theorem 3.2 that cDa(x) = b has at most 3 solutions in Pa and at most 2 solutions in
F2n \ Pa. Since c∆F = 5, there are a ∈ F2n \ {0, 1, γ, γ + 1} and b ∈ F2n such that cDaF (x) = b has
3 solutions in Pa and 2 solutions in F2n \ Pa. First we consider that cDaF (x) = b has 3 solutions in
Pa. We state cDaF (x) = F (x+ a) + cF (x) for each x ∈ Pa.

cDaF (0) = F (a) + cF (0) = a−1 + c cDaF (a) = F (0) + cF (a) = 1 + ca−1

cDaF (1) = F (1 + a) + cF (1) = (a+ 1)−1 + γ−1c cDaF (a+ 1) = F (1) + cF (a+ 1) = γ−1 + c(a+ 1)−1

cDaF (γ) = F (γ + a) + cF (γ) = (a+ γ)−1
cDaF (a+ γ) = F (γ) + cF (γ + a) = c(a+ γ)−1

Applying (2), we investigate required conditions such that cDaF (x) = b has at least two solutions in
Pa.

• cDaF (0) = cDaF (1) ⇒ c(γ + 1)a2 + c(γ + 1)a+ γ = 0 (has no solutions ⇔ Tr
(

γ
c(γ+1)

)

= 1).

• cDaF (0) = cDaF (γ) ⇒ ca2 + cγa+ γ = 0 (has no solutions ⇔ Tr(c−1γ−1) = 1).

• cDaF (0) = cDaF (a+1) ⇒ (cγ+1)a2+(γ+1)a+γ = 0 (has no solutions ⇔ Tr
(

γ(cγ+1)
(γ+1)2

)

= 1

and c 6= γ−1).

• cDaF (0) = cDaF (a+γ) ⇒ ca2+(cγ+ c+1)a+γ = 0 (has no solutions ⇔ Tr
(

cγ
(cγ+c+1)2

)

= 1

and c 6= (γ + 1)−1).

• cDaF (1) = cDaF (γ) ⇒ ca2+c(γ+1)a+γ(c+γ+1) = 1 (has no solutions ⇔ Tr
(

γ(c+γ+1)
c(γ+1)2

)

= 1

and c 6= γ + 1).

• cDaF (1) = cDaF (a) ⇒ (c + γ)a2 + c(γ + 1)a+ cγ = 0 (has no solutions ⇔ Tr
(

γ(c+γ)
c(γ+1)2

)

= 1

and c 6= γ).

• cDaF (1) = cDaF (a+ γ) ⇒ ca2 + (c+ γ)a+ γ2 = 0 (has no solutions ⇔ Tr
(

cγ2

(c+γ)2

)

= 1 and

c 6= γ).

• cDaF (γ) = cDaF (a) ⇒ a2 +(c+ γ+1)a+ cγ = 0 (has no solutions ⇔ Tr
(

cγ
(c+γ+1)2

)

= 1 and

c 6= γ + 1).

• cDaF (γ) = cDaF (a + 1) ⇒ a2 + (cγ + 1)a + cγ2 = 0 (has no solutions ⇔ Tr
(

cγ2

(cγ+1)2

)

= 1

and c 6= γ−1).

• cDaF (a) = cDaF (a+1) ⇒ (γ+1)a2 + (γ +1)a+ cγ = 0 (has no solutions ⇔ Tr
(

cγ
γ+1

)

= 1).

• cDaF (a) = cDaF (a+ γ) ⇒ a2 + γa+ cγ = 0 (has no solutions ⇔ Tr(cγ−1) = 1).

• cDaF (a + 1) = cDaF (a + γ) ⇒ a2 + (γ + 1)a + (cγ + c + 1)γ = 0 (has no solutions ⇔

Tr
(

(cγ+c+1)γ
(γ+1)2

)

= 1 and c 6= (γ + 1)−1).
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Next we investigate all the cases that cDaF (x) = b has 3 solutions in Pa. For each case, we apply
Lemma 4.2 to find required conditions that cDaF (x) = b has 2 solutions in F2n \ Pa.

(Case 1) If cDaF (0) = cDaF (1) = cDaF (γ) then a is a common solution of c(γ+1)a2+c(γ+1)a+γ =
0, ca2 + cγa + γ = 0 and ca2 + c(γ + 1)a+ γ(c + γ + 1) = 0. We add the first two equations to get

0 = cγa2 + ca = ca(γa + 1) and hence we have a = γ−1. We have c = γ3

(γ+1)2
to substitute a = γ−1

to each equation. We set b = cDa(γ) =
γ

γ2+1 and check Lemma 4.2. Then we have b 6= 0 and

ab+ c+ 1 =
1

γ2 + 1
+

γ3

γ2 + 1
+ 1 =

γ3 + γ2

γ2 + 1
=

γ2

γ + 1
6= 0,

since γ 6= 0. And (6) becomes

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr





γ3

(γ+1)4

γ4

(γ+1)2



 = Tr

(

1

γ(γ + 1)2

)

.

Using b+ c+ 1 = γ3+γ
γ2+1 + 1 = γ + 1 and γ(bγ + c+ 1) = γ(γ3+1)

(γ+1)2 = γ(γ2+γ+1)
γ+1 , (7) becomes

a(b+ c) + b+ c+ 1 = γ−1 · γ + γ + 1 = γ 6= 0

a(b+ 1) + b+ c+ 1 = γ−1 ·
γ2 + γ + 1

γ2 + 1
+ γ + 1 =

(γ2 + γ + 1) + (γ4 + γ3 + γ2 + γ)

γ(γ + 1)2
=

γ4 + γ3 + 1

γ(γ + 1)2

(bγ + c)a+ γ(bγ + c+ 1) = γ−1 ·
γ3 + γ2

(γ + 1)2
+

γ(γ2 + γ + 1)

γ + 1
=

γ2(γ + 1)

γ + 1
= γ2 6= 0

(bγ + 1)a+ γ(bγ + c+ 1) = γ−1 ·
1

(γ + 1)2
+

γ(γ2 + γ + 1)

γ + 1
=

γ2(γ3 + 1) + 1

γ(γ + 1)2
=

γ5 + γ2 + 1

γ(γ + 1)2

Hence we require γ4 + γ3 + 1 6= 0 and γ5 + γ2 + 1 6= 0. It is easy to check a = γ−1 6∈ {0, 1, γ, γ + 1}
requires γ 6∈ F4.

If c = (γ+1)2

γ3 , then we have c∆F = c−1∆F = 5 by Lemma 2.5. We exchange c by c−1 in the above

analysis, we also require Tr
(

1
γ(γ+1)2

)

= 0, γ 6∈ F4, γ
4 + γ3 + 1 6= 0 and γ5 + γ2 + 1 6= 0.

(Case 2) If cDaF (0) = cDaF (1) = cDaF (a+γ) then a is a common solution of c(γ+1)a2+c(γ+1)a+
γ = 0, ca2+(cγ+ c+1)a+ γ = 0 and ca2 +(c+ γ)a+ γ2 = 0. We add the first two equation to have
cγa2 + a = 0 and hence ca = γ−1. Hence the first equation implies 0 = ca(γ +1)a+ ca(γ +1) + γ =
(γ+1)a+(γ2+γ+1)

γ
and hence we have a = γ2+γ+1

γ+1 and c = 1
aγ

= γ+1
γ3+γ2+γ

. Note that we have a = 0

if γ ∈ F4 \ F2 and hence we require γ 6∈ F4. We set b = cDaF (0) = a−1 + c = γ2+1
γ3+γ2+γ

and check
Lemma 4.2. Then we have b 6= 0 and

ab+ c+ 1 =
γ2 + γ + 1

γ + 1
·

γ2 + 1

γ3 + γ2 + γ
+

γ + 1

γ3 + γ2 + γ
+ 1 =

(γ3 + 1) + (γ + 1) + (γ3 + γ2 + γ)

γ3 + γ2 + γ

=
γ2

γ3 + γ2 + γ
6= 0
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since γ 6= 0, 1. And (6) becomes

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr





(γ+1)2

γ2(γ2+γ+1)

γ2

(γ2+γ+1)2



 = Tr

(

γ4 + γ3 + γ + 1

γ4

)

= Tr

(

1 +
1

γ3

)

.

Using b + c + 1 = γ+1
γ2+γ+1

+ 1 = γ2

γ2+γ+1
and γ(bγ + c + 1) = γ

(

γ3+1
γ(γ2+γ+1)

+ 1
)

= γ
(

γ+1
γ

+ 1
)

= 1,

(7) becomes

a(b+ c) + b+ c+ 1 =
γ2 + γ + 1

γ + 1
·

γ + 1

γ2 + γ + 1
+

γ + 1

γ2 + γ + 1
+ 1 =

γ + 1

γ2 + γ + 1
6= 0

a(b+ 1) + b+ c+ 1 =
γ2 + γ + 1

γ + 1
·

γ3 + γ + 1

γ(γ2 + γ + 1)
+

γ2

γ2 + γ + 1
=

γ5 + γ3 + 1

γ(γ3 + 1)

(bγ + c)a+ γ(bγ + c+ 1) =
γ2 + γ + 1

γ + 1
·
γ + 1

γ
+ 1 =

γ2 + 1

γ
6= 0

(bγ + 1)a+ γ(bγ + c+ 1) =
γ2 + γ + 1

γ + 1
·

γ

γ2 + γ + 1
+ 1 =

1

γ + 1
6= 0

Hence we require γ5 + γ3 + 1 6= 0. It is easy to check a = γ2+γ+1
γ+1 6∈ {0, 1, γ, γ + 1} if γ 6∈ F4.

If c = γ3+γ2+γ
γ+1 , then we have c∆F = c−1∆F = 5 by Lemma 2.5. We exchange c by c−1 in the above

analysis, we also require Tr
(

1 + 1
γ3

)

= 0 and γ 6∈ F4 and γ5 + γ3 + 1 6= 0.

(Case 3) If cDaF (0) = cDaF (a+1) = cDaF (a+ γ) then a is a common solution of (cγ+1)a2 +(γ+
1)a + γ = 0, ca2 + (cγ + c + 1)a + γ = 0 and a2 + (γ + 1)a + (cγ + c + 1)γ = 0. We add the first
equation and the third equation to get cγa2 + cγ(γ + 1) = 0 and hence a2 = γ + 1 so a = γ2

n−1

+ 1.
We substitute a = γ2

n−1

+ 1 to the third equation to have 0 = cγ(γ + 1) + γ2
n−1+1 + γ2

n−1

+ γ and

hence c = γ2
n−1

+1+γ2
n−1

+γ
γ(γ+1) 6= 0 because 0 6= γ(γ2 + γ + 1) = (γ2

n−1+1 + γ2
n−1

+ γ)2 when γ 6∈ F4.

We set b = cDaF (a+ γ) = γ2
n−1

γ(γ+1) and check Lemma 4.2. Then we have b 6= 0 and

ab+ c+ 1 =
γ2

n−1

(γ2
n−1

+ 1) + (γ2
n−1+1 + γ2

n−1

+ γ) + γ2 + γ

γ(γ + 1)
=

γ2
n−1+1 + γ2 + γ

γ(γ + 1)
6= 0

requires γ 6∈ F4 \ F2 because 0 6= γ(γ2 + γ + 1) = (γ2
n−1+1 + γ2

n−1

+ γ)2. And (6) becomes

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr







γ2
n−1

(γ2
n−1

+1)(γ2
n−1

+1+γ2
n−1

+γ)
γ2(γ+1)2

γ4+γ3+γ2

γ2(γ+1)2







= Tr

(

γ2
n−1

(γ2
n−1

+ 1)(γ2
n−1+1 + γ2

n−1

+ γ)

γ2(γ2 + γ + 1)

)

= Tr

(

γ(γ + 1)(γ3 + γ2 + γ)

γ4(γ2 + γ + 1)2

)

= Tr

(

γ + 1

γ2(γ2 + γ + 1)

)

.

11



Using b + c + 1 = γ2
n−1

+1
γ+1 + 1 = γ2

n−1
+γ

γ+1 and γ(bγ + c + 1) = γ

(

γ2
n−1

+γ
γ(γ+1) + 1

)

= γ2
n−1

+1+γ3

γ(γ+1) , (7)

becomes

a(b+ c) + b+ c+ 1 = (γ2
n−1

+ 1) ·
γ2

n−1

+ 1

γ + 1
+

γ2
n−1

+ γ

γ + 1
=

γ2
n−1

+ 1

γ + 1
= (γ + 1)2

n−1
−1 6= 0

a(b+ 1) + b+ c+ 1 = (γ2
n−1

+ 1) ·
γ2

n−1

+ γ2 + γ

γ(γ + 1)
+

γ2
n−1

+ γ

γ + 1
= γ2

n−1
−1(γ + 1) 6= 0

(bγ + c)a+ γ(bγ + c+ 1) = (γ2
n−1

+ 1) ·
γ2

n−1

+ γ

γ(γ + 1)
+

γ2
n−1+1 + γ3

γ(γ + 1)
=

γ2
n−1

+ γ3

γ(γ + 1)
=

(γ6 + γ)2
n−1

γ(γ + 1)

(bγ + 1)a+ γ(bγ + c+ 1) = (γ2
n−1

+ 1) ·
γ2

n−1+1 + γ2 + γ

γ(γ + 1)
+

γ2
n−1+1 + γ3

γ(γ + 1)
= γ2

n−1

+ γ + 1

= (γ2 + γ + 1)2
n−1

6= 0

Hence we require γ5 6= 1. It is easy to check a = γ2
n−1

+ 1 6∈ {0, 1, γ, γ + 1} if γ 6∈ F4.

If c = γ(γ+1)

γ2n−1+1+γ2n−1+γ
, then we have c∆F = c−1∆F = 5 by Lemma 2.5. We exchange c by c−1 in

the above analysis, we also require Tr
(

γ+1
γ2(γ2+γ+1)

)

= 0, γ 6∈ F4 and γ5 6= 1.

(Case 4) If cDaF (0) = cDaF (γ) = cDaF (a + 1) then a is a common solution of ca2 + cγa + γ = 0,
(cγ +1)a2 + (γ+1)a+ γ = 0 and a2 +(cγ +1)a+ cγ2 = 0. We add the first two equations to obtain
(cγ + c+ 1)a2 + (cγ + γ + 1)a = 0. Hence we have cγ + c+ 1 = cγ + γ + 1 = 0 or a = cγ+γ+1

cγ+c+1 .

• If cγ + c + 1 = cγ + γ + 1 = 0 then c = γ and γ2 + γ + 1 = 0 so γ ∈ F4. And a is a solution
of a2 + γa + γ = 0 where such a exists if and only if Tr(γ) = 0 if and only if n ≡ 0 (mod 4).
Since a2 = aγ + 1, we have

a4 = a2γ2 + 1 = (aγ + 1)γ2 + 1 = a+ γ,

a8 = a2 + γ2 = aγ + 1 + γ2 = aγ + γ.

Thus a+ a2 + a4 + a8 = a+ (aγ + 1) + (a+ γ) + (aγ + γ) = 1 and hence

Tr(a) =

n−1
∑

i=0

a2
i

=

n
4
∑

j=0

(a+ a2 + a2
2

+ a2
3

)2
j

=

n
4
∑

j=0

1 =
n

4

We set b = cDaF (0) = a−1+γ and check Lemma 4.2. Then we have b 6= 0, since if a = γ−1 = γ2

then 0 = a2+γa+1 = γ which is a contradiction. We also have ab+c+1 = a(a−1+γ)+γ+1 =
γ(a+1) 6= 0, since if a = 1 then 0 = a2+γa+1 = γ which is a contradiction. And (6) becomes

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr

(

a(a−1 + γ)γ

γ2(a+ 1)2

)

= Tr

(

(aγ + 1)γ

aγ3

)

= Tr

(

a2γ

a

)

= Tr(aγ) = Tr(a2 + 1) = Tr(a)

if and only if n ≡ 0 (mod 8). We can easily check that a 6∈ {0, 1, γ, γ + 1} = F4 if γ ∈ F4 \ F2

and a2+aγ+1 = 0. Using b+ c+1 = a−1+1 and γ(bγ+ c+1) = a−1γ2+γ3+γ2+γ = a−1γ2,
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(7) becomes

a(b+ c) + b+ c+ 1 = a · a−1 + a−1 + 1 = a−1 6= 0

a(b+ 1) + b+ c+ 1 = a(a−1 + γ + 1) + a−1 + 1 = aγ + a+ a−1 = a−1γ2(a2 + γ) 6= 0

(bγ + c)a+ γ(bγ + c+ 1) = a(a−1γ + 1) + a−1γ2 = a−1(a2 + γa+ γ2) = a−1γ 6= 0

(bγ + 1)a+ γ(bγ + c+ 1) = aγ(a−1 + 1) + a−1γ2 = a−1γ(a2 + a+ γ) = a−1(a+ 1) 6= 0

Note that γ2∆F = γ−1∆F = γ∆F = 5 in this case.

• Now we assume that γ ∈ F2n \ F4 and a = cγ+γ+1
cγ+c+1 . We substitute a = cγ+γ+1

cγ+c+1 to the first
equation to get

0 = c(cγ + γ + 1)2 + cγ(cγ + c+ 1)(cγ + γ + 1) + γ(cγ + c+ 1)2

= γ3c3 + γ2c2 + (γ + 1)c + γ

We have the same results when we substitute a = cγ+γ+1
cγ+c+1 to the last two equations. We set

b = cDaF (0) = c2γ+1
cγ+γ+1 check Lemma 4.2. If c2γ = 1 then = γ3c3 + γ2c2 + (γ + 1)c + γ =

(γ2 + γ + 1)c, which is a contradiction to c 6= 0 and γ 6∈ F4. Hence we have b 6= 0. Moreover,

ab+ c+ 1 =
c2γ + 1 + (c+ 1)(cγ + c+ 1)

cγ + c+ 1
=

c(c + γ)

cγ + c+ 1
6= 0

if and only if c 6= γ. And (6) becomes

0 = Tr

(

abc

(ab+ c+ 1)2

)

= Tr





c(c2γ+1)
cγ+c+1

c2(c+γ)2

(cγ+c+1)2



 = Tr

(

(cγ + c+ 1)(c2γ + 1)

c(c+ γ)2

)

.

Using b+ c = cγ+c+1
cγ+γ+1 = a−1 and hence b+ c+ 1 = c+γ

cγ+γ+1 and γ(bγ + c+ 1) = c2γ2(γ+1)+cγ+γ
cγ+γ+1 ,

(7) becomes

a(b+ c) + b+ c+ 1 = a · a−1 + a−1 + 1 = a−1 6= 0

a(b+ 1) + b+ c+ 1 =
cγ + γ + 1

cγ + c+ 1
·
γ(c2 + c+ 1)

cγ + γ + 1
+

c+ γ

cγ + γ + 1
=

γ2c3 + c2 + (γ + 1)2c+ γ2

(cγ + c+ 1)(cγ + γ + 1)

=
γ3c3 + γc2 + γ(γ + 1)2c+ γ3

γ(cγ + c+ 1)(cγ + γ + 1)
=

(γ2 + γ)c2 + (γ3 + 1)c+ γ3 + γ

γ(cγ + c+ 1)(cγ + γ + 1)

=
(γ + 1)(c + γ)(γc + γ + 1)

γ(cγ + c+ 1)(cγ + γ + 1)
=

(γ + 1)(c + γ)

γ(cγ + c+ 1)
6= 0

(bγ + c)a+ γ(bγ + c+ 1) =
cγ + γ + 1

cγ + c+ 1
·
c2γ(γ + 1) + c(γ + 1) + γ

cγ + γ + 1
+

c2γ2(γ + 1) + cγ + γ

cγ + γ + 1

=
(γ + 1)γ3c3 + (γ + 1)γc2 + (γ + 1)2c+ γ2

(cγ + c+ 1)(cγ + γ + 1)

=
(γ + 1)(γ3c3 + γ2c2 + (γ + 1)c) + γ2(γ + 1)c2 + γ2

(cγ + c+ 1)(cγ + γ + 1)

=
γ2(γ + 1)c2 + γ

(cγ + c+ 1)(cγ + γ + 1)
=

γ(γ(γ + 1)c2 + 1)

(cγ + c+ 1)(cγ + γ + 1)

13



(bγ + 1)a+ γ(bγ + c+ 1) =
cγ + γ + 1

cγ + c+ 1
·
c2γ2 + cγ + 1

cγ + γ + 1
+

c2γ2(γ + 1) + cγ + γ

cγ + γ + 1

=
(γ2 + γ + 1)γ2c3 + γc2 + 1

(cγ + c+ 1)(cγ + γ + 1)
=

(γ2 + γ + 1)γ3c3 + γ2c2 + γ

γ(cγ + c+ 1)(cγ + γ + 1)

=
(γ2 + γ + 1)(γ2c2 + (γ + 1)c + γ) + γ2c2 + γ

γ(cγ + c+ 1)(cγ + γ + 1)

=
(γ + 1)γ3c2 + (γ + 1)(γ2 + γ + 1)c + γ2(γ + 1)

γ(cγ + c+ 1)(cγ + γ + 1)

=
(γ + 1)(γ3c2 + (γ2 + γ + 1)c + γ2)

γ(cγ + c+ 1)(cγ + γ + 1)

Hence we require c 6= 1

γ2n−1+γ
and γ3c2 + (γ2 + γ + 1)c + γ2 6= 0. It remains to check

a = cγ+γ+1
cγ+c+1 6∈ {0, 1, γ, γ + 1}. If a = 0 then we have cγ = γ + 1 or c = γ+1

γ
and hence

we have 0 = (cγ)3 + (cγ)2 + (γ + 1)c + γ = (γ2+γ+1)2

γ
which is a contradiction to γ 6∈ F4.

If a = 1 then we have c = γ and then we have ab + c + 1 6= 0. If a = γ then we have
0 = (cγ + γ + 1) + γ(cγ + c+ 1) = cγ2 + 1, but we already see that cγ2 + 1 6= 0. If a = γ + 1
then we have 0 = (cγ + γ +1) + (γ +1)(cγ + c+1) = c(γ2 + γ +1) which is a contradiction to
γ 6∈ F4.

• We exchange c by c−1 in the above analysis to have a = c−1γ+γ+1
c−1γ+c−1+1

= cγ+c+γ
c+γ+1 and b =

(c−1)2γ+1
c−1γ+γ+1

= c2+γ
c2(γ+1)+cγ

. Then c−1DaF (x) = b has three solutions in Pa if x = c−1 is a solution

of γ3x3+ γ2x2+(γ+1)x+1 = 0 and hence c3+(γ+1)c2+ γ2c+ γ3 = 0. Similarly, by Lemma
4.2, c−1DaF (x) = b has two solutions in F2n \ Pa if and only if

0 = Tr

(

(c−1γ + c−1 + 1)((c−1)2γ + 1)

c−1(c−1 + γ)2

)

= Tr

(

(γ + c+ 1)(c2 + γ)

(cγ + 1)2

)

.

and c 6= γ2
n−1

+ γ and γ2c2 + (γ2 + γ + 1)c+ γ3 6= 0.

By Lemma 2.5, b = cDaF (u1) = cDaF (u2) = cDaF (u3) if and only if bc−1 = c−1DaF (u1 + a) =

c−1DaF (u2 + a) = c−1DaF (u3 + a) for all u1, u2, u3 ∈ F2n , and hence it is enough to consider the
above cases. Therefore, if conditions in this theorem are not satisfied, then cDa = b has at most 2
solutions in Pa or at most 1 solution in F2n \ Pa and hence we have c∆F ≤ 4.

Conversely, if each condition in this theorem holds, then we set a and b the same as in the above
analysis in each case. By the above analysis in each case, we can see that cDaF (x) = b has 3 solutions
in Pa. We can also see that cDaF (x) = b has 2 solutions in F2n \ Pa by Lemma 4.2. Therefore we
have c∆F (a, b) = 5 and hence c∆F = 5 by Theorem 4.3, which completes the proof.

By Theorem 4.4, we can say that 3 ≤ c∆F ≤ 4 if and only if all the conditions in Theorem 4.4
do not hold. Next we give a simple characterization for the case c∆F = 3.

Corollary 4.5. We have c∆F = 3 if c 6∈ {γ, γ−1, γ + 1, (γ + 1)−1} and Tr
(

γ
c(γ+1)

)

= Tr(c−1γ−1) =

Tr
(

γ(cγ+1)
(γ+1)2

)

= Tr
(

cγ
(cγ+c+1)2

)

= Tr
(

γ(c+γ+1)
c(γ+1)2

)

= Tr
(

γ(c+γ)
c(γ+1)2

)

= Tr
(

cγ2

(c+γ)2

)

= Tr
(

cγ
(c+γ+1)2

)

=

Tr
(

cγ2

(cγ+1)2

)

= Tr
(

cγ
γ+1

)

= Tr(cγ−1) = Tr
(

(cγ+c+1)γ
(γ+1)2

)

= 1.

14



n 4 5 6 7 8

# of (c, γ) with c∆F = 3 32 10 28 196 672

# of (c, γ) with c∆F = 3 satisfying Corollary 4.5 0 0 12 14 64

Table 2: Distribution of c∆F when 4 ≤ n ≤ 8.

Proof. We can see in the proof of Theorem 4.4 that cDaF (u1) 6= cDaF (u2) for all u1, u2 ∈ Pa with
u1 6= u2 if all the above trace conditions hold. Thus cDaF (x) = b has at most one solution in Pa

for all a ∈ F2n and b ∈ F2n . As observed in the proof of Theorem 4.4 cDaF (x) = b has at most two
solutions in F2n \ Pa for all a ∈ F2n and b ∈ F2n . Hence we have c∆F (a, b) ≤ 3 for all a ∈ F2n and
b ∈ F2n . By Theorem 4.3, we complete the proof.

We already investigated the number of pairs (c, γ) ∈ (F2n \ F2) × (F2n \ F2) that c∆F = 3 in
Table 1. In Table 2 we investigate the number of pairs (c, γ) with c∆F = 3 can be obtained from
Corollary 4.5. Unfortunately, the number of pairs (c, γ) that can be obtained by Corollary 4.5 is only
a fraction of all the pairs (c, γ) with c∆F = 3. However, we need to investigate all the cases that

cDaF (u1) = cDaF (u2) where u1, u2 ∈ Pa with u1 6= u2 to characterize all the pairs with c∆F = 3,
which requires very routine computations.

Next we characterize c-differential uniformity of F in a special case that γ ∈ F4 \ F2.

Lemma 4.6. Let γ ∈ F4 \ F2, a ∈ F4 and b ∈ F2n. Then, c∆F (a, b) = 4 if and only if a = 1, b = γ,

c 6= γ2 and Tr
(

cγ
c2+γ

)

= 0. Otherwise, c∆F (a, b) ≤ 3.

Proof. If a = 1 then we get cD1F (0) = γ2 + c, cD1F (1) = cD1F (γ) = γ and cD1F (γ2) = cγ. Since
c 6= 1, we obtain that γ2 + c, γ and cγ are pairwise distinct. If b = γ then x = 1 and x = γ are
solutions of cD1F (x) = b. For x 6∈ F4, cD1F (x) = b implies γx2 + (c + γ2)x + c = 0. Note that
if c 6= γ2 then γx2 + (c + γ2)x + c = 0 has no solutions in Pa = F4 = {0, 1, γ, γ + 1}. Hence by

Lemma 4.2 it has two solutions if and only if c 6= γ2 and 0 = Tr
(

cγ
(c+γ2)2

)

= Tr
(

cγ
c2+γ

)

. Hence we

get c∆F (1, γ) = 4 if Tr
(

cγ
c2+γ

)

= 0.

If u = 0 or u = γ2, then cD1F (x) = cD1F (u) has the unique solution x = u in F4. By Lemma
4.2, cD1F (x) = cD1F (u) has at most two solutions. If b 6∈ { cD1F (u) : u ∈ F4}, then we get

c∆F (1, b) = c∆Inv(1, b) ≤ 3 by Theorem 2.2. Therefore, we get c∆F (γ, b) ≤ 3 for all b ∈ F2n with
b 6= γ.

If a = γ, then we get cDγF (0) = c, cDγF (1) = γ + cγ2, cDγF (γ) = 1 and cDγF (γ2) = γ2 + cγ.
Since c 6= 1, we obtain that γ+ c, cγ2, γ2 and 1+ cγ are pairwise distinct(because if two of them are
same then we get c = 1, a contradiction). Thus cDγF (x) = cDγF (u) has the unique solution x = u
in F4 and at most two solutions in x ∈ F2n \ F4, by Lemma 4.2. Hence we have c∆F (γ, b) ≤ 3 for all
b ∈ F2n .

If a = γ2 then we get cDγ2F (0) = γ+c, cDγ2F (1) = cγ2, cDγ2F (γ) = γ2 and cDγ2F (γ2) = 1+cγ.
Since c 6= 1, we obtain that γ + c, cγ2, γ2 and 1 + cγ are pairwise distinct(If two of them are same
then we get c = 1, a contradiction). Similar with the case a = γ, we have c∆F (γ

2, b) ≤ 3 for all
b ∈ F2n .

15



Theorem 4.7. Let n be even and γ ∈ F4 \ F2. If c ∈ F4 \ F2, then

c∆F =











3 if n ≡ 2 (mod 4),

4 if n ≡ 4 (mod 8),

5 if n ≡ 0 (mod 8).

Proof. By Theorem 4.4 we have c∆F = 5 if and only if n ≡ 0 (mod 8). Otherwise we have 3 ≤

c∆F ≤ 4 by Theorem 4.3 and Theorem 4.4. By Lemma 2.5, it is sufficient to consider the case c = γ.

(Case 1) Assume that n ≡ 2 (mod 4). By Lemma 4.6 we have c∆F (a, b) ≤ 3 for all a ∈ F4 and

b ∈ F2n , since Tr
(

cγ
c2+γ

)

= Tr(γ2) = 1. Hence it is sufficient to consider the case that a ∈ F2n \ F4.

Using the proof of Theorem 4.4 we have the followings :

• cDaF (0) 6= cDaF (1) since Tr
(

γ(cγ+1)
(γ+1)2

)

= Tr
(

γ
γ(γ+1)

)

= Tr(γ) = 1

• cDaF (0) 6= cDaF (γ) since Tr(c−1γ−1) = Tr(γ) = 1

• cDaF (0) 6= cDaF (a+ 1) since Tr
(

γ(cγ+1)
(γ+1)2

)

= Tr
(

γ(γ2+1)
(γ+1)2

)

= Tr(γ) = 1

• cDaF (0) 6= cDaF (a+ γ) since if cDaF (0) = cDaF (a+ γ) then we have a = 1, a contradiction
to a ∈ F2n \ F4

• cDaF (1) 6= cDaF (γ) since Tr
(

γ(c+γ+1)
c(γ+1)2

)

= Tr
(

1
γ4

)

= Tr(γ2) = 1

• cDaF (1) 6= cDaF (a) since if cDaF (1) = cDaF (a) then we have a = γ2, a contradiction to
a ∈ F2n \ F4

• cDaF (1) 6= cDaF (a+ γ) since if cDaF (1) = cDaF (a+ γ) then we have a = γ2, a contradiction
to a ∈ F2n \ F4

• cDaF (γ) 6= cDaF (a) since Tr
(

cγ
(c+γ+1)2

)

= Tr(γ2) = 1

• cDaF (γ) 6= cDaF (a+ 1) since Tr
(

cγ2

(cγ+1)2

)

= Tr(γ) = 1

• cDaF (a) 6= cDaF (a + 1) since if cDaF (a) = cDaF (a + 1) then we have a2 + a + 1 = 0, a
contradiction to a ∈ F2n \ F4

• cDaF (a) 6= cDaF (a+ γ) since if cDaF (a) = cDaF (a+ γ) then we have a2 + γa+ γ2 = 0 and
then a ∈ {1, 1 + γ}, a contradiction to a ∈ F2n \ F4

• cDaF (a + 1) 6= cDaF (a + γ) since if cDaF (a + 1) = cDaF (a + γ) then we have a = γ + 1, a
contradiction to a ∈ F2n \ F4

Hence cDaF (x) = b has at most one solution in Pa. Since cDaF (x) = b has at most two solutions in
F2n \ Pa, we obtain c∆F (a, b) ≤ 3.

(Case 2) Assume that n ≡ 4 (mod 8). Then by Lemma 4.6 we have c∆F (1, γ) = 4 since Tr
(

cγ
c2+γ

)

=

Tr(γ2) = 0. Therefore, we have c∆F = 4 in this case.

16



n 4 6 8 10 12

# of (c, γ) with c∆F = 3 4 0 8 20 136

# of (c, γ) with c∆F = 3 satisfying Corollary 4.8 0 0 8 10 84

Table 3: The number of c ∈ F2n \ F4 when 4 ≤ n ≤ 12.

Next we propose a sufficient condition for c∆F = 3 in case γ ∈ F4 \ F2 using Corollary 4.5.

Corollary 4.8. Let n be even and γ ∈ F4 \ F2. If c ∈ F2n \ F4, then 3 ≤ c∆F ≤ 4. Furthermore,

c∆F = 3 if Tr(cγ) = Tr(cγ2) = Tr(c−1γ) = Tr(c−1γ2) = Tr
(

c
(c+γ)2

)

= Tr
(

cγ2

(c+γ)2

)

= Tr
(

cγ
(c+γ2)2

)

=

Tr
(

c
(c+γ2)2

)

= 1.

Proof. By Theorem 4.4 if γ ∈ F4 \ F2 then c∆F = 5 if and only if c ∈ F4 \ F2 and n ≡ 0 (mod 8).
Hence if c ∈ F2n \ F4 then we have 3 ≤ c∆F ≤ 4 using Theorem 4.3. If γ ∈ F4 \ F2 and c ∈ F2n \ F4

then we have c 6∈ {γ, γ + 1, γ−1, (γ + 1)−1}. Using γ ∈ F4 \ F2 and Tr(1) = 0 we check all trace
conditions in Corollary 4.5

Tr
(

γ
c(γ+1)

)

= Tr(c−1γ−1) = 1 Tr(c−1γ−1) = 1

Tr
(

γ(cγ+1)
(γ+1)2

)

= Tr(cγ + 1) = Tr(cγ) = 1 Tr
(

cγ
(cγ+c+1)2

)

= Tr
(

c
(c+γ)2

)

= 1

Tr
(

γ(c+γ+1)
c(γ+1)2

)

= Tr
(

c+γ2

c

)

= Tr(c−1γ2) = 1 Tr
(

γ(c+γ)
c(γ+1)2

)

= Tr
(

c+γ
c

)

= Tr(c−1γ) = 1

Tr
(

cγ2

(c+γ)2

)

= 1 Tr
(

cγ
(c+γ+1)2

)

= Tr
(

cγ
(c+γ2)2

)

= 1

Tr
(

cγ2

(cγ+1)2

)

= Tr
(

c
(c+γ2)2

)

= 1 Tr
(

cγ
γ+1

)

= Tr(cγ2) = 1

Tr(cγ−1) = Tr(cγ2) = 1 Tr
(

(cγ+c+1)γ
(γ+1)2

)

= Tr(cγ2 + 1) = Tr(cγ2) = 1

and hence we have c∆F = 3 by Corollary 4.5, which completes the proof.

The trace conditions in Corollary 4.8 are not necessary for c∆F = 3. The third row of Table 3
indicates the number of c ∈ F2n \ F4 with c∆F = 3 satisfying all the trace conditions in Corollary
4.8 for each 4 ≤ n ≤ 12.

5 Concluding Remark

In this paper, we study c-differential uniformity of permutations with low Carlitz rank. We show that
a permutation of Carlitz rank m has c-differential uniformity at most m+2. Hence we can see that a
permutation of low Carlitz rank has low c-differential uniformity. We observe that this upper bound
m+ 2 on c-differential uniformity of permutations with Carlitz rank m is tight when 1 ≤ m ≤ 3. In
particular, we investigate c-differential uniformity of permutations of the form Inv ◦ (0, 1, γ), which
have the same c-differential uniformity with some permutations with Carlitz rank 3. We can see that
3 ≤ c∆F ≤ 5, and we characterize the case c∆F = 5 and give a sufficient condition for c∆F = 3. We
also give a refined chracterization of c∆F for the special case that n is even and γ ∈ F4 \ F2.

The proof of an upper bound on c-differential uniformity of permutations with Carlitz rank m
is based on the fact that they are affine equivalent (of degree one) to the inverse function with m
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modified points. Since all permutations modifying a small set of points from Inv has low Carlitz rank,
we already show that they also have low c-differential uniformity. In future studies, we investigate
the c-differential uniformity of them in detail.
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