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LINEAR FAMILIES OF SMOOTH HYPERSURFACES OVER

FINITELY GENERATED FIELDS

SHAMIL ASGARLI, DRAGOS GHIOCA, AND ZINOVY REICHSTEIN

Abstract. Let K be a finitely generated field. We construct an n-dimensional
linear system L of hypersurfaces of degree d in Pn defined over K such that
each member of L defined over K is smooth, under the hypothesis that the
characteristic p does not divide gcd(d, n+1) (in particular, there is no restric-
tion when K has characteristic 0). Moreover, we exhibit a counterexample
when p divides gcd(d, n+ 1).

1. Introduction

The study of hypersurfaces varying in a pencil, or more generally, in a linear
system of arbitrary dimension, is an active research area. For instance, determining
the number of reducible members in a pencil is already a challenging problem
[Ste89], [Vis93], [PY08]. When the base field is a number field, the study of pencils
has deep connections to Diophantine geometry; see, for example [DGH21]. Linear
systems of hypersurfaces over finite fields have been studied by Ballico [Bal07],
[Bal09].

Our primary goal in the present paper is to address the following question from
a recent paper [AG22] by the first two authors. While the version stated in [AG22]
was concerned with linear systems of hypersurfaces over finite fields, in this paper
we will work over an arbitrary finitely generated field. Recall that a field K is
called finitely generated if it is generated by a finite number of elements as a field
(or equivalently, as a field extension of its prime subfield).

Question 1. Let K be a finitely generated field and r > 1, n > 2, d > 2 be integers.
Do there exist r+1 linearly independent homogeneous polynomials F0, F1, ..., Fr ∈
K[x0, . . . , xn] of degree d such that the hypersurface

X[a0:a1:...:ar] = {a0F0 + a1F1 + ...+ arFr = 0} ⊂ Pn

is smooth for every [a0 : a1 : . . . : ar] ∈ Pr(K)?

Here, as usual, “smooth” means “smooth at every K-point”, not just at every
K-point. Question 1 can be rephrased in geometric terms as follows. Consider the
linear system L = 〈F0, ..., Fr〉 of (projective) dimension r spanned by F0, . . . , Fr.
We say that L is K-smooth if for every [a0 : a1 : . . . : ar] ∈ Pr(K), the hypersurface
cut out by a0F0 + a1F1 + ... + arFr is smooth in Pn. In other words, Question 1
asks for existence of a K-smooth linear system L in Pn of prescribed degree and
dimension.
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We show that, under a mild assumption on the characteristic, the maximum
value of r for which Question 1 has a positive answer is r = n.

Theorem 2. Let K be an arbitrary field.

(1) If r > n + 1, then there does not exist a K-smooth linear system of (pro-
jective) dimension r (of any degree d > 2).

(2) Suppose K is a finitely generated field of characteristic p > 0. If r 6 n
and p ∤ gcd(d, n+ 1), then there exist homogeneous polynomials F0, . . . , Fr

in x0, . . . , xn of degree d such that L = 〈F0, . . . , Fr〉 is a K-smooth linear
system of (projective) dimension r.

Note that the assumption p ∤ gcd(d, p + 1) on the characteristic of K holds
automatically when char(K) = 0. On the other hand, we will show in Section 5
that this assumption cannot be dropped in general. More precisely, we will show
that no n-dimensional linear system of degree 2 hypersurfaces in Pn can be K-
smooth in the case where K is a field of characteristic 2 and n > 1 is an odd
integer; see Theorem 6.

The case where r = 1, which corresponds to a pencil of hypersurfaces, is of
particular interest. For any given n, the condition that p ∤ gcd(d, n+ 1) is satisfied
for all but finitely many characteristics p. In particular, Theorem 2 tells us that
for every value of d > 1 and every finitely generated field K there exists

• a K-smooth pencil of degree d in P2 if char(K) 6= 3.
• a K-smooth pencil of degree d in P3 if char(K) 6= 2.
• a K-smooth pencil of degree d in P4 if char(K) 6= 5.
• a K-smooth pencil of degree d in P5 if char(K) 6= 2, 3.

On the other hand, the main result of [AG22, Theorem 1.3] proves the existence
of aK-smooth pencil L of degree d hypersurfaces in Pn defined over the fieldK = Fq

under a different hypothesis:

q >

(

1 +
√
2

2

)2

((n+ 1)(d− 1)n)2 ((n+ 1)(d− 1)n − 1)2 ((n+ 1)(d− 1)n − 2)2 .

In particular, an Fq-smooth pencil of degree d hypersurfaces exists in any charac-
teristic as long as q is sufficiently large. It is reasonable to ask if smooth pencils of
every degree exist over every finitely generated field.

Acknowledgements. In an earlier version of this paper our main result, The-
orem 2(2), was only stated for finite fields. We are grateful to Angelo Vistoli for
suggesting that it can be extended to finitely generated fields and contributing the
inductive argument of Section 4.

The first author is supported by a postdoctoral research fellowship from the
University of British Columbia and the NSERC PDF award. The second and third
authors are supported by NSERC Discovery grants.

2. Proof of Theorem 2(1)

In this section K will denote an arbitrary field. We will denote by K[x0, . . . , xn]d
the space of homogeneous polynomials of degree d in x0, . . . , xn with coefficients
in K. This is a K-vector space of dimension N =

(

n+d

d

)

. Points of the projective
space P(K[x0, . . . , xn]d) are naturally identified with degree d hypersurfaces in Pn.
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We proceed with the proof of part (1) of Theorem 2. Assume the contrary: there
exists a K-smooth linear system L ⊂ K[x0, . . . , xn]d of (affine) dimension > n+ 2.

Let xd−1
0 K[x0, . . . , xn]1 denote the (n+1)-dimensional K-vector space of degree

d forms divisible by xd−1
0 . Any such form can be written as xd−1

0 l(x0, . . . , xn),
where l ∈ K[x0, . . . , xn]1. Consider the K-linear map

Ψ: K[x0, . . . , xn]d → xd−1
0 K[x0, . . . , xn]1

which removes from F ∈ L(K) all monomials which are not multiples of xd−1
0 . In

other words, for any non-negative integers i0, . . . , in satisfying i0 + . . .+ in = d,

Ψ(xi0
0 xi1

1 . . . xin
n ) =

{

xi0
0 xi1

1 . . . xin
n , if i0 > d− 1, and

0, otherwise.

The kernel, Ker(Ψ), is precisely the set of polynomials F ∈ K[x0, . . . , xn]d with the
property that the associated hypersurface in Pn is singular at P = [1 : 0 : . . . : 0].

Since the codimension of Ker(Ψ) inK[x0, . . . , xn]d is at least dim(xd−1
0 K[x0, . . . , xn]1) =

n+1 and dim(L) > n+2, we see that L∩Ker(Ψ) must contain a non-zero K-point
of L. In other words, L(K) contains a hypersurface which is singular at P . This
shows that L cannot be K-smooth. �

3. Proof of Theorem 2(2) in the case, where K is a finite field

We begin by exhibiting two families of smooth hypersurfaces of degree d > 2
over an arbitrary field K of characteristic p > 0.

Lemma 3. Suppose p ∤ d. Set F = c0x
d
0 + c1x

d
1 + ... + cnx

d
n. If c0, c1, . . . , cn 6= 0,

then F cuts out a smooth hypersurface in Pn.

Proof. This is clear from the Jacobian criterion: the equations

∂F

∂xi

= dcix
d−1
i = 0 (i = 0, 1, . . . , n)

have no common solution in Pn. �

Lemma 4. Suppose p | d but p ∤ (n + 1). Set F = c0x
d−1
0 x1 + c1x

d−1
1 x2 + ... +

cnx
d−1
n x0. If c0, c1, . . . , cn 6= 0, then F cuts out a smooth hypersurface in Pn.

Proof. Assume the contrary: the hypersurface cut out by F in Pn is singular at
some point P = [u0 : u1 : ... : un] ∈ Pn. By symmetry we may assume without
loss of generality that u1 6= 0. Using the Jacobian criterion, and remembering that
p | d, we obtain:

(3.1)
∂F

∂xi

(P ) = ci−1u
d−1
i−1 − ciu

d−2
i ui+1 = 0

for each 0 6 i 6 n, where the subscripts are taken modulo n+1. Multiplying both
sides of (3.1) by ui, we obtain

(3.2) ci−1u
d−1
i−1 ui = ciu

d−1
i ui+1.

Now recall that

F (P ) = c0u
d−1
0 u1 + c1u

d−1
1 u2 + ...+ cnu

d−1
n u0 = 0.



4 SHAMIL ASGARLI, DRAGOS GHIOCA, AND ZINOVY REICHSTEIN

By (3.2), the n terms in this sum are all equal to each other. Hence,

0 = F (P ) =

n
∑

i=0

ciu
d−1
i ui+1 = (n+ 1)c0u

d−1
0 u1.

Since p ∤ (n+ 1), c0 6= 0, and u1 6= 0, we conclude that u0 = 0.

We will divide the remainder of the proof into two cases, according to whether
d = 2 or d > 3. If d > 3, then (3.1) tells us that ui = 0 implies ui−1 = 0 for any
i ∈ Z/(n+1)Z. (Recall that the subscripts in (3.1) are viewed modulo n+1.) Using
this implication recursively, starting from u0 = 0, we see that u0 = un = un−1 =
. . . = u1 = 0, a contradiction.

Now assume d = 2. In this case (3.1) tells us that ui−1 = 0 implies ui+1 = 0 for
any i ∈ Z/(n+ 1)Z. Since we know that u0 = 0, this tells us that ui = 0 for every
even i. Since d = 2, the assumption that p divides d tells us that p = 2 and the
assumption that p does not divide n + 1 tells us that that n = 2k is even. Thus,
2k + 2 ≡ 1 modulo n+ 1 and hence, 0 = u2k+2 = u1 = 0, a contradiction. �

We are now ready to prove Theorem 2(2) in the case, where K = Fq is a finite
field. Since any K-linear subspace of a K-smooth linear system is again K-smooth,
we may assume without loss of generality that r = n. Note also that p ∤ gcd(d, n+1)
if and only if p ∤ d or p ∤ n+ 1. Thus we may consider two cases.

Case 1: p ∤ d. We will explicitly construct a linear system L of dimension r = n
with the desired property. By the normal basis theorem, we can find an element

α ∈ Fqn+1 such that α, αq, αq2 , ..., αqn form an Fq-basis for the (n+ 1)-dimensional
vector space Fqn+1 . Let

F0 = (αx0 + αqx1 + αq2x2 + ...+ αqixi + ...+ αqnxn)
d,

F1 = (αqx0 + αq2x1 + αq3x2 + ...+ αqi+1

xi + ...+ αxn)
d,

F2 = (αq2x0 + αq3x1 + αq4x2 + ...+ αqi+2

xi + ...+ αqxn)
d,

...

Fn = (αqnx0 + αqx1 + αq2x2 + ...+ αqi+n

xi + ...+ αqn−1

xn)
d.

Note that the polynomials Fi are not defined over Fq. However, the set {F0, F1, ..., Fn}
is invariant under the action of the q-th power Frobenius map. Thus, the linear sys-
tem L = 〈F0, ..., Fn〉 is defined over Fq, that is, one can find a set of new generators
G0, G1, . . . , Gn for L where each Gi is defined over Fq.

We claim that F0, F1, ..., Fn are linearly independent over Fq. To prove this
claim, let

(3.3) yj = αqjx0 + αqj+1

x1 + αqj+2

x2 + ...+ αqj+i

xi + ...+ αqj+n

xn

for each 0 6 j 6 n, and observe that Fi = ydi . The linear map xi 7→ yi is
a linear automorphism of Pn. Indeed, the matrix of this linear transformation,
known as a Moore matrix, is non-singular; see, e.g., [Gos96, Corollary 1.3.4]. Thus,
y0, . . . , yn are algebraically independent over Fq and hence, over Fq. Consequently,

F0, F1, . . . , Fn are linearly independent over Fq. This proves the claim. In summary,
L = 〈F0, F1, . . . , Fn〉 is a linear system of degree d hypersurfaces in Pn defined over
Fq of (projective) dimension r = n.
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It remains to show that L is Fq-smooth. Indeed, suppose

(3.4) X = {c0F0 + c1F1 + ...+ cnFn = 0}

is a singular hypersurface X which belongs to L, for some ci ∈ Fq where not all ci
are zero. Our goal is to show that X is not defined over Fq. In the new coordinates
yi, we can express (3.4) as:

X = {c0yd0 + c1y
d
1 + ...+ cny

d
n = 0}.

Since X is singular, we can apply Lemma 3 to deduce that ci = 0 for some i.
Without loss of generality, we may assume that c0 = 0. By applying the Frobenius
map, we see that X is sent to:

Xσ = {cq1F2 + ...+ cqnF0 = 0}.

We claim that X and Xσ are distinct. Indeed, their defining equations are not
multiples of one another: otherwise, there would exist a nonzero constant b ∈ Fq

such that cqi = b · ci+1 for each 0 6 i 6 n taken modulo n+1. As c0 = 0, this would
force ci = 0 for each 0 6 i 6 n, which is a contradiction. Thus, X is not defined
over Fq, as desired. We conclude that the linear system L is Fq-smooth.

Case 2: p | d but p ∤ (n + 1). Define y0, . . . , yn by the formula (3.3), and set
Fi = yqi yi+1 for 0 6 i 6 n − 1 and Fn = yqny0. Arguing as in Case 1, one readily
checks that L = 〈F0, F1, ..., Fn〉 is a linear subspace of (projective) dimension n
defined over Fq. Moreover, the same argument as in Case 1, with Lemma 4 used in
place of Lemma 3, shows that L is Fq-smooth.

This completes the proof of Theorem 2(2) in the case, where K = Fq is a finite
field. �

4. Conclusion of the proof of Theorem 2(2)

Given a finitely generated fieldK, we define its dimension dim(K) to be the Krull
dimension of any finitely generated Z-algebra whose fraction field is K. In other
words, dim(K) = trdegFp

(K) if char(K) = p > 0 and dim(K) = 1 + trdegQ(K) if

char(K) = 0. In this section we will prove Theorem 2(2) over an arbitrary finitely
generated field K by induction on dim(K). The inductive step will be based on the
following lemma.

Lemma 5. Let R be discrete valuation ring with fraction field K and residue field L,
and let F0, . . . , Fr ∈ L[x0, ..., xn] be linearly independent homogeneous polynomials
of degree d. Denote their liftings to R by F0, . . . , Fr ∈ R[x0, ..., xn] ⊂ K[x0, ..., xn],
respectively. If the linear system 〈F0, . . . , Fr〉 is L-smooth, then the linear system
〈F0, . . . , Fr〉 is K-smooth.

Proof. Let (a0, . . . , ar) be inKr+1\{(0, . . . , 0)}. We will show that the hypersurface
in Pn

K defined by the form a0F0 + . . .+ arFr is smooth. By scaling the ai, we may
assume that ai ∈ R for all i and ai is invertible in R for at least one i. Consider
the hypersurface X ⊂ Pn

K defined by a0F0 + · · · + arFr = 0. Then X is flat over
Spec(R) and its fiber over L is smooth by hypothesis. Since the smooth locus of the
projection X → Spec(R) is open in X , its complement must be empty. It follows
that the fiber over the generic point of Spec(R) is smooth, as desired. �
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We are now ready to finish the proof of Theorem 2(2) by induction on the
dimension of the finitely generated field K. If dim(K) = 0, then K is a finite field.
In this case Theorem 2(2) is proved in Section 3. If dim(K) > 0, then it is easy to
see that K admits a discrete valuation with finitely generated residue field L such
that dim(L) = dim(K) − 1. Furthermore, if char(K) = 0, then this valuation can
be chosen so that char(L) is positive and arbitrarily large. By applying Lemma 5,
we can lift an L-smooth linear system of hypersurfaces in Pn to a K-smooth linear
system of hypersurfaces in Pn of the same degree degree and the same dimension.

�

5. Quadrics in characteristic 2

In this section, we will show that the hypothesis p ∤ gcd(d, n + 1) in our main
theorem cannot be removed in general. We will focus on the case, where p = d = 2
and n is odd. Our goal is to prove the following result.

Theorem 6. Suppose n is an odd positive integer, and K be a field of characteristic
2 (not necessarily finitely generated). Then for any d > 2 there does not exist a
linear system L = 〈F0, . . . , Fn〉 ⊂ K[x0, . . . , xn]2 of (projective) dimension n over
K such that each K-member of L is a smooth quadric hypersurface in Pn.

We begin with the following lemma.

Lemma 7. Let K be a field of characteristic 2 and n > 1 be an odd integer.
Consider a quadric hypersurface X ⊂ Pn cut out by

F (x0, . . . , xn) = x2
0 +G(x1, x2, ..., xn)

where G ∈ K[x1, . . . , xn] is a homogeneous polynomial of degree 2. Then X is
singular.

Proof. The Jacobian criterion gives rise to a homogeneous system

∂G

∂x1
= . . . =

∂G

∂xn

= 0

of n linear equations in x1, . . . , xn. (Note x0 never appears in this system.) We
claim that this homogeneous linear system has a nontrivial solution. To prove
the claim, it suffices to show that the matrix M of this linear system is singular.
Note that M is the Hessian matrix of G and hence, is symmetric. (Since G is a
quadratic polynomial, the entries of the Hessian matrix are constant.) Because we
are in characteristic 2, M is also skew-symmetric. It remains to show that a skew-
symmetric square n×n matrix M over any commutative ring has zero determinant,
when n is odd.

Indeed, consider the universal skew-symmetric matrix n× n matrix A over the
polynomial ring R = Z[xij |1 6 i < j 6 n]. By definition, the (i, j)-th entry of A
is xij if i < j, 0 if i = j and −xij if i > j. Taking the determinant on both sides
of AT = −A, and remembering that n is odd, we obtain det(A) = − det(A) in R.
Since R is an integral domain of characteristic 0, this implies that det(A) = 0. A
simple specialization argument (specializing xij to the (i, j)-th entry of M) now
shows that det(M) = 0, as desired.
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Thus, we have found (0, . . . , 0) 6= (t1, . . . , tn) ∈ Kn such that for any point
P ∈ Pn of the form P = [t0 : . . . : tn], we have

(5.1)
∂F

∂x0
(P ) = . . . =

∂F

∂xn

(P ) = 0.

Note that since deg(F ) is even and we are in characteristic 2, conditions (5.1)
do not guarantee that F (P ) = 0. On the other hand, the partial derivatives of
F (x0, . . . , xn) depend only on x1, . . . , xn and not on x0. We thus want to choose t0
so that the resulting point P = [t0 : . . . : tn] lies on the hypersurface X cut out by
F . To achieve this goal, we choose t0 ∈ K so that

t20 = −G(t1, t2, ..., tn).

Then P = [t0 : . . . : tn] ∈ Pn(K) satisfies both (5.1) and F (P ) = 0. In other words,
X is singular at P . �

Remark 8. If K is a perfect field of characteristic 2, then the above construction
gives rise to a singular point P = [t0 : . . . : tn] of X defined over K. Indeed, since
K is closed under taking square roots, we can always choose t0 ∈ K in the last
step.

Remark 9. The conclusion of Lemma 7 is false when n = 2k is even. Indeed, the
quadric hypersurface in Pn defined by the polynomial

x2
0 + x1x2 + x3x4 + ...+ x2k−1x2k = 0

is smooth.

We now proceed with a proof of Theorem 6.

Proof of Theorem 6. Suppose, to the contrary, that L = 〈F0, . . . , Fn〉 is aK-smooth
linear system of quadric hypersurfaces of (projective) dimension n. Let L(K) denote
the set of K-members of the system.

Consider the K-linear map

Ψ : K[x0, . . . , xn]2 → x0K[x0, . . . , xn]1

introduced in Section 2 (with d = 2). Recall that x0K[x0, . . . , xn]1 denotes the
(n+1)-dimensional K-vector space of quadratic forms in x0, . . . , xn divisible by x0

and that Ψ removes from F ∈ K[x0, . . . , xn] all monomials which are not multiples
of x0. When d = 2, the map Ψ is given by the simple formula

(ΨF )(x0, . . . , xn) = F (x0, x1, . . . , xn)− F (0, x1, . . . , xn).

As we noted in Section 2, F lies in the kernel of Ψ if and only if the hypersurface
in Pn cut out by F is singular at the point [1 : 0 : . . . : 0]. Since the linear system
L is K-smooth, this tells us that the restricted map

Ψ : L(K) → x0K[x0, . . . , xn]1

is injective. Since the vector spaces L(K) and x0K[x0, . . . , xn]1 are of the same
dimension n + 1, we conclude that Ψ must also be surjective. In particular, there
exists some F ∈ L(K) whose image under Ψ is x2

0. In other words,

F (x0, . . . , xn) = x2
0 +G(x1, ..., xn)

for some quadratic form G in x1, . . . , xn. By Lemma 7, F cuts out a singular
quadric hypersurface. This contradicts the assumption that each K-member of L
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is smooth. We conclude that a K-smooth linear system L of quadric hypersurfaces
in Pn of dimension n does not exist. �

We have shown that the hypothesis p ∤ gcd(d, n + 1) of Theorem 2(2) cannot
be removed in the case p = 2. We do not know whether this assumption can be
dropped for other primes p. We finish the paper with an example, which shows
that it can be for one particular choice of K, p, d, and n.

Example 10. Set d = 3 and n = 2 and consider the following cubic homogeneous
polynomials with coefficients in K = F3:

F0 = x3 + x2y − xy2 + y3 + x2z + xyz + y2z − xz2 + z3

F1 = x3 + x2y − x2z − xyz + y2z + z3

F2 = x3 − x2y + xy2 + y3 + x2z + xyz + y2z − yz2

A computer calculation shows that aF0 + bF1 + cF2 = 0 defines a smooth plane
curve for each of the possible 32 + 3 + 1 = 13 choices [a : b : c] ∈ P2(F3). In other
words, 〈F0, F1, F2〉 is a F3-smooth linear system of (projective) dimension n = 2.
Thus, the conclusion of Theorem 2(2) holds in this example, even though p divides
gcd(d, n+ 1).
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