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MULTI-ORBIT CYCLIC SUBSPACE CODES AND LINEAR SETS

FERDINANDO ZULLO

To the beloved memory of my grandmother Elena.

Abstract. Cyclic subspace codes gained a lot of attention especially because they may be used
in random network coding for correction of errors and erasures. Roth, Raviv and Tamo in 2018
established a connection between cyclic subspace codes (with certain parameters) and Sidon spaces.
These latter objects were introduced by Bachoc, Serra and Zémor in 2017 in relation with the lin-
ear analogue of Vosper’s Theorem. This connection allowed Roth, Raviv and Tamo to construct
large classes of cyclic subspace codes with one or more orbits. In this paper we will investigate
cyclic subspace codes associated to a set of Sidon spaces, that is cyclic subspace codes with more
than one orbit. Moreover, we will also use the geometry of linear sets to provide some bounds on
the parameters of a cyclic subspace code. Conversely, cyclic subspace codes are used to construct
families of linear sets which extend a class of linear sets recently introduced by Napolitano, San-
tonastaso, Polverino and the author. This yields large classes of linear sets with a special pattern
of intersection with the hyperplanes, defining rank metric and Hamming metric codes with only
three distinct weights.

1. Introduction

Let k be a non-negative integer with k ≤ n, the set of all k-dimensional Fq-subspaces of Fqn ,
viewed as an Fq-vector space, forms a Grassmannian space over Fq, which is denoted by Gq(n, k).
A constant dimension subspace code is a subset C of Gq(n, k) endowed with the metric defined
as follows

d(U, V ) = dimFq(U) + dimFq(V )− 2 dimFq(U ∩ V ),

where U, V ∈ Gq(n, k). This metric is also known as subspace metric. Subspace codes have
been recently used for the error correction in random network coding, see [25]. The first class of
subspace codes studied was the one introduced in [16], which is known as cyclic subspace codes.
A subspace code C ⊆ Gq(n, k) is said to be cyclic if for every α ∈ F

∗
qn and every V ∈ C then

αV ∈ C.
Let V ∈ Gq(n, k), the orbit of V is the set CV = {αV : α ∈ F

∗
qn}, and its size is (qn−1)/(qt−1),

for some t which divides n. More precisely,

Theorem 1.1. [33, Theorem 1] Let U be a k-dimensional Fq-subspace of Fqn. Then Fqd is the

largest field such that U is also an Fqd-subspace if and only if the orbit size of U is qn−1
qd−1

.

In particular, every orbit of a subspace V ∈ Gq(n, k) defines a cyclic subspace code of size
(qn − 1)/(qt − 1), for some t | n. Assume k > 1. Clearly, a cyclic subspace code generated by an
orbit of a subspace V with size (qn − 1)/(q − 1) has minimum distance at most 2k − 2 and in [41]
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Trautmann, Manganiello, Braun and Rosenthal conjectured the existence of a cyclic code of size
qn−1
q−1 in Gq(n, k) and minimum distance 2k − 2 for every positive integers n, k such that k ≤ n/2.

Ben-Sasson, Etzion, Gabizon and Raviv in [7] used subspace polynomials to generate cyclic

subspace codes with size qn−1
q−1 and minimum distance 2k − 2, proving that the conjecture is true

for any given k and infinitely many values of n. Such result was then improved in [33] (see also
[7, 33,38]). Finally, the conjecture was solved in [37] for most of the cases, by making use of Sidon
spaces. They were originally introduced in [3], as an important tool to prove the linear analogue of
Vosper’s Theorem, which analyzes the equality in the linear analouge of Kneser’s theorem proved
in [4, 21].

An Fq-subspace U of Fqn is called a Sidon space if the product of any two elements of U has
a unique factorization over U , up to multiplying by some elements in Fq. More precisely, U is a
Sidon space if for all nonzero a, b, c, d ∈ U , if ab = cd, then

{aFq, bFq} = {cFq, dFq},

where if e ∈ Fqn then eFq = {eλ : λ ∈ Fq}. Sidon spaces may be seen as the q-analogue of Sidon
set, that is a subset A in a commutative group with the property that the sums of two elements
of A are all distinct except when they coincide because of commutativity. The name comes back
to Simon Szidon and was given by Erdős in [15]. Sidon sets have been then intensively studied in
several contexts, see e.g. [2, 10,11]. For a survey the reader is referred to [9].

The connection between Sidon spaces and cyclic subspace codes is the following.

Theorem 1.2. [37, Lemma 34] Let U be an Fq-subspace of Fqn of dimension k. Then CU is a

cyclic subspace code of size qn−1
q−1 and minimum distance 2k − 2 if and only if U is a Sidon space.

In this paper we deal with cyclic subspace codes containing more than one orbit, which we will
refer to as multi-orbit cyclic subspace codes. More precisely, our aim is to study the following
codes. Let U1, . . . , Ur be Fq-subspaces of dimension k in Fqn and let

(1) C =
⋃

i∈{1,...,r}

CUi
⊆ Gq(n, k)

with minimum distance 2k − 2 and of size r qn−1
q−1 . These codes have the same minimum distance

of the codes associated with Sidon spaces but they are larger, and hence more interesting from a
coding theory point of view. See [17,32,34] for recent constructions.

The code C is uniquely defined by the subspaces U1, . . . , Ur and therefore we give the following
two definitions. The set {U1, . . . , Ur} of a cyclic subspace code as in (1) will said to be a set of
representatives of C, whereas if also its minimum distance is 2k−2 we will call it a multi-Sidon

space, in connection with the correspondence between cyclic subspace codes with these parameters
with one orbit and Sidon spaces. Equivalently, the set {U1, . . . , Ur} is a multi-Sidon space if

dimFq(Ui ∩ αUj) ≤ 1

for every α ∈ Fqn and i, j ∈ {1, . . . , r} with i 6= j and for every α ∈ Fqn \ Fq if i = j.
Some of the results we will show do not require that all the subspaces have the same dimension

k. In this case, the associated code will be still cyclic but not a constant dimension code.
In this paper, we first investigate multi-orbit cyclic subspace codes by analyzing their properties

and providing characterizations, involving the Cartesian product of a set of representatives. Then
we derive a canonical form for multi-orbit cyclic codes in Gq(n, n/2) (and hence of multi-Sidon
spaces), when n is even, through some linearized polynomials jointly with direct conditions that
can be checked to establish whether or not a set of subspaces is a multi-Sidon space. Then we
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used these conditions to find a family of multi-orbit cyclic subspace codes defined by linearized
monomials, extending the family presented by Roth, Raviv and Tamo in [37], and we can also
solve the equivalence issue among the codes belonging to this larger family. We gave a geometric
interpretation of the Sidon property in terms of linear sets. This connection yields some new
bounds on the parameters involved in a multi-Sidon space and hence on the associated subspace
code. With the aid of multi-orbit cyclic subspace codes, we study a special class of linear sets in
PG(r − 1, qn) which may be defined by r points in independent position, which naturally extends
those investigated in [29] with Napolitano, Santonastaso and Polverino. In particular, we provide
bounds on the rank of such linear sets and we then concentrate our attention on those that have
maximum rank. Constructions of such linear sets can be obtained by using multi-orbit cyclic
subspace codes and we then analyze the equivalence issue among those. Moreover, when such
linear sets have rank n they can be described by projection maps, as shown in the appendix. Some
of these properties are natural generalization of the results in [29], but unlike what happens in
the projective line, the duals of the above linear sets of maximum rank have a special pattern of
intersection with the hyperplanes. This means that such linear sets can be used to define linear
rank metric codes and linear Hamming metric codes with only three weights (yielding also to almost
MRD codes) and for which one can completely determine their weight distribution. We conclude
the paper by showing possible problems that could be of interest for the reader.

2. Preliminaries

2.1. Linearized polynomials. Let s be a positive integer such that gcd(s, n) = 1. A qs-linearized
polynomial (for short qs-polynomial) over Fqn is a polynomial of the form

f(x) =

ℓ
∑

i=0

aix
qis ,

where ai ∈ Fqn and ℓ is a positive integer. Furthermore, if aℓ 6= 0 we say that ℓ is the qs-degree of
f(x). We will denote by Ln,s the set of all qs-polynomials over Fqn with qs-degree less than n (or
Ln if s = 1). Together with the classical sum of polynomials, the composition modulo xq

n
− x and

the scalar multiplication by an element in Fq, Ln,s forms an Fq-algebra isomorphic to the algebra
of Fq-linear endomorphisms of Fqn . For this reason, we shall identify the elements of Ln,s with
the endomorphisms of Fqn they represent and hence we will also speak of kernel and rank of a
qs-polynomial. Clearly, the kernel of f(x) ∈ Ln,s coincides with the set of the roots of f(x) over
Fqn .

We now recall an important result on linearized polynomials which will play a crucial role in the
construction of examples of cyclic subspace codes. This puts together [23, Lemma 3.2] and [20,
Theorem 10] (see also [19, Theorem 5]).

Theorem 2.1. Consider

f(x) = a0x+ a1x
qs + · · ·+ ak−1x

qs(k−1)
+ akx

qsk ∈ Ln,s,

with k ≤ n− 1 and let a0, a1, . . . , ak be elements of Fqn not all of them zero. Then

dimFq(ker(f(x))) ≤ k.

Moreover, if dimFq(ker(f(x))) = k then Nqn/q(a0) = (−1)nkNqn/q(ak).

An important example of a linearized polynomial is given by the trace function, which can be
defined as

Trqn/q(x) = x+ xq + . . . + xq
n−1

.
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For more details on linearized polynomials we refer to [27, Chapter 3, Section 4].

2.2. Linear sets. A point set L of Λ = PG(V,Fqn) = PG(r− 1, qn) is said to be an Fq-linear set

of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional Fq-vector subspace U of
V , i.e.

L = LU := {〈u〉Fqn
: u ∈ U \ {0}}.

We denote the rank of an Fq-linear set LU by Rank(LU ). For any subspace S = PG(Z,Fqn) of Λ,
the weight of S in LU is defined as wLU

(S) = dimFq (U ∩ Z). If Ni denotes the number of points
of Λ having weight i ∈ {0, . . . , k} in LU , the following relations hold:

(2) |LU | ≤
qk − 1

q − 1
,

(3) |LU | = N1 + . . . +Nk,

(4) N1 +N2(q + 1) + . . .+Nk(q
k−1 + . . .+ q + 1) = qk−1 + . . .+ q + 1.

We also recall that two linear sets LU and LW of PG(r − 1, qn) are said to be PΓL-equivalent
(or simply equivalent) if there is an element ϕ in PΓL(r, qn) such that Lϕ

U = LW . In general, it is
very hard to determine whether or not two linear sets are projective equivalent, see e.g. [8, 12,13].

Another notion that we will need is that of the dual of a linear set. Let LU be an Fq-linear
set of rank k in PG(V,Fqn) = PG(r − 1, qn). Let σ : V × V → Fqn be a nondegenerate reflexive
sesquilinear form on the Fqn-vector space V and consider σ′ = Trqn/q ◦σ, which is a nondegenerate
reflexive sesquilinear form on V seen as an Fq-vector space of dimension rn. Then we may consider
⊥ and ⊥′ as the orthogonal complement maps defined by σ and σ′, respectively, and τ and τ ′ as
the polarities of PG(V,Fqn) and PG(V,Fq) defined by ⊥ and ⊥′, respectively. Then Lτ

U = LU⊥′ is
an Fq-linear set in PG(V,Fqn) of rank rn− k that is called the dual linear set of LU with respect
to the polarity τ . As proved in [35, Proposition 2.5], this linear set does not depend on the polarity
τ . Indeed, let σ1 : V × V → Fqn be a nondegenerate reflexive sesquilinear form on the Fqn-vector
space V and let τ1 the related polarity, then Lτ

U and Lτ1
U are PΓL(2, qn)-equivalent; see also [28].

Moreover, the following result relates the weights of the subspaces with respect to the linear set
and its dual.

Proposition 2.2. [35, Property 2.6] Let LU be an Fq-linear set of rank k in PG(V,Fqn) = PG(r−
1, qn). If S = PG(Z,Fqn) is an s-dimensional projective subspace then

wLτ
U
(Sτ )− wLU

(S) = rn− k − (s+ 1)n.

For further details on linear sets see [26,35].

3. Structure and properties of multi-orbit cyclic subspace codes

In this section we will analyze properties of multi-orbit cyclic subspace codes, paying special
attention to their algebraic description. Interesting results have been proved in this direction for
the case of Sidon spaces.

Let U and V be two Fq-subspaces of Fqn . Denote by 〈U2〉 the Fq-span of {st : s, t ∈ U},
U−1 = {u−1 : u ∈ U \ {0}} and U · V = {uv : u ∈ U, v ∈ V }.

Bachoc, Serra and Zémor proved a lower bound on the dimension of a Sidon space in [3, Theorem
18] and hence the following holds.
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Theorem 3.1. If U is a Sidon space in Fqn of dimension k ≥ 3, then

2k ≤ dimFq(〈U
2〉) ≤

(

k + 1

2

)

.

Clearly, this result implies that if a cyclic subspace code CU has minimum distance 2k−2, where
k = dimFq(U), then 2k ≤ n.

We can hence apply the above result to all the subspaces of a multi-Sidon space, obtaining the
following bounds.

Corollary 3.2. Let {U1, . . . , Ur} is a multi-Sidon space of Fqn. Let ki = dimFq(Ui) ≥ 3 for any
i ∈ {1, . . . , r}. Then

2

r
∑

i=1

ki ≤ dimFq(〈U
2
1 〉 × . . .× 〈U2

r 〉) ≤

r
∑

i=1

(

ki + 1

2

)

.

In particular, ki ≤ n/2 for each i ∈ {1, . . . , r}.

A multi-Sidon space {U1, . . . , Ur} of Fqn , with ki = dimFq(Ui) for any i ∈ {1, . . . , r}, is said
to be maximum if n is even and ki = n/2 for every i ∈ {1, . . . , r}. The interest for maximum
multi-Sidon spaces arise from the fact that the associated codes are those with the largest minimum
distance, that is n− 2.

In [37], it has been described the property of being a Sidon space with an algebraic flavour,
using the uniqueness of the factorization of the product of two elements which are in two distinct
subspaces.

Lemma 3.3. [37, Lemma 36] Let U, V be two distinct Fq-subspaces of dimension k of Fqn. Then
the following conditions are equivalent

(1) dimFq(U ∩ αV ) ≤ 1, for any α ∈ Fqn;
(2) For any nonzero a, c ∈ U and nonzero b, d ∈ V , the equality ab = cd implies that aFq = cFq

and bFq = dFq.

Lemma 3.3 can be also applied to a set of subspaces U , extending the uniqueness of the factor-
ization of the product of two elements which are in two distinct subspaces in U .

Corollary 3.4. Let {U1, . . . , Ur} be a set of Fq-subspaces of Fqn. Then the following conditions
are equivalent

(1) dimFq(Ui ∩ αUj) ≤ 1, for any α ∈ Fqn and i, j ∈ {1, . . . , r} with i 6= j;
(2) For any nonzero a, c ∈ Ui and nonzero b, d ∈ Uj , the equality ab = cd implies that aFq = cFq

and bFq = dFq, for any i, j ∈ {1, . . . , r} with i 6= j.

The property of being a multi-Sidon space is inherited by the Cartesian product of such subspaces
as follows. To this aim, let ei ∈ F

r
qn be the vector whose i-th component is 1 and all the others are

zero.

Theorem 3.5. Let {U1, . . . , Ur} be a set of Fq-subspaces of Fqn. Then the following are equivalent:

i) the Fq-subspace U = U1× . . .×Ur of Fr
qn is such that dimFq(U ∩〈v〉Fqn

) ≤ 1 for any v ∈ F
r
qn

such that 〈v〉Fqn
/∈ {〈ei〉Fqn

: i ∈ {1, . . . , r}};

ii) Ui · U
−1
i ∩ Uj · U

−1
j = Fq for every i 6= j;

iii) dimFq(Ui ∩ αUj) ≤ 1, for every α ∈ Fqn and i, j ∈ {1, . . . , r} such that i 6= j.
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Proof. Consider a nonzero λ ∈ Ui · U
−1
i ∩Uj · U

−1
j for some i, j ∈ {1, . . . , r} with i 6= j and assume

that i) holds. Then there exist x, x′ ∈ Ui and y, y′ ∈ Uj such that

(5) λ =
x

x′
=

y

y′
.

If λ were not in Fq, then we would have a contradiction. Indeed, consider the vector u whose i-th
entry is x, j-th entry is y and all the other entries are zero and the vector u′ whose i-th entry
is x′, j-th entry is y′ and all the other entries are zero, whereas x, y, x′, y′ are nonzero. By (5)
we obtain u = λu′, a contradiction to a). Now, suppose that ii) holds. Let v ∈ U such that
〈v〉Fqn

/∈ {〈ei〉Fqn
: i ∈ {1, . . . , r}} and dimFq(U ∩ 〈v〉Fqn

) ≥ 2. Then there exist i, j ∈ {1, . . . , r}

such that vi 6= 0 and vj 6= 0 and ρ ∈ Fqn \ Fq such that ρv = u with u ∈ U . In particular ui, uj are
non zero and

ρ =
ui
vi

=
uj
vj

∈ Ui · U
−1
i ∩ Uj · U

−1
j ,

and hence we get a contradiction since ρ /∈ Fq. Therefore, we have proved that i) and ii) are
equivalent. We now conclude the proof by proving the equivalence between ii) and iii). Suppose
that Ui · U

−1
i ∩ Uj · U

−1
j = Fq for every i, j ∈ {1, . . . , r} with i 6= j. By contradiction, assume the

existence of α ∈ F
∗
qn such that dimFq(Ui ∩ αUj) ≥ 2 for some i, j ∈ {1, . . . , r} with i 6= j. Let a1

and a2 be two Fq-linearly independent elements in Ui ∩ αUj . Moreover, since a1, a2 ∈ αUj , there
exist b1, b2 ∈ Uj \ {0} such that a1 = αb1 and a2 = αb2, so that

a1a
−1
2 = b1b

−1
2 ∈ Ui · U

−1
i ∩ Uj · U

−1
j

and hence, by assumption, a1a
−1
2 ∈ Fq, which is a contradiction. Now, assume that dimFq (Ui ∩

αUj) ≤ 1, for every α ∈ Fqn and i, j ∈ {1, . . . , r} such that i 6= j. Let λ ∈ Ui ·U
−1
i ∩Uj ·U

−1
j \ {0}.

Then there exist a, c ∈ Ui \{0} and b, d ∈ Uj \{0} such that λ = ac−1 = db−1. Then a, c ∈ Ui∩βUj

where β = a/d = c/b. Since dimFq(Ui ∩ βUj) ≤ 1, it follows that λ = ac−1 ∈ Fq. �

The above theorem give equivalent conditions to the property of being a multi-Sidon space when
we consider a set of Sidon spaces. This result will also be very important in studying the equivalence
among linear sets defined by r independent points as we will see later.

We can now describe a canonical form of cyclic subspace codes with minimum distance n− 2.

Theorem 3.6. Let n = 2k ≥ 4, suppose that U = {U1, . . . , Ur} is a set of Fq-subspaces in Fqn with
dimension k and let C =

⋃r
i=1CUi

. Then there exists a set of representatives for C

{Wf1,η1 , . . . ,Wfr ,ηr},

where f1(x), . . . , fr(x) ∈ Lk, η1, . . . , ηr ∈ Fqn \ Fqk and

Wfi,ηi = {x+ ηifi(x) : x ∈ Fqk},

for every i ∈ {1, . . . , r}. Let ηi = Ai,jηj + Bi,j and η2i = aiηi + bi with Ai,j, Bi,j , ai, bi ∈ Fqk

for any i, j ∈ {1, . . . , r}. Moreover, the minimum distance of C is n − 2 if and only if for every
i, j ∈ {1, . . . , r} and α0, α1 ∈ Fqk with (α0, α1) 6= (0, 0) the following linearized polynomial in Lk

Fi,j(x) = fi(α0x)+fi(α1Aj,ibifj(x))+fi(α0Bj,ifj(x))−α1x−α0Aj,ifj(x)−α1Aj,iaifj(x)−α1Bj,ifj(x)

if i 6= j, and

Fi,i(x) = fi(α0x) + f(α1bifi(x)) − α1x− α0fj(x)− α1aifi(x)

if i = j, is either the zero polynomial or it has at most q roots over Fqk .
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Proof. Let η1, . . . , ηr ∈ Fqn \ Fqk . Clearly, {1, ηi} is an Fqk -basis of Fqn for every i. For each
i ∈ {1, . . . , r}, there exists λi ∈ F

∗
qn such that

λiUi ∩ ηiFqk = {0}.

By contradiction assume that λUi ∩ ηiFqk 6= {0} for each λ ∈ F
∗
qn . Consider the Desarguesian

spread D = {〈v〉Fqn
: v ∈ Fqn × Fqn \ {0}} = {〈(1, ξ)〉Fqn

: ξ ∈ Fqn} ∪ {〈(0, 1)〉Fqn
} of Fqn × Fqn .

The Fq-subspace Ui × ηiFqk = {(a, b) : a ∈ Ui, b ∈ ηiFqk} meets all the elements of D in at least one
non-zero vector. Indeed, by the hypothesis

{b/a : a ∈ Ui \ {0}, b ∈ ηiFqk} = Fqn ,

so that for every ξ ∈ Fqn there exist a ∈ Ui \ {0} and b ∈ ηiFqk such that ξ = b/a and so

〈(1, ξ)〉Fqn
∩ (Ui × ηiFqk) ⊇ 〈(a, b)〉Fq .

Clearly, 〈(0, 1)〉Fqn
∩ (Ui × ηiFqk) = Ui and hence Ui × ηiFqk meets all the elements of D in at least

one non-zero vector. Since dimFq(Ui×ηiFqk) = n this is a contradiction, see e.g. [35, (3) Proposition
2.2]. Therefore, there exists λi ∈ F

∗
qn such that

λiUi ∩ ηiFqk = {0}.

This implies that for every i ∈ {1, . . . , r}, since {1, ηi} is an Fqk-basis of Fqn , there exist r linearized
polynomials fi(x) ∈ Lk such that

λiUi = Wfi,ηi .

Now, let i, j ∈ {1, . . . , r} with i 6= j and consider w ∈ Wfi,ηi ∩ αWfj ,ηj , for some α ∈ F
∗
qn . Then

there exist u, v ∈ Fqk such that

(6) w = u+ ηifi(u) = α(v + ηjfj(v)).

Since {1, ηi} is an Fqk -basis of Fqn , η
2
i = aiηi + bi and ηj = Aj,iηi +Bj,i, we get that α = α0 +α1ηi

for some α0, α1 ∈ Fqk and (6) may be rewritten as
{

u = α0v + α1Aj,ibifj(v) + α0Bj,ifj(v),
fi(u) = α1v + α0Aj,ifj(v) + α1Aj,iaifj(v) + α1Bj,ifj(v),

from which we get

fi(α0v) + fi(α1Aj,ibifj(v)) + fi(α0Bj,ifj(v)) = α1v + α0Aj,ifj(v) + α1Aj,iaifj(v) + α1Bj,ifj(v).

The assertion then follows from the fact that the minimum distance of C is n− 2 and noting that
the above polynomial is the zero polynomial if and only if Wfi,ηi = αWfj ,ηj , a contradiction to
the fact that i 6= j. If i = j, the result can be obtained by repeating the previous argument (see
also [29, Corollary 4.7]) noting that the the condition (6) gives rise to the following system

{

u = α0v + α1bifi(v),
fi(u) = α1v + α0fi(v) + α1aifi(v).

�

Remark 3.7. Clearly, since

dimFq(Wfi,ηi ∩ αWfj ,ηj ) = dimFq(α
−1Wfi,ηi ∩Wfj ,ηj )

for α ∈ F
∗
qn, we could just assume that in Theorem 3.6 the condition on the polynomials Fi,j(x)

hold for every i, j with i ≤ j.

In particular, the canonical form for a Sidon space in Fqn of dimension n/2 is the following.
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Corollary 3.8. Let n = 2k ≥ 4 and let U be an Fq-subspace of Fqn with dimension k. Then U is
equivalent to Wf,η = {x + ηf(x) : x ∈ Fqk}, where f(x) ∈ Lk and η ∈ Fqn \ Fqk . Let η2 = aη + b
with a, b ∈ Fqk . Then, U is a Sidon space if and only if for every α0, α1 ∈ Fqk with (α0, α1) 6= (0, 0)
the following linearized polynomial in Lk

F (x) = f(α0x) + f(α1bf(x))− α1x− α0f(x)− α1af(x)

is either the zero polynomial or it has at most q roots over Fqk .

Now we show some examples of multi-orbit cyclic subspace codes with minimum distance n− 2,
making use of Theorem 3.6.

Theorem 3.9. Let s be a positive integer coprime with k ≥ 2 and n = 2k, let ξ ∈ Fqn \ Fqk

and let fi(x) = µix
qs ∈ Lk for i ∈ {1, . . . , r} such that r ≤ q − 1, Nqk/q(µi) 6= Nqk/q(µj) and

Nqk/q(µiµjξ
qk+1) 6= 1 for every i 6= j. Then

C =
r
⋃

i=1

CWfi,ξ

is a cyclic subspace code of size r qn−1
q−1 and minimum distance n− 2.

Proof. Let x2 − ax − b be the minimal polynomial of ξ over Fqk . Clearly, b = −ξq
k+1. Let

i, j ∈ {1, . . . , r}, then the polynomials Fi,j(x) of Theorem 3.6 read as follows

Fi,j(x) = µiα
qs

0 xq
s

+ µiα
qs

1 bq
s

µqs

j xq
2s
− α1x− α0µjx

qs − α1aµjx
qs ,

since the ηi’s in Theorem 3.6 are chosen to be equal to ξ and hence Aj,i = 1 and Bj,i = 0, for every
i and j. If Fi,j(x) is not the zero polynomial, then it can be seen as qs-polynomial with qs-degree

at most two. If the coefficient of xq
2s

is zero, then by Theorem 2.1 dimFq(ker(Fi,j(x))) ≤ 1. If the

coefficient of xq
2s

is non-zero and Fi,j(x) admits q2 roots, Theorem 2.1 implies that

Nqk/q(µiα
qs

1 µqs

j bq
s

) = Nqk/q(−α1),

a contradiction to the fact that Nqk/q(µiµjξ
qk+1) 6= 1 for every i and j. So, by Theorem 3.6 the

assertion follows. �

Remark 3.10. Note that in the above theorem r cannot reach q − 1 when q ≥ 4. Indeed, suppose
that r = q − 1, then

{Nqk/q(µi) : i ∈ {1, . . . , r}} = F
∗
q,

and so when q ≥ 4

{Nqk/q(µiµj) : i, j ∈ {1, . . . , r}, i 6= j} = F
∗
q.

Therefore,

{Nqk/q(µiµj)Nqk/q(ξ
qk+1) : i, j ∈ {1, . . . , r}, i 6= j} = F

∗
q,

and hence there exist i, j ∈ {1, . . . , r} with i 6= j such that Nqk/q(µiµj)Nqk/q(ξ
qk+1) = 1. If q = 3,

r = 2 can be reached. Indeed, it is enough to take µ1, µ2 ∈ Fqk and ξ ∈ Fqn \ Fqk such that

Nqk/q(µ1) = 1,Nqk/q(µ2) = −1 and Nqk/q(ξ
qk+1) = 1.

The first construction of cyclic codes with these parameters was given in [37]. In the above result
we have extended it to the case s > 1. As we will see later, this yields to a much larger class of
new codes. Choosing the γi’s as in the paper [37], we will extend [37, Lemma 38] as follows.
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Corollary 3.11. For a prime power q ≥ 3 and a positive integer k ≥ 2, let w be a primitive
element of Fqk and let s be a positive integer such that gcd(s, k) = 1. Let b ∈ Fqk be such that

the polynomial p(x) = x2 + bx + w is irreducible over Fqk (such b always exist). For n = 2k, let

γ0 ∈ Fqn be a root of p(x). For i ∈ {0, 1, . . . , τ − 1}, where τ = ⌊(q − 1)/2⌋, let γi = wiγ0 and let

Vi = {u+ uq
s

γi : u ∈ Fqk}.

The set

Gn,s =
⋃

i∈{0,1,...,τ−1}

CVi
⊆ Gq(n, k)

is a subspace code of size τ · (qn − 1)/(q − 1) and minimum distance n− 2.

Proof. Let µi = wi for any i and γ0 = ξ. Note that γq
k+1

0 = ξq
k+1 = w. Let i, j ∈ {0, . . . , τ − 1}.

Note that wi and wj are such that Nqk/q(w
i) 6= Nqk/q(w

j), since w is a primitive element and

|i− j| < q − 1. Moreover,

Nqk/q(µiµjξ
qk+1) = Nqk/q(w)

i+j+1,

which cannot be one, again since w is primitive and i+ j + 1 < q − 1. So, we can apply Theorem
3.9 to get the assertion. �

Adding to the list of Vi’s also the subfield Fqk extends the code Gn,s preserving the minimum
distance but keeping a large number of codewords.

Proposition 3.12. For a prime power q ≥ 3 and a positive integer k ≥ 2, let w be a primitive
element of Fqk and let s be a positive integer such that gcd(s, k) = 1. Let b ∈ Fqk be such that

the polynomial p(x) = x2 + bx + w is irreducible over Fqk (such b always exist). For n = 2k, let

γ0 ∈ Fqn be a root of p(x). For i ∈ {0, 1, . . . , τ − 1}, where τ = ⌊(q − 1)/2⌋, let γi = wiγ0 and let

Vi = {u+ uq
s

γi : u ∈ Fqk}.

Then

dimFq(Fqk ∩ αVi) ≤ 1

for every i ∈ {0, . . . , τ − 1}. In particular, the set

Gn,s =
⋃

i∈{0,1,...,τ−1}

CVi
∪CF

qk
⊆ Gq(n, k)

is a subspace code of size τ · (qn − 1)/(q − 1) + qk + 1 with minimum distance n− 2.

Proof. Clearly, C is a cyclic code and its size is τ · (qn − 1)/(q − 1) + qk + 1 because of Theorem
1.1 and Corollary 3.11. Let α ∈ F

∗
qn . We now first show that

dimFq(Fqk ∩ αVi) ≤ 1.

Then there exist α0, α1 ∈ Fqk such that α = α0+α1γ0. Let v ∈ Fqk , we look for solutions in u ∈ Fqk

such that

v = α(u + uq
s

γi).

Using that γ20 = aγ0 + b, for some a, b ∈ Fqk , and that α = α0 + α1γ0, the above relation reads as
follows

{

α0u+ bα1u
qswi = v,

α1u+ α0w
iuq

s
+ wiα1au

qs = 0.
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Since gcd(s, k) = 1, α1u+ α0w
iuq

s
+ wiα1au

qs can be seen as a non-zero qs-polynomial in u over
Fqk of qs-degree at most one. Therefore, by Theorem 2.1 it follows that the number of u ∈ Fqk

which are solutions of the above system is at most q and hence

dimFq(Fqk ∩ αVi) ≤ 1.

Now, note that for any α /∈ Fqk we have

dimFq(Fqk ∩ αFqk) = 0.

By Corollary 3.11, we have that
dimFq(Vi ∩ αVj) ≤ 1,

for each i, j ∈ {0, . . . , τ − 1}. So, the minimum distance of C is n− 2. �

4. Equivalences of multi-orbit cyclic subspace codes

In [40] Horlemann-Trautmann initiated the study of the equivalence for subspace codes in a
very general setting. More recently in [18] Gluesing-Luerssen and Lehmann investigate the case
of cyclic orbit codes, that is G-orbits of a subspace U of Fqn with G a Singer cycle of GL(n, q).
Therefore, motivated by [18, Theorem 2.4] and according to [18, Definition 3.5], we say that two
cyclic subspace codes CU and CV are linearly equivalent if there exists i ∈ {0, . . . , n − 1} such
that

CU = C
V qi ,

where V qi = {vq
i
: v ∈ V }. This happens if and only if U = αV qi , for some α ∈ F

∗
qn .

We can hence extend this definition to the case of cyclic subspace codes with r orbits.

Definition 4.1. Let C =
⋃

i∈{1,...,r}CUi
and C ′ =

⋃

i∈{1,...,r}CVi
, with U1, . . . , Ur and V1, . . . , Vr

Fq-subspaces in Gq(n, k). We say that C and C ′ are linearly equivalent if there exists j ∈
{0, . . . , n− 1} such that

C =
⋃

i∈{1,...,r}

C
V qj

i

.

Equivalently, C =
⋃

i∈{1,...,r}CUi
and C ′ =

⋃

i∈{1,...,r}CVi
are linearly equivalent if there exist

α1, . . . , αr ∈ F
∗
qn , σ ∈ Sr and j ∈ {0, . . . , n− 1} such that

Ui = αiV
qj

σ(i),

for any i ∈ {1, . . . , r}.
Clearly, if C and C ′ are two linearly equivalent cyclic subspace codes, then |C| = |C ′| and their

minimum distances coincide. Such properties are also satisfied if we weaken the definition as follows.

Definition 4.2. Let C =
⋃

i∈{1,...,r}CUi
and C ′ =

⋃

i∈{1,...,r}CVi
, with U1, . . . , Ur and V1, . . . , Vr

Fq-subspaces in Gq(n, k). We say that C and C ′ are semilinearly equivalent if there exists
ρ ∈ Aut(Fqn) such that

C =
⋃

i∈{1,...,r}

CV ρ
i
.

Equivalently, C =
⋃

i∈{1,...,r}CUi
and C ′ =

⋃

i∈{1,...,r}CVi
are semilinearly equivalent if there

exist α1, . . . , αr ∈ F
∗
qn , σ ∈ Sr such that

Ui = αiV
ρ
σ(i),

for any i ∈ {1, . . . , r}.
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Now, we will study the equivalence issue among the family of codes Gn,s, showing that such
a family contains a large number of inequivalent codes. To this aim, we start by recalling the
following technical lemma proved in [29].

Lemma 4.3. [29, Lemma 4.13] Let n = 2k be an even positive integer and k ≥ 3. Let ξ, η ∈
Fq2k \ Fqk . Let s, s′ be positive integers such that gcd(s, k) = gcd(s′, k) = 1. Let µ, µ ∈ F

∗
qk

and

consider the Fq-subspaces of Fq2k

Wµxqs ,ξ = {u+ ξµuq
s

: u ∈ Fqk}

and

W
µxqs

′

,η
= {v + ηµvq

s′

: v ∈ Fqk}.

There exists λ ∈ F
∗
qn such that

(7) Wµxqs ,ξ = λ(W
µxqs

′

,η
)ρ

if and only if one of the following condition holds

• s ≡ s′ (mod k), B = 0, ξ = ηρ

A and µ = µρ−1
c

Aρ−1 , where c ∈ Fqk is such that Nqk/q(c) = 1;

• s ≡ −s′ (mod k), ξ = ηρ+Aa
A , µ = 1

cµq−sρ−1Aρ−1bρ−1 and B = −Aa, where c ∈ Fqk is such

that Nqk/q(c) = 1,

where ξ2 = aξ + b, ηρ = Aξ +B with a, b,A,B ∈ Fqk and ρ ∈ Aut(Fqn).

Using the above result, similarly to what has been done in [29, Theorem 4.14], we obtain the
following result.

Corollary 4.4. Let s, s′ be two positive integers coprime with k ≥ 3 and let n = 2k, let ξ, η ∈

Fqn \ Fqk and let fi(x) = µix
qs ∈ Lk and gi(x) = µix

qs
′

∈ Lk for i ∈ {1, . . . , r} such that r ≤ q− 1,

Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µiµjξ
qk+1) 6= 1 and Nqk/q(µiµjη

qk+1) 6= 1 for

every i 6= j. Then C =

r
⋃

i=1

CWfi,ξ
and C =

r
⋃

i=1

CWgi,η
are semilinearly equivalent if and only if

there exist a permutation σ ∈ Sr and ρ ∈ Aut(Fqn) such that, for every i ∈ {1, . . . , r}, one of the
following occur

• s ≡ s′ (mod k), B = 0, ξ = ηρ

A and µσ(i) =
µρ−1

i c

Aρ−1 , where c ∈ Fqk is such that Nqk/q(c) = 1;

• s ≡ −s′ (mod k), ξ = ηρ+Aa
A , µσ(i) =

1

cµq−sρ−1

i Aρ−1bρ−1
and B = −Aa, where c ∈ Fqk is such

that Nqk/q(c) = 1,

where ξ2 = aξ + b and ηρ = Aξ +B with a, b,A,B ∈ Fqk.

Proof. Suppose that C and C are semilinearly equivalent, that is there exist a permutation σ ∈ Sr,
λ1, . . . , λr ∈ F

∗
qn and ρ ∈ Aut(Fqn) such that

Wfi,ξ = λi(Wgσ(i),η)
ρ

for every i ∈ {1, . . . , r}. By Lemma 4.3 then s ≡ ±s′ (mod k). Moreover, if s ≡ s′ (mod k) then

B = 0, ξ = ηρ

A and µσ(i) =
µρ−1

i c

Aρ−1 , where c ∈ Fqk such that Nqk/q(c) = 1; whereas if s ≡ −s′ (mod k)

then ξ = ηρ+Aa
A , µσ(i) =

1

cµq−sρ−1

i Aρ−1bρ−1
and B = −Aa, where c ∈ Fqk such that Nqk/q(c) = 1, for

every i ∈ {1, . . . , r}. The converse follows by Lemma 4.3. �
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In particular, we can give the following bound on the number of inequivalent codes of type Gn,s.

Corollary 4.5. The number of semilinearly inequivalent codes of Corollary 3.11 is at least ϕ(k)/2,
where ϕ is the Euler totient function.

To prove the above corollary, we did not use the complete characterization of the equivalence
given by Corollary 4.4. This means that the family of the codes of form Gn,s could be even larger.

5. A geometric interpretation of cyclic subspace codes

In this section we present a geometric interpretation of the Sidon property via linear sets that
will give a bound on the number of orbits of a multi-orbit cyclic subspace code.

The Sidon property in terms of linear sets reads as follows.

Theorem 5.1. Let U be a k-dimensional Fq-subspace of Fqn. Then U is a Sidon space if and only
if the only points of LU×U ⊆ PG(1, qn) = PG(Fqn × Fqn ,Fqn) of weight greater than one are those
in PG(Fq × Fq,Fq). Furthermore, the weight of such points is k.

In particular, if U is a Sidon space then the size of LU×U is

qk − 1

q − 1
(qk − q) + q + 1.

Proof. Let α ∈ F
∗
qn . Let 〈(1, α)〉Fqn

∈ LU×U . Then there exists some ρ ∈ F
∗
qn such that

ρ(1, α) ∈ U × U,

that is ρ ∈ U ∩ α−1U . Therefore, if U is a Sidon space by Theorem 1.2 it follows that dimFq(U ∩

α−1U) ≤ 1 if α /∈ Fq and dimFq(U ∩ α−1U) = k if α ∈ Fq. So wLU×U
(〈(1, α)〉Fqn

) = 1 if and only if
α /∈ Fq and if wLU×U

(〈(1, α)〉Fqn
) ≥ 2 then α ∈ Fq and wLU×U

(〈(1, α)〉Fqn
) = k. Suppose now that

the only points of LU×U ⊆ PG(1, qn) of weight greater than one are those in LU×U∩PG(Fq×Fq,Fq).
Then if α /∈ Fq we have dimFq(U ∩ α−1U) ≤ 1 and so by Theorem 1.2 the subspace U turns out to
be a Sidon space. The last part follows by (3) and (4). �

The above result can be extended to the case of multi-Sidon spaces and, when they all have
dimension n/2, to those cyclic subspace codes with minimum distance n− 2.

Theorem 5.2. Let {U1, . . . , Ur} be a set of Fq-subspaces in Fqn and let ki = dimFq(Ui) ≥ 2 for
every i ∈ {1, . . . , r}. Then {U1, . . . , Ur} is a multi-Sidon space if and only if

• the only points of LUi×Ui
⊆ PG(1, qn) = PG(Fqn × Fqn ,Fqn) of weight greater than one are

those in PG(Fq × Fq,Fq), for every i ∈ {1, . . . , r};
• LUi×Ui

∩ LUj×Uj
= PG(Fq × Fq,Fq), for every i, j ∈ {1, . . . , r} with i 6= j.

Proof. Let α ∈ F
∗
qn . Let 〈(1, α)〉Fqn

∈ LUi×Ui
∩ LUj×Uj

, with i 6= j. In particular, there exists
ρ ∈ F

∗
qn such that

ρ(1, α) = (u, u),

for some u, u ∈ Ui. Hence, α = ρ−1u = u/u. Similarly, α = v/v, for some v, v ∈ Uj . So that

α ∈ Ui · U
−1
i ∩ Uj · U

−1
j . The assertion now follows by Theorem 3.5 and by Theorem 5.1. �

We can hence derive some bounds that involve the number and the dimensions of the subspaces
of a multi-Sidon space, the degree of the field extension and q.
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Theorem 5.3. Let {U1, . . . , Ur} be a multi-Sidon space and let ki = dimFq(Ui) ≥ 2 for every
i ∈ {1, . . . , r}. Then

r
∑

i=1

qki − 1

q − 1
(qki − q) ≤ qn − q.

If {U1, . . . , Ur} is a maximum multi-Sidon space then

r ≤
(qn − q)(q − 1)

(qn/2 − q)(qn/2 − 1)
.

In particular,

r ≤

{

q − 1 if n > 4,

q if n = 4.

Proof. By Theorem 5.2, the LUi×Ui
’s pairwise intersect each other only in PG(Fq ×Fq,Fq), so that

∣

∣

∣

∣

∣

(

r
⋃

i=1

LUi×Ui

)

\ PG(Fq × Fq,Fq)

∣

∣

∣

∣

∣

=

r
∑

i=1

qki − 1

q − 1
(qki − q).

Since (
⋃r

i=1 LUi×Ui
) \ PG(Fq × Fq,Fq) ⊆ PG(1, qn) \ PG(Fq × Fq,Fq), the assertion follows. �

Combining Theorem 5.3 with the definition of multi-Sidon space we obtain the following bound
on the number of orbits of a cyclic subspace code (whose subspaces have dimension n/2).

Corollary 5.4. Let n = 2k ≥ 4 and let U1, . . . , Ur be Fq-subspaces of dimension k in Fqn and let

C =
⋃

i∈{1,...,r}

CUi
⊆ Gq(n, k)

be a subspace code. If the minimum distance of C is n− 2, then

r ≤

{

q − 1 if n > 4,

q if n = 4.

Remark 5.5. Corollary 5.4 implies that when n = 2k > 4 and U1, . . . , Ur are Fq-subspaces of
dimension k in Fqn and

C =
⋃

i∈{1,...,r}

CUi
⊆ Gq(n, k),

with C of minimum distance n− 2, then |C| ≤ qn − 1. This bound cannot be derived directly from
the sphere-packaging bound for subspace codes, but we note that they coincide asymptotically.

6. Linear sets with only r points of weight greater than one

In this section we will make use of cyclic subspace codes to construct a special type of linear sets
in PG(r − 1, qn) with exactly r points of weight greater than one. More precisely, our purpose is
to investigate linear sets LU in PG(r− 1, qn) of rank k ≤ (r− 1)n containing r independent points
P1, . . . , Pr such that

wLU
(P1) + . . .+ wLU

(Pr) = k.

We will characterize these linear sets, we will provide bounds on their rank and constructions,
using multi-orbit cyclic subspace codes via their representatives. Then we will give a polynomial
representation of those linear sets having rank n. Then we will study the dual of these linear sets,
which have few intersection numbers with hyperplanes, yielding linear rank metric codes with few
weights.
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Linear sets of this form in PG(1, qn) have been already studied in [29] (see also [24, 30]), where
the authors study linear sets on the projective line containing two points whose sum of their weights
equals the rank of the linear set.

We start our investigation by proving that, up to equivalence, one can write the linear sets as
the one defined by the Cartesian product of r Fq-subspaces of Fqn , as shown in the next result.

Proposition 6.1. Let LW be an Fq-linear set in PG(r− 1, qn) of rank k containing r independent
points P1 = 〈v1〉Fqn

, . . . , Pr = 〈vr〉Fqn
such that

wLW
(P1) + . . . + wLW

(Pr) = k ≤ (r − 1)n.

Then LW is PGL(r, qn)-equivalent to LU where U = U1× . . .×Ur, for some Fq-subspaces U1, . . . , Ur

of Fqn such that dimFq(Ui) = wLW
(Pi) for every i ∈ {1, . . . , r}. Moreover, if k ≤ n then U1, . . . , Ur

can be chosen in such a way that U1 + . . .+ Ur is a direct sum.

Proof. Consider a collineation ϕ ∈ PGL(r, qn) such that

ϕ(Pi) = 〈ei〉Fqn
,

ei ∈ F
r
qn is the vector whose i-th component is 1 and all the others are zero. Denote by f the

associated linear isomorphism of Fr
qn and let U = f(W ). Since

W = (W ∩ 〈v1〉Fqn
)⊕ . . . ⊕ (W ∩ 〈vr〉Fqn

),

then
U = (U ∩ 〈e1〉Fqn

)⊕ . . .⊕ (U ∩ 〈er〉Fqn
).

Therefore, U ∩ 〈ei〉Fqn
is equal to {(0, . . . , 0, u, 0, . . . , 0): u ∈ Ui} for any i ∈ {1, . . . , r} and for a

subspace Ui of Fqn . So we obtain the first part of the assertion. Now suppose that k ≤ n. Our aim is
to prove that there exists (λ1, . . . , λr) ∈ (F∗

qn)
r such that λiUi∩〈λjUj : j ∈ {1, . . . , r}\{i}〉Fq = {0}

for any i ∈ {1, . . . , r}. We proceed by finite induction proving that there exist λi ∈ F
∗
qn such that

(8) λiUi ∩ 〈λjUj : j ∈ {1, . . . , i− 1}〉Fq = {0},

for every i ∈ {2, . . . , r}. This is enough to show the last part of the assertion. The case i = 2 has
been proved in [29, Proposition 3.2]. Now, let i ∈ {1, . . . , r} and suppose that (8) holds for every
j ≤ i. Then, using (8) recursively we get

dimFq(〈λjUj : j ∈ {1, . . . , i}〉Fq ) = dimFq(λiUi) + dimFq(〈λjUj : j ∈ {1, . . . , i− 1}〉Fq )

− dimFq(λiUi ∩ 〈λjUj : j ∈ {1, . . . , i− 1}〉Fq ) = dimFq(U1) + . . .+ dimFq(Ui).

Let h ∈ {1, . . . , i}, then

dimFq(λhUh ∩ 〈λjUj : j ∈ {1, . . . , i} \ {h}〉Fq ) = dimFq(Uh)

+dimFq(〈λjUj : j ∈ {1, . . . , i} \ {h}〉Fq )− dimFq(〈λjUj : j ∈ {1, . . . , i}〉Fq ).

The last two equations imply dimFq(λhUh ∩ 〈λjUj : j ∈ {1, . . . , i} \ {h}〉Fq ) = 0.
We now prove (8). Suppose now that

λiUi ∩ 〈λjUj : j ∈ {1, . . . , i− 1}〉Fq = {0}.

Suppose that for each λ ∈ F
∗
qn

(9) λUi+1 ∩ 〈λjUj : j ∈ {1, . . . , i}〉Fq 6= {0}.

Denote by U = 〈λjUj : j ∈ {1, . . . , i}〉Fq . By (9) it follows that the Fq-linear set LUi+1×U of rank

less than or equal to n contains at least qn + 1 points, a contradiction to (2). So, there exists
λi+1 ∈ F

∗
qn such that λi+1Ui+1 ∩ U = {0}. �
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In terms of linear sets, Theorem 3.5 reads as a characterization of linear sets with only r points
of weight greater than one (in independent position).

Theorem 6.2. Let U1, . . . , Ur be r Fq-subspaces of Fqn such that
∑r

i=1 dimFq(Ui) = k ≤ (r − 1)n.
Let ki = dimFq(Ui) ≥ 2, for any i ∈ {1, . . . , r} and U = U1 × . . . × Ur. Then, the following are
equivalent

i) all the points of LU different from Pi = 〈ei〉Fqn
with i ∈ {1, . . . , r} have weight one in LU ;

ii) Ui · U
−1
i ∩ Uj · U

−1
j = Fq for any i, j ∈ {1, . . . , r} with i 6= j;

iii) dimFq(Ui ∩ αUj) ≤ 1, for every α ∈ F
∗
qn and i, j ∈ {1, . . . , r} with i 6= j.

Now, we will prove a bound on the rank of these linear sets. This bound relies on the following
result from [29].

Theorem 6.3. [29, Theorem 4.4] Let L be an Fq-linear set of PG(1, qn) with exactly two points
P and Q of weight greater than one, then

wL(P ) ≤
n

2
and wL(Q) ≤

n

2
.

The next result extends [29, Theorem 4.4] to linear sets in PG(r − 1, qn).

Theorem 6.4. Let LW be an Fq-linear set in PG(r − 1, qn) of rank k containing r independent
points P1 = 〈v1〉Fqn

, . . . , Pr = 〈vr〉Fqn
such that

wLW
(P1) + . . . + wLW

(Pr) = k ≤ (r − 1)n.

Suppose that wLW
(Q) ≤ 1 for every Q ∈ PG(r − 1, qn) \ {P1, . . . , Pr}. Then

(10) wLW
(Pi) ≤

n

2

for every i ∈ {1, . . . , r}. Moreover,

• Rank(LW ) ≤ rn
2 ;

• if Rank(LW ) = rn
2 , then wLW

(Pi) =
n
2 for every i ∈ {1, . . . , r}.

Proof. By Proposition 6.1 LW is PGL(r, qn)-equivalent to LU where U = U1 × . . . × Ur, for some
Fq-subspaces U1, . . . , Ur of Fqn such that dimFq (Ui) = wLW

(Pi) for every i ∈ {1, . . . , r}. So, the
only points with weight greater than one in LU are Qi = 〈ei〉Fqn

for every i ∈ {1, . . . , r} and

wLW
(Pi) = wLU

(Qi) for every i ∈ {1, . . . , r}. Let i, j ∈ {1, . . . , r} with i 6= j and consider the line
ℓ = PG(〈ei, ej〉Fqn

,Fqn) = 〈Qi, Qj〉. We first observe that for each Q ∈ ℓ then wLU
(Q) = wLU∩ℓ(Q)

and hence the only points of weight greater than one in LU ∩ ℓ are Qi and Qj. By Theorem 6.3 we
have that

wLU∩ℓ(Qi) = wLU
(Qi) ≤

n

2
and wLU∩ℓ(Qj) = wLU

(Qj) ≤
n

2
,

and the first part of the assertion then follows. The second part is a consequence of (10). �

Remark 6.5. Let LW be an Fq-linear set in PG(r − 1, qn) of rank rn
2 containing r independent

points P1 = 〈v1〉Fqn
, . . . , Pr = 〈vr〉Fqn

such that wLW
(Pi) =

n
2 for every i ∈ {1, . . . , r}. By (3) and

(4), recalling that Ni is the number of points in LW having weight i, we obtain that

N1 = q
rn
2
−1 + . . .+ q

n
2 − (r − 1)(q

n
2
−1 + . . .+ 1), Nn

2
= r and N0 =

qrn − 1

qn − 1
−N1 −Nn

2
.

In particular

|LW | = q
rn
2
−1 + . . .+ q

n
2 − (r − 1)(q

n
2
−1 + . . . + q) + 1.
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We can now construct linear sets in PG(r − 1, qn) with exactly r points of weight greater than
one and in particular we will see constructions when then rank is maximum, that is rn

2 . Multi-Sidon
spaces can be used to this aim.

Proposition 6.6. Let U1, . . . , Ur be r Fq-subspaces of Fqn of dimensions k1, . . . , kr, respectively.
Let U = U1 × . . . × Ur. If {U1, . . . , Ur} is a multi-Sidon space, then LU is an Fq-linear set of
rank k1 + . . . + kr in PG(r − 1, qn) such that the only points of weight greater than one are the
Pi = 〈ei〉Fqn

’s with i ∈ {1, . . . , r}.

Proof. Since {U1, . . . , Ur} is a multi-Sidon space, we have that

dimFq(Ui ∩ αUj) ≤ 1,

for every α ∈ Fqn and i, j ∈ {1, . . . , r} with i 6= j. The assertion then follows directly by Theorem
6.2. �

In particular, when considering maximum multi-Sidon spaces, we can get examples of linear sets
whose rank satisfy the equality in Theorem 6.4.

Corollary 6.7. Let n = 2k and U1, . . . , Ur be r Fq-subspaces of Fqn of dimension k. Let U =
U1 × . . . × Ur. If {U1, . . . , Ur} is a multi-Sidon space, then LU is an Fq-linear set of rank rk in
PG(r − 1, qn) such that the only points of weight greater than one are the Pi = 〈ei〉Fqn

’s with

i ∈ {1, . . . , r}.

The multi-cyclic subspace codes found in Proposition 3.9 can be used to get constructions of
such linear sets via Corollary 6.7.

Corollary 6.8. Let s be a positive integer coprime with k ≥ 2 and n = 2k, let ξ ∈ Fqn \ Fqk

and let fi(x) = µix
qs ∈ Lk for i ∈ {1, . . . , r} such that r ≤ q − 1, Nqk/q(µi) 6= Nqk/q(µj) and

Nqk/q(µiµjξ
qk+1) 6= 1 for every i 6= j. Denote by Ui = Wfi,ξ for every i ∈ {1, . . . , r}. Let U =

U1 × . . .×Ur, then LU is an Fq-linear sets of rank rk in PG(r− 1, qn) such that the only points of
weight greater than one are the Pi = 〈ei〉Fqn

’s with i ∈ {1, . . . , r}.

Another construction may be obtained by extending a multi-Sidon space with subfield Fqk of
Fqn .

Corollary 6.9. Let s be a positive integer coprime with k ≥ 2 and n = 2k, let ξ ∈ Fqn \ Fqk

and let fi(x) = µix
qs ∈ Lk for i ∈ {1, . . . , r − 1} such that r ≤ q − 1, Nqk/q(µi) 6= Nqk/q(µj) and

Nqk/q(µiµjξ
qk+1) 6= 1 for every i 6= j. Denote by Ui = Wfi,ξ for every i ∈ {1, . . . , r − 1} and by

Ur = Fqk. Let U = U1 × . . .×Ur, then LU is an Fq-linear set of rank rk in PG(r− 1, qn) such that
the only points of weight greater than one are the Pi = 〈ei〉Fqn

’s with i ∈ {1, . . . , r}.

Proof. By Theorem 6.2 and by Proposition 3.9, it is enough to show that

dimFq(Fqk ∩ αUi) ≤ 1,

for every i ∈ {1, . . . , r − 1} for any α ∈ F
∗
qn . Let α ∈ F

∗
qn . Then there exist α0, α1 ∈ Fqk such that

α = α0 + α1ξ. Let v ∈ Fqk , we look for solutions in u ∈ Fqk such that

v = α(u+ uq
s

µiξ).

Using that ξ2 = aξ + b, for some a, b ∈ Fqk , and that α = α0 + α1ξ, the above relation reads as
follows

{

α0u+ bα1u
qsµi = v,

α1u+ α0µiu
qs + µiα1au

qs = 0.
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Since gcd(s, k) = 1, α1u+ α0µiu
qs + µiα1au

qs can be seen as a non-zero qs-polynomial over Fqk of
qs-degree at most one. Therefore, by Theorem 2.1 it follows that the number of u ∈ Fqk which are
solutions of the above system is at most q and hence

dimFq (Fqk ∩ αUi) ≤ 1.

�

In the next subsection we will prove that the two Fq-subspaces defined in the above corollaries
are ΓL(r, qn)-inequivalent.

6.1. ΓL(r, qn)-equivalence. We now provide a useful tool that can be used to study the ΓL(r, qn)-
equivalence of the subspaces representing linear sets with only r points of weight greater than one,
which extends [29, Lemma 3.3].

Theorem 6.10. Let U1, . . . , Ur and W1, . . . ,Wr be Fq-subspaces of Fqn such that

dimFq(U1) + . . .+ dimFq(Ur) = k ≤ (r − 1)n

and
dimFq(W1) + . . . + dimFq(Wr) = k ≤ (r − 1)n.

Let U = U1 × . . . × Ur and W = W1 × . . . ×Wr and suppose that Pi = 〈ei〉Fqn
are the only points

of weight greater than one in LU and in LW . Then U and W are ΓL(r, qn)-equivalent if and only
if there exist a permutation σ ∈ Sr, λ1, . . . , λr ∈ F

∗
qn and ρ ∈ Aut(Fqn) such that

Wi = λiU
ρ
σ(i),

for every i ∈ {1, . . . , r}. In particular, dimFq(Wi) = dimFq (Uσ(i)), for every i ∈ {1, . . . , r}.

Proof. The “if” part is trivial. So, suppose that U and W are ΓL(r, qn)-equivalent via ϕ ∈ ΓL(r, qn)
defined by the matrix A ∈ GL(r, qn) and the automorphism ρ ∈ Aut(Fqn). Let dimFq (Ui) = ki and
dimFq(Wi) = k′i, for any i ∈ {1, . . . , r}.

By Theorem 3.5, we have that

a) dimFq(U ∩ 〈v〉Fqn
) ≤ 1 for any v ∈ F

r
qn such that 〈v〉Fqn

/∈ {〈ei〉Fqn
: i ∈ {1, . . . , r}};

b) dimFq(U ∩ 〈ei〉Fqn
) = ki for any i ∈ {1, . . . , r},

and the same properties hold for W . As a consequence, there exists σ ∈ Sr such that ϕ(〈ei〉Fqn
) =

〈eσ(i)〉Fqn
. In particular, this means that A is the product of a permutation matrix (the one induced

by σ) and a diagonal matrix (whose diagonal elements are λ1, . . . , λr ∈ F
∗
qn). So,

Wi = λiU
ρ
σ(i)

,

for every i ∈ {1, . . . , r} and {k1, . . . , kr} = {k′1, . . . , k
′
r}. �

As an easy consequence we obtain that the dimensions of the subspaces are not in one-to-one
correspondence, then the two subspaces are inequivalent.

Corollary 6.11. Let U1, . . . , Ur and W1, . . . ,Wr be Fq-subspaces of Fqn of dimension k1, . . . , kr
and k′1, . . . , k

′
r, respectively. Let U = U1 × . . . × Ur and W = W1 × . . . × Wr and suppose that

Pi = 〈ei〉Fqn
are the only points of weight greater than one in LU and in LW . If (k1, . . . , kr) cannot

be obtained from (k′1, . . . , k
′
r) by permuting their entries, then U1 × . . .×Ur and W1 × . . .×Wr are

ΓL(r, qn)-inequivalent.

The ΓL(r, qn)-equivalence of the examples in Proposition 3.9 has been already studied in Corol-
lary 4.4. Whereas, as shown in the next result, the examples of Corollaries 6.8 and 6.9 cannot be
ΓL(r, qn)-equivalent.
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Proposition 6.12. Let s, s′ be two positive integers coprime with k ≥ 2 and let n = 2k, let ξ, η ∈

Fqn \Fqk and let fi(x) = µix
qs ∈ Lk and gℓ(x) = µℓx

qs
′

∈ Lk for i ∈ {1, . . . , r} and ℓ ∈ {1, . . . , r−1}

such that r ≤ q − 1, Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µiµjξ
qk+1) 6= 1 and

Nqk/q(µiµjη
qk+1) 6= 1 for every i 6= j. Then U = Wf1,ξ × . . . × Wfr,ξ and W = Wg1,η × . . . ×

Wgr−1,η × Fqk are ΓL(r, qn)-inequivalent.

Proof. By Proposition 6.10, if U and W are ΓL(r, qn)-equivalent then there exist i ∈ {1, . . . , r},
λ ∈ F

∗
qn and ρ ∈ Aut(Fqn) such that

Fqk = λ(Wfi,ξ)
ρ.

This cannot happen since the Fq-subspace Wfi,ξ has the property that

dimFq(Wfi,ξ ∩ αWfi,ξ) ≤ 1,

for every α ∈ Fqn\Fq. This property is preserved also by λ(Wfi,ξ)
ρ, but clearly dimFq(Fqk∩αFqk) = k

if α ∈ Fqk \ Fq. �

Moreover, arguing as before, the ΓL(r, qn)-equivalence between two examples in Corollary 6.9 is
determined in the next result.

Proposition 6.13. Let s, s′ be two positive integers coprime with k and let n = 2k, let ξ, η ∈

Fqn\Fqk and let fi(x) = µix
qs ∈ Lk and gi(x) = µix

qs
′

∈ Lk for i ∈ {1, . . . , r−1} such that r ≤ q−1,

Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µi) 6= Nqk/q(µj), Nqk/q(µiµjξ
qk+1) 6= 1 and Nqk/q(µiµjη

qk+1) 6= 1 for

every i 6= j. Then U = Wf1,ξ×. . .×Wfr−1,ξ×Fqk and W = Wg1,η×. . .×Wgr−1,η×Fqk are ΓL(r, qn)-
equivalent if and only if there exist a permutation σ ∈ Sr−1, λ1, . . . , λr−1 ∈ F

∗
qn and ρ ∈ Aut(Fqn)

such that, for every i ∈ {1, . . . , r − 1}, one of the following occurs

• s ≡ s′ (mod k), B = 0, ξ = ηρ

A and µσ(i) =
µρ−1

i c

Aρ−1 , where c ∈ Fqk is such that Nqk/q(c) = 1;

• s ≡ −s′ (mod k), ξ = ηρ+Aa
A , µσ(i) =

1

cµq−sρ−1

i Aρ−1bρ−1
and B = −Aa, where c ∈ Fqk is such

that Nqk/q(c) = 1,

where ξ2 = aξ + b and ηρ = Aξ +B with a, b,A,B ∈ Fqk.

6.2. Dual linear sets. Interestingly, the linear sets LU of this section by duality give examples
of sets with only three weights with respect to the hyperplanes and for each of these values there
exists at least one hyperplane having this weight with respect to LU .

Theorem 6.14. Let LU be an Fq-linear set in PG(r − 1, qn) of rank rn
2 containing r independent

points P1 = 〈v1〉Fqn
, . . . , Pr = 〈vr〉Fqn

such that

wLU
(P1) + . . .+ wLU

(Pr) =
rn

2
.

Then for every hyperplane H in PG(r − 1, qn)

wLτ
U
(H) ∈

{rn

2
− n,

rn

2
− n+ 1,

rn

2
− n+ r

}

.

More precisely,

• wLτ
U
(H) = rn

2 − n+ r if and only if H = P τ
i for some i ∈ {1, . . . , r};

• wLτ
U
(H) = rn

2 − n+ 1 if and only if H = P τ for some P ∈ LU \ {P1, . . . , Pr};
• wLτ

U
(H) = rn

2 − n if and only if H = P τ for some P ∈ PG(r − 1, qn) \ LU .

Moreover,
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• the number of hyperplanes H such that wLτ
U
(H) = rn

2 − n+ r is r;

• the number of hyperplanes H such that wLτ
U
(H) = rn

2 − n + 1 is q
rn
2
−1 + . . . + q

n
2 − (r −

1)(q
n
2
−1 + . . .+ 1);

• the number of hyperplanes H such that wLτ
U
(H) = rn

2 −n is qrn−1
qn−1 − q

rn
2
−1− . . .− q

n
2 +(r−

1)(q
n
2
−1 + . . .+ q)− 1.

Proof. By Theorem 6.4, it follows that all the point Pi have the same weight, that is, wLU
(Pi) =

n
2

for every i. By applying Proposition 2.2 choosing H to be a hyperplane, we obtain

wLτ
U
(H) = wLU

(Hτ ) +
rn

2
− (s+ 1)n.

The assertion then follows by Remark 6.5. �

The interest for these linear sets with few possible values for the weight of the hyperplanes is
especially due to their coding theoretical counterparts that now we will briefly describe.

Let U be an Fq-subspace of Fr
qm such that 〈U〉Fqm

= F
r
qm. Let G be a matrix in F

r× rn
2

qm whose
columns form an Fq-basis of U . Let denote by C be the Fqm-span of the rows of G and equip it
with the rank metric, which is defined as follows

d(u,v) = w(u− v) = dimFq(〈u1 − v1, . . . , ur − vr〉Fq),

for any u = (u1, . . . , ur),v = (v1, . . . , vr) ∈ F
r
qm . So, C is a rank metric code in F

r
qm and w(u)

is said the rank weight of u; see [22, 39] for more details on rank metric codes. Noting that any
element of C may be seen as xG for some x ∈ F

r
qm , then in [36] (see also [1]) it was shown that

w(xG) =
rn

2
− dimFq (U ∩ x⊥),

where x⊥ is the hyperplane whose equation is defined by the entries of x.
As a consequence of Theorem 6.14 and the above described connection, the rank metric codes C

have exactly three nonzero weights, which are n − r, n − 1, n. In particular, they are examples of
(r − 1)-almost MRD codes, see [14], which means that the rank defect in the Singleton bound
for rank metric codes is r − 1. Furthermore, we can also derive their weight distribution, indeed
except for the zero vector we have

• (qn − 1)r elements in C having rank weight n− r;

• (qn−1)
(

q
rn
2
−1 + . . . + q

n
2 − (r − 1)(q

n
2
−1 + . . .+ 1)

)

elements in C having rank weight n−1;

(qn−1)
(

qrn−1
qn−1 − q

rn
2
−1 − . . .− q

n
2 + (r − 1)(q

n
2
−1 + . . .+ q)− 1

)

elements in C having rank

weight n;

Moreover, using [1, Theorem 4.8], from LU we can also construct linear Hamming metric codes
with only three weights and for which we can completely establish their weight distribution, as
already done for some classes of linear sets (see also [31,42]).

7. Conclusions

We conclude the paper with some problems that we think could be of interest for the reader.

Problem 7.1. In Theorem 3.6, we find a canonical form and explicit conditions for multi-orbit
subspace codes with large minimum distance. Can this be used to provide new constructions and/or
classification results?
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Problem 7.2. In Corollary 4.5, we provide a lower bound on the number of semilinearly inequiv-
alent codes of the form Gn,s. Determine the precise number of inequivalent codes of the form Gn,s.

Moreover, a multi-Sidon space U still preserves the uniqueness (up to some scalars in Fq) of the
factorization of the product of any two elements contained in U .

Proposition 7.3. Let {U1, . . . , Ur} be a multi-Sidon space. Let ki = dimFq(Ui) ≥ 2 for any
i ∈ {1, . . . , r}. Then for any i, j ∈ {1, . . . , r} if a, c ∈ Ui and b, d ∈ Uj are such that ab = cd then

{aFq, bFq} = {cFq, dFq}.

Proof. By Corollary 3.4, when i 6= j the Fq-subspaces Ui and Uj satisfy the property that for any
nonzero a, c ∈ Ui and nonzero b, d ∈ Uj the equality ab = cd implies that aFq = cFq and bFq = dFq.
The condition dimFq(Ui∩αUi) ≤ 1 for every α ∈ Fqn \Fq and i ∈ {1, . . . , r} is equivalent to the fact
that Ui is a Sidon space for every i because of Theorem 1.2. Therefore the assertion follows. �

So, a possible generalization of Sidon spaces could be the following one.
Consider U1, . . . , Ur be r distinct Fq-subspaces of Fqn . We say that {U1, . . . , Ur} is a weak

multi-Sidon space of Fqn if the product of any two nonzero elements from Ui’s may be uniquely
factorized, up to a scalar factor from Fq. More precisely, for any i, j ∈ {1, . . . , r} if a, c ∈ Ui and
b, d ∈ Uj are such that ab = cd then

{aFq, bFq} = {cFq, dFq}.

This latter definition generalizes the property of being multi-Sidon space, as proved in Proposition
7.3. However, we still do not know whether or not there exists examples of weakly multi-Sidon
spaces which are not multi-Sidon spaces. So, we propose the following problem.

Problem 7.4. Are the properties of being multi-Sidon space and weaker multi-Sidon space equiva-
lent? If not, construct counterexamples.
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of a function defined on a finite field, J. Combin. Theory Ser. A 86(1) (1999), 187—196.
[7] E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv: Subspace polynomials and cyclic subspace codes,

IEEE Trans. Inform. Theory 62(3) (2016), 1157–1165.
[8] G. Bonoli and O. Polverino: Fq-linear blocking sets in PG(2, q4), Innov. Incidence Geom. 2 (2005), 35–56.



MULTI-ORBIT CYCLIC SUBSPACE CODES AND LINEAR SETS 21

[9] K. O’Bryant: A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin.

575(1) (2004), 1–39.
[10] J. Cilleruelo: Combinatorial problems in finite fields and Sidon sets, Combinatorica 32(5) (2012), 497–511.
[11] J. Cilleruelo, I. Ruzsa and C. Vinuesa: Generalized Sidon sets, Adv. Math. 225(5) (2010), 2786–2807.
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Appendix A. Polynomial representation of linear sets in PG(r − 1, qn) determined

by r points

One of the most studied research topic on polynomials over finite fields regards the construction
of polynomials or functions for which their value sets over a fixed finite field has some interesting
properties, such as being small, large or with other preassigned conditions. Clearly, the problem
becomes more and more difficult when considering t-tuple of polynomials. In this appendix, we
will show examples of t-tuples of linearized polynomials such that the size of the value set

Im

(

f1(x)

x
, . . . ,

ft(x)

x

)

=

{(

f1(x)

x
, . . . ,

ft(x)

x

)

: x ∈ F
∗
qn

}

is determined, see [5, 6]. The key idea is to use the linear sets investigated in Section 6.
Let U1, . . . , Ut be Fq-subspaces of Fqn seen as an n-dimensional Fq-vector space such that

U1 ⊕ . . .⊕ Ut = Fqn .

Every vector v ∈ Fqn can be written uniquely as

v = v1 + . . . + vt,

where vi ∈ Ui for every i ∈ {1, . . . , t}. The vector vi will be called the i-th component of v (with
respect to U1, . . . , Ut) and the map pi : Fqn → Ui such that pi(v) = vi is called the i-th projection

map.
We also recall the definition of dual bases. Two ordered Fq-bases B = (ξ0, . . . , ξn−1) and B∗ =

(ξ∗0 , . . . , ξ
∗
n−1) of Fqn are said to be dual bases if Trqn/q(ξiξ

∗
j ) = δij , for i, j ∈ {0, . . . , n− 1}, where

δij is the Kronecker symbol. It is well known that for any Fq-basis B = (ξ0, . . . , ξn−1) there exists
a unique dual basis B∗ = (ξ∗0 , . . . , ξ

∗
n−1) of B, see e.g. [27, Definition 2.30].

Lemma A.1. Let U1, . . . , Ut be Fq-subspaces of Fqn seen as an n-dimensional Fq-vector space such
that

U1 ⊕ . . .⊕ Ut = Fqn .

Denote by ki the dimension of Ui and let Bi = (ξi,0, . . . , ξi,ki−1) an ordered Fq-basis of Ui for
every i ∈ {1, . . . , t}. Let B∗ = (ξ∗1,0, . . . , ξ

∗
1,k1−1, . . . , ξ

∗
t,0, . . . , ξ

∗
t,kt−1) be the dual basis of B =

(ξ1,0, . . . , ξ1,k1−1, . . . , ξt,0, . . . , ξt,kt−1). Then

pi(x) =

ki−1
∑

j=0

ξi,jTrqn/q(ξ
∗
i,jx) =

n−1
∑

ℓ=0





ki−1
∑

j=0

ξi,jξ
∗qℓ

i,j



xq
ℓ

.

Proof. Since U1 ⊕ . . .⊕ Ut = Fqn , every x ∈ Fqn can be uniquely written as

x = x1 + . . .+ xt,

with xi ∈ Ui for every i ∈ {1, . . . , t}. Let i ∈ {1, . . . , t} and let

p(x) =

ki−1
∑

j=0

ξi,jTrqn/q(ξ
∗
i,jx).

Then it is easy to see that

p(ξℓ,m) =

ki−1
∑

j=0

ξi,jTrqn/q(ξ
∗
i,jξℓ,m) =

{

ξℓ,m if ℓ = i,
0 otherwise,
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for any (ℓ,m) such that ℓ ∈ {1, . . . , t} and m ∈ {0, . . . , kℓ − 1}. This means that p(x) coincides
with the i-th projection map. �

For linear sets LU in PG(r − 1, qn) of rank n containing r independent points P1, . . . , Pr such
that

wLU
(P1) + . . .+ wLU

(Pr) = n,

we can determine r linearized polynomials representing it.

Theorem A.2. Let LW be an Fq-linear set in PG(r − 1, qn) of rank n containing r independent
points P1 = 〈v1〉Fqn

, . . . , Pr = 〈vr〉Fqn
such that

wLW
(P1) + . . .+ wLW

(Pr) = n.

Then LW is PGL(r, qn)-equivalent to

Lp = {〈(x, p2(x), . . . , pr(x))〉Fqn
: x ∈ F

∗
qn},

where pi(x) is the i-th projection map with respect to r Fq-subspaces U1, . . . , Ur of Fqn such that

U1 ⊕ . . .⊕ Ur = Fqn .

Moreover, if ki is the dimension of Ui and Bi = (ξi,0, . . . , ξi,ki−1) is an ordered Fq-basis of Ui for
every i ∈ {1, . . . , t}, then

pi(x) =

ki−1
∑

j=0

ξi,jTrqn/q(ξ
∗
i,jx) =

n−1
∑

ℓ=0





ki−1
∑

j=0

ξi,jξ
∗qℓ

i,j



xq
ℓ

,

for every i ∈ {2, . . . , r}, where B∗ = (ξ∗1,0, . . . , ξ
∗
1,k1−1, . . . , ξ

∗
t,0, . . . , ξ

∗
t,kt−1) is the dual basis of B =

(ξ1,0, . . . , ξ1,k1−1, . . . , ξt,0, . . . , ξt,kt−1).

Proof. By Proposition 6.1, LW is PGL(r, qn)-equivalent to LU where U = U1×. . .×Ur, for some Fq-
subspaces U1, . . . , Ur of Fqn such that Ui ∩ 〈Uj : j ∈ {1, . . . , r} \ {i}〉Fq = {0} for any i ∈ {1, . . . , r}.
Let f be the Fqn-linear isomorphism of Fr

qn determined by the matrix










1 1 · · · 1 1
0 1 · · · 0 0
...

...
...

...
0 0 · · · 0 1











,

then
f(U) = {(x, p2(x), . . . , pr(x)) : x ∈ Fqn},

and the assertion then follows by Lemma A.1. �
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