ON KUMMER EXTENSIONS WITH ONE PLACE AT INFINITY

ERIK A. R. MENDOZA

Abstract

Let K be the algebraic closure of \mathbb{F}_{q}. We provide an explicit description of the Weierstrass semigroup $H\left(Q_{\infty}\right)$ at the only place at infinity Q_{∞} of the curve \mathcal{X} defined by the Kummer extension with equation $y^{m}=f(x)$, where $f(x) \in K[x]$ is a polynomial satisfying $\operatorname{gcd}(m, \operatorname{deg} f)=1$. As a consequence, we determine the Frobenius number and the multiplicity of $H\left(Q_{\infty}\right)$ in some cases, and we discuss sufficient conditions for the Weierstrass semigroup $H\left(Q_{\infty}\right)$ to be symmetric. Finally, we characterize certain maximal Castle curves of type $\left(\mathcal{X}, Q_{\infty}\right)$.

1. Introduction

Let K be the algebraic closure of the finite field \mathbb{F}_{q} with q elements. Consider \mathcal{X} a nonsingular, projective, absolutely irreducible algebraic curve over K with genus $g(\mathcal{X})$ and denote by $K(\mathcal{X})$ its function field. For a function $z \in K(\mathcal{X})$, we let $(z),(z)_{\infty}$ and $(z)_{0}$ stand for the principal, pole and zero divisor of the function z in $K(\mathcal{X})$ respectively.

Given a place Q in the set of places $\mathcal{P}_{K(\mathcal{X})}$ of the function field $K(\mathcal{X})$, the Weierstrass semigroup associated to the place Q is given by

$$
H(Q):=\left\{s \in \mathbb{N}_{0}:(z)_{\infty}=s Q \text { for some } z \in K(\mathcal{X})\right\}
$$

the complementary set $G(Q):=\mathbb{N} \backslash H(Q)$ is called the gap set at Q, and the Weierstrass Gap Theorem [15, Theorem 1.6.8] states that if $g(\mathcal{X})>0$, then there exist exactly $g(\mathcal{X})$ gaps at Q

$$
G(Q)=\left\{1=i_{1}<i_{2}<\cdots<i_{g(\mathcal{X})} \leq 2 g(\mathcal{X})-1\right\} .
$$

The smallest nonzero element of $H(Q)$ is called the multiplicity of $H(Q)$ and is denoted by $m_{H(Q)}$, the largest element of $G(Q)$ is called the Frobenius number and is denoted by $F_{H(Q)}$, and we say that the Weierstrass semigroup $H(Q)$ is symmetric if $F_{H(Q)}=2 g(\mathcal{X})-1$.

The knowledge of the inner structure of the Weierstrass semigroup $H(Q)$ at one place in the function field $K(\mathcal{X})$ has various applications in the area of algebraic curves over finite fields. Among the most interesting ones we have the construction of algebraic geometry codes with good parameters, see [10]; the determination of the automorphism group of an algebraic curve, see [8]; to decide if a place is Weierstrass, see [1], and obtain upper bounds for the number of rational places (places of degree one) of a curve, such as the

Keywords: Kummer extensions, Weierstrass semigroup.
Mathematics Subject Classification (2010): 14H55, 11R58.
The research of Erik A. R. Mendoza was partially supported by FAPERJ/RJ-Brazil (Grant 201.650/2021).

Lewittes bound [7] which establishes that the number $\# \mathcal{X}\left(\mathbb{F}_{q}\right)$ of \mathbb{F}_{q}-rational places of a curve \mathcal{X} defined over \mathbb{F}_{q} is upper bounded by

$$
\begin{equation*}
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q m_{H(Q)}+1 \tag{1}
\end{equation*}
$$

where Q is an \mathbb{F}_{q}-rational place of \mathcal{X}. The best-known upper bound for the number of \mathbb{F}_{q}-rational places is the Hasse-Weil bound

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g(\mathcal{X}) \sqrt{q}
$$

and a curve is called \mathbb{F}_{q}-maximal if equality holds in the Hasse-Weil bound.
A pointed algebraic curve (\mathcal{X}, Q) over \mathbb{F}_{q}, where Q is an \mathbb{F}_{q}-rational place of \mathcal{X}, is called a Castle curve if the semigroup $H(Q)$ is symmetric and equality holds in (11). Castle curves were introduced in [12] and have been studied due to their interesting properties related to the construction of algebraic geometry codes with good parameters and its duals, see [11, 12].

Abdón, Borges, and Quoos [1] provided an arithmetical criterion to determine if a positive integer is an element of the gap set of $H(Q)$, where Q is a totally ramified place in a Kummer extension defined by the equation $y^{m}=f(x), f(x) \in K[x]$. As a consequence, they explicitly described the semigroup $H(Q)$ when $f(x)$ is a separable polynomial. This description was generalized by Castellanos, Masuda, and Quoos [3], where they study the Kummer extension defined by $y^{m}=f(x)^{\lambda}$, where $\lambda \in \mathbb{N}$ and $f(x) \in K[x]$ is a separable polynomial satisfying $\operatorname{gcd}(m, \lambda \operatorname{deg} f)=1$.

For a general Kummer extension with one place at infinity

$$
\begin{equation*}
\mathcal{X}: \quad y^{m}=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{\lambda_{i}}, \quad \lambda_{i} \in \mathbb{N}, \quad \text { and } \quad 1 \leq \lambda_{i}<m \tag{2}
\end{equation*}
$$

where $m \geq 2$ and $r \geq 2$ are integers such that $\operatorname{gcd}(m, q)=1, \alpha_{1}, \ldots, \alpha_{r} \in K$ are pairwise distinct elements, $\lambda_{0}:=\sum_{i=1}^{r} \lambda_{i}$, and $\operatorname{gcd}\left(m, \lambda_{0}\right)=1$, the Weierstrass semigroup $H\left(Q_{\infty}\right)$ at the only place at infinity Q_{∞} of \mathcal{X} was explicitly described in the following particular cases:
i) For $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$, see [3, Theorem 3.2].
ii) For any λ_{1} and $\lambda_{2}=\lambda_{3}=\cdots=\lambda_{r}=1$, see [16, Remark 2.8].

This article aims to explicitly describe the Weierstrass semigroup $H\left(Q_{\infty}\right)$ in the general case, that is, we determine the Weierstrass semigroup at the only place at infinity of the curve \mathcal{X} given in (21). Moreover, we provide a system of generators for the semigroup $H\left(Q_{\infty}\right)$ and, as a consequence, we obtain interesting results including the following theorems:

Theorem A (see Theorem 4.4). Let $F_{H\left(Q_{\infty}\right)}$ be the Frobenius number of the semigroup $H\left(Q_{\infty}\right)$. Then

$$
F_{H\left(Q_{\infty}\right)}=m(r-1)-\lambda_{0} \text { and } H\left(Q_{\infty}\right) \text { is symmetric } \quad \Leftrightarrow \quad \lambda_{j} \mid m \text { for each } j=1, \ldots, r .
$$

Theorem B (see Theorem4.7). Suppose that $\operatorname{gcd}\left(m, \lambda_{j}\right)=1$ for each $j=1, \ldots, r$. Then the following statements are equivalent:
i) $H\left(Q_{\infty}\right)=\langle m, r\rangle$.
ii) $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$.

If in addition $r<m$ then all these statements are equivalent to the following one:
iii) $H\left(Q_{\infty}\right)$ is symmetric.

Theorem C (see Theorem 5.3). Suppose that \mathcal{X} is defined over $\mathbb{F}_{q^{2}}, \operatorname{gcd}\left(m, \lambda_{j}\right)=1$ for $j=1, \ldots, r$ and $r<m$. Then
$\left(\mathcal{X}, Q_{\infty}\right)$ is $\mathbb{F}_{q^{2}}$-maximal Castle curve $\Leftrightarrow \mathcal{X}$ is $\mathbb{F}_{q^{2}}$-maximal, $\lambda_{1}=\cdots=\lambda_{r}$, and $m=q+1$.
This paper is organized as follows. In Section 2 we introduce the preliminaries and notation that will be used throughout this paper. In Section 3 we present the main result of this paper which gives the explicit description of the semigroup $H\left(Q_{\infty}\right)$ (see Theorem 3.2). In Section 4 we provide an explicit description of the gap set $G\left(Q_{\infty}\right)$ (see Proposition 4.1), we study the Frobenius number and the multiplicity of the semigroup $H\left(Q_{\infty}\right)$ establishing a relationship between them (see Proposition 4.6), and provide sufficient conditions for the semigroup $H\left(Q_{\infty}\right)$ to be symmetric (see Theorems 4.4 and 4.7). In Section 5, we characterize certain $\mathbb{F}_{q^{2}}$-maximal Castle curves of type $\left(\mathcal{X}, Q_{\infty}\right)$ (see Theorem 5.3).

2. Preliminaries and notation

Throughout this article, we let q be the power of a prime p, \mathbb{F}_{q} the finite field with q elements, and K the algebraic closure of \mathbb{F}_{q}. For a and b integers, we denote by (a, b) the greatest common divisor of a and b, and by $b \bmod a$ the smallest non-negative integer congruent with b modulo a. For $c \in \mathbb{R}$, we denote by $\lfloor c\rfloor,\lceil c\rceil$ and $\{c\}$ the floor, ceiling and fractional part functions of c respectively. Moreover, to differentiate standard sets from multisets (that is, sets that can contain repeated occurrences of elements), we use the usual symbol ' $\}$ ' for standard sets and the symbol ' $\}$ ' for multisets. For a multiset M, the set of distinct elements of M is called the support of M and is denoted by M^{*}, the number of occurrences of an element $x \in M^{*}$ in the multiset M is called the multiplicity of x and is denoted by $m_{M}(x)$, and the cardinality of the multiset M is defined as the sum of the multiplicities of all elements of M^{*}. We say that two multisets M_{1} and M_{2} are equal if $M_{1}^{*}=M_{2}^{*}$ and $m_{M_{1}}(x)=m_{M_{2}}(x)$ for each x in the support.
2.1. Numerical semigroups. A numerical semigroup is a subset H of \mathbb{N}_{0} such that H is closed under addition, H contains the zero, and the complement $\mathbb{N}_{0} \backslash H$ is finite. The elements of $G:=\mathbb{N}_{0} \backslash H$ are called the gaps of the numerical semigroup H and $g_{H}:=\# G$ is its genus. The largest gap is called the Frobenius number of H and is denoted by F_{H}. The smallest nonzero element of H is called the multiplicity of the semigroup and is denoted by m_{H}. The numerical semigroup H is called symmetric if $F_{H}=2 g_{H}-1$. Moreover, we say that the set $\left\{a_{1}, \ldots, a_{d}\right\} \subset H$ is a system of generators of the numerical semigroup H if

$$
H=\left\langle a_{1}, \ldots, a_{d}\right\rangle:=\left\{t_{1} a_{1}+\cdots+t_{d} a_{d}: t_{1}, \ldots, t_{d} \in \mathbb{N}_{0}\right\}
$$

We say that a system of generators of H is a minimal system of generators if none of its proper subsets generates the numerical semigroup H. The cardinality of a minimal system of generators is called the embedding dimension of H and will be denoted by e_{H}.

Let n be a nonzero element of the numerical semigroup H. The Apéry set of n in H is defined by

$$
\operatorname{Ap}(H, n):=\{s \in H: s-n \notin H\} .
$$

It is known that the cardinality of $\operatorname{Ap}(H, n)$ is n. Moreover, several important results are associated with the Apéry set.

Proposition 2.1. [14, Proposition 2.12] Let H be a numerical semigroup and $S \subseteq H$ be a subset that consists of n elements that form a complete set of representatives for the congruence classes of \mathbb{Z} modulo $n \in H$. Then

$$
S=\operatorname{Ap}(H, n) \quad \text { if and only if } \quad g_{H}=\sum_{a \in S}\left\lfloor\frac{a}{n}\right\rfloor
$$

Proposition 2.2. [14, Proposition 4.10] Let H be a numerical semigroup and n be a nonzero element of H. Let $\operatorname{Ap}(H, n)=\left\{a_{0}<a_{1}<\cdots<a_{n-1}\right\}$ be the Apéry set of n in H. Then H is symmetric if and only if

$$
a_{i}+a_{n-1-i}=a_{n-1} \text { for each } i=0, \ldots, n-1
$$

On the other hand, the following result characterizes the elements of a numerical semigroup generated by two elements and will be useful in this paper.
Proposition 2.3. [13, Lemma 1] Let $x \in \mathbb{Z}$ and let $n_{1}, n_{2} \geq 2$ be positive integers such that $\left(n_{1}, n_{2}\right)=1$. Then $x \notin\left\langle n_{1}, n_{2}\right\rangle$ if and only if $x=n_{1} n_{2}-a n_{1}-b n_{2}$ for some $a, b \in \mathbb{N}$.
2.2. Function Fields. Let \mathcal{X} be a nonsingular, projective, absolutely irreducible algebraic curve over K with genus $g(\mathcal{X})$ and $K(\mathcal{X})$ be the function field of \mathcal{X}. For each place $Q \in \mathcal{P}_{K(\mathcal{X})}$, the Weierstrass semigroup $H(Q)$ has the structure of a numerical semigroup. Moreover, it is a well-known fact that for all but finitely many places $Q \in \mathcal{P}_{K(\mathcal{X})}$, the gap set is always the same. This set is called the gap sequence of \mathcal{X}. The places for which the gap set is not equal to the gap sequence of \mathcal{X} are called Weierstrass places.

Several upper bounds for the number of rational places of algebraic curves are available in the literature. The Hasse-Weil bound states that for a curve \mathcal{X} defined over \mathbb{F}_{q},

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q+1+2 g(\mathcal{X}) \sqrt{q}
$$

The curve \mathcal{X} is called \mathbb{F}_{q}-maximal if equality holds in the Hasse-Weil bound. Among other upper bounds for the number of rational places, we have the Lewittes bound [7].

Theorem 2.4 (Lewittes bound). Let \mathcal{X} be a curve over \mathbb{F}_{q} and let Q be a rational place of \mathcal{X}. Then

$$
\# \mathcal{X}\left(\mathbb{F}_{q}\right) \leq q m_{H(Q)}+1
$$

For more on numerical semigroups and function fields, we refer to the books [14] and [15] respectively.

3. The semigroup $H\left(Q_{\infty}\right)$

Consider the algebraic curve

$$
\mathcal{X}: \quad y^{m}=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{\lambda_{i}}, \quad \lambda_{i} \in \mathbb{N}, \quad \text { and } \quad 1 \leq \lambda_{i}<m
$$

where $m \geq 2$ and $r \geq 2$ are positive integers such that $p \nmid m, \alpha_{1}, \ldots, \alpha_{r} \in K$ are pairwise distinct elements, $\lambda_{0}:=\sum_{i=1}^{r} \lambda_{i}$, and $\left(m, \lambda_{0}\right)=1$. By [15, Proposition 3.7.3], this curve has genus

$$
\begin{equation*}
g(\mathcal{X})=\frac{(m-1)(r-1)+r-\sum_{i=1}^{r}\left(m, \lambda_{i}\right)}{2} . \tag{3}
\end{equation*}
$$

In this section, as one of our main results, we provide an explicit description of the Weierstrass semigroup $H\left(Q_{\infty}\right)$ at the only place at infinity Q_{∞} of \mathcal{X}. We start by recalling the property described in [5, p. 94], which states that, for m and λ positive integers,

$$
\begin{equation*}
\sum_{i=1}^{\lambda-1}\left\lfloor\frac{i m}{\lambda}\right\rfloor=\frac{(m-1)(\lambda-1)+(m, \lambda)-1}{2} . \tag{4}
\end{equation*}
$$

To prove the main result of this section, we need the following technical lemma.
Lemma 3.1. Let $r, m, \lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be positive integers such that $\lambda_{0}=\sum_{i=1}^{r} \lambda_{i}$ and $r<\lambda_{0}$. For $k \in\left\{r, \ldots, \lambda_{0}-1\right\}$, we define

$$
\eta_{k}:=\max \left\{\rho_{s_{1}, \ldots, s_{r}}: \sum_{i=1}^{r} s_{i}=k, 1 \leq s_{i} \leq \lambda_{i}\right\}, \text { where } \rho_{s_{1}, \ldots, s_{r}}:=\min _{1 \leq i \leq r}\left\lfloor\frac{s_{i} m}{\lambda_{i}}\right\rfloor .
$$

Then the sequence $\eta_{r} \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_{0}-1}$ is characterized by the following equality of multisets

$$
\begin{equation*}
\left\{\left\{\eta_{k}: r \leq k \leq \lambda_{0}-1\right\}\right\}=\left\{\left\{\left\lfloor\frac{s_{i} m}{\lambda_{i}}\right\rfloor: 1 \leq s_{i}<\lambda_{i}, 1 \leq i \leq r\right\}\right\} . \tag{5}
\end{equation*}
$$

In particular, we have

$$
\sum_{k=r}^{\lambda_{0}-1} \eta_{k}=\frac{(m-1)\left(\lambda_{0}-r\right)-r+\sum_{i=1}^{r}\left(m, \lambda_{i}\right)}{2}
$$

Proof. First of all, note that, from the definition of η_{k}, we have that $\eta_{k}<m$ for each k. Furthermore, if $\eta_{k}=\rho_{u_{1}, \ldots, u_{r}}=\left\lfloor\frac{u_{j} m}{\lambda_{j}}\right\rfloor$ for some j, where $\sum_{i=1}^{r} u_{i}=k$ and $r \leq k \leq \lambda_{0}-2$, then $u_{j}<\lambda_{j}$ and

$$
\eta_{k}=\rho_{u_{1}, \ldots, u_{r}} \leq \rho_{u_{1}, \ldots, u_{j}+1, \ldots, u_{r}} \leq \eta_{k+1} .
$$

This proves that $\eta_{r} \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_{0}-1}<m$ is a non-decreasing sequence. Let $S_{1}:=\left\{\eta_{k}: r \leq k \leq \lambda_{0}-1\right\}$ and $S_{2}:=\left\{\left\lfloor s_{i} m / \lambda_{i}\right\rfloor: 1 \leq s_{i}<\lambda_{i}, 1 \leq i \leq r\right\}$. Now we are going to prove that $S_{1}=S_{2}$. From the definition of η_{k}, we have that $S_{1}^{*} \subseteq S_{2}^{*}$. Furthermore, since the multisets S_{1} and S_{2} have the same cardinality, to prove that $S_{1}=S_{2}$ it is sufficient to show that $m_{S_{1}}\left(\eta_{k}\right) \leq m_{S_{2}}\left(\eta_{k}\right)$ for each k, that is, if
$m_{S_{1}}\left(\eta_{k}\right)=n \geq 1$ then there exist distinct elements $j_{1}, j_{2}, \ldots, j_{n} \in\{1, \ldots, r\}$ and elements $s_{j_{1}}, s_{j_{2}}, \ldots, s_{j_{n}}$ with $1 \leq s_{j_{i}} \leq \lambda_{j_{i}}-1$ such that

$$
\eta_{k}=\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\cdots=\left\lfloor\frac{s_{j_{n}} m}{\lambda_{j_{n}}}\right\rfloor .
$$

If $n=1$, there is nothing to prove, so we can assume that $n>1$. Without loss of generality, suppose that

$$
\begin{equation*}
\eta_{k-1}<\eta_{k}=\eta_{k+1}=\cdots=\eta_{k+n-1} \tag{6}
\end{equation*}
$$

where $\eta_{k-1}:=0$ if $k=r$. From the inclusion $S_{1}^{*} \subseteq S_{2}^{*}$, there exist $j_{1} \in\{1, \ldots, r\}$ and $s_{j_{1}} \in\left\{1, \ldots, \lambda_{j_{1}}-1\right\}$ such that $\eta_{k}=\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor$. Now, for each $i \in\{1, \ldots, r\}$ we define the set

$$
\Gamma_{i}:=\left\{s \in \mathbb{N}: \eta_{k} \leq\left\lfloor\frac{s m}{\lambda_{i}}\right\rfloor \text { and } 1 \leq s \leq \lambda_{i}\right\}
$$

Next, we prove that $\Gamma_{i} \neq \emptyset$ for each i. Since $s_{j_{1}}<\lambda_{j_{1}}$, for $i \neq j_{1}$ we have that

$$
\left\lfloor\frac{s_{j_{1}} \lambda_{i}}{\lambda_{j_{1}}}\right\rfloor+1 \leq \lambda_{i} \quad \text { and } \quad \eta_{k}=\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\left\lfloor\left(\frac{s_{j_{1}} \lambda_{i}}{\lambda_{j_{1}}}\right) \frac{m}{\lambda_{i}}\right\rfloor \leq\left\lfloor\left(\left\lfloor\frac{s_{j_{1} \lambda_{i}}}{\lambda_{j_{1}}}\right\rfloor+1\right) \frac{m}{\lambda_{i}}\right\rfloor,
$$

which implies that $\left\lfloor\frac{s_{j_{1}} \lambda_{i}}{\lambda_{j_{1}}}\right\rfloor+1 \in \Gamma_{i}$ for $i \neq j_{1}$ and $s_{j_{1}} \in \Gamma_{j_{1}}$. Let t_{i} be the smallest element of Γ_{i}. From definition of the set $\Gamma_{j_{1}}$, we have that $t_{j_{1}} \leq s_{j_{1}}$. If $t_{j_{1}}<s_{j_{1}}$ then

$$
1<\frac{m}{\lambda_{j_{1}}} \leq \frac{m}{\lambda_{j_{1}}}+\left\lfloor\frac{t_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor-\eta_{k} \leq \frac{m}{\lambda_{j_{1}}}+\left\lfloor\frac{\left(s_{j_{1}}-1\right) m}{\lambda_{j_{1}}}\right\rfloor-\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor \leq \frac{s_{j_{1}} m}{\lambda_{j_{1}}}-\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor,
$$

a contradiction, therefore $t_{j_{1}}=s_{j_{1}}$. Also, from definition of the sets Γ_{i}, we have that

$$
\left\lfloor\frac{\left(t_{i}-1\right) m}{\lambda_{i}}\right\rfloor<\eta_{k}=\rho_{t_{1}, \ldots, t_{r}} \text { for } i=1, \ldots, r
$$

Note that $k=\sum_{i=1}^{r} t_{i}$. In fact, let $k^{\prime}:=\sum_{i=1}^{r} t_{i}$. By definition of $\eta_{k^{\prime}}$, we have that $\eta_{k}=\rho_{t_{1}, \ldots, t_{r}} \leq \eta_{k^{\prime}}$, and from (6), we deduce that $k \leq k^{\prime}$. On the other hand, suppose that $\left(u_{1}, \ldots, u_{r}\right)$ is an r-tuple such that $\eta_{k}=\rho_{u_{1}, \ldots, u_{r}}, \sum_{i=1}^{r} u_{i}=k$, and $1 \leq u_{i} \leq \lambda_{i}$. If there exists $j \in\{1, \ldots, r\}$ such that $u_{j}<t_{j}$, then

$$
\eta_{k}=\rho_{u_{1}, \ldots, u_{r}}=\min _{1 \leq i \leq r}\left\lfloor\frac{u_{i} m}{\lambda_{i}}\right\rfloor \leq\left\lfloor\frac{u_{j} m}{\lambda_{j}}\right\rfloor \leq\left\lfloor\frac{\left(t_{j}-1\right) m}{\lambda_{j}}\right\rfloor<\eta_{k}
$$

a contradiction. Therefore $t_{i} \leq u_{i}$ for each $i=1, \ldots, r$, and this implies that $k^{\prime} \leq k$. Thus, we conclude that $k=k^{\prime}=\sum_{i=1}^{r} t_{i}$.

Now, we show that there exist distinct elements $j_{2}, \ldots, j_{n} \in\{1, \ldots, r\} \backslash\left\{j_{1}\right\}$ such that

$$
\eta_{k}=\left\lfloor\frac{t_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\cdots=\left\lfloor\frac{t_{j_{n}} m}{\lambda_{j_{n}}}\right\rfloor .
$$

Suppose that $\eta_{k}<\left\lfloor\frac{t_{j} m}{\lambda_{j}}\right\rfloor$ for each $j \in\{1, \ldots, r\} \backslash\left\{j_{1}\right\}$, then $\eta_{k}<\rho_{t_{1}, \ldots, t_{j_{1}}+1, \ldots, t_{r}} \leq \eta_{k+1}$ since $\sum_{i=1}^{r} t_{i}=k$. This is a contradiction to (6). Therefore there exists $j_{2} \in\{1, \ldots, r\} \backslash$
$\left\{j_{1}\right\}$ satisfying

$$
\eta_{k}=\left\lfloor\frac{t_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\left\lfloor\frac{t_{j_{2}} m}{\lambda_{j_{2}}}\right\rfloor \quad \text { and } \quad t_{j_{2}}<\lambda_{j_{2}}
$$

where the strict inequality $t_{j_{2}}<\lambda_{j_{2}}$ follows from the fact that $\eta_{k}<m$. If $\eta_{k}<\left\lfloor\frac{t_{j} m}{\lambda_{j}}\right\rfloor$ for
 to (6). Therefore there exists $j_{3} \in\{1, \ldots, r\} \backslash\left\{j_{1}, j_{2}\right\}$ such that

$$
\eta_{k}=\left\lfloor\frac{t_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\left\lfloor\frac{t_{j_{2}} m}{\lambda_{j_{2}}}\right\rfloor=\left\lfloor\frac{t_{j_{3}} m}{\lambda_{j_{3}}}\right\rfloor \quad \text { and } \quad t_{j_{3}}<\lambda_{j_{3}} .
$$

By continuing this process, we obtain distinct elements $j_{1}, j_{2}, \ldots, j_{n}$ such that

$$
\eta_{k}=\left\lfloor\frac{t_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\cdots=\left\lfloor\frac{t_{j_{n}} m}{\lambda_{j_{n}}}\right\rfloor \text { and } t_{j_{i}}<\lambda_{j_{i}} \text { for each } i=1, \ldots, n .
$$

Finally, from (4), we conclude that

$$
\begin{aligned}
\sum_{k=r}^{\lambda_{0}-1} \eta_{k} & =\sum_{i=1}^{r} \sum_{s=1}^{\lambda_{i}-1}\left\lfloor\frac{s m}{\lambda_{i}}\right\rfloor=\sum_{i=1}^{r} \frac{(m-1)\left(\lambda_{i}-1\right)-1+\left(m, \lambda_{i}\right)}{2} \\
& =\frac{(m-1)\left(\lambda_{0}-r\right)-r+\sum_{i=1}^{r}\left(m, \lambda_{i}\right)}{2} .
\end{aligned}
$$

Theorem 3.2. Let $m \geq 2$ and $r \geq 2$ be integers such that $p \nmid m$. Let \mathcal{X} be the algebraic curve defined by the affine equation

$$
\begin{equation*}
\mathcal{X}: \quad y^{m}=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{\lambda_{i}}, \quad \lambda_{i} \in \mathbb{N}, \quad \text { and } \quad 1 \leq \lambda_{i}<m \tag{7}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ are pairwise distinct elements of K. Define $\lambda_{0}:=\sum_{i=1}^{r} \lambda_{i}$ and suppose that $\left(m, \lambda_{0}\right)=1$. Then the Weierstrass semigroup at the only place at infinity $Q_{\infty} \in \mathcal{P}_{K(\mathcal{X})}$ is given by the disjoint union

$$
H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}\right\rangle \cup \bigcup_{k=r}^{\lambda_{0}-1} B_{k}
$$

where $B_{k}=\left\{m k-k^{\prime} \lambda_{0}: k^{\prime}=1, \ldots, \eta_{k}\right\}$ and η_{k} are defined as in Lemma 3.1. In particular,

$$
\begin{equation*}
H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}, m k-\lambda_{0} \eta_{k}: k=r, \ldots, \lambda_{0}-1\right\rangle . \tag{8}
\end{equation*}
$$

Proof. Clearly the result holds if $r=\lambda_{0}$, therefore we can assume that $r<\lambda_{0}$. We start by computing some principal divisors in $K(\mathcal{X})$. Let $P_{\alpha_{i}} \in \mathcal{P}_{K(x)}$ be the place corresponding
to $\alpha_{i} \in K$. For $k \in\left\{r, \ldots, \lambda_{0}-1\right\}$, let s_{1}, \ldots, s_{r} be positive integers such that $1 \leq s_{i} \leq \lambda_{i}$ and $\sum_{i=1}^{r} s_{i}=k$. Then

$$
\left(x-\alpha_{i}\right)_{K(\mathcal{X})}=\frac{m}{\left(m, \lambda_{i}\right)} \sum_{\substack{Q \mid P_{\alpha_{i}} \\ Q \in \mathcal{P}_{K(\mathcal{X}}}} Q-m Q_{\infty}, \quad(y)_{K(\mathcal{X})}=\sum_{i=1}^{r} \frac{\lambda_{i}}{\left(m, \lambda_{i}\right)} \sum_{\substack{Q \mid P_{\alpha_{i}} \\ Q \in \mathcal{P}_{K(\mathcal{X}}}} Q-\lambda_{0} Q_{\infty},
$$

and

$$
\left(\frac{\prod_{i=1}^{r}\left(x-\alpha_{i}\right)^{s_{i}}}{y^{\rho_{s_{1}, \ldots, s_{r}}}}\right)_{K(\mathcal{X})}=\sum_{i=1}^{r} \frac{s_{i} m-\lambda_{i} \rho_{s_{1}, \ldots, s_{r}}}{\left(m, \lambda_{i}\right)} \sum_{\substack{Q \mid P_{\alpha_{i}} \\ Q \in \mathcal{P}_{K(\mathcal{X})}}} Q-\left(m k-\lambda_{0} \rho_{s_{1}, \ldots, s_{r}}\right) Q_{\infty}
$$

By the definition of η_{k}, we have that $0<m k-\lambda_{0} \eta_{k} \in H\left(Q_{\infty}\right)$ for $r \leq k<\lambda_{0}$ and therefore

$$
\begin{equation*}
\left\langle m, \lambda_{0}\right\rangle \cup \bigcup_{k=r}^{\lambda_{0}-1} B_{k} \subseteq H\left(Q_{\infty}\right) \tag{9}
\end{equation*}
$$

Now, we prove that the union given in (9) is disjoint. For $k \in\left\{r, \ldots, \lambda_{0}-1\right\}$ and $k^{\prime} \in\left\{1, \ldots, \eta_{k}\right\}$, an element of B_{k} can be written as

$$
m k-k^{\prime} \lambda_{0}=m \lambda_{0}-\left(\lambda_{0}-k\right) m-k^{\prime} \lambda_{0} .
$$

Therefore, from Proposition [2.3, $B_{k} \cap\left\langle m, \lambda_{0}\right\rangle=\emptyset$. On the other hand, we have that $B_{k_{1}} \cap B_{k_{2}}=\emptyset$ for $k_{1} \neq k_{2}$. In fact, if $m k_{1}-\lambda_{0} k_{1}^{\prime}=m k_{2}-\lambda_{0} k_{2}^{\prime}$ for $r \leq k_{1}, k_{2}<\lambda_{0}$, $1 \leq k_{1}^{\prime} \leq \eta_{k_{1}}$, and $1 \leq k_{2}^{\prime} \leq \eta_{k_{2}}$, then $m\left(k_{1}-k_{2}\right)=\lambda_{0}\left(k_{1}^{\prime}-k_{2}^{\prime}\right)$. Since $\left(m, \lambda_{0}\right)=1$ and $2-\lambda_{0} \leq k_{1}-k_{2} \leq \lambda_{0}-2$, we conclude that $k_{1}=k_{2}$.

Finally, we prove that equality holds in (9). Since

$$
g(\mathcal{X})=\frac{(m-1)(r-1)+r-\sum_{i=1}^{r}\left(m, \lambda_{i}\right)}{2} \quad \text { and } \quad g_{\left\langle m, \lambda_{0}\right\rangle}=\frac{(m-1)\left(\lambda_{0}-1\right)}{2}
$$

from Lemma 3.1 we obtain that

$$
\#\left(\bigcup_{k=r}^{\lambda_{0}-1} B_{k}\right)=\sum_{k=r}^{\lambda_{0}-1} \eta_{k}=\frac{(m-1)\left(\lambda_{0}-r\right)-r+\sum_{i=1}^{r}\left(m, \lambda_{i}\right)}{2}=\#\left(H\left(Q_{\infty}\right) \backslash\left\langle m, \lambda_{0}\right\rangle\right)
$$

and the result follows.
In general, we have that a minimal system of generators of a numerical semigroup H has cardinality at most the multiplicity of the semigroup, that is, $e_{H} \leq m_{H}$, see [14, Proposition 2.10]. Since $m \in H\left(Q_{\infty}\right), e_{H\left(Q_{\infty}\right)} \leq m_{H\left(Q_{\infty}\right)} \leq m$. However, in general, it is difficult to obtain a minimal system of generators to $H\left(Q_{\infty}\right)$ from the system of generators given in (8).

For example, for the curve $y^{5}=x(x-1)^{2}$ defined over \mathbb{F}_{q} with $5 \nmid q$, the system of generators for the semigroup $H\left(Q_{\infty}\right)$ provided by Theorem 3.2 is given by $H\left(Q_{\infty}\right)=$ $\langle 3,4,5\rangle$ and therefore is a minimal system of generators. However, this does not happen in general. In fact, if $\eta_{k}=\eta_{k+1}$ for some k, then we can remove the element $m(k+1)-\lambda_{0} \eta_{k+1}$ of the system of generators given in (8) since $m(k+1)-\lambda_{0} \eta_{k+1}=m k-\lambda_{0} \eta_{k}+m$. More
generally, define $\lambda:=\max _{1 \leq i \leq r} \lambda_{i}$. If $\lambda=1$ then $H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}\right\rangle$ and $e_{H\left(Q_{\infty}\right)}=2$. If $\lambda>1$, then for $i \in\{\lfloor m / \lambda\rfloor, \ldots, m-\lceil m / \lambda\rceil\}$ define $k_{i}:=0$ if there is no $k \in\left\{r, \ldots, \lambda_{0}-1\right\}$ such that $\eta_{k}=i$, and $k_{i}:=\min \left\{k: r \leq k<\lambda_{0}, \eta_{k}=i\right\}$ otherwise. Thus, for each i such that $k_{i} \neq 0$ and k such that $\eta_{k}=i$, we can write $m k-\lambda_{0} \eta_{k}=m k_{i}-\lambda_{0} \eta_{k_{i}}+m\left(k-k_{i}\right)$. Therefore, by removing the element $m k-\lambda_{0} \eta_{k}$ from the system of generators given in (8) we obtain that

$$
H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}, m k_{i}-\lambda_{0} \eta_{k_{i}}: i=\left\lfloor\frac{m}{\lambda}\right\rfloor, \ldots, m-\left\lceil\frac{m}{\lambda}\right\rceil \text { and } k_{i} \neq 0\right\rangle
$$

and $e_{H\left(Q_{\infty}\right)} \leq m-\left\lceil\frac{m}{\lambda}\right\rceil-\left\lfloor\frac{m}{\lambda}\right\rfloor+3 \leq m$.
Example 3.3 (Plane model of the $G G S$ curve). The $G G S$ curve is the first generalization of the GK curve, which is the first example of a maximal curve not covered by the
 integer, and it is described by the following plane model:

$$
y^{q^{n}+1}=\left(x^{q}+x\right) h(x)^{q+1}, \text { where } h(x)=\sum_{i=0}^{q}(-1)^{i+1} x^{i(q-1)} .
$$

This curve only has one place at infinity Q_{∞}. In order to calculate the Weierstrass semigroup $H\left(Q_{\infty}\right)$, note that $h(x)$ is a separable polynomial of degree $q(q-1)$. Using our standard notation as in Theorem [3.2, we have that $m=q^{n}+1, r=q^{2}, \lambda_{0}=q^{3}$, $\lambda_{1}=\cdots=\lambda_{q}=1$, and $\lambda_{q+1}=\cdots=\lambda_{q^{2}}=q+1$. From the characterization of the multiset $S=\left\{\left\{\eta_{k}: r \leq k \leq \lambda_{0}-1\right\}\right.$ given in Lemma 3.1, we have that

$$
S^{*}=\left\{\frac{(\beta+1)\left(q^{n}+1\right)}{q+1}: 0 \leq \beta \leq q-1\right\}
$$

Furthermore, since $\lambda_{1}=\cdots=\lambda_{q}=1$ and $\lambda_{q+1}=\cdots=\lambda_{q^{2}}=q+1$, we have $m_{S}(a)=$ $q^{2}-q$ for each $a \in S^{*}$. Thus, since $\eta_{r} \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_{0}-1}$ is a non-decreasing sequence, we obtain that

$$
\begin{aligned}
& \eta_{r} \quad=\quad \eta_{r+1} \quad=\ldots=\eta_{r+q^{2}-q-1} \quad=\quad \frac{q^{n}+1}{q+1} \\
& \eta_{r+q^{2}-q}=\eta_{r+q^{2}-q+1}=\ldots=\eta_{r+2\left(q^{2}-q\right)-1}=\frac{2\left(q^{n}+1\right)}{q+1} \\
& \eta_{r+\beta\left(q^{2}-q\right)}=\eta_{r+\beta\left(q^{2}-q\right)+1}=\ldots=\eta_{r+(\beta+1)\left(q^{2}-q\right)-1}=\frac{(\beta+1)\left(q^{n}+1\right)}{q+1} \\
& \eta_{r+(q-1)\left(q^{2}-q\right)}=\eta_{r+(q-1)\left(q^{2}-q\right)+1}=\ldots=\eta_{r+q\left(q^{2}-q\right)-1}=\frac{q\left(q^{n}+1\right)}{q+1} .
\end{aligned}
$$

Therefore,

$$
\eta_{r+\beta\left(q^{2}-q\right)+i}=\frac{(\beta+1)\left(q^{n}+1\right)}{q+1} \text { for } 0 \leq \beta \leq q-1 \text { and } 0 \leq i \leq q^{2}-q-1
$$

Moreover, since

$$
m\left(r+\beta\left(q^{2}-q\right)\right)-\lambda_{0} \eta_{r+\beta\left(q^{2}-q\right)}=(q-\beta) \frac{q\left(q^{n}+1\right)}{q+1} \text { for } 0 \leq \beta \leq q-1
$$

it follows from Theorem 3.2 that

$$
H\left(Q_{\infty}\right)=\left\langle q^{n}+1, q^{3}, \frac{q\left(q^{n}+1\right)}{q+1}\right\rangle .
$$

As expected, this description of $H\left(Q_{\infty}\right)$ matches the result given in [6, Corollary 3.5].
Let $n \geq 3$ be an odd integer, m be a divisor of $q^{n}+1$, and d be a divisor of $q+1$ such that $(m, d(q-1))=1$. In [9, Theorem 3.1], the authors study the $\mathbb{F}_{q^{2 n}}$-maximal curve defined by the affine equation

$$
\mathcal{Y}_{d, m}: \quad y^{m}=x^{d}\left(x^{d}-1\right)\left(\frac{x^{d(q-1)}-1}{x^{d}-1}\right)^{q+1} .
$$

This curve is a subcover of the second generalization of the $G K$ curve given by Beelen and Montanucci [2] and has only one place at infinity Q_{∞}. In the following result, using Theorem [3.2, we compute the Weierstrass semigroup $H\left(Q_{\infty}\right)$.
Proposition 3.4. Let $n \geq 3$ be an odd integer, m be a divisor of $q^{n}+1$, and d be a divisor of $q+1$ such that $(m, d(q-1))=1$. Consider the curve

$$
\mathcal{Y}_{d, m}: \quad y^{m}=x^{d}\left(x^{d}-1\right)\left(\frac{x^{d(q-1)}-1}{x^{d}-1}\right)^{q+1} .
$$

Then the Weierstrass semigroup at the only place at infinity Q_{∞} is given by

$$
H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}, m k_{\beta}-\lambda_{0}\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor: \beta=0, \ldots, q-1\right\rangle,
$$

where $\lambda_{0}=d q(q-1)$ and $k_{\beta}=d(q-1)(\beta+1)+1+\left\lfloor\frac{\beta d}{q+1}\right\rfloor-\beta d$.
Proof. Using our standard notation, we have that $r=d(q-1)+1, \lambda_{0}=d q(q-1), \lambda_{1}=d$, $\lambda_{2}=\cdots=\lambda_{d+1}=1$, and $\lambda_{d+2}=\cdots=\lambda_{d(q-1)+1}=q+1$. From the characterization of $S=\left\{\left\{\eta_{k}: r \leq k \leq \lambda_{0}-1\right\}\right.$ given in Lemma 3.1, we obtain that

$$
S^{*}=\left\{\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor: 0 \leq \beta \leq q-1\right\}
$$

Now, define $\delta_{\beta}:=\left\lceil\frac{(\beta+1) d}{q+1}\right\rceil-\left\lfloor\frac{(\beta+1) d}{q+1}\right\rfloor$ for $1 \leq \beta \leq q-1$. Since $\lambda_{1}=d, \lambda_{2}=\cdots=\lambda_{d+1}=1$, and $\lambda_{d+2}=\cdots=\lambda_{d(q-1)+1}=q+1$, we have

$$
m_{S}\left(\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor\right)= \begin{cases}d(q-2), & \text { if } \delta_{\beta}=1 \\ d(q-2)+1, & \text { if } \delta_{\beta}=0\end{cases}
$$

or, equivalently,

$$
\begin{equation*}
m_{S}\left(\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor\right)=d(q-2)+1-\delta_{\beta} . \tag{10}
\end{equation*}
$$

In order to calculate the semigroup $H\left(Q_{\infty}\right)$, let $k_{\beta, i}:=r+\beta(d(q-2)+1)-\sum_{j=0}^{\beta-1} \delta_{j}+i$ for $0 \leq \beta \leq q-1$ and $0 \leq i \leq d(q-2)-\delta_{\beta}$. From (10) and since $\eta_{r} \leq \eta_{r-1} \leq \cdots \leq \eta_{\lambda_{0}-1}$ is a non-decreasing sequence, we obtain that

$$
\begin{aligned}
& \left.\begin{array}{ccccccc}
\eta_{r} & = & \eta_{r+1} & = & \ldots & \eta_{r+d(q-2)-\delta_{0}} & = \\
\frac{m}{q+1} \\
\frac{2 m}{q+1}
\end{array}\right] \\
& \eta_{k_{\beta, 0}}=\eta_{k_{\beta, 1}}=\ldots=\eta_{k_{\beta, d(q-2)-\delta_{\beta}}}=\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor \\
& \eta_{k_{q-1,0}}=\eta_{k_{q-1,1}}=\ldots=\eta_{k_{q-1, d(q-2)-\delta_{q-1}}}=\left\lfloor\frac{q m}{q+1}\right\rfloor .
\end{aligned}
$$

Therefore $\eta_{k_{\beta, i}}=\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor$ for $0 \leq \beta \leq q-1$ and $0 \leq i \leq d(q-2)-\delta_{\beta}$. From Theorem 3.2. we conclude that

$$
H\left(Q_{\infty}\right)=\left\langle m, \lambda_{0}, m k_{\beta, 0}-\lambda_{0}\left\lfloor\frac{(\beta+1) m}{q+1}\right\rfloor: \beta=0, \ldots, q-1\right\rangle
$$

Now the proposition follows from the fact that $\beta-\sum_{j=0}^{\beta-1} \delta_{j}=\left\lfloor\frac{\beta d}{q+1}\right\rfloor$ for $0 \leq \beta \leq q-1$.

4. The Frobenius number $F_{H\left(Q_{\infty}\right)}$ And the Multiplicity $m_{H\left(Q_{\infty}\right)}$

With the explicit description of the Weierstrass semigroup $H\left(Q_{\infty}\right)$ given in Theorem 3.2, in this section we study the Frobenius number $F_{H\left(Q_{\infty}\right)}$, the multiplicity $m_{H\left(Q_{\infty}\right)}$, and the relationship between them.

Henceforth, to simplify the notation, we define

$$
\eta_{s}:=\left\{\begin{array}{ll}
0, & \text { if } 0 \leq s<r, \tag{11}\\
m-1, & \text { if } \lambda_{0} \leq s,
\end{array} \quad \text { and } \quad \epsilon_{k}:=m k-\lambda_{0}\left(\eta_{k}+1\right) \text { for } k \in \mathbb{N}_{0}\right.
$$

Thus, from Theorem 3.2, we obtain that

$$
\begin{equation*}
H\left(Q_{\infty}\right)=\left\langle\epsilon_{k}+\lambda_{0}: k=1, r, \ldots, \lambda_{0}\right\rangle \tag{12}
\end{equation*}
$$

We start by noticing that not all the elements $\epsilon_{r-1}, \ldots, \epsilon_{\lambda_{0}-1}$ defined in (11) are necessarily positive, however the following result states that the largest of them is equal to the Frobenius number $F_{H\left(Q_{\infty}\right)}$. Moreover, we explicitly describe the gap set $G\left(Q_{\infty}\right)$.

Proposition 4.1. Using the same notation as in Theorem 3.2, we have that

$$
F_{H\left(Q_{\infty}\right)}=\max \left\{\epsilon_{r-1}, \ldots, \epsilon_{\lambda_{0}-1}\right\}
$$

and

$$
G\left(Q_{\infty}\right)=\left\{m a-b \lambda_{0}: 1 \leq a \leq \lambda_{0}-1, \eta_{a}+1 \leq b \leq\left\lfloor\frac{a m}{\lambda_{0}}\right\rfloor\right\}
$$

Proof. From Theorem 3.2, we have that

$$
G\left(Q_{\infty}\right)=\mathbb{N} \backslash\left(\left\langle m, \lambda_{0}\right\rangle \cup \bigcup_{k=r}^{\lambda_{0}-1} B_{k}\right)=\left(\mathbb{N} \backslash\left\langle m, \lambda_{0}\right\rangle\right) \backslash\left(\bigcup_{k=r}^{\lambda_{0}-1} B_{k}\right),
$$

where $B_{k}=\left\{m \lambda_{0}-\left(\lambda_{0}-k\right) m-k^{\prime} \lambda_{0}: k^{\prime}=1, \ldots, \eta_{k}\right\}$. Moreover, from Proposition 2.3, we know that the elements of $\mathbb{N} \backslash\left\langle m, \lambda_{0}\right\rangle$ are of the form $m \lambda_{0}-a m-b \lambda_{0}$, where a and b are positive integers. Therefore,

$$
G\left(Q_{\infty}\right)=\left\{m \lambda_{0}-a m-b \lambda_{0}:(a, b) \in \Delta\right\} \cap \mathbb{N}
$$

where $\Delta=\left\{(a, b) \in \mathbb{N}^{2}: \eta_{\lambda_{0}-a}+1 \leq b\right\}$, and

$$
F_{H\left(Q_{\infty}\right)}=\max _{(a, b) \in \Delta}\left\{m \lambda_{0}-a m-b \lambda_{0}\right\} .
$$

By the definition of the set $\Delta, \max _{(a, b) \in \Delta}\left\{m \lambda_{0}-a m-b \lambda_{0}\right\}$ is attained at a point in Δ of the form $\left(k, \eta_{\lambda_{0}-k}+1\right)$ for some $k \in\left\{1, \ldots, \lambda_{0}-r+1\right\}$, see Figure 1 . Thus, $F_{H\left(Q_{\infty}\right)}=\max \left\{\epsilon_{r-1}, \ldots, \epsilon_{\lambda_{0}-1}\right\}$. Moreover,

$$
\begin{aligned}
G\left(Q_{\infty}\right) & =\left\{m \lambda_{0}-a m-b \lambda_{0}:(a, b) \in \Delta\right\} \cap \mathbb{N} \\
& =\left\{m\left(\lambda_{0}-a\right)-b \lambda_{0}: 1 \leq a \leq \lambda_{0}-1, \eta_{\lambda_{0}-a}+1 \leq b\right\} \cap \mathbb{N} \\
& =\left\{m a-b \lambda_{0}: 1 \leq a \leq \lambda_{0}-1, \eta_{a}+1 \leq b \leq\left\lfloor\frac{a m}{\lambda_{0}}\right\rfloor\right\} .
\end{aligned}
$$

Figure 1. Description of the set Δ

Now, we provide sufficient conditions to determine whether the semigroup $H\left(Q_{\infty}\right)$ is symmetric. For this, we need a remark and a lemma.

Remark 4.2. Due to the characterization of the sequence $\eta_{r} \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_{0}-1}$ given in Lemma 3.1, we can see that, for $s \in \mathbb{N}_{0}, \eta_{s}+\eta_{r+\lambda_{0}-1-s}=m$ or $\eta_{s}+\eta_{r+\lambda_{0}-1-s}=m-1$. In fact, if $0 \leq s \leq r-1$ or $\lambda_{0} \leq s$ the assertion is clear. Let $k \in\left\{r, \ldots, \lambda_{0}-1\right\}$ and $n \in \mathbb{N}$ be such that

$$
\eta_{k-1}<\eta_{k}=\eta_{k+1}=\cdots=\eta_{k+n-1}<\eta_{k+n}
$$

From Lemma 3.1, there exist exactly n distinct elements $j_{1}, \ldots, j_{n} \in\{1, \ldots, r\}$ and positive integers $s_{j_{1}}, \ldots, s_{j_{n}}$ such that $1 \leq s_{j_{i}}<\lambda_{j_{i}}$ and

$$
\eta_{k}=\left\lfloor\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rfloor=\left\lfloor\frac{s_{j_{2}} m}{\lambda_{j_{2}}}\right\rfloor=\cdots=\left\lfloor\frac{s_{j_{n}} m}{\lambda_{j_{n}}}\right\rfloor .
$$

Without loss of generality, we can assume that

$$
\left\lceil\frac{s_{j_{1}} m}{\lambda_{j_{1}}}\right\rceil \leq\left\lceil\frac{s_{j_{2}} m}{\lambda_{j_{2}}}\right\rceil \leq \cdots \leq\left\lceil\frac{s_{j_{n}} m}{\lambda_{j_{n}}}\right\rceil
$$

and therefore

$$
\left\lfloor\frac{\left(\lambda_{j_{n}}-s_{j_{n}}\right) m}{\lambda_{j_{n}}}\right\rfloor \leq\left\lfloor\frac{\left(\lambda_{j_{n-1}}-s_{j_{n-1}}\right) m}{\lambda_{j_{n-1}}}\right\rfloor \leq \cdots \leq\left\lfloor\frac{\left(\lambda_{j_{1}}-s_{j_{1}}\right) m}{\lambda_{j_{1}}}\right\rfloor
$$

This leads to

$$
\eta_{r+\lambda_{0}-1-(k+i)}=\left\lfloor\frac{\left(\lambda_{j_{i+1}}-s_{j_{i+1}}\right) m}{\lambda_{j_{i+1}}}\right\rfloor \text { for } i=0, \ldots, n-1
$$

and, consequently,

$$
\eta_{k+i}+\eta_{r+\lambda_{0}-1-(k+i)}=\left\lfloor\frac{s_{j_{i+1}} m}{\lambda_{j_{i+1}}}\right\rfloor+\left\lfloor\frac{\left(\lambda_{j_{i+1}}-s_{j_{i+1}}\right) m}{\lambda_{j_{i+1}}}\right\rfloor=m-\left(\left\lceil\frac{s_{j_{i+1}} m}{\lambda_{j_{i+1}}}\right\rceil-\left\lfloor\frac{s_{j_{i+1}} m}{\lambda_{j_{i+1}}}\right\rfloor\right)
$$

for $i=0, \ldots, n-1$. In particular, if $\left(m, \lambda_{j}\right)=1$ for each j, we obtain that $\eta_{s}+\eta_{r+\lambda_{0}-1-s}=$ $m-1$ for $s \in \mathbb{N}_{0}$, and if λ_{j} divides m for each j, we obtain that $\eta_{s}+\eta_{r+\lambda_{0}-1-s}=m$ for $s=r, \ldots, \lambda_{0}-1$.
Lemma 4.3. For $k \in \mathbb{N}_{0}$, the following statements hold:
i) If $\eta_{k}+\eta_{r+\lambda_{0}-1-k}=m$, then $\epsilon_{k}+\epsilon_{r+\lambda_{0}-1-k}=\epsilon_{r-1}-\lambda_{0}$ and $\epsilon_{r-1}>\epsilon_{k}$.
ii) If $\eta_{k}+\eta_{r+\lambda_{0}-1-k}=m-1$, then $\epsilon_{k}+\epsilon_{r+\lambda_{0}-1-k}=\epsilon_{r-1}$, and $\epsilon_{r-1}>\epsilon_{k}$ if and only if $0<\epsilon_{r+\lambda_{0}-1-k}$.
iii) $\epsilon_{k}<0$ if and only if $\eta_{k}=\left\lfloor\frac{k m}{\lambda_{0}}\right\rfloor$.

Proof. i) It is enough to note that

$$
\begin{aligned}
\epsilon_{r+\lambda_{0}-1-k} & =m\left(r+\lambda_{0}-1-k\right)-\lambda_{0}\left(\eta_{r+\lambda_{0}-1-k}+1\right) \\
& =m\left(r+\lambda_{0}-1-k\right)-\lambda_{0}\left(m-\eta_{k}+1\right) \\
& =m(r-1)-\lambda_{0}-m k+\lambda_{0} \eta_{k} \\
& =\epsilon_{r-1}-\epsilon_{k}-\lambda_{0} .
\end{aligned}
$$

Therefore, $\epsilon_{r-1}-\epsilon_{k}=\epsilon_{r+\lambda_{0}-1-k}+\lambda_{0}>0$.
ii) Similar to item i).
iii) Since $m k=\lambda_{0} \eta_{k}+\left(m k-\lambda_{0} \eta_{k}\right)$ and $0 \leq m k-\lambda_{0} \eta_{k}$, we conclude that $\eta_{k}=\left\lfloor k m / \lambda_{0}\right\rfloor$ if and only if $m k-\lambda_{0} \eta_{k}<\lambda_{0}$.

Theorem 4.4. With the same notation as in Theorem 3.2,

$$
F_{H\left(Q_{\infty}\right)}=\epsilon_{r-1} \text { and } H\left(Q_{\infty}\right) \text { is symmetric } \quad \Leftrightarrow \quad \lambda_{j} \mid m \text { for each } j=1, \ldots, r .
$$

Proof. Suppose that $H\left(Q_{\infty}\right)$ is symmetric and $F_{H\left(Q_{\infty}\right)}=\epsilon_{r-1}$. From (3) we obtain that

$$
F_{H\left(Q_{\infty}\right)}=m(r-1)-\lambda_{0}=m(r-1)-\sum_{j=1}^{r}\left(m, \lambda_{j}\right)
$$

This implies that λ_{j} divides m for each $j=1, \ldots, r$.
Conversely, assume that λ_{j} divides m for each $j=1, \ldots, r$. From Remark 4.2 we have that $\eta_{k}+\eta_{r+\lambda_{0}-1-k}=m$ for $k=r, \ldots, \lambda_{0}-1$, and from item i) of Lemma4.3, $\epsilon_{r-1}>\epsilon_{k}$ for $k=r, \ldots, \lambda_{0}-1$. Therefore, from Proposition 4.1, $F_{H\left(Q_{\infty}\right)}=\max \left\{\epsilon_{r-1}, \ldots, \epsilon_{\lambda_{0}-1}\right\}=\epsilon_{r-1}$ and

$$
2 g(\mathcal{X})-1=m(r-1)-\sum_{i=j}^{r}\left(m, \lambda_{j}\right)=m(r-1)-\lambda_{0}=\epsilon_{r-1}=F_{H\left(Q_{\infty}\right)} .
$$

Example 4.5. From Example 3.3, we know that the Weierstrass semigroup at the only place at infinity of the GGS curve is given by $H\left(Q_{\infty}\right)=\left\langle q^{n}+1, q^{3}, q\left(q^{n}+1\right) /(q+1)\right\rangle$. Therefore, we can determine if $H\left(Q_{\infty}\right)$ is symmetric and we can calculate the Frobenius number $F_{H\left(Q_{\infty}\right)}$. However, due to Theorem [4.4, it is possible to know this without computing the semigroup $H\left(Q_{\infty}\right)$ explicitly. In fact, since $q+1$ divides $q^{n}+1, H\left(Q_{\infty}\right)$ is symmetric and

$$
F_{H\left(Q_{\infty}\right)}=\left(q^{n}+1\right)\left(q^{2}-1\right)-q^{3}=q^{n+2}-q^{n}-q^{3}+q^{2}-1 .
$$

Next, we improve Proposition 4.1 to compute the Frobenius number $F_{H\left(Q_{\infty}\right)}$ and establish a relationship between $F_{H\left(Q_{\infty}\right)}$ and the multiplicity $m_{H\left(Q_{\infty}\right)}$.

Proposition 4.6. Using the same notation as in Theorem 3.2, the following statements hold:
i) $F_{H\left(Q_{\infty}\right)}=\epsilon_{r-1}$ if and only if $\eta_{s}<\left\lfloor s m / \lambda_{0}\right\rfloor$ for each $s \in\left\{r, \ldots, \lambda_{0}-1\right\}$ such that $\eta_{s}+\eta_{r+\lambda_{0}-1-s}=m-1$.
ii) $F_{H\left(Q_{\infty}\right)}=\max _{r-1 \leq k<\lambda_{0}}\left\{\epsilon_{k}: \eta_{k}=\left\lfloor\frac{(k+1-r) m}{\lambda_{0}}\right\rfloor\right\}$.
iii) If $\left(m, \lambda_{j}\right)=1$ for each $j=1, \ldots, r$, then $m_{H\left(Q_{\infty}\right)}=\min \left\{m, m(r-1)-F_{H\left(Q_{\infty}\right)}\right\}$.
iv) If λ_{j} divides m for each $j=1, \ldots, r$, then $m_{H\left(Q_{\infty}\right)}=\min \left\{m, \lambda_{0}, \epsilon_{r-1}-\max _{r \leq k<\lambda_{0}} \epsilon_{k}\right\}$.

Proof. i) It follows from Lemma 4.3 and the fact that $\eta_{s} \leq\left\lfloor s m / \lambda_{0}\right\rfloor$ for all $s \in \mathbb{N}_{0}$.
ii) It is enough to note that, from Lemma 4.3, we can rewrite the Frobenius number $F_{H\left(Q_{\infty}\right)}$ as

$$
\begin{aligned}
F_{H\left(Q_{\infty}\right)} & =\max _{r \leq k<\lambda_{0}}\left\{\epsilon_{r-1}, \epsilon_{k}: \epsilon_{r+\lambda_{0}-1-k}<0, \eta_{k}+\eta_{r+\lambda_{0}-1-k}=m-1\right\} \\
& =\max _{r \leq k<\lambda_{0}}\left\{\epsilon_{r-1}, \epsilon_{k}: \eta_{r+\lambda_{0}-1-k}=\left\lfloor\frac{\left(r+\lambda_{0}-1-k\right) m}{\lambda_{0}}\right\rfloor, \eta_{k}+\eta_{r+\lambda_{0}-1-k}=m-1\right\} \\
& =\max _{r \leq k<\lambda_{0}}\left\{\epsilon_{r-1}, \epsilon_{k}: \eta_{k}=\left\lfloor\frac{(k+1-r) m}{\lambda_{0}}\right\rfloor\right\} \\
& =\max _{r-1 \leq k<\lambda_{0}}\left\{\epsilon_{k}: \eta_{k}=\left\lfloor\frac{(k+1-r) m}{\lambda_{0}}\right\rfloor\right\} .
\end{aligned}
$$

iii) From (12) and Lemma 4.3, we obtain that

$$
\begin{aligned}
m_{H\left(Q_{\infty}\right)} & =\min \left\{m, \lambda_{0}, \lambda_{0}+\min _{r \leq k<\lambda_{0}} \epsilon_{k}\right\} \\
& =\min \left\{m, \lambda_{0}, \lambda_{0}+\min _{r \leq k<\lambda_{0}}\left\{\epsilon_{r-1}-\epsilon_{r+\lambda_{0}-1-k}\right\}\right\} \\
& =\min \left\{m, \lambda_{0}, \lambda_{0}+\epsilon_{r-1}-\max _{r \leq k<\lambda_{0}} \epsilon_{r+\lambda_{0}-1-k}\right\} \\
& =\min \left\{m, \lambda_{0}, \lambda_{0}+\epsilon_{r-1}-\max _{r \leq k<\lambda_{0}} \epsilon_{k}\right\} \\
& =\min \left\{m, m(r-1)-F_{H\left(Q_{\infty}\right)}\right\}
\end{aligned}
$$

iv) Similar to the proof of item $i i i)$.

Next, we observe that for the curve \mathcal{X} defined in (7), the elements of the set $\left\{\epsilon_{k}+\lambda_{0}\right.$: $\left.k=0, \ldots, \lambda_{0}-1\right\} \subseteq H\left(Q_{\infty}\right)$ form a complete set of representatives for the congruence classes of \mathbb{Z} modulo λ_{0} and

$$
\sum_{k=0}^{\lambda_{0}-1}\left\lfloor\frac{\epsilon_{k}+\lambda_{0}}{\lambda_{0}}\right\rfloor=g(\mathcal{X})
$$

Therefore, from Proposition 2.1, the Apéry set of λ_{0} in the Weierstrass semigroup $H\left(Q_{\infty}\right)$ is given by

$$
\operatorname{Ap}\left(H\left(Q_{\infty}\right), \lambda_{0}\right)=\left\{\epsilon_{k}+\lambda_{0}: k=0, \ldots, \lambda_{0}-1\right\}
$$

We use this description of the Apéry set $\operatorname{Ap}\left(H\left(Q_{\infty}\right), \lambda_{0}\right)$ to characterize the symmetric Weierstrass semigroups $H\left(Q_{\infty}\right)$ when $\left(m, \lambda_{j}\right)=1$ for each $j=1, \ldots, r$.

Theorem 4.7. Suppose that $\left(m, \lambda_{j}\right)=1$ for $j=1, \ldots, r$. Then the followings statements are equivalent:
i) $H\left(Q_{\infty}\right)=\langle m, r\rangle$.
ii) $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$.

If in addition $r<m$, then all these statements are equivalent to the following:
iii) $H\left(Q_{\infty}\right)$ is symmetric.

Proof. Clearly the result holds if $r=\lambda_{0}$. Suppose that $r<\lambda_{0}$.
$i) \Rightarrow i i)$: We start by proving that r divides λ_{0}. In fact, since $\lambda_{0}, m r-\lambda_{0} \in H\left(Q_{\infty}\right)=$ $\langle m, r\rangle$, there exist $\alpha, \alpha^{\prime}, \tau, \tau^{\prime} \in \mathbb{N}_{0}$, where $\tau, \tau^{\prime} \leq m-1$ and $\tau \neq 0$, such that $\lambda_{0}=\alpha m+\tau r$ and $m r-\lambda_{0}=\alpha^{\prime} m+\tau^{\prime} r$. Therefore $m\left(r-\alpha-\alpha^{\prime}\right)=r\left(\tau+\tau^{\prime}\right)$. Since $H\left(Q_{\infty}\right)=\langle m, r\rangle$, (m, r) $=1$ and therefore m divides $\tau+\tau^{\prime}$, where $1 \leq \tau+\tau^{\prime} \leq 2 m-2$. This implies that $\tau+\tau^{\prime}=m$ and $\alpha=-\alpha^{\prime}$. It follows that $\alpha=\alpha^{\prime}=0$ and $\lambda_{0}=\tau r$.

Now, let $\lambda:=\max _{1 \leq i \leq r} \lambda_{i}$ and note that $\tau r=\lambda_{0}=\sum_{i=1}^{r} \lambda_{i} \leq \lambda r$, therefore $\tau \leq \lambda$. In the following, we prove that $\tau=\lambda$, which implies that $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$.

For $\beta \in\{1, \ldots, \tau-1\}$ and $i \in\{0, \ldots, r-1\}$ we have that

$$
\epsilon_{\beta r+i}+\lambda_{0}=m r-(r-i) m-\left(\tau \eta_{r \beta+i}-m \beta\right) r \in H\left(Q_{\infty}\right)=\langle m, r\rangle .
$$

Therefore, from Proposition [2.3, it follows that

$$
\begin{equation*}
\eta_{r \beta+i} \leq\left\lfloor\frac{\beta m}{\tau}\right\rfloor \text { for } 1 \leq \beta \leq \tau-1 \text { and } 0 \leq i \leq r-1 \tag{13}
\end{equation*}
$$

For $\beta=1$ in (13) we obtain that

$$
\left\lfloor\frac{m}{\lambda}\right\rfloor=\eta_{r} \leq \eta_{r+i} \leq\left\lfloor\frac{m}{\tau}\right\rfloor \text { for } 0 \leq i \leq r-1,
$$

and for $\beta=\tau-1$ and $i=r-1$ in (13),

$$
m-\left\lceil\frac{m}{\lambda}\right\rceil=\left\lfloor\frac{(\lambda-1) m}{\lambda}\right\rfloor=\eta_{\lambda_{0}-1}=\eta_{r(\tau-1)+r-1} \leq\left\lfloor\frac{(\tau-1) m}{\tau}\right\rfloor=m-\left\lceil\frac{m}{\tau}\right\rceil .
$$

Since $(m, \lambda)=(m, \tau)=1$, then $\left\lfloor\frac{m}{\lambda}\right\rfloor=\left\lfloor\frac{m}{\tau}\right\rfloor$ and therefore $\eta_{r+i}=\left\lfloor\frac{m}{\lambda}\right\rfloor$ for $0 \leq i \leq r-1$. Thus, from the characterization of the sequence $\eta_{r} \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_{0}-1}$ given in (5), we have that

$$
\eta_{r}=\left\lfloor\frac{m}{\lambda_{1}}\right\rfloor=\left\lfloor\frac{m}{\lambda_{2}}\right\rfloor=\cdots=\left\lfloor\frac{m}{\lambda_{r}}\right\rfloor=\eta_{2 r-1}
$$

and therefore $\eta_{2 r}=\left\lfloor\frac{2 m}{\lambda}\right\rfloor$. Moreover, from Remark 4.2, $\eta_{\lambda_{0}-1-i}=m-1-\eta_{r+i}=\left\lfloor\frac{(\lambda-1) m}{\lambda}\right\rfloor$ for $0 \leq i \leq r-1$ and hence $\eta_{\lambda_{0}-r-1}=\left\lfloor\frac{(\lambda-2) m}{\lambda}\right\rfloor$.

For $\beta=2$ in (13) we have that

$$
\left\lfloor\frac{2 m}{\lambda}\right\rfloor=\eta_{2 r} \leq \eta_{2 r+i} \leq\left\lfloor\frac{2 m}{\tau}\right\rfloor \text { for } 0 \leq i \leq r-1,
$$

and for $\beta=\tau-2$ and $i=r-1$ in (13),

$$
m-\left\lceil\frac{2 m}{\lambda}\right\rceil=\left\lfloor\frac{(\lambda-2) m}{\lambda}\right\rfloor=\eta_{\lambda_{0}-r-1}=\eta_{r(\tau-2)+r-1} \leq\left\lfloor\frac{(\tau-2) m}{\tau}\right\rfloor=m-\left\lceil\frac{2 m}{\tau}\right\rceil .
$$

Similarly to the previous case, we deduce that $\left\lfloor\frac{2 m}{\lambda}\right\rfloor=\left\lfloor\frac{2 m}{\tau}\right\rfloor, \eta_{2 r+i}=\left\lfloor\frac{2 m}{\lambda}\right\rfloor$ and $\eta_{\lambda_{0}-r-1-i}=$ $\left\lfloor\frac{(\lambda-2) m}{\lambda}\right\rfloor$ for $0 \leq i \leq r-1$. This implies that $\eta_{3 r}=\left\lfloor\frac{3 m}{\lambda}\right\rfloor$ and $\eta_{\lambda_{0}-2 r-1}=\left\lfloor\frac{(\lambda-3) m}{\lambda}\right\rfloor$.

By continuing this process, we obtain that

$$
\eta_{r \beta+i}=\left\lfloor\frac{\beta m}{\lambda}\right\rfloor \text { for } 1 \leq \beta \leq \tau-1 \text { and } 0 \leq i \leq r-1
$$

In particular, for $\beta=\tau-1$ and $i=r-1$ we have that

$$
\left\lfloor\frac{(\tau-1) m}{\lambda}\right\rfloor=\eta_{r(\tau-1)+r-1}=\eta_{r \tau-1}=\eta_{\lambda_{0}-1}=\left\lfloor\frac{(\lambda-1) m}{\lambda}\right\rfloor .
$$

This implies that $\tau=\lambda$.
ii) $\Rightarrow i)$: Suppose that $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{r}$. Then $\lambda_{0}=r \lambda_{r}$ and $\eta_{\beta r+i}=\left\lfloor\frac{\beta m}{\lambda_{r}}\right\rfloor$ for $1 \leq \beta \leq \lambda_{r}-1$ and $0 \leq i \leq r-1$. On the other hand, from Theorem 3.2,

$$
\begin{aligned}
H\left(Q_{\infty}\right) & =\left\langle m, r \lambda_{r}, r\left(\beta m-\lambda_{r}\left\lfloor\frac{\beta m}{\lambda_{r}}\right\rfloor\right): \beta=1, \ldots, \lambda_{r}-1\right\rangle \\
& =\left\langle m, r \lambda_{r}, r \lambda_{r}\left\{\frac{\beta m}{\lambda_{r}}\right\}: \beta=1, \ldots, \lambda_{r}-1\right\rangle
\end{aligned}
$$

Since $\left(m, \lambda_{r}\right)=1$, there exists $\beta^{\prime} \in\left\{1, \ldots, \lambda_{r}-1\right\}$ such that $\left\{\frac{\beta^{\prime} m}{\lambda_{r}}\right\}=\frac{1}{\lambda_{r}}$ and therefore $H\left(Q_{\infty}\right)=\langle m, r\rangle$.

Now, suppose that $r<m$.
$i) \Rightarrow i i i)$: It is clear.
iii) $\Rightarrow i$: We are going to prove that $(m, r)=1$. We start by noting two important facts. First, note that

$$
\begin{equation*}
\left(\epsilon_{k}+\lambda_{0}\right) \equiv 0 \quad \bmod m \quad \text { if and only if } \quad 0 \leq k \leq r-1 \tag{14}
\end{equation*}
$$

Second, since $r<m$ and $\left(m, \lambda_{j}\right)=1$ for each j, then $H\left(Q_{\infty}\right)$ is symmetric if and only if $m_{H\left(Q_{\infty}\right)}=r$. In fact, for this case we have that $g(\mathcal{X})=(m-1)(r-1) / 2$. Furthermore, from item iii) of Proposition 4.6, $m_{H\left(Q_{\infty}\right)}=\min \left\{m, m(r-1)-F_{H\left(Q_{\infty}\right)}\right\}$. If $H\left(Q_{\infty}\right)$ is symmetric, then $F_{H\left(Q_{\infty}\right)}=2 g(\mathcal{X})-1=m(r-1)-r$ and

$$
m_{H\left(Q_{\infty}\right)}=\min \left\{m, m(r-1)-F_{H\left(Q_{\infty}\right)}\right\}=\min \{m, r\}=r
$$

Conversely, if $m_{H\left(Q_{\infty}\right)}=r$ then $m(r-1)-F_{H\left(Q_{\infty}\right)}=r$ and therefore $F_{H\left(Q_{\infty}\right)}=2 g(\mathcal{X})-1$. This implies that $H\left(Q_{\infty}\right)$ is symmetric.

Let σ be the permutation of the set $\left\{0, \ldots, \lambda_{0}-1\right\}$ such that

$$
\operatorname{Ap}\left(H\left(Q_{\infty}\right), \lambda_{0}\right)=\left\{0=\epsilon_{\sigma(0)}+\lambda_{0}<\epsilon_{\sigma(1)}+\lambda_{0}<\cdots<\epsilon_{\sigma\left(\lambda_{0}-1\right)}+\lambda_{0}\right\}
$$

Since $\left(m, \lambda_{j}\right)=1$ for $j=1, \ldots, r$ and $H\left(Q_{\infty}\right)$ is symmetric, then $F_{H\left(Q_{\infty}\right)}=\epsilon_{\sigma\left(\lambda_{0}-1\right)}=$ $m(r-1)-r$. Thus, from Proposition 2.2, we have that

$$
\begin{equation*}
\epsilon_{\sigma(i)}+\epsilon_{\sigma\left(\lambda_{0}-1-i\right)}=m(r-1)-\lambda_{0}-r \quad \text { for } i=0, \ldots, \lambda_{0}-1 \tag{15}
\end{equation*}
$$

On the other hand, from Proposition 4.3, we know that

$$
\begin{equation*}
\epsilon_{\sigma(i)}+\epsilon_{r+\lambda_{0}-1-\sigma(i)}=m(r-1)-\lambda_{0} \quad \text { for } i=0, \ldots, \lambda_{0}-1 . \tag{16}
\end{equation*}
$$

Let $\lambda>0$ and $0 \leq r^{\prime}<r$ be integers such that $\lambda_{0}=\lambda r+r^{\prime}$, and $i_{1} \in\left\{0, \ldots, \lambda_{0}-1\right\}$ be such that $\sigma\left(\lambda_{0}-1-i_{1}\right)=r-1$. Then, from (15),

$$
\epsilon_{\sigma\left(i_{1}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{\sigma\left(\lambda_{0}-1-i_{1}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{r-1}=-r .
$$

If $\left(\epsilon_{\sigma\left(i_{1}\right)}+\lambda_{0}\right) \equiv 0 \bmod m$, then m divides $\lambda_{0}-r$ and therefore $\lambda_{0}=m s+r$ for some integer s. Since $\left(m, \lambda_{0}\right)=1$, we conclude that $1=\left(m, \lambda_{0}\right)=(m, m s+r)=(m, r)$.

Otherwise, from (14), $\sigma\left(i_{1}\right) \geq r$ and therefore there exists $i_{2} \in\left\{0, \ldots, \lambda_{0}-1\right\}$ such that $\sigma\left(\lambda_{0}-1-i_{2}\right)=r+\lambda_{0}-1-\sigma\left(i_{1}\right)$. From (15) and (16), we have that
$\epsilon_{\sigma\left(i_{2}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{\sigma\left(\lambda_{0}-1-i_{2}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{r+\lambda_{0}-1-\sigma\left(i_{1}\right)}=\epsilon_{\sigma\left(i_{1}\right)}-r=-2 r$.
If $\left(\epsilon_{\sigma\left(i_{2}\right)}+\lambda_{0}\right) \equiv 0 \bmod m$, then m divides $\lambda_{0}-2 r$ and therefore $(m, r)=1$. Otherwise, $\sigma\left(i_{2}\right) \geq r$ and therefore there exists $i_{3} \in\left\{0, \ldots, \lambda_{0}-1\right\}$ such that $\sigma\left(\lambda_{0}-1-i_{3}\right)=$ $r+\lambda_{0}-1-\sigma\left(i_{2}\right)$ and
$\epsilon_{\sigma\left(i_{3}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{\sigma\left(\lambda_{0}-1-i_{3}\right)}=m(r-1)-\lambda_{0}-r-\epsilon_{r+\lambda_{0}-1-\sigma\left(i_{2}\right)}=\epsilon_{\sigma\left(i_{2}\right)}-r=-3 r$.
By continuing this process, we have that $(m, r)=1$ or we obtain a sequence $i_{1}, \ldots, i_{\lambda}$ such that

$$
\sigma\left(i_{j}\right) \geq r \quad \text { and } \quad \epsilon_{\sigma\left(i_{j}\right)}=-j r \quad \text { for } 1 \leq j \leq \lambda .
$$

If the latter happens, then $0<\epsilon_{\sigma\left(i_{\lambda}\right)}+\lambda_{0}=\lambda_{0}-\lambda r=r^{\prime}<r$, a contradiction because $m_{H\left(Q_{\infty}\right)}=r$. Therefore, $(m, r)=1$. Finally, since $\langle m, r\rangle \subseteq H\left(Q_{\infty}\right)$ and $g(\mathcal{X})=(m-$ 1) $(r-1) / 2$, we conclude that $H\left(Q_{\infty}\right)=\langle m, r\rangle$.

5. Maximal Castle curves

In this section, as an application of the results obtained, we characterize certain classes of $\mathbb{F}_{q^{2}}$-maximal Castle curves of type $\left(\mathcal{X}, Q_{\infty}\right)$ (that is, $\mathbb{F}_{q^{2}}$-maximal curves \mathcal{X} such that $\# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} m_{H\left(Q_{\infty}\right)}+1$ and $H\left(Q_{\infty}\right)$ is symmetric), where \mathcal{X} is the curve defined by the equation $y^{m}=f(x), f(x) \in \mathbb{F}_{q^{2}}[x]$ and $(m, \operatorname{deg} f)=1$, and Q_{∞} is the only place at infinity of the curve \mathcal{X}. Some examples of $\mathbb{F}_{q^{2}}$-maximal Castle curves of this type are presented below:

- The Hermitian curve

$$
y^{q+1}=x^{q}+x .
$$

- The curve over $\mathbb{F}_{q^{2}}$ defined by the affine equation

$$
y^{q+1}=a^{-1}\left(x^{q / p}+x^{q / p^{2}}+\cdots+x^{p}+x\right),
$$

where $p=\operatorname{Char}\left(\mathbb{F}_{q}\right)$ and $a \in \mathbb{F}_{q^{2}}$ is such that $a^{q}+a=0$ and $a \neq 0$.
Note that, in all cases, the places corresponding to the roots of the polynomial $f(x)$ are totally ramified in the extension $\mathbb{F}_{q^{2}}(x, y) / \mathbb{F}_{q^{2}}(x)$, the multiplicities of the roots of $f(x)$ are equal and $m=q+1$. We will show that, under certain conditions, all $\mathbb{F}_{q^{2}}$-maximal Castle curves of type $\left(\mathcal{X}, Q_{\infty}\right)$ have these characteristics.

Lemma 5.1. Let \mathcal{X} be the algebraic curve given in Theorem 3.2 and let Q_{∞} be its only place at infinity. Suppose that \mathcal{X} is defined over $\mathbb{F}_{q^{2}},\left(m, \lambda_{i}\right)=1$ for $i=1, \ldots, r,\left(\mathcal{X}, Q_{\infty}\right)$ is a Castle curve, and $r<m$. Then

$$
\mathcal{X} \text { is } \mathbb{F}_{q^{2}-\text {-maximal if and only if } m=q+1 .}
$$

Proof. From the assumptions, we obtain that $g(\mathcal{X})=(m-1)(r-1) / 2$. Since $\left(\mathcal{X}, Q_{\infty}\right)$ is a Castle curve, $H\left(Q_{\infty}\right)$ is symmetric and therefore $F_{H\left(Q_{\infty}\right)}=2 g(\mathcal{X})-1=m r-m-r$.

Moreover, from iii) of Proposition 4.6, $m_{H\left(Q_{\infty}\right)}=\min \{m, r\}=r$. Therefore, \mathcal{X} is $\mathbb{F}_{q^{2-}}$ maximal if and only if

$$
\# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} r+1=q^{2}+1+q(m-1)(r-1)
$$

Thus, the result follows.
Lemma 5.2. Let \mathcal{X} be the algebraic curve given in Theorem 3.2 and let Q_{∞} be its only place at infinity. Suppose that \mathcal{X} is defined over $\mathbb{F}_{q^{2}}, m=q+1, r<q+1,\left(q+1, \lambda_{i}\right)=1$ for $i=1, \ldots, r$, and \mathcal{X} is $\mathbb{F}_{q^{2}}$-maximal. The following statements are equivalent:
i) $H\left(Q_{\infty}\right)$ is symmetric.
ii) $\# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} m_{H\left(Q_{\infty}\right)}+1$.
iii) $\lambda_{1}=\cdots=\lambda_{r}$.

Proof. Note that from the hypotheses we have that $g(\mathcal{X})=q(r-1) / 2$ and therefore $\# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2}+1+2 g(\mathcal{X}) q=q^{2} r+1$.
i) $\Leftrightarrow i i)$: It is enough to note that

$$
\begin{aligned}
H\left(Q_{\infty}\right) \text { is symmetric } & \Leftrightarrow F_{H\left(Q_{\infty}\right)}=q r-q-1 \\
& \Leftrightarrow m_{H\left(Q_{\infty}\right)}=r \\
& \Leftrightarrow \# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} m_{H\left(Q_{\infty}\right)}+1 .
\end{aligned} \quad \text { (from Proposition 4.6) }
$$

i) $\Leftrightarrow i i i)$: This follows directly from Theorem 4.7.

We summarize these results in the following theorem.
Theorem 5.3. Let \mathcal{X} be the algebraic curve defined in Theorem 3.2 and let Q_{∞} be its only place at infinity. Suppose that \mathcal{X} is defined over $\mathbb{F}_{q^{2}},\left(m, \lambda_{i}\right)=1$ for $i=1, \ldots, r$, and $r<m$. Then the following statements are equivalent:
i) $\left(\mathcal{X}, Q_{\infty}\right)$ is a $\mathbb{F}_{q^{2}-\text { maximal Castle curve. }}$
ii) $\left(\mathcal{X}, Q_{\infty}\right)$ is a Castle curve and $m=q+1$.
iii) \mathcal{X} is $\mathbb{F}_{q^{2}}$-maximal, $H\left(Q_{\infty}\right)$ is symmetric, and $m=q+1$.
iv) \mathcal{X} is $\mathbb{F}_{q^{2}}$-maximal, $\# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} m_{H\left(Q_{\infty}\right)}+1$, and $m=q+1$.
v) \mathcal{X} is $\mathbb{F}_{q^{2}}$-maximal, $\lambda_{1}=\cdots=\lambda_{r}$, and $m=q+1$.

Finally, we note that for the case when λ_{i} divides m for each $i=1, \ldots, r$, the Weierstrass semigroup $H\left(Q_{\infty}\right)$ is symmetric, see Theorem 4.4. Therefore, by assuming that \mathcal{X} is $\mathbb{F}_{q^{2-}}$ maximal, we conclude that

$$
\left(\mathcal{X}, Q_{\infty}\right) \text { is } \mathbb{F}_{q^{2}} \text {-maximal Castle curve if and only if } \# \mathcal{X}\left(\mathbb{F}_{q^{2}}\right)=q^{2} m_{H\left(Q_{\infty}\right)}+1
$$

6. Acknowledgment

I would like to thank Professors Luciane Quoos and Rohit Gupta, as well as the anonymous referees for their valuable comments and suggestions that improved the presentation of this paper.

References

[1] M. Abdón, H. Borges, and L. Quoos. Weierstrass points on Kummer extensions. Adv. Geom., 19(3):323-333, 2019.
[2] P. Beelen and M. Montanucci. A new family of maximal curves. J. Lond. Math. Soc. (2), 98(3):573592, 2018.
[3] A. S. Castellanos, A. M. Masuda, and L. Quoos. One- and two-point codes over Kummer extensions. IEEE Trans. Inform. Theory, 62(9):4867-4872, 2016.
[4] A. Garcia, C. Güneri, and H. Stichtenoth. A generalization of the Giulietti-Korchmáros maximal curve. Adv. Geom., 10(3):427-434, 2010.
[5] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley Publishing Company, Reading, MA, second edition, 1994. A foundation for computer science.
[6] C. Güneri, M. Özdemir, and H. Stichtenoth. The automorphism group of the generalized GiuliettiKorchmáros function field. Adv. Geom., 13(2):369-380, 2013.
[7] J. Lewittes. Places of degree one in function fields over finite fields. J. Pure Appl. Algebra, 69(2):177183, 1990.
[8] L. Ma, C. Xing, and S. L. Yeo. On automorphism groups of cyclotomic function fields over finite fields. J. Number Theory, 169:406-419, 2016.
[9] E. A. R. Mendoza and L. Quoos. Explicit equations for maximal curves as subcovers of the $B M$ curve. Finite Fields Appl., 77:Paper No. 101945, 22, 2022.
[10] M. Montanucci and V. Pallozzi Lavorante. AG codes from the second generalization of the GK maximal curve. Discrete Math., 343(5):111810, 17, 2020.
[11] C. Munuera, A. Sepúlveda, and F. Torres. Algebraic geometry codes from castle curves. In Á. Barbero, editor, Coding Theory and Applications, pages 117-127, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
[12] C. Munuera, A. Sepúlveda, and F. Torres. Castle curves and codes. Adv. Math. Commun., 3(4):399408, 2009.
[13] J. C. Rosales. Fundamental gaps of numerical semigroups generated by two elements. Linear Algebra Appl., 405:200-208, 2005.
[14] J. C. Rosales and P. A. García-Sánchez. Numerical semigroups, volume 20 of Developments in Mathematics. Springer, New York, 2009.
[15] H. Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, second edition, 2009.
[16] S. Tafazolian and F. Torres. On the curve $Y^{n}=X^{\ell}\left(X^{m}+1\right)$ over finite fields. Adv. Geom., 19(2):263268, 2019.

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade UniverSitária, CEP 21941-909, Rio de Janeiro, Brazil

Email address: erik@im.ufrj.br

