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New families of flag-transitive linear spaces
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Abstract

In this paper, we construct new families of flag-transitive linear spaces with q2n points
and q2 points on each line that admit a one-dimensional affine automorphism group. We
achieve this by building a natural connection with permutation polynomials of Fq2 of a
particular form and following the scheme of Pauley and Bamberg in [A construction of
one-dimensional affine flag-transitive linear spaces, Finite Fields Appl. 14 (2008) 537-548].
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1. Introduction

A finite linear space L is a point-line incidence structure with finitely many points such
that any two points lie on exactly one common line, any point lies on at least two lines and
any line is incident with at least two points. It is non-trivial if some line has more than two
points, and it is nondegenerate if it has four points no three of which are collinear. All the
linear spaces in consideration are finite, nontrivial and nondegenerate. An automorphism
of a linear space L consists of a permutation of points and a permutation of lines that
preserve incidence. We write Aut(L) for the full automorphism group of L, and call its
subgroups as automorphism groups. A flag of L is an incident point-line pair. We say
that an automorphism group G is flag-transitive if it acts transitively on the flags of L.
In such a case, each line has the same number of points which we denote by k, and L
forms a 2− (v, k, 1) design with v the total number of points of L.

There have been extensive works on the classification of finite flag-transitive linear
spaces. Suppose that L is such a linear space with a flag-transitive automorphism group
G. By [7] G is point primitive, and by [3] G is either almost simple or of affine type. The
classification in the almost simple case is accomplished in [14]. In the case where G is of
affine type, there is a point regular subgroup T of order pd that is elementary abelian. We
regard T as an additive group and identify the points of L with T . We have G = TG0

with G0 ≤ ΓLd(p). If d ≥ 2 and G0 is not contained in ΓL1(p
d), the classification is

accomplished in [11]. In the remaining case where G0 is a subgroup of ΓL1(p
d), there are

a variety of examples, cf. [4, 10, 12, 13], but a complete classification is still out of reach.

∗Corresponding author
Email addresses: tfeng@zju.edu.cn (Tao Feng), jianbinglu@zju.edu.cn (Jianbing Lu)

Preprint submitted to Elsevier

http://arxiv.org/abs/2108.03848v1


In [13], the authors presented a method of deriving one-dimensional affine flag-transitive
linear spaces where the input is an irreducible polynomial over Fq2 that satisfies certain
property. In particular, they showed that there are flag-transitive linear space with p2p

points and p2 points on each line for each odd prime p. The purpose of the present paper
is to build a connection with permutation polynomials of the form xrh(x(q−1)/s). This
will lead us to new flag-transitive linear spaces by making use of the known results on
permutation polynomials.

Theorem 1.1. Let q be a prime power and d > 1 be an odd divisor of q + 1. Let u be a
proper divisor of d, t be a positive integer and set n = dtu. Then there exist flag-transitive
(non-Desarguesian) linear spaces with a one-dimensional affine automorphism group, and
q2n points and q2 points on each line.

In characteristic 3, we have an extra family from an irreducible polynomial of degree
3 over Fq2.

Theorem 1.2. Let q = 3k. Then there exist flag-transitive (non-desarguesian) linear
spaces with a one-dimensional affine automorphism group, and q6 points and q2 points on
each line.

The proofs of Theorem 1.1 and Theorem 1.2 are given in Section 3 and Section 4,
using some preliminary results about permutation polynomials presented in Section 2.
In [13], the authors described a procedure called inflation to obtain new linear spaces
over an extension field with the same irreducible polynomial, which generalizes a similar
procedure in [10]. The inequivalence of our new linear spaces with the known ones and
the fact that they do not arise from inflation can be established by following the same
lines as in [13].

The paper is organized as follows. In Section 2, we present some preliminary results
on linear spaces and permutation polynomials. We present the proof of Theorem 1.1 in
Section 3 and the proof of Theorem 1.2 in Section 4. We consider the equivalence issue
in Section 5.

2. Preliminaries

2.1. k-spreads and flag-transitive linear spaces

Let V be an n-dimensional vector space over a finite field Fq. A k-spread of V is a set
of (k + 1)-dimensional subspaces of V which partition the nonzero vectors. A k-spread

exists if and only if k+1 | n. For instance, if k+1 divides n and we regard V ′ = F
n/(k+1)

qk+1

as a n-dimensional vector space V over Fq, then the 1-dimensional Fqk+1-subspaces of
V ′ form the Desarguesian k-spread of V . We say that a k-spread S is transitive if the
stabiliser of S in ΓLn(q) acts transitively on the elements of S. The André/Bruck-Bose
construction (see [1, 2]) gives a method to produce a linear space from a k-spread S of a
vector space V as follows: the points of the linear space are the vectors of V and the lines
are the sets S + v, where S ∈ S and v ∈ V . The resulting linear space is flag-transitive if
and only if S is transitive. Moreover, a flag-transitive linear space whose automorphism
group is of affine type must arise in this way. By [4], a linear space L with a flag-transitive
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automorphism group G is either a Desarguesian affine space, a Hering plane of order 27,
one of two sporadic linear spaces constructed by Hering that are not planes [6], or G is a
subgroup of AΓL1(p

n) with p prime.
In [13], Pauley and Bamberg gave a construction of one-dimensional affine flag-transitive

linear spaces via the André/Bruck-Bose construction applied to transitive 1-spreads of vec-
tor space. To be specific, we take V = Fq2m and b ∈ V , set ℓb = {x− bxq : x ∈ Fq2} with
bq+1 6= 1, and let C be the subgroup of ΓL(V ) that consists of the linear transformations
x 7→ ux of V with u(q2m−1)/(q+1) = 1. The next result describes the necessary and sufficient
conditions for ℓCb to form a transitive 1-spread.

Lemma 2.1. [13, Theorem 1] Take notation as above, let h(x) be the minimal polynomial
of b over Fq2, and let d be the degree of h(x). Then ℓCb is a transitive 1-spread of V if and
only if for any nonzero x, y ∈ Fq2 we have that

xmh(xq−1)m/d

ymh(yq−1)m/d
∈ Fq implies that

x

y
∈ Fq. (2.1)

Moreover, ℓCb is Desarguesian if and only if b is in Fq2.

The authors show that in the case q = p is an odd prime and m = p, the polynomial

h(x) =
xp+1 − 1

x− 1
− 2 = xp + xp−1 + · · ·+ x− 1 (2.2)

is irreducible over Fp2 and satisfies condition (2.1). Correspondingly there is a new flag-
transitive linear space with p2p points and p2 points on each line for each odd prime
p.

2.2. Permutation polynomials of the form xrh(x(q−1)/s)
A polynomial f(x) ∈ Fq[x] is a permutation polynomial of Fq if the associated function

f : c 7→ f(c) of Fq is a permutation of Fq. Wan and Lidl [15] initiated the systematic study
of permutation polynomials of Fq of the form xrh(x(q−1)/s), where s divides q−1, r > 0 and
h(x) ∈ Fq[x]. A criterion for a polynomial in such form to be a permutation polynomial
was given in [15]. There have been extensive studies on permutation polynomials of this
form in recent years, and we refer the interested reader to the comprehensive survey [9].
We shall need the following two results in the sequel.

Lemma 2.2. [16, Theorem 1.2] Let q be a prime power, let d, k be integers with d > 0
and k ≥ 0, and let β, δ ∈ Fq2 satisfy βq+1 = 1 and δ /∈ Fq. Then

f(x) := xd+k(q+1) ·
(

(

δxq−1 − βδq
)d

− δ
(

xq−1 − β
)d
)

permutes Fq2 if and only if gcd(d(d+ 2k), q − 1) = 1.

Lemma 2.3. [5, Theorem 3.2] Let q = 3k. Then for a, c ∈ F∗

q, the quadrinomial

f(x) := x3 + axq+2 − ax2q+1 + cx3q

permutes Fq2 if any one of the following conditions is satisfied: (1) c = a 6= −1 and
a(q−1)/2 = 1; (2) c = a− 1 and (−a)(q−1)/2 = 1; (3) c = 1 − a, a 6= −1 and k is even; (4)
c = 1.

We observe that the function f(x) in Lemma 2.3 is of the form f(x) = x3h(xq−1),
where h(x) = cx3 − ax2 + ax+ 1.
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3. Proof of Theorem 1.1

Our key observation is the following lemma which builds a connection between the
condition (2.1) in Lemma 2.1 and permutation polynomials.

Lemma 3.1. Let q be a prime power and d be a positive integer such that gcd(d, q−1) = 1.
If xdh(xq−1) is a permutation polynomial of Fq2, then for all nonzero x, y ∈ Fq2 we have
that

xdh(xq−1)

ydh(yq−1)
∈ Fq implies that

x

y
∈ Fq.

Proof. Suppose xdh(xq−1) = λydh(yq−1) for some λ ∈ F∗

q and x, y ∈ F∗

q2 . Since gcd(d, q −

1) = 1, there exists c ∈ F∗

q such that λ = cd. Set z = cy. Then zd = cdyd = λyd

and h(zq−1) = h(cq−1yq−1) = h(yq−1). Therefore, we have xdh(xq−1) = zdh(zq−1), which
leads to x = z = cy by the fact that xdh(xq−1) is a permutation polynomial of Fq2. This
completes the proof.

Remark 3.2. We now take a look at the polynomial h(x) in (2.2). For x ∈ Fp2, we have

xph(xp−1) =

{

−2xp, if x 6∈ F∗

p,

−x, if x ∈ F∗

p.

It is routine to check that xph(xp−1) permutes Fp2, and so falls in the category of Lemma
3.1.

Lemma 3.3. Let q be a prime power and d > 1 be an odd divisor of q + 1. Let i > 0 be
an even integer. Then

gcd
(

dt(q + 1), qi·d
t−1

− 1
)

= (q + 1) · dt−1 · gcd(d, i) (3.1)

for any positive integer t. Furthermore, let N = dt(q + 1) and ordN(q) be the order of q
in the multiplicative group Z∗

N of the residue ring ZN . Then ordN (q) = 2dt.

Proof. We prove the first claim by induction on t. In the case t = 1, we have

gcd(d(q + 1), qi − 1) = gcd

(

d(q + 1), (q + 1) ·
i−1
∑

l=0

(−1)l+1ql

)

=(q + 1) · gcd

(

d,
i−1
∑

l=0

(−1)l+1ql

)

.

Since q ≡ −1 (mod d), we have
∑i−1

l=0(−1)l+1ql ≡ −i (mod d). The claim for t = 1 then
follows. Suppose that it holds for t = k ≥ 1, i.e.,

gcd
(

dk(q + 1), qi·d
k−1

− 1
)

= (q + 1) · dk−1 · gcd(d, i). (3.2)

Then dk−1(q + 1) | qi·d
k−1

− 1 and therefore dk(q + 1) | (qi·d
k−1

− 1)2. Note that
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∑d
l=2(l − 1) · qi·(d

k
−l·dk−1) ≡

∑d
l=2(l − 1) ≡ d(d−1)

2
≡ 0 (mod d).

Thus we have

dk+1(q + 1)
∣

∣

∣

(

qi·d
k−1

− 1
)2

·

(

d
∑

l=2

(l − 1) · qi·(d
k
−l·dk−1)

)

. (3.3)

Since qi·d
k
− 1 =

(

qi·d
k−1

− 1
)

·
∑d

l=1 q
i·(dk−l·dk−1) and

d
∑

l=1

qi·(d
k
−l·dk−1) =

(

qi·d
k−1

− 1
)

·

(

d
∑

l=2

(l − 1) · qi·(d
k
−l·dk−1)

)

+ d,

we deduce that

qi·d
k

− 1 =
(

qi·d
k−1

− 1
)2

·

(

d
∑

l=2

(l − 1) · qi·(d
k
−l·dk−1)

)

+
(

qi·d
k−1

− 1
)

· d. (3.4)

From (3.3) and (3.4), we have that qi·d
k
− 1 ≡ (qi·d

k−1
− 1) · d (mod dk+1(q+1)). By (3.2),

gcd
(

dk+1(q + 1), qi·d
k

− 1
)

=gcd
(

dk+1(q + 1),
(

qi·d
k−1

− 1
)

· d
)

=d · gcd
(

dk(q + 1), qi·d
k−1

− 1
)

= (q + 1) · dk · gcd(d, i).

This completes the proof of the first part of the lemma.
We next determine e := ordN(q), where N = dt(q + 1) with t > 0. Since qe −

1 ≡ (−1)e − 1 ≡ 0 (mod d), we deduce that e is even. From N | qe − 1, we have
dt | (qe − 1)/(q + 1). Note that

(qe − 1)/(q + 1) =
∑e−1

l=0 (−1)l+1ql ≡ −e (mod d).

Thus we have d | e. On the other hand,

gcd
(

N, q2d
t

− 1
)

= (q + 1) · dt−1 · gcd(d, 2d) = N,

so e divides 2dt. Assume to the contrary that e < 2dt. We write e = dsv, where
1 ≤ s ≤ t− 1 and d ∤ v. Then qe − 1 | qd

t−1v − 1 and so N | qd
t−1v − 1. On the other hand,

by (3.1) we have

gcd
(

N, qd
t−1v − 1

)

= (q + 1) · dt−1 · gcd(d, v) < N,

which is a contradiction. This completes the proof.

Lemma 3.4. Let q be a prime power and d > 1 be an odd divisor of q + 1. Let u be a
proper divisor of d, t be a positive integer and set n = dtu. Let δ be an element of order
q + 1 in F∗

q2. Then the polynomial

gn(x) :=
(δx− 1)n − δ(x− δ)n

δn − δ

has coefficients in Fq and is an irreducible polynomial in Fq2[x] of degree n.
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Proof. Since d divides q + 1 and n, we see that q + 1 does not divides n − 1 and so
δn− δ 6= 0. Hence gn(x) has degree n. We first prove that gn(x) has coefficients in Fq. To
see this, it suffices to show that gn(x

q) = gn(x)
q. We compute that

gn(x)
q =

(δqxq − 1)n − δq(xq − δq)n

δqn − δq
=

(δ−1xq − 1)n − δ−1(xq − δ−1)n

δ−n − δ−1

=
δ(xq − δ)n − (δxq − 1)n

δ − δn
= gn(x

q).

Here, we have used the fact δq+1 = 1.
Next, we prove that gn(x) is irreducible in Fq2 [x]. Since the degree n of g(x) is relatively

prime to 2, it suffices to show that gn(x) is irreducible in Fq[x]. Assume to the contrary
that gn(x) is reducible in Fq[x]. Let h(x) be an irreducible factor of gn(x) in Fq[x] of
smallest degree, and write i = deg(h(x)). Then 1 ≤ i ≤ n−1

2
, and the roots of h(x)

are in Fqi. Suppose that x1 is a root of h(x) in Fqi. From gn(x1) = 0, we deduce that

δ =
(

δx1−1
x1−δ

)n

. Write c = δx1−1
x1−δ

, which lies in Fqlcm(2,i) and so cq
2i
−1 = 1. Since δ has

order q + 1 and δ = cn, we deduce that cn(q+1) = 1 and o(c) = m(q + 1) for some divisor
m of n. We thus deduce that m(q + 1) divides gcd(n(q + 1), q2i − 1). If we can show
that gcd(n(q + 1), q2i − 1) < n(q + 1), then m < n and we can deduce a contradiction as
follows. Let r be a prime divisor of n/m. Since n = dtu with u | d, we have r | d and so
r | q+1. It follows that gcd(n,m(q+1)) = m · gcd(n/m, q+1) > m. The order of δ = cn

is o(c)
gcd(o(c),n)

= m(q+1)
gcd(n,m(q+1))

< q + 1: a contradiction.

It now remains to show that Di := gcd(n(q+1), q2i−1) < n(q+1) for any 1 ≤ i ≤ n−1
2
.

If dt divides i, then u > 1 and 2i = dtv with 1 ≤ v ≤ u − 1. Since n = dtu is a divisor
of dt+1, Di divides gcd

(

dt+1(q + 1), qd
t
·v − 1

)

. By Lemma 3.3, the latter number equals
(q + 1) · dt · gcd(d, v), which is smaller than n(q + 1) as desired. It remains to consider
the case where dt does not divide i. We have that Di divides u · gcd(N, q2i − 1) with
N = dt(q + 1) in this case. By Lemma 3.3, ordN (q) = 2dt, so gcd(N, q2i − 1) < N by the
fact that dt does not divide i. Therefore, Di < uN = n(q + 1) as desired. This completes
the proof.

Proof of Theorem 1.1. Take the same notation as in Lemma 3.4. The polynomial
gn(x) is irreducible over Fq2 of degree n. Since d is an odd divisor of q + 1 and n = dtu,
we have gcd(n2, q− 1) = 1. By Lemma 2.2 with k = 0 and β = δ, xngn(x

q−1) permutates
Fq2. Therefore, gn(x) satisfies condition (2.1) by Lemma 3.1. The claim then follows from
Lemma 2.1. This completes the proof.

4. Proof of Theorem 1.2

Let Tr3k/3 be the trace function from F3k to F3, i.e., Tr3k/3(x) = x+ x3 + · · ·+ x3k−1
.

Lemma 4.1. [8, Corollary 1.23] Let F = F3k and b, c ∈ F. If b = s2 with s in F∗ and
Tr3k/3(c/s

3) 6= 0, then h(x) = x3 − bx− c has no roots in F.

Lemma 4.2. Let a ∈ F∗

3k such that Tr3k/3(a
−1) 6= 0, then h(x) = x3 + ax2 − ax + 1 is

irreducible in F32k [x].
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Proof. Write q = 3k. Since h(x) has coefficients in Fq and has odd degree 3, it suffices
to show that h(x) is irreducible over Fq, or equivalent it has no roots in Fq. Note that
h(x − 1) = x3 + ax2 − a for x ∈ Fq and h(−1) = −a 6= 0. We have h(1/x − 1) =
−a
x3 (x

3 − x − a−1) for x ∈ F∗

q. Set s = 1 and c = a−1 in Lemma 4.1, and we see that
x3 − x− a−1 has no roots in Fq. The claim now follows.

Proof of Theorem 1.2.

Proof. Let h(x) be as in Lemma 4.2, which is irreducible over Fq2 with q = 3k. Moreover,
Lemma 2.3 says that x3h(xq−1) = x3q+ax2q+1−axq+2+x3 permutes Fq2 . Since gcd(3, q−
1) = 1, the irreducible polynomial h(x) satisfies condition (2.1) with m = d = 3 by
Lemma 3.1. The claim then follows from Lemma 2.1.

5. The equivalence issue

A flag-transitive linear space L1, whose points form the field Fqmm′n, is an inflation of
another flag-transitive linear space L2, whose points form the field Fqmn , if the lines of L2

are just those lines of L1 which are wholly contained in Fqmn . The following proposition
describes how to obtain inflations of a linear space arising from Lemma 2.1 by keeping the
polynomial the same but varying the field.

Lemma 5.1. [13, Proposition 3] Let h(x) be an irreducible polynomial over Fq2 of degree
d ≥ 2. Suppose h(x) satisfies condition (2.1) in the field Fq2mm′ . Then the following are
equivalent:

(i) there is a flag-transitive linear space arising from h(x) in the field Fq2m and the
flag-transitive linear space arising from h(x) in the field Fq2mm′ is an inflation of it;

(ii) the flag-transitive linear space arising from h(x) in the field Fq2mm′ is isomorphic to
an inflation of some flag-transitive linear space with point set Fq2m;

(iii) d divides m, and m′ is coprime to q + 1;

(iv) h(x) satisfies condition (2.1) in the field Fq2m.

The linear spaces constructed in Theorem 1.1 and Theorem 1.2 are not Desarguesian
by Lemma 2.1, and are not inflations of one-dimensional flag-transitive linear spaces by
(iii) of Lemma 5.1 upon direct check. To compare with Kantor’s constructions in [10], it
suffices to compare with those of Type 4 by discussion in [13]. The number of points in
our constructions is q2n and the number of points on a line is q2, where either (a) n = dtu,
u | d, d | q+1 and d odd, or (b) q = 3k and n = 3. The number of points in a linear space
of Kantor’s constructions of Type 4 is qmn′

and the number of points on a line is qn
′

with
n′ > 1 and m dividing q − 1. An isomorphism would imply n′ = 2 and m = n, in which
case n | q − 1: a contradiction. Therefore, our constructions are not isomorphic to those
of Kantor [10]. The corresponding irreducible polynomials h(x) in the proofs of Theorem
1.1 and Theorem 1.2 are not of the form P (xs) with s ≥ 3 an odd integer coprime to
q+1, so does not arise from Example 2 of [13]. Our construction works for more values of
n compared with [13] and [12], and so indeed we obtain flag-transitive linear spaces with
new parameters.
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6. Concluding remarks

In this paper, we build a connection between permutation polynomials of the form
xrh(x(q−1)/s) and one-dimensional affine flag-transitive linear space. This leads to new in-
finite families of flag-transitive linear spaces by following the scheme described in [13]. We
show that they have new parameters and are not isomorphic to the known constructions.
Our results indicate that there should be more such linear spaces that are associated to
interesting permutation polynomials.

Acknowledgement. This work was supported by National Natural Science Foundation
of China under Grant No.11771392.
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