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Constructions of near MDS codes which are optimal locally

recoverable codes
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Abstract

A linear code with parameters [n,k,n−k] is said to be almost maximum distance separable (AMDS

for short). An AMDS code whose dual is also AMDS is referred to as an near maximum distance

separable (NMDS for short) code. NMDS codes have nice applications in finite geometry, com-

binatorics, cryptography and data storage. In this paper, we first present several constructions of

NMDS codes and determine their weight enumerators. In particular, some constructions produce

NMDS codes with the same parameters but different weight enumerators. Then we determine the

locality of the NMDS codes and obtain many families of distance-optimal and dimension-optimal

locally repairable codes.
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1. Introduction

Let q be a prime power and Fq the finite field with q elements. Denote by F
∗
q = Fq \{0}.

Linear codes are an important class of error-correcting codes which are widely used in commu-

nication systems. For a non-empty set C ⊆ F
n
q, if C is a k-dimensional linear subspace over Fq, then

it is called an [n,k,d] linear code over Fq, where d denotes its minimal distance. The dual code of

an [n,k] linear code C over Fq is defined as

C⊥ =
{

c⊥ ∈ F
n
q : 〈c⊥,c〉= 0 ∀ c ∈ C

}

,

where 〈c⊥,c〉 denotes the Euclidean inner product of c⊥ and c. Then C⊥ is an [n,n− k] linear

code. Let Ai denote the number of codewords with weight i in a linear code C of length n, where

0 ≤ i ≤ n. The sequence (1,A1,A2, · · · ,An) is called the weight distribution of C . The polynomial

A(z) = 1+A1z+A2z2 + · · ·+Anzn
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is called the weight enumerator of C . Weight distribution is an important research subject as it

contains crucial information including the capabilities of error detection and correction. The weight

distributions of linear codes have been widely investigated in the literature [3, 4, 9, 13, 14, 19, 20].

A linear code is called an MDS (maximum distance separable) code if it has parameters [n,k,n−
k+ 1]. The dual of an MDS code is also an MDS code. The weight distribution of a q-ary [n,k]
MDS code is unique. MDS codes are meaningful for both theory and practice. Recently, twisted

Reed-Solomon codes with one-dimensional hull which are MDS were constructed in [21]. Linear

complementary dual MDS codes of non-Reed-Solomon type were constructed in [22].

A linear code is said to be almost maximum distance separable (almost MDS or AMDS for

short) if it has parameters [n,k,n− k]. AMDS codes with dimensions 1,n− 2,n− 1,n are said to

be trivial ones. In general, the dual of an AMDS code may not be AMDS. It is known that AMDS

codes, n-tracks and linear orthogonal arrays of index q are equivalent to each other [1]. Some upper

bounds on the maximum length for which an AMDS code exists were summarized in [1, 6].

If both a code and its dual are AMDS codes, then the code is referred to as an near maximum

distance separable(near MDS or NMDS for short) code. The first near MDS code was the [11,6,5]
ternary Golay code discovered by Golay [11]. A characterization of NMDS codes with a parity-

check matrix was given in [5]. Recently, some families of NMDS codes were constructed. In

[4, 19], Ding and Tang constructed several infinite families of NMDS codes holding t-designs for

t = 2,3,4. In [12], self-dual NMDS codes were derived from elliptic curves. In [10], MDS or

NMDS self-dual codes from twisted generalized Reed-Solomon codes were constructed. In [20],

several infinite families of NMDS codes were constructed with oval polynomials. These families

of NMDS codes were proved to be optimal or almost optimal locally recoverable codes in [18].

According to [7] and [18], AMDS and NMDS codes can be used to derive optimal or nearly

optimal locally recoverable codes. Hence it is interesting to construct more new AMDS or NMDS

codes. In [20], some special matrixes were used to construct NMDS codes. Inspired by the work

in [20], we present several new constructions of NMDS codes with different matrixes in this paper.

The weight enumerators of the NMDS codes are explicitly determined. In particular, some con-

structions produce NMDS codes with the same parameters but different weight enumerators. Then

we determine the locality of the NMDS codes and obtain many families of distance-optimal and

dimension-optimal locally repairable codes.

The rest of this paper is organized as follows. In Section 2, we present some properties of

NMDS codes and oval polynomials used in this paper. In Section 3, we give several constructions

of NMDS codes and determine their parameters and weight distributions. In Section 4, we prove

the NMDS codes constructed in this paper are optimal or almost optimal locally recoverable codes.

2. Preliminaries

In this section, we introduce some properties of NMDS codes and oval polynomials used later.

2.1. Some properties of NMDS codes

In this subsection, we present two properties of NMDS codes.

Denote by (1,A1, · · · ,An) and (1,A⊥
1 , · · · ,A

⊥
n ) the weight distributions of a linear code C and its

dual C⊥ of length n, respectively. The weight distributions of an NMDS code and its dual satisfy

the following recurrence relations.
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Lemma 1 ([5]). Let C be an NMDS code with paraments [n,k,n− k] over the finite field Fq. Then

the weight distributions of the two codes C⊥ and C are given by

A⊥
k+s =

(

n

k+ s

)

s−1

∑
j=0

(−1) j

(

k+ s

j

)

(qs− j −1)+(−1)s

(

n− k

s

)

A⊥
k

for s ∈ {1,2, . . . ,n− k}; and

An−k+s =

(

n

k− s

)

s−1

∑
j=0

(−1) j

(

n− k+ s

j

)

(qs− j −1)+(−1)s

(

k

s

)

An−k

for s ∈ {1,2, . . . ,k}.

Despite the recurrence relations in Lemma 1, the weight distributions of NMDS codes can’t

be totally determined. Two NMDS codes with the same parameters many have different weight

distributions. In this paper, some NMDS codes with the same parameters but different weight

distributions will be constructed.

The following is another useful property of NMDS codes.

Lemma 2 ([6]). Let C be an NMDS code. Then for any minimum weight codeword c in C ,

there exists, up to a multiple, a unique minimum weight codeword c⊥ in C⊥ such that suppt(c)∩
suppt(c⊥) = /0, where suppt(c) = {1 ≤ i ≤ n : ci 6= 0} denotes the support of the codeword c =
(c1, . . . ,cn). Particularly, C and its dual have the same number of minimum weight codewords.

2.2. Some properties of oval polynomials

In this subsection, let q = 2m with m a positive integer. In order to calculate the parameters

and weight distributions of the NMDS codes in this paper, here we list some properties of oval

polynomial. First, we briefly introduce the definition of oval polynomial in the following.

Lemma 3 ([15]). Let m ≥ 2. Any hyperoval in the Desarguesian projective plane PG(2,q) can be

written as

H ( f ) = {( f (c),c,1) : c ∈ Fq}∪{(1,0,0)}∪{(0,1,0)},

where f ∈ Fq[x] is a polynomial such that

1. f is a permutation polynomial of Fq with deg( f )< q and f (0) = 0, f (1) = 1; and

2. for each a ∈ F(q), ga(x) := ( f (x+a)+ f (a))xq−2 is also a permutation polynomial of Fq.

Conversely, every such set H ( f ) is a hyperoval.

If a polynomial meets the two conditions of Lemma 3, we call it an oval polynomial. It is easy

to deduce that f (x) = x2 is an oval polynomial over Fq for all m ≥ 2. The followings are some

properties of oval polynomials.

Lemma 4 ([17]). A polynomial f with f (0) = 0 over Fq is an oval polynomial if and only if

fu := f (x)+ux is 2-to-1 for any u ∈ F
∗
q.

Lemma 5 ([17]). f is an oval polynomial over Fq if and only if
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1. f is a permutation of Fq; and

2.
f (x)+ f (y)

x+ y
6=

f (x)+ f (z)

x+ z

for all pairwise-distinct x,y,z in Fq.

Lemma 6 ([20]). Let m ≥ 3 be odd and let f (x) be an oval polynomial over Fq with coefficients in

F2. Then f (x)+ x+1 = 0 has no solution in Fq.

3. Several constructions of NMDS codes

In this section, we first present several constructions of NMDS codes over Fq with some special

matrixes and the oval polynomial f (x) = x2, and then determine their weight enumerators, where

q = 2m. For convenience, denote by dim(C ) and d(C ) the dimension and minimal distance of a

linear code C , respectively. Let α0 = 0,α1 = 1,α2, · · · ,αq−1 be all elements of Fq.

3.1. NMDS code with parameters [q+4,3,q+1]

Define

G1 =





1 1 · · · 1 1 0 0 1 0

α1 α2 · · · αq−1 0 0 1 0 1

α2
1 α2

2 · · · α2
q−1 0 1 0 1 1



 .

Obviously, G1 is a 3 by q+ 4 matrix over Fq. Let C be the linear code over Fq with generator

matrix G1. Next, we determine the parameters and weight enumerator of C .

Theorem 7. Let m ≥ 3 be odd. Then the linear code C is an NMDS code over Fq with parameters

[q+4,3,q+1] and weight enumerator

A(z) = 1+(q−1)(q+2)zq+1+
q(q−1)(q+1)

2
zq+2 +

(q−1)(q−2)zq+3+
(q−1)(q2−3q+2)

2
zq+4.

Proof. Firstly, it is easy to deduce that dim(C ) = 3 as the q-th, q+1-th and q+2-th columns of the

generator matrix G1 are linearly independent.

We then prove that C⊥ has parameters [q+4,q+1,3].

Obviously, dim(C⊥) = (q+4)−dim(C ) = q+1. It is easy to find that no column of G1 is the

zero vector and any two columns of G1 are Fq-linearly independent. Then the minimum distance

d(C⊥) > 2. We also find the q-th, q+1-th, q+3-th columns of G1 are linearly dependent, which

means that C⊥ has codewords of weight 3. Then we have the minimum distance d(C⊥) = 3. Now

we calculate the total number of codewords of weight 3 in C⊥. We need to consider the following

cases.

Case 1.1: Let x,y,z be three pairwise different elements in Fq. Consider the submatrix

M1,1 =





1 1 1

x y z

x2 y2 z2



 .
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We have |M1,1|= (x+ y)(x2 + z2)+(x+ z)(x2 + y2). By Lemma 5, |M1,1| 6= 0. Hence, the rank of

M1,1 is three. In conclusion, C⊥ has no codeword of weight 3 whose nonzero coordinates are at the

first q locations.

Case 1.2: Let x,y be two different elements in Fq. Consider the submatrix

M1,2 =





1 1 0

x y 0

x2 y2 1



 .

Then we have |M1,2| = y+ x. Since x 6= y, |M1,2| 6= 0. The rank of M1,2 is 3. Hence, C⊥ has no

codeword of weight 3 whose first two nonzero coordinates are at the first q locations and the rest is

at the q+1-th location.

Case 1.3: Let x,y be two different elements in Fq. Consider the submatrix

M1,3 =





1 1 0

x y 1

x2 y2 0



 .

Then we have |M1,3| = y2 + x2 = (x+ y)2. Since x 6= y, |M1,3| 6= 0. The rank of M1,3 is 3. Hence,

C⊥ has no codeword of weight 3 whose first two nonzero coordinates are at the first q locations and

the rest is at the q+2-th location.

Case 1.4: Let x,y be two different elements in Fq. Consider the submatrix

M1,4 =





1 1 1

x y 0

x2 y2 1



 .

It is easy to deduce that |M1,4|= (y2+1)x+(x2+1)y. If x = 0,y= 1 or x = 1,y = 0, then |M1,4| 6= 0

and rank(M1,4) = 3. Hence, C⊥ does not have a codeword of weight 3 whose coordinates are at the

first, q-th and q+3-th locations. Next we count the number of pair (x,y) such that |M1,4|= 0, where

x,y ∈ Fq \ {0,1} . For any x,y ∈ Fq \ {0,1}, let a = x2+1
x

. Then a 6= 0. By Lemma 6, a 6= 1. We

have z2+az is 2-to-1 by Lemma 4. Therefore, there exists another element y ∈ Fq \{0,1} such that

x2 +ax = 1 = y2 +ay. For this pair (x,y) we have |M1,4|= 0 and vice versa. Hence, the number of

distinct (x,y) ∈ Fq \{0,1} such that |M1,4|= 0 is equal to (q−2)/2. Consequently, the number of

codewords of weight 3 in C⊥ whose first two nonzero coordinates are at the first q locations (expect

the first and q-th locations) and the rest is at the q+3-th location is equal to (q−2)(q−1)/2.

Case 1.5: Let x,y be two distinct elements in Fq. Consider the submatrix

M1,5 =





1 1 0

x y 1

x2 y2 1



 .

It is easy to deduce that |M1,5| = x2 + y2 + x+ y. Now we calculate the number of (x,y) such that

|M1,5| = 0. Let |M1,5| = x2 + y2 + x+ y = 0 which is equivalent to (x+ y)2 = x+ y. Since x 6= y,

then this equation can be simplified to x+y = 1. We then deduce that the number of different (x,y)
such that |M1,5| = 0 is equal to q/2. In conclusion, the number of codewords of weight 3 in C⊥
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whose first two nonzero coordinates are at the first q locations and the rest is at the q+4-th location

is equal to q(q−1)/2.

Case 1.6: Let x be an element in Fq. Consider the submatrix

M1,6 =





1 0 0

x 0 1

x2 1 0



 .

Then we have |M1,6|= 1. The rank of M1,6 is 3. Hence, C⊥ has no codeword of weight 3 whose first

nonzero coordinate is at the first q locations and the rest are at the q+1-th and q+2-th locations.

Case 1.7: Let x be an element in Fq. Consider the submatrix

M1,7 =





1 0 1

x 0 0

x2 1 1



 .

Then we have |M1,7| = x. If x 6= 0, the rank of M1,7 is 3. Hence, C⊥ has no codeword of weight

3 whose first nonzero coordinate is at the first q− 1 locations and the other nonzero coordinates

are at the q+ 1-th, q+ 3-th locations. If x = 0, M1,7 has the rank 2. Consequently, the number

of codewords of weight 3 in C⊥ whose nonzero coordinates are at the q-th, q+ 1-th and q+ 3-th

locations is equal to q−1.

Case 1.8: Let x be an element in Fq. Consider the submatrix

M1,8 =





1 0 0

x 0 1

x2 1 1



 .

Then we have |M1,8|= 1. The rank of M1,8 is 3. Hence, C⊥ has no codeword of weight 3 whose first

nonzero coordinate is at the first q locations and the rest are at the q+1-th and q+4-th locations.

Case 1.9: Let x be an element in Fq. Consider the submatrix

M1,9 =





1 0 1

x 1 0

x2 0 1



 .

Then we have |M1,9| = x2 + 1. |M1,9| = 0 if and only if x = 1. If x = 1, M1,9 has the rank 2.

Consequently, the number of codewords of weight 3 in C⊥ whose nonzero coordinates are at the

first, q+2-th and q+3-th locations is equal to q−1.

Case 1.10: Let x be an element in Fq. Consider the submatrix

M1,10 =





1 0 0

x 1 1

x2 0 1



 .

Then we have |M1,10| = 1. The rank of M1,10 is 3. Hence, C⊥ has no codeword of weight 3

whose first nonzero coordinate is at the first q locations and the rest are at the q+2-th and q+4-th

locations.
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Case 1.11: Let x be an element in Fq. Consider the submatrix

M1,11 =





1 1 0

x 0 1

x2 1 1



 .

It is easy to derive that |M1,11| = x2 + x+1. By Lemma 6, |M1,11| 6= 0. Then the rank of M1,11 is

3. Hence, C⊥ has no codeword of weight 3 whose first nonzero coordinate is at the first q locations

and the other two nonzero coordinates are at the last two locations.

Case 1.12: Consider the submatrix

M1,12 =





0 0 1

0 1 0

1 0 1



 .

Clearly, |M1,12| = 1. Then the rank of M1,12 is 3. Hence, C⊥ has no codeword of weight 3 whose

nonzero coordinates are at the q+1-th, q+2-th and q+3-th locations.

Case 1.13: Consider the submatrix

M1,13 =





0 0 0

0 1 1

1 0 1



 .

It is easy to find that the rank of M1,13 is 2. Consequently, the number of codewords of weight 3 in

C⊥ whose nonzero coordinates are at the q+1-th, q+2-th and q+4-th locations is equal to q−1.

Case 1.14: Consider the submatrix

M1,14 =





0 1 0

0 0 1

1 1 1



 .

Since |M1,14| = 1, the rank of M1,14 is 3. Hence, C⊥ has no codeword of weight 3 whose nonzero

coordinates are at the q+1-th, q+3-th and q+4-th locations.

Case 1.15: Consider the submatrix

M1,15 =





0 1 0

1 0 1

0 1 1



 .

Since |M1,15| = 1, the rank of M1,15 is 3. Hence, C⊥ has no codeword of weight 3 whose nonzero

coordinates are at the q+2-th, q+3-th and q+4-th locations.

Summarizing the above cases, the total number of codewords of weight 3 in C⊥ is (q−1)(q+
2).

We finally prove that the minimum distance of C is q+1

Assume that d(C )≤ q = q+4−4 and let c = ag1+bg2+cg3 be a codeword with the minimum

weight in C , where g1, g2 and g3 respectively represent the first, second and third rows of G1. We

deduce that at least four coordinates in c are zero. Consider the following cases.

7



Case 2.1: Assume that the last four coordinates in c are zero.














c = 0,
b = 0,

a+ c = 0,
b+ c = 0.

We deduce that a = b = c = 0 and c = 0. This is contrary to the fact that c is a minimum weight

codeword in C .

Case 2.2: Assume that three of the last four coordinates in c are zero. Then there exists an

element x in Fq such that















a+bx+ cx2 = 0,
c = 0,
b = 0,

a+ c = 0,

or















a+bx+ cx2 = 0,
c = 0,
b = 0,

b+ c = 0,

or















a+bx+ cx2 = 0,
c = 0,

a+ c = 0,
b+ c = 0,

or















a+bx+ cx2 = 0,
b = 0,

a+ c = 0,
b+ c = 0.

We deduce that a = b = c = 0 and c = 0. This is contrary to the fact that c is a minimum weight

codeword in C .

Case 2.3: Assume that two of the last four coordinates in c are zero. Then there exist two

different elements x and y in Fq such that















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

c = 0,
b = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

c = 0,
a+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

c = 0,
b+ c = 0,















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

a+ c = 0,
b+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

b = 0,
a+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

b = 0,
b+ c = 0.

We deduce that a = b = c = 0 and c = 0 by Lemma 6. This is contrary to the fact that c is a

minimum weight codeword in C .

Case 2.4: Assume that at most one of the last four coordinates in c is zero. Let x,y,z be three

pairwise different elements in Fq, we have







a+bx+ cx2 = 0,
a+by+ cy2 = 0,
a+bz+ cz2 = 0.

The coefficient matrix of this system of equations is

M1 =





1 x x2

1 y y2

1 z z2
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Obviously, |M1|= (x2+z2)(y+z)+(y2+z2)(x+z). Then by Lemma 5, |M1| 6= 0. Hence, the rank

of the coefficient matrix M1 is 3, which yields a = b = c = 0 and c = 0. This is contrary to the fact

that c is a minimum weight codeword in C .

Summarizing the above discussions, d(C ) ≥ q+ 1 has been proved. By the Singleton bound,

d(C ) ≤ q+ 2. If d(C ) = q+ 2, then C is an [q+ 4,3,q+ 2] MDS code and C⊥ is also an MDS

code with parameters [q+4,q+1,4] which is contrary to d(C⊥) = 3. Thus C is a [q+4,3,q+1]
AMDS code. Besides, C is an NMDS code as both C and C⊥ are AMDS. By Lemma 2, the total

number Aq+1 of the minimum weight codewords in C is equal to the total number of weight 3 in

C⊥. Hence Aq+1 = (q−1)(q+2). By Lemma 1, the weight enumerator of C directly follows.

Below we give another construction of NMDS code with the same parameters [q+4,3,q+1]
but different weight enumerators. Define

G1,1 =





1 1 · · · 1 1 0 1 1 0

α1 α2 · · · αq−1 0 0 0 1 1

α2
1 α2

2 · · · α2
q−1 0 1 1 0 1



 .

Obviously, G1,1 is a 3 by q+ 4 matrix over Fq. Let C1 be the linear code over Fq with generator

matrix G1,1. We can also derive the parameters and weight enumerators of C1 with a similar proof

to that of Theorem 7. The proof of the following theorem is omitted.

Theorem 8. Let m ≥ 3 be odd. Then the linear code C1 is an NMDS code over Fq with parameters

[q+4,3,q+1] and weight enumerator

A(z) = 1+
(q−1)(3q+2)

2
zq+1 +

(q−1)(q2−2q+6)

2
zq+2 +

5(q−1)(q−2)

2
zq+3 +

(q−1)(q−2)2

2
zq+4.

It is known that any [n,k,n− k+1] MDS code over Fq must have a unique weight enumerator.

However, this fact is not true for NMDS codes. The NMDS codes in Theorems 7 and 8 do have

different weight enumerators, though they have the same parameters. This implies that the NMDS

codes in Theorems 7 and 8 are inequivalent to each other.

3.2. NMDS code with parameters [q+3,3,q]

Define

G2 =





1 1 · · · 1 1 0 1 0

α1 α2 · · · αq−1 0 0 0 1

α2
1 α2

2 · · · α2
q−1 0 1 1 1



 .

Obviously, G2 is a 3 by q+ 3 matrix over Fq. Let D be the linear code over Fq with generator

matrix G2. Next, we determine the parameters and weight enumerators of D .

Theorem 9. Let m ≥ 3 be odd. Then the linear code D is an NMDS code over Fq with parameters

[q+3,3,q] and weight enumerator

A(z) = 1+q(q−1)zq+
(q−1)(q2−q+6)

2
zq+1 +

(q−1)(2q−3)zq+2+
(q−1)(q2−3q+2)

2
zq+3.
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Proof. Note that the q-th, q+ 1-th and q+ 3-th columns of the generator matrix G2 are linearly

independent. Hence rank(G2) = 3 implying dim(D) = 3.

We then prove that D⊥ has parameters [q+3,q,3].

Obviously, dim(D⊥) = (q+ 3)− dim(D) = q. Since no column of G2 is the zero vector and

any two columns of G2 are linearly independent over Fq, the minimum distance d(D⊥) > 2. We

deduce that D⊥ has codewords of weight 3 as the q-th, q+ 1-th and q+ 3-th columns of G2 are

linearly independent. Then d(D⊥) = 3. Now we calculate the total number of codewords of weight

3 in D⊥. We need to consider the following cases.

Case 1.1: Let x,y,z be three pairwise different elements in Fq. Consider the submatrix

M1,1 =





1 1 1

x y z

x2 y2 z2



 .

We have |M1,1|=(x+y)(x2+z2)+(x+z)(x2+y2). By Lemma 5, |M1,1| 6= 0 and rank(M1,1)= 3. In

conclusion, D⊥ has no codeword of weight 3 whose nonzero coordinates are at the first q locations.

Case 1.2: Let x,y be two different elements in Fq. Consider the submatrix

M1,2 =





1 1 0

x y 0

x2 y2 1



 .

Then we have |M1,2| = y+ x. Since x 6= y, |M1,2| 6= 0. The rank of M1,2 is 3. Hence, D⊥ has no

codeword of weight 3 whose the first two nonzero coordinates are at the first q locations and the

rest is at the q+1-th location.

Case 1.3: Let x,y be two different elements in Fq. Consider the submatrix

M1,3 =





1 1 1

x y 0

x2 y2 1



 .

It is easy to deduce that |M1,3|= (y2+1)x+(x2+1)y. If x= 0,y= 1 or x= 1,y= 0, then |M1,3| 6= 0.

The rank of M1,3 is 3. Hence, D does not have a codeword of weight 3 whose coordinates are at

the first, q-th and q+ 2-th locations. Next we count the number of different pair (x,y) such that

|M1,3| = 0, where x,y ∈ Fq \ {0,1} . For any x,y ∈ Fq \ {0,1}, let a = x2+1
x

. Then a 6= 0. By

Lemma 6, a 6= 1. Note that z2 +az is 2-to-1 by Lemma 4. Therefore, there exists another element

y∈ Fq\{0,1} such that x2+ax = 1= y2+ay. For this pair (x,y) we have |M1,3|= 0 and vice versa.

It follows that the number of distinct (x,y) ∈ Fq \{0,1} such that |M1,3|= 0 is equal to (q−2)/2.

Consequently, the number of codewords of weight 3 in D⊥ whose first two nonzero coordinates

are at the first q locations (expect the first and q-th locations) and the rest is at the q+2-th location

is equal to (q−2)(q−1)/2.

Case 1.4: Let x,y be two distinct elements in Fq. Consider the submatrix

M1,4 =





1 1 0

x y 1

x2 y2 1



 .
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It is easy to deduce that |M1,4| = x2 + y2 + x+ y. Now we calculate the number of (x,y) satisfying

|M1,4| = 0. Let |M1,4| = x2 + y2 + x+ y = 0 which is equivalent to (x+ y)2 = x+ y. Since x 6= y,

this equation can be simplified to x+y = 1. We deduce that the number of different (x,y) such that

|M1,4|= 0 is equal to q/2. In conclusion, the number of codewords of weight 3 in D⊥ whose first

two nonzero coordinates are at the first q locations and the rest is at the q+3-th location is equal to

q(q−1)/2.

Case 1.5: Let x be an element in Fq. Consider the submatrix

M1,5 =





1 0 1

x 0 0

x2 1 1



 .

It is easy to derive |M1,5|= x. If x 6= 0, then rank(M1,5) = 3. Hence D⊥ does not have a codeword

of weight 3 whose first nonzero coordinate is at the first q− 1 locations and the other nonzero

coordinates are at the last two locations. If x = 0, then rank(M1,5) = 2. Consequently, the number

of codewords of weight 3 in D⊥ whose nonzero coordinates are at the q-th, q+1-th, and q+2-th

locations is equal to q−1.

Case 1.6: Let x be an element in Fq. Consider the submatrix

M1,6 =





1 0 0

x 0 1

x2 1 1



 .

It is easy to prove that |M1,6| = 1 and rank(M1,6) = 3. Hence, D⊥ has no codeword of weight 3

whose first nonzero coordinate is at the first q locations and the other nonzero coordinates are at

the q+1-th and q+3-th locations.

Case 1.7: Let x be an element in Fq. Consider the submatrix

M1,7 =





1 1 0

x 0 1

x2 1 1



 .

We have |M1,7| = x2 + x+ 1. By Lemma 6, |M1,7| 6= 0 and rank(M1,7) = 3. Hence, D⊥ has no

codeword of weight 3 whose first nonzero coordinate is at the first q locations and the other two

nonzero coordinates are at the last two locations.

Case 1.8: Let x be an element in Fq. Consider the submatrix

M1,8 =





0 1 0

0 0 1

1 1 1



 .

We have |M1,8| = 1. Then the rank of M1,8 is 3. Hence, D⊥ has no codeword of weight 3 whose

nonzero coordinates are at the last three locations.

Summarizing the above eight cases, we deduce that the total number of codewords of weight 3

in D⊥ is q(q−1).

11



We finally prove that the minimum distance of D is q

Assume that d(D) ≤ q − 1 = q + 3 − 4. Let c = ag1 + bg2 + cg3 be a codeword with the

minimum weight in D , where g1, g2 and g3 respectively represent the first, second and third rows

of G2. Then at least four coordinates are zero in c. Consider the following three cases.

Case 2.1: Assume that the last three coordinates in c are zero. Then there exists an element x in

Fq such that















a+bx+ cx2 = 0,
a+ c = 0,
b+ c = 0,

c = 0.

We deduce that a = b = c = 0 and c = 0. This is contrary to the fact that c is a minimum weight

codeword in D .

Case 2.2: Assume that two of the last three coordinates in c are zero. Then there exist two

different elements x and y in Fq such that















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

c = 0,
a+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

c = 0,
b+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

a+ c = 0,
b+ c = 0.

We deduce that a = b = c = 0 and c = 0 by Lemma 6. This is contrary to the fact that c is a

minimum weight codeword in D .

Case 2.3: Assume that at most one of the last three coordinates in c is zero. Then there exist

three pairwise different elements x,y,z in Fq such that







a+bx+ cx2 = 0,
a+by+ cy2 = 0,
a+bz+ cz2 = 0.

The coefficient matrix for this system of equations is

M1 =





1 x x2

1 y y2

1 z z2





Obviously, |M1| = (x2 + z2)(y+ z)+ (y2 + z2)(x+ z). By Lemma 5, |M1| 6= 0. Hence, the rank of

the coefficient matrix M1 is 3 implying a = b = c = 0 and c = 0. This is contrary to the fact that c

is a minimum weight codeword in D .

Summarizing the above discussions, d(D) ≥ q has been proved. By the Singleton bound,

d(D)≤ q+1. If d(D) = q+1, then D is a [q+3,3,q+1] MDS code and D⊥ is also an MDS code

with parameters [q+3,q,4], which is contrary to d(D⊥) = 3. Finally we have d(D) = q. Thus, D

is a [q+3,3,q] NMDS code. By Lemma 2, the total number Aq of the minimum weight codewords

in D is equal to the total number of weight 3 in D⊥. Hence Aq = q(q−1). The weight enumerator

of D follows from Lemma 1.
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Below we give two other constructions of NMDS code with the same parameters [q+ 3,3,q]
but different weight enumerators. Define

G2,1 =





1 1 · · · 1 1 0 0 1

α1 α2 · · · αq−1 0 1 0 1

α2
1 α2

2 · · · α2
q−1 0 0 1 0



 .

Obviously, G2,1 is a 3 by q+3 matrix over Fq. Let D1 be the linear code over Fq with generator

matrix G2,1.

With a similar proof to that of Theorem 9, we can derive the parameters and weight enumerator

of D1 in the following theorem.

Theorem 10. Let m ≥ 2 be an integer. Then the linear code D1 is an NMDS code over Fq with

parameters [q+3,3,q] and weight enumerator

A(z) = 1+
(q−1)(q+2)

2
zq +

q(q−1)(q+2)

2
zq+1 +

q(q−1)

2
zq+2 +

q(q−1)(q−2)

2
zq+3.

We remark that the NMDS code in Theorem 10 has the same weight enumerator as that of the

NMDS code in [20, Theorem 8] for f (x) = x2. These two NMDS codes have different generator

matrixes. It is open whether they are equivalent to each other. Besides, Theorem 10 holds for any

integer m ≥ 2 as its proof dose not rely on Lemma 6.

Define

G2,2 =





1 1 · · · 1 1 1 0 1

α1 α2 · · · αq−1 0 0 1 1

α2
1 α2

2 · · · α2
q−1 0 1 1 0



 .

Obviously, G2,2 is a 3 by q+3 matrix over Fq. Let D2 be the linear code over Fq with generator

matrix G2,2.

With a similar proof to that of Theorem 9, we can derive the parameters and weight enumerator

of D2 in the following theorem.

Theorem 11. Let m≥ 3 be odd. Then the linear code D2 is an NMDS code over Fq with parameters

[q+3,3,q] and weight enumerator

A(z) = 1+
(q−1)(3q−2)

2
zq +

(q−1)(q2−4q+12)

2
zq+1 +

(q−1)(7q−12)

2
zq+2 +

(q−1)(q−2)2

2
zq+3.

Note that the NMDS codes in Theorems 9, 10 and 11 have different weight enumerators for

odd m ≥ 3, though they have the same parameters. Hence they are pairwise inequivalent to each

other. Besides, the NMDS codes in Theorems 9 and 11 are inequivalent to the NMDS code in [20,

Theorem 8] due to different weight enumerators.
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3.3. NMDS codes with parameters [q+1,3,q−2]

Define

G3 =





1 1 · · · 1 1 0

α1 α2 · · · αq−1 0 1

α2
1 α2

2 · · · α2
q−1 0 1



 .

Obviously, G3 is a 3 by q+ 1 matrix over Fq. Let E be the linear code over Fq with generator

matrix G3. Next, we calculate the parameters and weight enumerator of E .

Theorem 12. Let m ≥ 2 be an integer. Then the linear code E is an NMDS code over Fq with

parameters [q+1,3,q−2] and weight enumerator

A(z) = 1+
q(q−1)

2
zq−2 +

q(q−1)(q−2)

2
zq−1 +

(q−1)(5q+2)

2
zq +

q(q−1)(q−2)

2
zq+1.

Proof. We first prove dim(E) = 3. Let g1, g2 and g3 represent the first, second and third rows of

G3. Assume that there exist three elements a, b and c in Fq such that ag1+bg2+cg3 = 0, where at

least one of the elements in {a,b,c} is nonzero. Then we have







a = 0,
b+ c = 0,
a+bx+ cx2 = 0 for all x ∈ F

∗
q.

It is easy to derive that a = b = c = 0 and dim(E) = 3.

We then prove that E⊥ has parameters [q+1,q−2,3].

Obviously, dim(E⊥) = (q+1)−dim(E) = q−2. It is easy to find that no column of G3 is the

zero vector and any two columns of G3 are Fq-linearly independent. Then the minimum distance

d(E⊥)> 2. We also find the first, q-th, q+1-th columns of G3 are linearly dependent, which means

that E⊥ has codewords of weight 3. Then we have the minimum distance d(E⊥) = 3. Now we

calculate the total number of codewords of weight 3 in E⊥. We need to consider the following two

cases.

Case 1.1: Let x,y,z be three pairwise different elements in Fq. Consider the submatrix

M1,1 =





1 1 1

x y z

x2 y2 z2



 .

We have |M1,1|= (x+ y)(x2 + z2)+(x+ z)(x2 + y2). By Lemma 5, |M1,1| 6= 0. Hence, the rank of

M1,1 is three. In conclusion, E⊥ has no codeword of weight 3 whose nonzero coordinates are at

the first q locations.

Case 1.2: Let x,y be two distinct elements in Fq. Consider the submatrix

M1,2 =





1 1 0

x y 1

x2 y2 1



 .

14



It is easy to deduce that |M1,2| = x2 + y2 + x+ y. Now we calculate the number of (x,y) such that

|M1,2| = 0. Let |M1,2| = x2 + y2 + x+ y = 0 which is equivalent to (x+ y)2 = x+ y. Since x 6= y,

then this equation can be simplified to x+y = 1. We then deduce that the number of different (x,y)
such that |M1,2| = 0 is equal to q/2. In conclusion, the number of codewords of weight 3 in E⊥

whose first two nonzero coordinates are at the first q locations and the rest is at the q+1-th location

is equal to q(q−1)/2.

Summarizing the above cases, the total number of codewords of weight 3 in E⊥ is q(q−1)/2.

We finally prove that the minimum distance of E is q−2

Assume that d(E) ≤ q− 3 = q+ 1− 4 and let c = ag1 + bg2 + cg3 be a codeword with the

minimum weight in E , where g1, g2 and g3 respectively represent the first, second and third rows

of G3. It can be deduced that there exist at least four coordinates in c are zero. Then we can find

that there exist at least three coordinates at the first q locations in c. Let x,y,z be three pairwise

different elements in Fq, we have







a+bx+ cx2 = 0,
a+by+ cy2 = 0,
a+bz+ cz2 = 0.

The coefficient matrix of this system of equations is

M1 =





1 x x2

1 y y2

1 z z2





Obviously, |M1|= (x2+z2)(y+z)+(y2+z2)(x+z). Then by Lemma 5, |M1| 6= 0. Hence, the rank

of the coefficient matrix M1 is 3, which yields a = b = c = 0 and c = 0. This is contrary to the fact

that c is a minimum weight codeword in E .

Then d(E) ≥ q−2 has been proved. By the Singleton bound, d(C ) ≤ q−1. If d(E) = q−1,

then E is an [q+1,3,q−1]MDS code and E⊥ is also an MDS code with parameters [q+1,q−2,4]
which is contrary to d(E⊥) = 3. Thus E is a [q+1,3,q−2] AMDS code. Besides, E is an NMDS

code as both E and E⊥ are AMDS. By Lemma 2, the total number Aq−2 of the minimum weight

codewords in E is equal to the total number of weight 3 in E⊥. Hence Aq−2 =
q(q−1)

2
. By Lemma

1, the weight enumerator of E directly follows.

Below we give two other constructions of NMDS codes with the same parameters [q+1,3,q−
2] but different weight enumerators. Define

G3,1 =





1 1 · · · 1 1 0

α1 α2 · · · αq−1 1 1

α2
1 α2

2 · · · α2
q−1 0 1



 .

Obviously, G3,1 is a 3 by q+ 1 matrix over Fq. Let E1 be the linear code over Fq with generator

matrix G3,1.

With a similar proof to that of Theorem 12, we can derive the parameters and weight enumerator

of E1 in the following.
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Theorem 13. Let m≥ 3 be odd. Then the linear code E1 is an NMDS code over Fq with parameters

[q+1,3,q−2] and weight enumerator

A(z) = 1+(q−1)(q−2)zq−2+
(q−1)(q2−5q+12)

2
zq−1 +

(q−1)(4q−5)zq+
(q−1)(q2−3q+4)

2
zq+1.

We remark that the NMDS code in Theorem 13 has the same weight enumerator as that of the

NMDS code in [20, Theorem 10] for f (x) = x2. These two NMDS codes have different generator

matrixes. It is open whether they are equivalent to each other. Besides, Theorem 13 holds for any

odd integer m ≥ 3 as its proof relies on Lemma 6.

Define

G3,2 =





1 1 · · · 1 1 1

α1 α2 · · · αq−1 0 0

α2
1 α2

2 · · · α2
q−1 0 1



 .

Obviously, G3,2 is a 3 by q+ 1 matrix over Fq. Let E2 be the linear code over Fq with generator

matrix G3,2.

With a similar proof to that of Theorem 12, we can determine the parameters and weight enu-

merator of E2 in the following.

Theorem 14. Let m ≥ 2 be an integer. Then the linear code E2 is an NMDS code over Fq with

parameters [q+1,3,q−2] and weight enumerator

A(z) = 1+
(q−1)(q−2)

2
zq−2 +

(q−1)(q2−2q+6)

2
zq−1 +

(q−1)(5q−4)

2
zq +

(q−1)(q2−2q+2)

2
zq+1.

The NMDS codes in Theorems 12, 13 and 14 have different weight enumerators, though they

have the same parameters. Hence they are pairwise inequivalent to each other. Besides, the NMDS

codes in Theorems 12 and 14 are inequivalent to the NMDS code in [20, Theorem 10] because of

different weight enumerators.

3.4. NMDS code with parameters [q+2,3,q−1]

In this subsection, we first introduce the definition of the extended code of a linear code. Let G

be the generator matrix of a linear code C . Define a matrix Ḡ by adding a column to G such that

the sum of the elements of each row of Ḡ is 0. The linear code with generator matrix Ḡ is called

the extended code of C . The extended code of C is denoted as C̄ .

In the following, we study the extended code of E1 in Theorem 13.

Theorem 15. Let m ≥ 3 be odd. Then the extended code Ē1 is an NMDS code over Fq with

parameters [q+2,3,q−1] and weight enumerator

A(z) = 1+(q−1)2zq−1 +
(q−1)(q2−3q+8)

2
zq +

3(q−1)2zq+1 +
(q−1)(q2−3q+2)

2
zq+2.
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Proof. It is well known that ∑x∈Fq
x = 0. Since f (x) = x2 is a permutation polynomial over Fq, we

have ∑x∈Fq
x2 = 0. Then the extended code Ē1 has generator matrix

Ḡ3 =





1 1 · · · 1 1 0 0

α1 α2 · · · αq−1 1 1 0

α2
1 α2

2 · · · α2
q−1 0 1 1



 .

By definition, Ē1 has length q+2 and dimension 3. Then the dual code Ē1
⊥

of Ē1 has length

q+ 2 and dimension q− 1. We now prove the minimum distance of Ē1
⊥

is 3. We can find the

first, q-th, q+ 2-th columns of Ḡ3 are linearly dependent, which means that Ē1
⊥

has codewords

of weight 3. Then we have the minimum distance d(Ē1
⊥
) ≤ 3. It is easy to deduce that any two

columns of Ḡ3 are linearly independent, then we have d(Ē1
⊥
) > 2. Thus, d(Ē1

⊥
) = 3. We then

calculate the total number of codewords with weight 3 in Ē1
⊥

in the following cases.

Case 1.1: Let x,y,z be three pairwise different elements in F
∗
q. Consider the submatrix

M1,1 =





1 1 1

x y z

x2 y2 z2



 .

Then we have |M1,1| = (x+ y)(x2 + z2)+ (x+ z)(x2 + y2). By Lemma 5, |M1,1| 6= 0. Hence, the

rank of M1,1 is three. In conclusion, Ē1
⊥

has no codeword of weight 3 whose nonzero coordinates

are at the first q−1 locations.

Case 1.2: Let x,y be two different elements in F
∗
q. Consider the submatrix

M1,2 =





1 1 1

x y 1

x2 y2 0



 .

Then we have |M1,2| = (x+1)y2 +(y+1)x2. Choose any y ∈ Fq \ {0,1}. Define a = y2/(y+1).
Then a 6= 0. By Lemma 6, a 6= 1. Note that y2 +ay = a. By Lemma 4, z2+az is 2-to-1. Therefore,

there exists another element x ∈ F
∗
q such that x2+ax = a. For this pair (x,y) we have |M1,2|= 0 and

vice versa. Hence, the number of different (x,y) in F
∗
q such that |M1,2| = 0 is equal to (q− 2)/2.

Consequently, the number of codewords of weight 3 in Ē1
⊥

whose two nonzero coordinates are at

the first q− 1 locations (expect the first location) and the other nonzero coordinate is at the q-th

location is equal to (q−2)(q−1)/2.

Case 1.3: Let x,y be two different elements in F
∗
q. Consider the submatrix

M1,3 =





1 1 0

x y 1

x2 y2 1



 .

It is easy to deduce that |M1,3| = x2 + y2 + x+ y. Now we calculate the number of (x,y) satisfying

|M1,3|= 0. Let |M1,3|= x2+y2+x+y = 0 which is equivalent to (x+y)2 = x+y. Since x 6= y, this

equation can be simplified to x+ y = 1. Then we deduce that the total number of different x and y
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in F
∗
q such that |M1,3| = 0 is equal to (q−2)/2 as x 6= 1. In conclusion, the number of codewords

of weight 3 in Ē1
⊥

whose first two nonzero coordinates are at the first q−1 locations (expect the

first location) and the rest is at the q+1-th location is equal to (q−2)(q−1)/2.

Case 1.4: Let x,y be two different elements in F
∗
q. Consider the submatrix

M1,4 =





1 1 0

x y 0

x2 y2 1



 .

It is easy to deduce that |M1,4| = y+ x. Since x 6= y, |M1,4| 6= 0. Hence, Ē1
⊥

has no codeword of

weight 3 whose first two nonzero coordinates are at the first q− 1 locations and the rest is at the

q+2-th location.

Case 1.5: Let x be an element in F
∗
q. Consider the submatrix

M1,5 =





1 1 0

x 1 1

x2 0 1



 .

It is clear that |M1,5|= x2 +x+1. By Lemma 6, |M1,5| 6= 0. Hence, Ē1
⊥

does not have a codeword

of weight 3 whose first nonzero coordinate is at the first q−1 locations and the other two nonzero

coordinates are at the q-th and q+1-th locations.

Case 1.6: Let x be an element in F
∗
q. Consider the submatrix

M1,6 =





1 1 0

x 1 0

x2 0 1



 .

Clearly, |M1,6|= 1+x. |M1,6|= 0 if and only if x = 1. If x = 1, the rank of M1,6 is 2. Consequently,

the number of codewords of weight 3 in Ē1
⊥

whose nonzero coordinates are at the first, q-th and

q+2-th locations is equal to q−1.

Case 1.7: Let x be an element in F
∗
q. Consider the submatrix

M1,7 =





1 0 0

x 1 0

x2 1 1



 .

Note that |M1,7| = 1. Hence, Ē1
⊥

has no codeword of weight 3 whose first nonzero coordinate is

at the first q−1 locations and the other nonzero coordinates are at the last two locations.

Case 1.8: Consider the submatrix

M1,8 =





1 0 0

1 1 0

0 1 1



 .

Clearly, |M1,8|= 1. Hence, Ē1
⊥

has no codeword of weight 3 whose nonzero coordinates are at the

last three locations.
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Summarizing the above eight cases, the total number of codewords of weight 3 in Ē1
⊥

is (q−
1)2.

Finally, we prove that the minimum distance of Ē1 is q− 1. By definition, d(Ē1) = d(E1) =
q− 2 or d(Ē1) = d(E1)+ 1 = q− 1. Assume that d(Ē1) = q− 2. Let c = ag1 + bg2 + cg3 be a

codeword with weight q−2 in Ē1, where g1, g2 and g3 respectively represent the first, second and

third rows of Ḡ3. Then c has four zero coordinates. Consider the following cases.

Case 2.1:Assume that the last three coordinates in c are zero. Then there exists an element x in

F
∗
q such that















a+bx+ cx2 = 0,
a+b = 0,
b+ c = 0,

c = 0.

We deduce that a = b = c = 0 and c = 0. This is contrary to the fact that c is a minimum weight

codeword in Ē1.

Case 2.2: Assume that two of the last three coordinates in c are zero. Then there exist two

different elements x and y in F
∗
q such that















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

a+b = 0,
b+ c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

a+b = 0,
c = 0,

or















a+bx+ cx2 = 0,
a+by+ cy2 = 0,

b+ c = 0,
c = 0.

We deduce that a = b = c = 0 and c = 0 by Lemma 6. This is contrary to the fact that c is a

minimum weight codeword in Ē1.

Case 2.3: Assume that at most one of the last three coordinates in c is zero. Then there exist

three pairwise different elements x,y,z in F
∗
q such that







a+bx+ cx2 = 0,
a+by+ cy2 = 0,
a+bz+ cz2 = 0.

The coefficient matrix for this system of equations is

M1 =





1 x x2

1 y y2

1 z z2





Obviously, |M1|= (x2+z2)(y+z)+(y2+z2)(x+z). Then by Lemma 5, |M1| 6= 0. Hence, a = b =
c = 0 and c = 0. This is contrary to the fact that c is a minimum weight codeword in Ē1.

Summarizing the above discussions, we have d(Ē1) = d(E1) + 1 = q− 1. Hence Ē1 is an

NMDS code with parameters [q+2,3,q−1]. By Lemma 2, the total number Aq−1 of the minimum

weight codewords in Ē1 is equal to the total number of weight 3 in Ē1
⊥

. Hence Aq−1 = (q−1)2.

Then by Lemma 1, the weight enumerator of E1 is obtained.
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Below we give other constructions of NMDS codes with the same parameters [q+ 2,3,q− 1]
but different weight enumerators.

Define

G4,1 =





1 1 · · · 1 1 1 0

α1 α2 · · · αq−1 0 1 1

α2
1 α2

2 · · · α2
q−1 1 0 1



 .

Obviously, G4,1 is a 3 by q+ 2 matrix over Fq. Let F1 be the linear code over Fq with generator

matrix G4,1.

The parameters and weight enumerator of F1 are given in the following theorem.

Theorem 16. Let m≥ 3 be odd. Then the linear code F1 is an NMDS code over Fq with parameters

[q+2,3,q−1] and weight enumerator

A(z) = 1+
(q−1)(3q−4)

2
zq−1 +

(q−1)(q2−6q+14)

2
zq +

3(q−1)(3q−4)

2
zq+1 +

(q−1)(q−2)2

2
zq+2.

Proof. The proof is similar to that of Theorem 15 and omitted.

Define

G4,2 =





1 1 · · · 1 1 1 1

α1 α2 · · · αq−1 0 0 1

α2
1 α2

2 · · · α2
q−1 0 1 0



 .

Let F2 be the linear code over Fq with generator matrix G4,2.

In the following theorem, the parameters and weight enumerator of F2 are presented.

Theorem 17. Let m≥ 3 be odd. Then the linear code F2 is an NMDS code over Fq with parameters

[q+2,3,q−1] and weight enumerator

A(z) = 1+(q−1)(q−2)zq−1+
(q−1)(q2−3q+14)

2
zq +

3(q−1)(q−2)zq+1+
(q−1)(q2−3q+4)

2
zq+2.

Proof. The proof is similar to that of Theorem 15 and omitted.

Define

G4,3 =





1 1 · · · 1 1 0 1

α1 α2 · · · αq−1 0 0 0

α2
1 α2

2 · · · α2
q−1 0 1 1



 .

Let F3 be the linear code over Fq with generator matrix G4,3.

The parameters and weight enumerators of F3 are given as follows.
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Theorem 18. Let m≥ 3 be odd. Then the linear code F3 is an NMDS code over Fq with parameters

[q+2,3,q−1] and weight enumerator

A(z) = 1+
q(q−1)

2
zq−1 +

(q−1)(q2+2)

2
zq +

3q(q−1)

2
zq+1 +

q(q−1)(q−2)

2
zq+2.

Proof. The proof is similar to that of Theorem 15 and omitted.

We remark that the NMDS codes in Theorem 15, 16, 17 and 18 have different enumerators,

though they have the same parameters. Hence these NMDS codes are pairwise inequivalent to each

other. The NMDS code in Theorem 17 has the same weight enumerator as that of the NMDS code

in [20, Theorem 12]. It is open whether they are equivalent to each other.

4. Optimal locally recoverable codes

Locally recoverable codes (LRCs for short) are widely used in distributed data storage systems.

In this paper, we only consider linear locally recoverable codes.

For a positive integer n, we denote by [n] = {0,1, · · · ,n−1}. Let C be an [n,k,d] linear code

over Fq. We index the coordinates of the codewords in C with the elements in [n]. For each i ∈ [n],
if there exist a subset Ri ⊆ [n]\i of size r and a function fi(x1,x2, · · · ,xr) on F

r
q meeting ci = fi(cRi

)
for any c = (c0, · · · ,cn−1) ∈ C , then we call C an (n,k,d,q;r)-LRC, where cRi

is the projection of

c at Ri. The set Ri is called the repair set of ci.

There exist some tradeoffs between the locality, length, dimension and minimal distance of

LRCs. In the following, two famous bounds on LRCs are presented.

Lemma 19 ([8], Singleton-like bound). For any (n,k,d,q;r)−LRC,

d ≤ n− k−

⌈

k

r

⌉

+2 (1)

LRCs are said to be distance-optimal (d-optimal for short) when they achieve the Singleton-like

bound.

Lemma 20 ([2], Cadambe-Mazumdar bound). For any (n,k,d,q;r)−LRC,

k ≤ min
t∈Z+

[rt + k
(q)
opt(n− t(r+1),d)] (2)

where k
(q)
opt(n,d) is the largest possible dimension of a linear code with length n, minimum distance

d and alphabet size q. Z+ represents the set of all positive integers.

LRCs are said to be dimension-optimal (k-optimal for short) when they achieve the Cadambe-

Mazumdar bound.

Lemma 21 ([18]). Let C be a nontrivial linear code of length n, d⊥ = d(C⊥). Then C has the

minimum linear locality d⊥−1 if and only if
⋃

S∈B
d⊥

(C⊥)

S = [n].

where Bd(C ) denotes the set of the supports of all codewords with weight d in C , and the coordi-

nates of the codewords are indexed by (0,1, · · · ,n−1).
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Lemma 22 ([18]). Let C be a nontrivial NMDS code, then the minimum linear locality of C is

either d(C⊥)−1 or d(C⊥).

Theorem 23. Let C be an NMDS code, d⊥ = d(C⊥). Then the minimum linear locality of C⊥ is

d(C )−1 if and only if ⋂

S∈B
d⊥

(C⊥)

S = /0,

where Bd⊥(C⊥) denotes the set of the supports of all codewords with weight d⊥ in C⊥.

Proof. The sufficiency was proved in [18]. In the following, we prove the necessity.

Let C be an [n,k,d] NMDS code. If C⊥ has the minimum linear locality d(C )− 1, then⋃
S∈Bd(C ) S = [n] by Lemma 21.

Now we prove
⋂

S∈B
d⊥

(C⊥)S = /0 in the following. If there exists an integer i ∈ [n] such that
⋂

S∈B
d⊥

(C⊥)S = i. By Lemma 2, it is easy to deduce that i is not in
⋃

S∈Bd(C )S , which means that
⋃

S∈Bd(C ) S 6= [n]. This contradicts with
⋃

S∈Bd(C )S = [n]. Then the desired conclusion follows.

Theorem 24. The NMDS code C in Theorem 7 is a

(q+4,3,q+1,q;2)−LRC

and C⊥ is a

(q+4,q+1,3,q;q)−LRC.

In addition, C and C⊥ are both d-optimal and k-optimal.

Proof. From the proof of Theorem 7, the support sets of all codewords with weight 3 in C⊥ are

traversed [q+4], which means that
⋃

S∈B3(C⊥)

S = [q+4].

Then by Lemma 21, we have the minimum linear locality of C is d(C⊥)−1 = 2. Besides, it can

be found that the intersection of the support sets of all codewords with weight 3 in C⊥ is an empty

set, which means that ⋂

S∈B3(C⊥)

S = /0

Then by Theorem 23, we have the minimum linear locality of C⊥ is d(C )−1 = q. We then prove

C is an optimal LRC. By Lemma 19, putting the parameters of the (q+4,3,q+1,q;2)-LRC into

the right-hand side of the Singleton-like bound in (1), we have

n− k−

⌈

k

r

⌉

+2 = q+4−3−

⌈

3

2

⌉

+2 = q+1.

Hence C is a d-optimal LRC. By Lemma 20, putting t = 1 and the parameters of the (q+4,3,q+
1,q;2)-LRC into the right-hand side of the Cadambe-Mazumdar bound in (2), we have

k ≤ r+ k
(q)
opt(n− (r+1),d) = 2+ k

(q)
opt(q+1,q+1) = 3,

where the last equality holds as k
(q)
opt(q+1,q+1) = 1 by the classical Singleton bound. Thus, C is

a k-optimal LRC. Then we have proved that C is both d-optimal and k-optimal. Similarly, we can

prove that C⊥ is both d-optimal and k-optimal.
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Theorem 25. The NMDS code C1 in Theorem 8 is a

(q+4,3,q+1,q;2)−LRC

and C⊥
1 is a

(q+4,q+1,3,q;q)−LRC.

In addition, C1 and C⊥
1 are both d-optimal and k-optimal.

Proof. The proof of this theorem is similar to that of Theorem 24 and omitted.

Theorem 26. The NMDS code D in Theorem 9 is a

(q+3,3,q,q;2)−LRC

and D⊥ is a

(q+3,q,3,q;q−1)−LRC.

In addition, D and D⊥ are both d-optimal and k-optimal.

Proof. By the proof of Theorem 9, we can deduce that

⋃

S∈B3(D⊥)

S = [q+3].

and ⋂

S∈B3(D⊥)

S = /0.

The rest of the proof is similar to that of Theorem 24 and omitted.

Theorem 27. The NMDS code D1 in Theorem 10 is a

(q+3,3,q,q;2)−LRC

and D⊥
1 is a

(q+3,q,3,q;q)−LRC.

In addition, D1 is both d-optimal and k-optimal and D⊥
1 is k-optimal and almost d-optimal.

Proof. Similarly to the proof of Theorem 9, we can prove that the intersection of the support sets of

all codewords with weight 3 in D⊥
1 is not an empty set. Besides,

⋃
S∈B3(D

⊥
1 )S = [q+3]. Combining

Lemma 22 and Theorem 23, we have the minimum linear locality of D⊥
1 is d(D1) = q, and the

minimum linear locality of D1 is d(D⊥
1 )−1 = 2. The rest of the proof is similar to that of Theorem

24.

Theorem 28. The NMDS code D2 in Theorem 11 is a

(q+3,3,q,q;2)−LRC

and D⊥
2 is a

(q+3,q,3,q;q−1)−LRC.

In addition, D2 and D⊥
2 are both d-optimal and k-optimal.
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Proof. Similarly to the proof of Theorem 9, we can prove that
⋃

S∈B3(D
⊥
2 )

S = [q+3].

and ⋂

S∈B3(D
⊥
2 )

S = /0.

The remainder proof of this theorem is similar to that of Theorem 24.

Theorem 29. The NMDS code E in Theorem 12 is a

(q+1,3,q−2,q;2)−LRC

and E⊥ is a

(q+1,q−2,3,q;q−3)−LRC.

In addition, E , E⊥ is both d-optimal and k-optimal.

Proof. By the proof of Theorem 12, we can prove that
⋃

S∈B3(E⊥)

S = [q+1].

and ⋂

S∈B3(E⊥)

S = /0.

The remainder of the proof is similar to that of Theorem 24.

Theorem 30. The NMDS code E1 in Theorem 13 is a

(q+1,3,q−2,q;3)−LRC

and E⊥
1 is a

(q+1,q−2,3,q;q−3)−LRC.

In addition, E1 is k-optimal and almost d-optimal, E⊥
1 is both d-optimal and k-optimal.

Proof. Similarly to the proof of Theorem 12, we can prove that the support sets of all codewords

with weight 3 in E⊥
1 are not traversed [q+1] because the first and q-th coordinates of all codewords

with weight 3 is zero. Besides,
⋂

S∈B3(E
⊥
1 )S = /0. Combining Lemma 22 and Lemma 21, we have

the minimum linear locality of E1 is d(E⊥
1 ) = 3, and the minimum linear locality of E⊥

1 is d(E1)−
1 = q−3. The rest of the proof is similar to that of Theorem 24.

Theorem 31. The NMDS code E2 in Theorem 14 is a

(q+1,3,q−2,q;3)−LRC

and E⊥
2 is a

(q+1,q−2,3,q;q−3)−LRC.

In addition, E2 is k-optimal and almost d-optimal, E⊥
2 is both d-optimal and k-optimal.
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Proof. Similarly to the proof of Theorem 12, we can prove that the support sets of all codewords

with weight 3 in E⊥
2 are not traversed [q+1] because the first and q-th coordinates of all codewords

with weight 3 is zero. Besides,
⋂

S∈B3(E
⊥
2 )S = /0. Combining Lemma 22 and Lemma 21, we have

the minimum linear locality of E2 is d(E⊥
2 ) = 3, and the minimum linear locality of E⊥

2 is d(E2)−
1 = q−3. The rest of the proof is similar to that of Theorem 24.

Theorem 32. The NMDS code Ē1 in Theorem 15 is a

(q+2,3,q−1,q;2)−LRC

and Ē1
⊥

is a

(q+2,q−1,3,q;q−2)−LRC.

In addition, Ē1, Ē1
⊥

are both d-optimal and k-optimal.

Proof. By the proof of Theorem 15, we deduce that

⋃

S∈B3(Ē⊥)

S = [q+2].

and ⋂

S∈B3(Ē⊥)

S = /0.

The remainder of the proof is similar to that of Theorem 24.

Theorem 33. The NMDS code F1 in Theorem 16 is a

(q+2,3,q−1,q;3)−LRC

and F ⊥
1 is a

(q+2,q−1,3,q;q−2)−LRC.

In addition, F1 is k-optimal and almost d-optimal, F ⊥
1 is both d-optimal and k-optimal.

Proof. Similarly to the proof of Theorem 15, we can prove that

⋃

S∈B3(F
⊥

1 )

S = [q+2]\{0}

and ⋂

S∈B3(F
⊥

1 )

S = /0.

Combining Lemma 21 and 22, we have the minimum linear locality of F1 is d(F ⊥
1 ) = 3, and the

minimum linear locality of F ⊥
1 is d(F1)− 1 = q− 2. The rest of the proof is similar to that of

Theorem 24.
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Theorem 34. The NMDS code F2 in Theorem 17 is a

(q+2,3,q−1,q;3)−LRC

and F ⊥
2 is a

(q+2,q−1,3,q;q−2)−LRC.

In addition, F2 is k-optimal and almost d-optimal, F ⊥
2 is both d-optimal and k-optimal.

Proof. Similarly to the proof of Theorem 15, we can prove that
⋃

S∈B3(F
⊥

1 )

S = [q+2]\{0,q−1}

and ⋂

S∈B3(F
⊥

1 )

S = /0.

Combining Lemma 21 and 22, we have the minimum linear locality of F2 is d(F ⊥
2 ) = 3, and the

minimum linear locality of F ⊥
2 is d(F2)−1 = q−2. The remainder of the proof is similar to that

of Theorem 24.

Theorem 35. The NMDS code F3 in Theorem 18 is a

(q+2,3,q−1,q;3)−LRC

and F ⊥
3 is a

(q+2,q−1,3,q;q−1)−LRC.

In addition, both F3 and F ⊥
3 are k-optimal and almost d-optimal.

Proof. Similarly to the proof of Theorem 15, we can prove that
⋃

S∈B3(F
⊥

3 )

S = [q+2]\{0}

and ⋂

S∈B3(F
⊥

3 )

S = q+1.

Combining Lemma 21 and 22, we have the minimum linear locality of F3 is d(F ⊥
3 ) = 3, and the

minimum linear locality of F ⊥
3 is d(F3) = q−1. The remainder of the proof is similar to that of

Theorem 24.

5. Concluding remarks

In this paper, based on the oval polynomial f (x) = x2 and some special matrixes, we presented

several constructions of NMDS codes. The weight enumerators of these NMDS codes were ex-

plicitly determined. It is interesting that some constructions produce NMDS codes with the same

parameters but different weight enumerators, which comfirms the fact that NMDS codes with the

same parameters may have different weight enumerators. As an important application, most of

these NMDS codes and their duals were proved to be optimal locally recoverable codes.

In [16], a class of optimal locally repairable codes of distances 3 and 4 with unbounded length

was constructed. We remark that the optimal locally repairable codes of distance 3 in this paper are

not contained in [16].
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