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More constructions of n-cycle permutations

Tailin Niu, Kangquan Li, Longjiang Qu and Bing Sun

Abstract

n-cycle permutations with small n have the advantage that their compositional inverses are efficient

in terms of implementation. They can be also used in constructing Bent functions and designing codes.

Since the AGW Criterion was proposed, the permuting property of several forms of polynomials has been

studied. In this paper, characterizations of several types of n-cycle permutations are investigated. Three

criteria for n-cycle permutations of the form xh(λ(x)), h(ψ(x))ϕ(x) + g(ψ(x)) and g
(

xq
i

− x+ δ
)

+ bx

with general n are provided. We demonstrate these criteria by providing explicit constructions. For the

form of xrh(xs), several new explicit triple-cycle permutations are also provided. Finally, we also consider

triple-cycle permutations of the form xt + cTrqm/q(x
s) and provide one explicit construction. Many of our

constructions are both new in the n-cycle property and the permutation property.

Index Terms

Finite Field, Permutation Polynomial, the AGW Criterion, n-cycle Permutation.

1. INTRODUCTION

Let q be a prime power and Fq be the finite field with q elements. A polynomial f(x) ∈ Fq[x] is called a

permutation polynomial (PP) and f−1 denotes the compositional inverse of f , if the map f : a 7→ f(a) is a

bijection on Fq. If there exists a positive integer n such that f (n) = I is the identity map, f is called an n-cycle

permutation, where the n-th functional power of f is defined inductively by f (n) = f ◦ f (n−1) = f (n−1) ◦ f

and f (1) = f, f (0) = I, f (−n) = (f−1)(n) with our notation. In this paper, n-cycle permutations are called

low-cycle permutations for a small n. When n = 2 or 3, f is also called an involution, or a triple-cycle

permutation respectively.

Permutation polynomials over finite fields have wide applications in coding theory, cryptography, and

combinatorial design theory, and we refer the readers to [2, 5, 18, 28, 30, 35] and the references therein for

more details of the recent advances and contributions to the area. It is a challenging task to find new classes
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of permutation polynomials. However in 2011, Akbary et al. [1] provided a powerful method for constructing

PPs over finite fields, which is called the AGW Criterion now. It both provided a unified explanation of earlier

constructions of PPs and served a method to construct many new classes of PPs. After then, permutation

polynomials of the form xrh(xs) over Fq were constructed by some researchers; see [6, 14, 17, 19, 21, 23–

27, 33, 36, 38, 41, 45] etc. for more details. Similarly, PPs of the form xh(λ(x)), h(ψ(x))ϕ(x) + g(ψ(x))

and g
(

xq
i

− x+ δ
)

+ bx were studied in [1, 34, 39, 40, 44] etc. In addition, several authors researched

constructions of the PPs x + cTrqm/q(x
s); see e.g. [9, 16, 20, 22, 42] for more details. In engineering, if

both the permutation and its compositional inverse are efficient in terms of implementation, it is beneficial

for the designer. This motivates the use of low-cycle permutations in the S-box of block ciphers. That the

implementation of its inverse does not require much resources is a direct practical advantage of a low-cycle

permutation. In devices with limited resources as a part of a block cipher, this is very useful. For instance,

involutions have been used frequently in block cipher designs, in AES [13], Khazad [4], Anubis [3] and

PRINCE [7]. Furthermore, low-cycle permutations (such as involutions) have been also used to construct

Bent functions over finite fields [12, 15] and to design codes [15]. In [8], behaviors of permutations of

an affine equivalent class have been analyzed with respect to some cryptanalytic attacks, and it is shown

that low-cycle permutations (such as involutions) are nice candidates against these attacks. In addition, in

classifying permutations in the view of cycle, the research of n-cycle permutations will be quite helpful,

since each permutation over finite sets must be an n-cycle permutation for at least one positive integer n.

Because of the importance of n-cycle permutations, in recent years, there are several studies about them.

Charpin et al. [10] started the explicit study of involutions for finite fields with even characteristic. Since

then, a lot of attentions had been drawn in this direction. In 2019, a more concise criterion for involutory

permutations of the form xrh(xs) over Fq was given by Zheng et al. [43], where s | (q − 1). By using

this criterion, from a cyclotomic perspective, they proposed a general method to construct involutions of

such form from given involutions over some subgroups of F
∗
q by solving congruent and linear equations

over finite fields. Niu et al. [31] started from the AGW Criterion, and proposed an involutory version of

the AGW Criterion, independently. They also provided several explicit involutions of the forms xrh(xs)

and g
(

xq
i

− x+ δ
)

+ cx. Monomial, Dickson polynomial and Linearized triple-cycle permutations over

binary fields were studied by [29]. In 2020, Wu et al. [37] generalized the work of [43] and obtained some

characterizations of triple-cycle permutations of the form xrh(xs). After that, Chen et al. [11] generalized

the work of [31, 37, 43, 43] and obtained criteria for n-cycle permutations, which mainly are of the form

xrh(xs). Chen et al. [11] also proposed other constructing tools and several explicit triple-cycle permutations

of the form xrh(xs) from both usual perspective and cyclotomic perspective.

There are a lot of researches about the permutation property of several forms of polynomials xrh(xs),

xh(λ(x)), h(ψ(x))ϕ(x)+g(ψ(x)), g
(

xq
i

− x+ δ
)

+bx and x+cTrqm/q(x
s). However, n-cycle permutation

of the form xrh(xs) have not been well investigated so far, and there are few studies about n-cycle property

of other forms. Furthermore, explicit constructions of n-cycle permutations for general n and n = 3 is

rarely found. New constructions that both new in n-cycle property and permutation property can also be
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obtained by researching n-cycle permutations. These motivate us to consider the characterizations of n-

cycle property for several forms and to provide several new explicit constructions. The main purpose of

this paper is to investigate general criteria for n-cycle permutations of several forms over finite fields, and

provides a way to acquire cycle permutations from constructing non-identity mappings over subsets of finite

fields. First, motivated by the AGW Criterion, we propose three criteria for n-cycle permutations of the

form xh(λ(x)), h(ψ(x))ϕ(x) + g(ψ(x)) and g
(

xq
i

− x+ δ
)

+ bx with general n. We also demonstrate

these criteria by constructing explicit n-cycle permutations with general n and n = 3. Then, for xrh(xs)

over Fq, we provide several explicit triple-cycle permutations by considering different g(x) = xrh(x)s over

µℓ =
{

x ∈ F
∗
q | xℓ = 1

}

, where ℓ = (q − 1)/s. Finally, we consider triple-cycle permutations of the form

xt + cTrqm/q(x
s) and provide one construction. Many of explicit constructions in this paper are both new

in n-cycle property and permutation property, especially those in Section 4.

The rest of this paper is organized as follows. In Section 2, we introduce some basic knowledge about

n-cycle permutations. Criteria for n-cycle permutations of the form xh(λ(x)), h(ψ(x))ϕ(x) + g(ψ(x))

and g
(

xq
i

− x+ δ
)

+ bx are proposed in Section 3. Triple-cycle permutations of the form xrh(xs) are

constructed in Section 4. Furthermore, we provide an explicit triple-cycle permutations of the form xt +

cTrqm/q(x
s).

2. PRELIMINARIES

In this section, we introduce some basic knowledge.

Definition 2.1. If there exists a positive integer such that f (n) = I , we call f an n-cycle permutation.

Monomial n-cycle permutations by Lemma 2.2 will be basic components in obtaining some constructions.

Lemma 2.2. Let f(x) = xd be a monomial polynomial over Fq. Then f is n-cycle over Fq if and only if

dn ≡ 1 (mod q − 1).

Lemma 2.3. Assume f(x) ∈ Fq[x] is an n-cycle permutation over Fqm . If m | ni, then g(x) = f(x)q
i

is

also an n-cycle permutation over Fqm .

Proof. We have f (n)(x) = x and f(x)q
i

= f(xq
i

). Clearly, g(n)(x) = f (n)(xq
ni

) = xq
ni

. Thus, g is also

n-cycle.

Let m be a positive integer. We use Trqm/q(·) to denote the trace function form Fqm to Fq, i.e.,

Trqm/q(x) = x+ xq + xq
2

+ · · ·+ xq
m−1

.

We use A∗ to denote a set containing all nonzero elements of a set A. The cardinality of a set A is denoted

by |A|. For a mapping f , the kernel of f is denoted by ker(f).
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Let F : Fpm → Fpm be a mapping, and ω be a p-th primitive unit root, where p is a prime and m is a

positive integer. The Walsh transform of F at (u, v) ∈ Fpm × Fpm equals by definition the Walsh transform

of the so-called component function Trpn/p(vF (x)) at u, that is:

WF (u, v) :=
∑

x∈Fpm

ωTrpm/p(vF (x))+Trpm/p(ux).

We have a proposition for involutions by the Walsh transform.

Proposition 2.4. Assume F permutes Fpm . Then, F is an involution if an only if WF (u, v) =WF (v, u) for

each (u, v) ∈ Fpm × Fpm .

Proof. Assume F is an involution. Then, we have

WF (u, v) =
∑

x∈Fpm

ωTrpm/p(vF (x))+Trpm/p(ux) =
∑

x∈Fpm

ωTrpm/p(vF (F (x)))+Trpm/p(uF (x)) =WF (v, u).

Conversely, we assume WF (u, v) =WF (v, u). Since

WF−1(v, u) =
∑

x∈Fpm

ωTrpm/p(uF−1(x))+Trpm/p(vx) =
∑

x∈Fpm

ωTrpm/p(ux)+Trpm/p(vF (x)) =WF (u, v),

we arrive at WF−1(v, u) =WF (v, u), for each (u, v) ∈ Fpm × Fpm . Thus, F is an involution.

When we construct cycle permutations, the following result is inspiring and useful.

Lemma 2.5. ([1], AGW Criterion) Let A,S, and S be finite sets with #S = #S, and let f : A → A,

g : S → S, λ : A→ S and λ : A→ S be maps such that λ̄ ◦ f = g ◦λ. If both λ and λ̄ are surjective, then

the following statements are equivalent:

(1) f is a bijection and

(2) g is a bijection from S to S and f is injective on λ−1(s) for each s ∈ S.

The AGW Criterion can be illustrated as the following commutative diagram:

A
f

//

λ
��

A

λ
��

S
g

// S

Since the AGW Criterion was put forward, a lot of families of PPs were constructed by it. In this paper, a

permutation polynomial is called an AGW-PP if it is based on the AGW Criterion.

3. n-CYCLE PERMUTATIONS OF THREE TYPES OF AGW-PPS

In this section, we present three constructions of n-cycle permutations of the form xh(λ(x)), h(ψ(x))ϕ(x)+

g(ψ(x)) and g
(

xq
i

− x+ δ
)

+ bx. Most of them are new in n-cycle property.



5

A. n-cycle permutations of the form xh(λ(x))

In [1, Theorem 6.3], Akbary et al. studied the permutation property of xh(λ(x)). In this subsection,

we consider the n-cycle property of permutations with the form xh(λ(x)), and several constructions are

provided.

Theorem 3.1. Let q be any power of a prime number p, m be any positive integer, and S be any subset of

Fqm containing 0. Let h, k ∈ Fqm be any polynomials such that h(0) 6= 0, k(0) = 0 and g(x) = xk(h(x))

permuting λ(Fqm). Let λ(x) ∈ Fqm [x] be any polynomial satisfying

(1) h(λ(Fqm)) ⊆ S; and

(2) λ(aα) = k(a)λ(α) for all a ∈ S and all α ∈ Fqm .

Then the polynomial f(x) = xh(λ(x)) is an n-cycle permutation if and only if

n−1
∏

i=0

h
(

g(i)(y)
)

= 1 (1)

holds for any y 6= 0 ∈ λ(Fqm). Furthermore,

n−1
∏

i=0

k
(

h
(

g(i)(y)
))

= 1 (2)

is necessary for f being an n-cycle permutation.

Proof. Let 0 < s < n. For any x ∈ Fqm and y ∈ λ(Fqm) satisfying y = λ(x), we have

f (n)(x) =f (n−1)(f(x))

=f (n−2) (f(x)h(λ(f(x))))

=f (n−2) (xh(λ(x))h(λ(xh(λ(x))))) ,

(3)

by plugging f(x) = xh(λ(x)) into f (n)(x). After that, apply λ(h(λ(x))x) = k (h(λ(x))) λ(x) into Eq. (3)

and we obtain
f (n)(x) =f (n−2) (xh(λ(x))h(k(h(λ(x)))λ(x)))

=f (n−2) (xh(λ(x))h(g(λ(x))))

=f (n−2)

(

x

1
∏

i=0

h
(

g(i)(λ(x))
)

)

.

So on and so forth, we arrive at the following

f (n)(x) = f (n−s+1)

(

x

s−2
∏

i=0

h
(

g(i)(λ(x))
)

)

, (4)
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where s is a positive integer. After plugging f(x) = xh(λ(x)) into Eq. (4), we acquire

f (n)(x) =f (n−s)

(

xh(λ(x))

s−2
∏

i=0

h
(

g(i)(λ(xh(λ(x))))
)

)

. (5)

Plugging λ(xh(λ(x))) = k(h(λ(x)))λ(x) and g(x) = xk(h(x)) into Eq. (5), one can get

f (n)(x) =f (n−s)

(

xh(λ(x))

s−2
∏

i=0

h
(

g(i)(λ(x)k(h(λ(x))))
)

)

=f (n−s)

(

xh(λ(x))

s−2
∏

i=0

h
(

g(i+1)(λ(x))
)

)

=f (n−s)

(

x

s−1
∏

i=0

h
(

g(i)(λ(x))
)

)

.

Similarly, we finally arrive at

f (n)(x) =f

(

x

n−2
∏

i=0

h
(

g(i)(λ(x))
)

)

= x

n−1
∏

i=0

h
(

g(i)(λ(x))
)

. (6)

On the one hand, assume for any y ∈ λ(Fqm),
∏n−1

i=0 h
(

g(i)(y)
)

= 1. Then, according to Eq. (6), f is

an n-cycle permutation over Fqm . On the other hand, assume that f is an n-cycle permutation over Fqm .

For each y ∈ λ(Fqm)
∗, there exists an x0 ∈ F

∗
q such that λ(x0) = y. According to Eq. (6), we have

∏n−1
i=0 h

(

g(i)(y)
)

= 1. Thus f is an n-cycle permutation if and only if Eq. (1) holds.

Furthermore, we assume f is an n-cycle permutation. For each y ∈ λ(Fqm), there exists an x0 ∈ Fq such

that λ(x0) = y. For any x ∈ Fqm , we have the following equation according to Eq. (6):

λ

(

x0

n−1
∏

i=0

h
(

g(i)(y)
)

)

= λ(x0).

Since
∏n−1

i=0 h
(

g(i)(y)
)

∈ S, one can obtain

n−1
∏

i=0

k
(

h
(

g(i)(y)
))

λ(x0) =λ(x0).

Thus, Eq. (2) is necessary for f being an n-cycle permutation.

Proposition 3.2. Assume q is a prime power, m,n are positive integers, and h(x) ∈ Fq[x] is a polynomial

such that for any y ∈ Fq, h(y)n = 1. Let λ(x) ∈ Fqm [x] be either λ1(x) = Trqm/q(x
n) or λ2(x) =

∑

0≤i1<i2<···<in≤m−1
xq

i1+qi2+···+qin . Then the polynomial f(x) = xh(λ(x)) is an n-cycle permutation over

Fqm .

Proof. In Theorem 3.1, we have λ(Fqm) = Fq and λ(aα) = anλ(α) for all a ∈ Fq and α ∈ Fqm . Since

h(y)n = 1 holds for y ∈ Fq, g(y) = yh(y)n = y is an n-cycle permutation over Fq. Plugging h(y)n = 1
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and g(y) = y into Eq. (1), one can get that f is an n-cycle permutation, according to Theorem 3.1.

There are a lot of polynomials h satisfying h(y)n = 1, for any y ∈ Fq. Below are some examples.

Corollary 3.3. Let q be a prime power, n be a positive integer satisfying n | (q− 1). Then, the polynomial

f(x) = x
(

1 + θλ(x)(q−1)/n − λ(x)q−1
)

is an n-cycle permutation over Fqm , where λ is either λ1 or λ2 in Proposition 3.2, θ is an n-th primitive

unit root and m is a positive integer.

Proof. Let h(y) = 1+θy(q−1)/n−yq−1 and f(x) can be written as xh(λ(x)). In the following, we will prove

h(y)n = 1, for y ∈ Fq. First, h(0) = 1. Next, for y 6= 0, we have h(y)n =
(

1 + θy(q−1)/n − 1
)n

= yq−1 = 1.

Thus, f is an n-cycle permutation according to Proposition 3.2.

When n = 2, there are also some involutions that easy to be obtained.

Corollary 3.4. Let q be an odd prime power. The polynomial

f(x) = x
(

1− 2λ(x)q−1
)

is an involution on Fqm , where λ is either λ1 or λ2 in Proposition 3.2 and m is a positive integer.

Proof. Let h(y) = 1 − 2yq−1. Then f(x) can be written as xh(λ(x)). We have h(0) = 1 and h(y) = −1,

for y 6= 0. Thus, f is an involution according to Proposition 3.2.

Corollary 3.4 is a generalization of Example 5.5 in [32].

Corollary 3.5. Let q be a power of odd prime p. Assume a, b, c are integers satisfying a2+ b2 ≡ 0 (mod p)

and 4c ≡ 0 (mod q − 1). Then, the polynomial

f(x) = x
(

1 + aλ(x)c + bλ(x)q−c−1 − λ(x)q−1
)

is an involution on Fqm , where λ is either λ1 or λ2 in Proposition 3.2 and m is a positive integer.

Proof. Let h(y) = 1 + ayc + byq−c−1 − yq−1 and f(x) can be written as xh(λ(x)). For y 6= 0, we have

h(y)2 =
(

ayc + byq−c−1
)2

= a2y2c + b2y−2c + 2ab = 1, where a2y2c + b2y−2c = 0 according to 4c ≡ 0

(mod q − 1) and a2 ≡ −b2 (mod p). Thus h(y)2 = 1 holds for y ∈ Fq. Thus, f is an involution according

to Proposition 3.2.

Here, we provide simple examples for Corollary 3.5. Let h(y) = 1 + y + 3y3 + 4y4. Then f(x) can

be written as xh(λ(x)). We have h(y) = 1, for y = 0, 2, 4 and h(y) = −1 for y = 1, 3, 5. Thus, the

polynomial f(x) = x
(

1 + λ(x) + 3λ(x)3 + 4λ(x)y4
)

is an involution on F5m according to Proposition 3.2,

where λ(x) =
∑

0≤i<j≤m−1
x5

i+5j

and m is a positive integer.
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B. n-cycle permutations of the form h(ψ(x))ϕ(x) + g(ψ(x))

In [1, Theorem 5.1], Akbary et al. investigated the permutation property of h(ψ(x))ϕ(x) + g(ψ(x)). In

this subsection, we consider the n-cycle property of permutations with the form of h(ψ(x))ϕ(x)+ g(ψ(x)).

Several constructions are given.

Theorem 3.6. Consider any polynomial g ∈ Fqm [x], any q-polynomials ϕ,ψ ∈ Fqm [x] satisfying that ϕ is

an n-cycle permutation over Fqm and ϕ ◦ ψ = ψ ◦ ϕ. Then

f(x) = ϕ(x) + g(ψ(x))

is an n-cycle permutation over Fqm if and only if

n−1
∑

k=0

ϕ(n−1−k)
(

g(f̄ (k)(y))
)

= 0 (7)

holds for any y ∈ ψ(Fqm), where f̄(x) = ϕ(x) + ψ(g(x)).

Proof. For any x ∈ Fqm , and y ∈ ψ(Fqm) such that y = ψ(x), we have

f (n)(x) =ϕ(f ◦ f (n−2)(x)) + g(ψ ◦ f ◦ f (n−2)(x))

=ϕ(ϕ(f (n−2)(x))) + ϕ(g(ψ(f (n−2)(x)))) + g(f̄ ◦ ψ ◦ f (n−2)(x))

=

1
∑

k=0

ϕ(1−k)
(

g(f̄ (k)(ψ(f (n−2)(x))))
)

+ ϕ(2)(f (n−2)(x)).

So on and so forth, this will lead to

f (n)(x) =

2
∑

k=0

ϕ(2−k)
(

g(f̄ (k)(ψ(f (n−3)(x))))
)

+ ϕ(3)(f (n−3)(x)),

and finally arrive at

f (n)(x) =

n−1
∑

k=0

ϕ(n−1−k)
(

g(f̄ (k)(ψ(x)))
)

+ ϕ(n)(x),

=

n−1
∑

k=0

ϕ(n−1−k)
(

g(f̄ (k)(y))
)

+ x,

(8)

which indicates that f is an n-cycle permutation over Fqm .

On the one hand, assume that Eq. (7) holds for any y ∈ ψ(Fqm). Then, according to Eq. (8), f is

an n-cycle permutation over Fqm . On the other hand, assume that f is an n-cycle permutation over Fqm .

For each y ∈ ψ(Fqm), there exists an x0 ∈ Fq such that ψ(x0) = y. According to Eq. (8), we have
∑n−1

k=0 ϕ
(n−1−k)

(

g(f̄ (k)(y))
)

= 0. Thus f is an n-cycle permutation if and only if Eq. (7) holds for any

y ∈ ψ(Fqm).

The proposition below is a generalization of involutory criterion in [32].
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Proposition 3.7. Define ψ, g as in Theorem 3.6. Consider any q-polynomial ψ ∈ Fqm [x] satisfying g(ψ(Fqm)) 6=

{0}. Assume g(x) ∈ Fqm [x] is nonzero such that g(Fqm) ⊆ ker(ψ). Then,

f(x) = x+ g(ψ(x))

is an n-cycle permutation over Fqm if and only if p is of of n, where p is the characteristic of Fqm .

Proof. Clearly ker(ϕ) ∩ ker(ψ) = {0}, where ϕ(x) = x. Together with g(Fqm) ⊆ ker(ψ), we have f̄(x) =

x+ ψ(g(x)) = x. According to Theorem 3.6, f is an n-cycle permutation if and only if ng(y) = 0, which

is equivalent to the condition that p is a factor of n.

Generally speaking, it is not hard to obtain ϕ and ψ satisfying ϕ ◦ ψ = ψ ◦ ϕ. For example, both ψ and

ϕ are q-polynomials over Fq. In the corollary below, note that ϕ(x) permutes Fq due to
∑m−1

i=0 αi 6= 0.

Corollary 3.8. Assume q-polynomial ψ satisfying ψ(Fq) = {0}. Let H(x) be a nonzero polynomial over

Fqm and g(x) be either g1(x) = Trqm/q(H(x)) with H(ψ(Fqm)) 6⊂ ker(Trqm/q) or g2(x) = H(x)s with

H(ψ(Fqm)) 6= {0}, where positive integer s satisfies s(q − 1) ≡ 0 (mod qm − 1). Then,

f(x) = x+ g(ψ(x))

is an n-cycle permutation over Fqm if and only if p is a factor of n, where p is the characteristic of Fqm .

Proof. One can obtain g(Fqm) ⊆ ker(ψ) by the expression of g. Thus f is an n-cycle permutation if and

only if p is a factor of n.

Such conditions in Corollary 3.8 are not hard to meet.

Example 3.9. Let q be a power of 3. Then x+Trqm/q

(

(xq − x)2
)

is a triple-cycle permutation over Fqm .

Corollary 3.10. Assume s is an integer and c ∈ F
∗
q2 satisfying c + cq = 0. Then, f(x) = x + cTrq2/q(x)

s

is a triple-cycle permutation over Fq2 if and only if q is a power of 3.

Proof. We have

f̄(y) = y +Trq2/q(cx
s) = y + cxs + cqxs = y.

Then,
∑2−1

k=0 g
(

f̄ (k)(y)
)

= 3cys. According to Proposition 3.7, the result is established.
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Proposition 3.11. Consider any polynomial g(x) =
∑q3−2

t=0 atx
t ∈ Fq3 [x], and for each t, Trq3/q(at) = 0.

Then

f(x) = xq + g(Trq3/q(x))

is a triple-cycle permutation over Fq3 .

Proof. In Theorem 3.6, let ϕ(x) = xq and ψ(x) = Trq3/q(x). Clearly we have ϕ◦ψ = ψ ◦ϕ. Then, one can

verify that Trq3/q(g(x)) = 0 holds for any x ∈ Fq, since Trq3/q(at) = 0. Thus, f̄(x) = xq +Trq3/q(g(x)) =

xq. Then, for any y ∈ Fq,

(g(y))q
2

+ (g(yq))q + g(yq
2

) = Trq3/q(g(y)) = 0,

which is equivalent to
2
∑

k=0

ϕ(2−k)
(

g(f̄ (k)(y))
)

= 0.

According to Theorem 3.6, f is a triple-cycle permutation over Fq3 .

C. n-cycle permutations of the form g
(

xq
i

− x+ δ
)

+ bx

In [44, Proposition 3], Zheng et al. investigated the permutation property between g
(

xq
i

− x+ δ
)

+ bx

and g(x)q
i

− g(x) + bx. Niu et al. [31] got an involutory version using compositional inverses. In this

subsection, we consider the n-cycle property of permutations with the form g
(

xq
i

− x+ δ
)

+ bx. Some

constructions are also provided.

For their n-cycle properties, we have the following results, similarly with above subsections.

Theorem 3.12. Let Fqm be the degree m extension of the finite field Fq and δ ∈ Fqm , g(x) ∈ Fqm [x]. Then

f(x) = g(xq
i

− x+ δ) + x is an n-cycle permutation over Fqm if and only if

n−1
∑

k=0

g
(

h(k)(y)
)

= 0 (9)

holds for any y ∈ Sδ =
{

xq
i

− x+ δ | x ∈ Fqm

}

, where h(y) = g(y)q
i

− g(y)+ y is on Sδ , i is an integer

with 1 ≤ i ≤ m− 1 and ℓ = gcd(i,m).

Proof. Its proof is similar with that in Theorem 3.6, and thus it is omitted.

Proposition 3.13. Let m, i be integers with 1 ≤ i ≤ m − 1, ℓ = gcd(i,m) and Fqm be the finite field

containing qm elements. Assume δ ∈ Fqm and nonzero polynomial g(x) ∈ Fqm [x] satisfying g(Fqm) ⊆ Fqi

and g(Sδ) 6= {0}, where Sδ =
{

xq
i

− x+ δ | x ∈ Fqm

}

. Then,

f(x) = x+ g(xq
i

− x+ δ)

is an n-cycle permutation over Fqm if and only if p is a factor of n, where p is the characteristic of Fqm .
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Proof. Its proof follows in a similar manner with that in Proposition 3.7, and thus it is omitted.

Corollary 3.14. Assume integers m, i satisfy 1 ≤ i ≤ m − 1. Let H(x) be a nonzero polynomial over

Fqm and g(x) be either g1(x) = Trqm/qi(H(x)) (with H(Sδ) 6⊂ ker(Trqm/qi)) or g2(x) = H(x)s (with

H(Sδ) 6= {0}), where positive integer s satisfies s(qi − 1) ≡ 0 (mod qm − 1). Then, for any δ ∈ Fqm ,

f(x) = x+ g(xq
i

− x+ δ)

is an n-cycle permutation if and only if p is a factor of n, where p is the characteristic of Fqm .

Example 3.15. Let q be a power of 3, integers m, i satisfy 1 ≤ i ≤ m−1, and s = 1+qi+q2i+ · · ·+qm−i.

For any δ ∈ Fqm , x+ (xq
i

− x+ δ)s is a triple-cycle permutation of Fqm , where c ∈ F
∗
qℓ \ {1}.

4. TRIPLE-CYCLE PERMUTATIONS OF THE FORM xrh(xs)

In this section, we provide triple-cycle permutations of the form xrh(xs). First, we recall a lemma and

simply derive another one.

Lemma 4.1. [37, Theorem 1] Let q be a prime power and f(x) = xrh (xs) ∈ Fq[x], where s | (q −

1), gcd(r, s) = 1. Assume that g(x) = xrh(x)s is a polynomial on µℓ =
{

x ∈ F
∗
q | xℓ = 1

}

, where ℓ =

(q − 1)/s. Then, f is a triple-cycle permutation over Fq if and only if

(1) r3 ≡ 1 mod s and

(2) ϕ(y) = y(r
3−1)/sh(y)r

2

h (g (y))r h (g (g(y))) = 1 for all y ∈ µℓ.

The lemma below is not hard to obtain.

Lemma 4.2. Let q be a prime power, s | (q−1), gcd(r, s) = 1 and r3 ≡ 1 mod s. Assume that h(x) ∈ Fq[x]

such that h(y)s = ayv−r holds for any y ∈ µℓ =
{

x ∈ F
∗
q | xℓ = 1

}

, where v3 ≡ 1 mod ℓ, av
2+v+1 = 1

and ℓ = (q − 1)/s. Then f(x) = xrh(xs) is a triple-cycle permutation over Fq if and only if for any y ∈ µℓ,

y(r
3−1)/sh(y)r

2

h(ayv)rh
(

av+1yv
2
)

= 1.

Note that if f(x) ∈ Fq[x] is a triple-cycle permutation over Fq3 , then so does f(x)q
i

for i ∈ {0, 1, 2},

according to Lemma 2.3.

Proposition 4.3. Let q = 23m, where m is a positive integer. Assume that integer k satisfies 7k ≡ 0

(mod q − 1) and k ≡ 3 (mod 7). Then,

f(x) = x
(

1 + xk(q
2+q+1) + x2k(q

2+q+1)
)

is a triple-cycle permutation over Fq3 .
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Proof. First, we acquire several equations for preparations. Note 7 | (q − 1) by q = 23m. For any y ∈ F8,

we have
(

1 + y + y3 + y5 + y6
)3

=
(

1 + y + y3 + y5 + y6
) (

1 + y2 + y3 + y5 + y6
)

=1 + y2 + y4,
(10)

and
(

1 + y + y3
)3

=
(

1 + y + y3
) (

1 + y2 + y6
)

=1 + y + y2 + y3 + y4.
(11)

Clearly, for any x ∈ F
∗
q , we have xk ∈ F

∗
8 by 7k ≡ 0 (mod q − 1). Let σ(x) = 1 + xk + x3k + x5k + x6k.

According to Eq. (10) and Eq. (11) respectively, we obtain that for any x ∈ F
∗
q ,

σ(x)k = 1 + x2k + x4k (12)

and
(

1 + x3k + x6k
)k

= 1 + xk + x2k + x3k + x4k, (13)

since k ≡ 3 (mod 7). Then, by raising Eq. (12) to the power of 2, 3, 5 and 6 respectively, we acquire

σ(x)2k =
(

1 + x2k + x4k
)2

= 1 + xk + x4k, (14)

σ(x)3k =
(

1 + x2k + x4k
)(

1 + x2k + x4k
)2

=
(

1 + x2k + x4k
)(

1 + xk + x4k
)

=1 + x2k + x3k + x5k + x6k,

(15)

σ(x)5k =
(

1 + x2k + x4k
)4 (

1 + x2k + x4k
)

=1 + xk + x3k + x5k + x6k,
(16)

σ(x)6k =
(

x6k + x5k + x3k + x2k + 1
)2

=1 + x3k + x4k + x5k + x6k.
(17)

And, by raising Eq. (13) to the power of 2, we get

(

1 + x3k + x6k
)2k

= 1 + xk + x2k + x4k + x6k. (18)

After the preparation above, we now prove the theorem by Corollary 4.1. Let h(x) = 1 + xk + x2k and

g(x) = xh(x)q
2+q+1 = x(1 + xk + x2k)q

2+q+1. (19)

Then, f(x) can be written as xh
(

xq
2+q+1

)

. To apply Corollary 4.1, we will compute g (g(x)) and verify

g (g (g(x))) = x in the below, for any x ∈ F
∗
q . After that, we verify ϕ(x) = h(x)h (g (x)) h (g (g(x))) = 1,

for any x ∈ F
∗
q .
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By expanding Eq. (19), one can obtain for each x ∈ F
∗
q ,

g(x) = x
(

1 + xk + x2k
)3

=x
(

1 + xk + x2k
)(

1 + x2k + x4k
)

=x
(

1 + xk + x3k + x5k + x6k
)

.

=xσ(x).

(20)

Thus, we have

g (g(x)) =xσ(x)
(

1 + xkσ(x)k + x3kσ(x)3k + x5kσ(x)5k + x6kσ(x)6k
)

. (21)

By plugging Eqs. (14), (15), (16) and (17) into Eq. (21), one can arrive at

g(g(x)) = xσ(x)
(

1 + xk + x6k
)

= x
(

1 + x3k + x6k
)

. (22)

By plugging Eq. (22) into g(x) = x
(

1 + xk + x3k + x5k + x6k
)

, one can obtain

g(g(g(x))) = xσ(x)
(

1 + x3kσ(x)3k + x6kσ(x)6k
)

. (23)

After plugging Eqs. (15) and (17) into Eq. (23), we have

g(g(g(x))) =x(1 + xk + x3k + x5k + x6k)
(

1 + xk + x4k
)

=x(x2k + x4k + x6k + 1 + xk + x5k + 1 + x2k + x3k + x4k

+ xk + x3k + x5k + x6k + 1)

=x,

for each x ∈ F
∗
q .

Finally, for each x ∈ F
∗
q , we have

ϕ(x) =(1 + xk + x2k)h (xσ(x)) h
(

x(1 + x3k + x6k)
)

=(1 + xk + x2k)
(

1 + xkσ(x)k + x2kσ(x)2k
)

·
(

1 + (x(1 + x3k + x6k))k + (x(1 + x3k + x6k))2k
)

.

(24)

By plugging Eqs. (13), (14), (15), (16), (17) and (18) into Eq. (24) and simplifying it, one can obtain

ϕ(x) = (1 + xk + x2k)
(

1 + xk + x5k + x2k + x6k
)(

1 + x5k + x6k
)

. (25)

After expanding Eq. (25), one will get

ϕ(x) =
(

1 + xk + x2k
)(

1 + x2k + x3k + x5k + x6k
)

=1 + x2k + x3k + x5k + x6k + xk + x3k + x4k + x6k + 1 + x2k + x4k + x5k + 1 + x8k

=1.

(26)
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Thus, f is a triple-cycle permutation over Fq3 , according to Corollary 4.1.

Example 4.4. Let q = 26. Then k = 45 satisfies 7 × 45 ≡ 0 (mod 63) and 45 ≡ 3 (mod 7). Thus,

f(x) = x
(

1 + x45×4161 + x90×4161
)

is a triple-cycle permutation over F218 .

Theorem 4.5. Let q be a prime power. Assume for any x ∈ µq2+q+1, h(x)q−1 = 1. Then f(x) = xqh
(

xq−1
)

is a triple-cycle permutation over Fq3 if and only if h(x)h(xq)h
(

xq
2)

= 1 holds for any x ∈ µq2+q+1.

Proof. The proof is easy by Lemma 4.2, and we omit it.

Proposition 4.6. Let q = 22m. Assume h(x) = 1 + αx
q2+q+1

3 + x
2q2+2q+2

3 , where α ∈ Fq satisfying α3 = 1.

Then f(x) = xqh
(

xq−1
)

is a triple-cycle permutation over Fq3 .

Proof. Clearly 3 | (q2 + q + 1) by q = 22m. For each x ∈ µq2+q+1, let y = x
q2+q+1

3 . We have y3 = 1 and

yq = y.

Below, we prove that h(x)3 = 1 for any x ∈ µq2+q+1. After expanding and simplifying (1 + αy + y2)3,

we obtain

(1 + αy + y2)3 = α2y + α3 + α2y2 + αy2 + αy + 1 + y + y2 + 1. (27)

Eq. (27) equals to
(

α2 + α+ 1
)

y2 +
(

α2 + α+ 1
)

y + α3 = 1. (28)

Then, we have h(x)q−1 = 1 due to 3 | (q− 1). Note α ∈ Fq. Thus h(xq) = h(x)q = h(x), which leads to

h(x)h(xq)h
(

xq
2
)

= h(x)3 = 1. (29)

Thus, f is a triple-cycle permutation over Fq3 , according to Theorem 4.5.

Theorem 4.7. Let q be a prime power, φ(x) ∈ Fq2 [x] and h(x) = φ(x)+x(v−1)qφ(x)q+ψ(x), where v3 ≡ 1

(mod q + 1) and ψ(x) satisfying ψ(x)q−1 = xv−1. Then f(x) = xh
(

xq−1
)

is a triple-cycle permutation

over Fq2 if and only if h(x)h(xv)h
(

xv
2
)

= 1 holds for any x ∈ µq+1.

Proof. If there exists an x0 ∈ µq+1 such that h(x0) = 0. Then h(x0)
3 = 0 6= 1. Furthermore, f(x0) =

x0h
(

xq−1
0

)

= 0, thus f is not a triple-cycle permutation.

If for any x ∈ µq+1, h(x) 6= 0. Then we have

h(x)q−1 =
φ(x)q + x(v−1)φ(x) + ψ(x)q

φ(x) + x(v−1)qφ(x)q + ψ(x)
= xv−1.

This lead to g(x) = xh(x)q−1 = xv, which is a triple-cycle permutation over µq+1. Then by plugging

a = 1, r = 1, v = 1, s = q−1 and g(x) = x into the condition in Lemma 4.2, we have f(x) is a triple-cycle

permutation over Fq2 if and only if h(x)h(xv)h
(

xv
2
)

= 1 for any x ∈ µq+1.

Proposition 4.8. Let q = 212k−6 and −6t + 12t2 − 8t3 ≡ 0 (mod q + 1), where k is a positive integer.
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Assume m is an integer such that

−3m+ 6mt− 4mt2 ≡0 (mod q + 1), (30a)

−m−mt+ t+ t2 ≡0 (mod q + 1) and (30b)

13m− 13t ≡0 (mod q + 1) (30c)

are all established. Then f(x) = xh
(

xq−1
)

is a triple-cycle permutation over Fq2 , where

h(x) = xm + xmq−2tq + xt.

Proof. In this proof, first we will derive some useful congruences from Congruences (30a), (30b), (30c).

Then, we will further handle these useful congruences (Congruences (30a), (31), (33) and (34)) to obtain

Congruences (35), (36) , (37) and (38) that can be directly used to prove f being triple-cycle.

We have 13 | (q+1) by q = 212k−6. By simplifying 2× Congruence (30b) − Congruence (30a), we have

m+ 2t− 8mt+ 2t2 + 4mt2 ≡ 0 (mod q + 1). (31)

Then, by simplifying 8× Congruence (30b) + Congruence (30c), we have

5t− 5m+ 8mt− 8t2 ≡ 0 (mod q + 1). (32)

After simplifying (−2)× Congruence (30a) + Congruence (32), one can obtain

m+ 5t− 4mt− 8t2 + 8mt2 ≡ 0 (mod q + 1). (33)

By simplifying − Congruence (33) − Congruence (30b), we get

m− 7t+ 6mt+ 6t2 − 8mt2 ≡ 0 (mod q + 1). (34)

After obtaining Congruences (30a), (31), (33) and (34), we will further handle them below. Assume

v = 1− 2t. Then, v2 + v + 1 = 3− 6t+ 4t2 and according to Congruence (30a), we arrive at



































































m(v2 + v + 1) ≡ v(v2 + v + 1) ≡ −3m+ 6mt− 4mt2 ≡ 0 (mod q + 1),

−mv2 −m+ tv + v2 − v ≡ mv + tv2 + t (mod q + 1),

−mv −m+ tv2 − v2 + 1 ≡ mv2 + tv + t (mod q + 1),

mv2 +mv + t ≡ −m+ tv2 + tv − v + 1 (mod q + 1),

−mv2 −mv + t+ v − 1 ≡ m+ tv2 + tv (mod q + 1),

mv +m+ tv2 ≡ −mv2 + tv + t+ v2 − 1 (mod q + 1) and

−mv + tv2 + t− v2 + v ≡ mv2 +m+ tv (mod q + 1).

(35)
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According to Congruence (31), one can get

−mv +m+ tv2 − v2 + v ≡ mv2 +mv −m− v + 1. (36)

According to Congruence (33), we obtain

mv2 −mv +m− v2 + v ≡ −mv2 +mv + t+ v2 − 1. (37)

According to Congruence (34), we have

−mv2 +mv +m+ v2 − 1 ≡ mv2 −m+ tv − v + 1. (38)

Finally, we expand h(x)h(xv)h
(

xv
2)

for any x ∈ µq+1 and get

(

xm + xmq+(v−1)q + xt
)(

xmv + x(mq+(v−1)q)v + xtv
)(

xmv2

+ x(mq+(v−1)q)v2

+ xtv
2
)

=x−mv2−mv+t+v−1 + x−mv2+mv+t+v2−1 + x−mv2+m+tv+v2−1 + x−mv2+tv+t+v2−1

+ x−mv2−m+tv+v2−v + xmv2+mv+t + xmv2+m+tv + xmv2+tv+t + xmv2−m+tv−v+1

+ xmv2−mv+t−v2+v + xmv+m+tv2

+ xmv+tv2+t + xmv−m+tv2−v+1 + xm+tv2+tv

+ x−m+tv2+tv−v+1 + x−mv−m+tv2−v2+1 + x−mv+m+tv2−v2+v + x−mv+tv2+t−v2+v

+ x−mv2−mv−m + x−mv2−mv+m+v−1 + x−mv2+mv+m+v2−1 + x−mv2+mv−m+v2−v

+ xmv2+mv+m + xmv2+mv−m−v+1 + xmv2−av−m−v2+1 + xmv2−mv+m−v2+v + xtv
2+tv+t

=1,

where the last equation holds by Congruences (35), (36) , (37) and (38). Thus f is a triple-cycle permutation.

Example 4.9. Let q = 26, t = 25,m = 5 in Proposition 4.8. Then Congruences (30a), (30b) and (30c) are

all satisfied. Then, according to Proposition 4.8, f(x) = xh
(

xq−1
)

is a triple-cycle permutation over F212 ,

where h(x) = x5 + x45 + x25. This is also verified by Magma.

In the end of this paper, we provide an explicit triple-cycle permutation of the form xt + cTrqm/q(x
s).

Proposition 4.10. Let q = 22k, where k is a positive integer. Put θ ∈ Fq satisfying θ3 = 1, θ 6= 1. Then, the

compositional inverse of

f(x) = x+ θTrq3/q

(

x
q2+q

2

)

is f−1(x) = x+ θ2Trq3/q(x
q2+q

2 ). Furthermore, f is a triple-cycle permutation over Fq3 .

Proof. Clearly θ+ θ2 = 1 and θq/2 = θ2. Then, after expanding
(

x+ θTrq3/q(x
q2+q

2 )
)

q2+q

2

and simplifying
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it, we have

(

x+ θTrq3/q(x
q2+q

2 )
)

q2+q

2

=
(

xq
2/2 + θq

2/2Trq3/q(x
q2+q

2 )q
2/2
)(

xq/2 + θq/2Trq3/q(x
q2+q

2 )q/2
)

=x
q2+q

2 + xq
2/2θ2Trq3/q(x

q2+q

2 )q/2 + xq/2θ2Trq3/q(x
q2+q

2 )q/2

+ θTrq3/q(x
q2+q

2 ).

(39)

It is clear that

Trq3/q(x
q2/2 + xq/2) = 0.

Thus,

Trq3/q

(

(

x+ θTrq3/q(x
q2+q

2 )
)

q2+q

2

)

=Trq3/q

(

x
q2+q

2 + θTrq3/q(x
q2+q

2 )
)

=Trq3/q(x
q2+q

2 ) + θTrq3/q(x
q2+q

2 ).

(40)

We consider f(f(x)) for any x ∈ Fq3 . After plugging Eq. (40) into

f(f(x)) = x+ θTrq3/q(x
q2+q

2 ) + θTrq3/q

(

(

x+ θTrq3/q(x
q2+q

2 )
)

q2+q

2

)

,

we have

f(f(x)) = x+ θ2Trq3/q(x
q2+q

2 ). (41)

Then, we simplify f(f(f(x))) for any x ∈ Fq3 below. By plugging Eq. (40) into

f(f(f(x))) = x+ θTrq3/q(x
q2+q

2 ) + θ2Trq3/q

(

(

x+ θTrq3/q(x
q2+q

2 )
)

q2+q

2

)

,

one can obtain

f(f(f(x))) =x+ θTrq3/q(x
q2+q

2 ) + θ2
(

Trq3/q(x
q2+q

2 ) + θTrq3/q(x
q2+q

2 )
)

=x+ θTrq3/q(x
q2+q

2 ) + θ2Trq3/q(x
q2+q

2 ) + Trq3/q(x
q2+q

2 )

=x.

Thus, f−1(x) = x+ θ2Trq3/q(x
q2+q

2 ), and f is a triple-cycle permutation over Fq3 .
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