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ON KUMMER EXTENSIONS WITH ONE PLACE AT INFINITY

ERIK A. R. MENDOZA

Abstract. Let K be the algebraic closure of Fq. We provide an explicit description
of the Weierstrass semigroup H(Q∞) at the only place at infinity Q∞ of the curve X
defined by the Kummer extension with equation ym = f(x), where f(x) ∈ K[x] is a
polynomial satisfying gcd(m, degf) = 1. As a consequence, we determine the Frobenius
number and the multiplicity ofH(Q∞) in some cases, and we discuss sufficient conditions
for the Weierstrass semigroup H(Q∞) to be symmetric. Finally, we characterize certain
maximal Castle curves of type (X , Q∞).

1. Introduction

Let K be the algebraic closure of the finite field Fq with q elements. Consider X a
nonsingular, projective, absolutely irreducible algebraic curve over K with genus g(X )
and denote by K(X ) its function field. For a function z ∈ K(X ), we let (z), (z)∞ and
(z)0 stand for the principal, pole and zero divisor of the function z in K(X ) respectively.
Given a place Q in the set of places PK(X ) of the function field K(X ), the Weierstrass

semigroup associated to the place Q is given by

H(Q) := {s ∈ N0 : (z)∞ = sQ for some z ∈ K(X )},
the complementary set G(Q) := N \H(Q) is called the gap set at Q, and the Weierstrass
Gap Theorem [15, Theorem 1.6.8] states that if g(X ) > 0, then there exist exactly g(X )
gaps at Q

G(Q) = {1 = i1 < i2 < · · · < ig(X ) ≤ 2g(X )− 1}.
The smallest nonzero element of H(Q) is called the multiplicity of H(Q) and is denoted
by mH(Q), the largest element of G(Q) is called the Frobenius number and is denoted by
FH(Q), and we say that the Weierstrass semigroupH(Q) is symmetric if FH(Q) = 2g(X )−1.
The knowledge of the inner structure of the Weierstrass semigroup H(Q) at one place in

the function field K(X ) has various applications in the area of algebraic curves over finite
fields. Among the most interesting ones we have the construction of algebraic geometry
codes with good parameters, see [10]; the determination of the automorphism group of
an algebraic curve, see [8]; to decide if a place is Weierstrass, see [1], and obtain upper
bounds for the number of rational places (places of degree one) of a curve, such as the
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Lewittes bound [7] which establishes that the number #X (Fq) of Fq-rational places of a
curve X defined over Fq is upper bounded by

(1) #X (Fq) ≤ qmH(Q) + 1,

where Q is an Fq-rational place of X . The best-known upper bound for the number of
Fq-rational places is the Hasse-Weil bound

#X (Fq) ≤ q + 1 + 2g(X )
√
q,

and a curve is called Fq-maximal if equality holds in the Hasse-Weil bound.
A pointed algebraic curve (X , Q) over Fq, where Q is an Fq-rational place of X , is called

a Castle curve if the semigroup H(Q) is symmetric and equality holds in (1). Castle curves
were introduced in [12] and have been studied due to their interesting properties related
to the construction of algebraic geometry codes with good parameters and its duals,
see [11, 12].
Abdón, Borges, and Quoos [1] provided an arithmetical criterion to determine if a

positive integer is an element of the gap set of H(Q), where Q is a totally ramified place in
a Kummer extension defined by the equation ym = f(x), f(x) ∈ K[x]. As a consequence,
they explicitly described the semigroup H(Q) when f(x) is a separable polynomial. This
description was generalized by Castellanos, Masuda, and Quoos [3], where they study the
Kummer extension defined by ym = f(x)λ, where λ ∈ N and f(x) ∈ K[x] is a separable
polynomial satisfying gcd(m, λdegf) = 1.
For a general Kummer extension with one place at infinity

(2) X : ym =
r
∏

i=1

(x− αi)
λi , λi ∈ N, and 1 ≤ λi < m,

where m ≥ 2 and r ≥ 2 are integers such that gcd(m, q) = 1, α1, . . . , αr ∈ K are pairwise
distinct elements, λ0 :=

∑r
i=1 λi, and gcd(m, λ0) = 1, the Weierstrass semigroup H(Q∞)

at the only place at infinity Q∞ of X was explicitly described in the following particular
cases:

i) For λ1 = λ2 = · · · = λr, see [3, Theorem 3.2].
ii) For any λ1 and λ2 = λ3 = · · · = λr = 1, see [16, Remark 2.8].

This article aims to explicitly describe the Weierstrass semigroup H(Q∞) in the general
case, that is, we determine the Weierstrass semigroup at the only place at infinity of
the curve X given in (2). Moreover, we provide a system of generators for the semi-
group H(Q∞) and, as a consequence, we obtain interesting results including the following
theorems:

Theorem A (see Theorem 4.4). Let FH(Q∞) be the Frobenius number of the semigroup
H(Q∞). Then

FH(Q∞) = m(r − 1)− λ0 and H(Q∞) is symmetric ⇔ λj | m for each j = 1, . . . , r.

Theorem B (see Theorem 4.7). Suppose that gcd(m, λj) = 1 for each j = 1, . . . , r. Then
the following statements are equivalent:
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i) H(Q∞) = 〈m, r〉.
ii) λ1 = λ2 = · · · = λr.

If in addition r < m then all these statements are equivalent to the following one:

iii) H(Q∞) is symmetric.

Theorem C (see Theorem 5.3). Suppose that X is defined over Fq2, gcd(m, λj) = 1 for
j = 1, . . . , r and r < m. Then

(X , Q∞) is Fq2-maximal Castle curve ⇔ X is Fq2-maximal, λ1 = · · · = λr, and m = q+1.

This paper is organized as follows. In Section 2 we introduce the preliminaries and
notation that will be used throughout this paper. In Section 3 we present the main result of
this paper which gives the explicit description of the semigroup H(Q∞) (see Theorem 3.2).
In Section 4 we provide an explicit description of the gap set G(Q∞) (see Proposition 4.1),
we study the Frobenius number and the multiplicity of the semigroup H(Q∞) establishing
a relationship between them (see Proposition 4.6), and provide sufficient conditions for
the semigroup H(Q∞) to be symmetric (see Theorems 4.4 and 4.7). In Section 5, we
characterize certain Fq2-maximal Castle curves of type (X , Q∞) (see Theorem 5.3).

2. Preliminaries and notation

Throughout this article, we let q be the power of a prime p, Fq the finite field with q
elements, and K the algebraic closure of Fq. For a and b integers, we denote by (a, b) the
greatest common divisor of a and b, and by b mod a the smallest non-negative integer
congruent with b modulo a. For c ∈ R, we denote by ⌊c⌋, ⌈c⌉ and {c} the floor, ceiling
and fractional part functions of c respectively. Moreover, to differentiate standard sets
from multisets (that is, sets that can contain repeated occurrences of elements), we use
the usual symbol ‘{}’ for standard sets and the symbol ‘{{}}’ for multisets. For a multiset
M , the set of distinct elements of M is called the support of M and is denoted by M∗, the
number of occurrences of an element x ∈ M∗ in the multiset M is called the multiplicity
of x and is denoted by mM (x), and the cardinality of the multiset M is defined as the
sum of the multiplicities of all elements of M∗. We say that two multisets M1 and M2 are
equal if M∗

1 = M∗
2 and mM1(x) = mM2(x) for each x in the support.

2.1. Numerical semigroups. A numerical semigroup is a subset H of N0 such that H
is closed under addition, H contains the zero, and the complement N0 \H is finite. The
elements of G := N0 \H are called the gaps of the numerical semigroup H and gH := #G
is its genus. The largest gap is called the Frobenius number of H and is denoted by
FH . The smallest nonzero element of H is called the multiplicity of the semigroup and
is denoted by mH . The numerical semigroup H is called symmetric if FH = 2gH − 1.
Moreover, we say that the set {a1, . . . , ad} ⊂ H is a system of generators of the numerical
semigroup H if

H = 〈a1, . . . , ad〉 := {t1a1 + · · ·+ tdad : t1, . . . , td ∈ N0}.
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We say that a system of generators of H is a minimal system of generators if none of
its proper subsets generates the numerical semigroup H . The cardinality of a minimal
system of generators is called the embedding dimension of H and will be denoted by eH .
Let n be a nonzero element of the numerical semigroup H . The Apéry set of n in H is

defined by

Ap(H, n) := {s ∈ H : s− n /∈ H}.
It is known that the cardinality of Ap(H, n) is n. Moreover, several important results are
associated with the Apéry set.

Proposition 2.1. [14, Proposition 2.12] Let H be a numerical semigroup and S ⊆ H
be a subset that consists of n elements that form a complete set of representatives for the
congruence classes of Z modulo n ∈ H. Then

S = Ap(H, n) if and only if gH =
∑

a∈S

⌊a

n

⌋

.

Proposition 2.2. [14, Proposition 4.10] Let H be a numerical semigroup and n be a
nonzero element of H. Let Ap(H, n) = {a0 < a1 < · · · < an−1} be the Apéry set of n in
H. Then H is symmetric if and only if

ai + an−1−i = an−1 for each i = 0, . . . , n− 1.

On the other hand, the following result characterizes the elements of a numerical semi-
group generated by two elements and will be useful in this paper.

Proposition 2.3. [13, Lemma 1] Let x ∈ Z and let n1, n2 ≥ 2 be positive integers such
that (n1, n2) = 1. Then x 6∈ 〈n1, n2〉 if and only if x = n1n2−an1− bn2 for some a, b ∈ N.

2.2. Function Fields. Let X be a nonsingular, projective, absolutely irreducible alge-
braic curve over K with genus g(X ) and K(X ) be the function field of X . For each place
Q ∈ PK(X ), the Weierstrass semigroup H(Q) has the structure of a numerical semigroup.
Moreover, it is a well-known fact that for all but finitely many places Q ∈ PK(X ), the gap
set is always the same. This set is called the gap sequence of X . The places for which the
gap set is not equal to the gap sequence of X are called Weierstrass places.
Several upper bounds for the number of rational places of algebraic curves are available

in the literature. The Hasse-Weil bound states that for a curve X defined over Fq,

#X (Fq) ≤ q + 1 + 2g(X )
√
q.

The curve X is called Fq-maximal if equality holds in the Hasse-Weil bound. Among
other upper bounds for the number of rational places, we have the Lewittes bound [7].

Theorem 2.4 (Lewittes bound). Let X be a curve over Fq and let Q be a rational place
of X . Then

#X (Fq) ≤ qmH(Q) + 1.

For more on numerical semigroups and function fields, we refer to the books [14] and [15]
respectively.
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3. The semigroup H(Q∞)

Consider the algebraic curve

X : ym =
r
∏

i=1

(x− αi)
λi , λi ∈ N, and 1 ≤ λi < m,

where m ≥ 2 and r ≥ 2 are positive integers such that p ∤ m, α1, . . . , αr ∈ K are pairwise
distinct elements, λ0 :=

∑r
i=1 λi, and (m, λ0) = 1. By [15, Proposition 3.7.3], this curve

has genus

(3) g(X ) =
(m− 1)(r − 1) + r −∑r

i=1(m, λi)

2
.

In this section, as one of our main results, we provide an explicit description of the
Weierstrass semigroup H(Q∞) at the only place at infinity Q∞ of X . We start by recalling
the property described in [5, p. 94], which states that, for m and λ positive integers,

(4)

λ−1
∑

i=1

⌊

im

λ

⌋

=
(m− 1)(λ− 1) + (m, λ)− 1

2
.

To prove the main result of this section, we need the following technical lemma.

Lemma 3.1. Let r,m, λ0, λ1, λ2, . . . , λr be positive integers such that λ0 =
∑r

i=1 λi and
r < λ0. For k ∈ {r, . . . , λ0 − 1}, we define

ηk := max

{

ρs1,...,sr :
r
∑

i=1

si = k, 1 ≤ si ≤ λi

}

, where ρs1,...,sr := min
1≤i≤r

⌊

sim

λi

⌋

.

Then the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 is characterized by the following equality of
multisets

(5)

{{

ηk : r ≤ k ≤ λ0 − 1

}}

=

{{⌊

sim

λi

⌋

: 1 ≤ si < λi, 1 ≤ i ≤ r

}}

.

In particular, we have

λ0−1
∑

k=r

ηk =
(m− 1)(λ0 − r)− r +

∑r
i=1(m, λi)

2
.

Proof. First of all, note that, from the definition of ηk, we have that ηk < m for each k.
Furthermore, if ηk = ρu1,...,ur =

⌊ujm

λj

⌋

for some j, where
∑r

i=1 ui = k and r ≤ k ≤ λ0 − 2,

then uj < λj and
ηk = ρu1,...,ur ≤ ρu1,...,uj+1,...,ur ≤ ηk+1.

This proves that ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 < m is a non-decreasing sequence. Let
S1 := {{ηk : r ≤ k ≤ λ0 − 1}} and S2 := {{⌊sim/λi⌋ : 1 ≤ si < λi, 1 ≤ i ≤ r}}.
Now we are going to prove that S1 = S2. From the definition of ηk, we have that
S∗
1 ⊆ S∗

2 . Furthermore, since the multisets S1 and S2 have the same cardinality, to
prove that S1 = S2 it is sufficient to show that mS1(ηk) ≤ mS2(ηk) for each k, that is, if
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mS1(ηk) = n ≥ 1 then there exist distinct elements j1, j2, . . . , jn ∈ {1, . . . , r} and elements
sj1, sj2, . . . , sjn with 1 ≤ sji ≤ λji − 1 such that

ηk =

⌊

sj1m

λj1

⌋

= · · · =
⌊

sjnm

λjn

⌋

.

If n = 1, there is nothing to prove, so we can assume that n > 1. Without loss of
generality, suppose that

(6) ηk−1 < ηk = ηk+1 = · · · = ηk+n−1,

where ηk−1 := 0 if k = r. From the inclusion S∗
1 ⊆ S∗

2 , there exist j1 ∈ {1, . . . , r} and
sj1 ∈ {1, . . . , λj1 − 1} such that ηk =

⌊ sj1m

λj1

⌋

. Now, for each i ∈ {1, . . . , r} we define the

set

Γi :=

{

s ∈ N : ηk ≤
⌊

sm

λi

⌋

and 1 ≤ s ≤ λi

}

.

Next, we prove that Γi 6= ∅ for each i. Since sj1 < λj1, for i 6= j1 we have that
⌊

sj1λi

λj1

⌋

+ 1 ≤ λi and ηk =

⌊

sj1m

λj1

⌋

=

⌊(

sj1λi

λj1

)

m

λi

⌋

≤
⌊(⌊

sj1λi

λj1

⌋

+ 1

)

m

λi

⌋

,

which implies that
⌊ sj1λi

λj1

⌋

+1 ∈ Γi for i 6= j1 and sj1 ∈ Γj1. Let ti be the smallest element

of Γi. From definition of the set Γj1, we have that tj1 ≤ sj1. If tj1 < sj1 then

1 <
m

λj1

≤ m

λj1

+

⌊

tj1m

λj1

⌋

− ηk ≤
m

λj1

+

⌊

(sj1 − 1)m

λj1

⌋

−
⌊

sj1m

λj1

⌋

≤ sj1m

λj1

−
⌊

sj1m

λj1

⌋

,

a contradiction, therefore tj1 = sj1. Also, from definition of the sets Γi, we have that
⌊

(ti − 1)m

λi

⌋

< ηk = ρt1,...,tr for i = 1, . . . , r.

Note that k =
∑r

i=1 ti. In fact, let k′ :=
∑r

i=1 ti. By definition of ηk′, we have that
ηk = ρt1,...,tr ≤ ηk′ , and from (6), we deduce that k ≤ k′. On the other hand, suppose that
(u1, . . . , ur) is an r-tuple such that ηk = ρu1,...,ur ,

∑r
i=1 ui = k, and 1 ≤ ui ≤ λi. If there

exists j ∈ {1, . . . , r} such that uj < tj, then

ηk = ρu1,...,ur = min
1≤i≤r

⌊

uim

λi

⌋

≤
⌊

ujm

λj

⌋

≤
⌊

(tj − 1)m

λj

⌋

< ηk,

a contradiction. Therefore ti ≤ ui for each i = 1, . . . , r, and this implies that k′ ≤ k.
Thus, we conclude that k = k′ =

∑r
i=1 ti.

Now, we show that there exist distinct elements j2, . . . , jn ∈ {1, . . . , r} \ {j1} such that

ηk =

⌊

tj1m

λj1

⌋

= · · · =
⌊

tjnm

λjn

⌋

.

Suppose that ηk <
⌊ tjm

λj

⌋

for each j ∈ {1, . . . , r} \ {j1}, then ηk < ρt1,...,tj1+1,...,tr ≤ ηk+1

since
∑r

i=1 ti = k. This is a contradiction to (6). Therefore there exists j2 ∈ {1, . . . , r} \
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{j1} satisfying

ηk =

⌊

tj1m

λj1

⌋

=

⌊

tj2m

λj2

⌋

and tj2 < λj2,

where the strict inequality tj2 < λj2 follows from the fact that ηk < m. If ηk <
⌊ tjm

λj

⌋

for

each j ∈ {1, . . . , r} \ {j1, j2}, then ηk < ρt1,...,tj1+1,...,tj2+1,...,tr ≤ ηk+2, again a contradiction
to (6). Therefore there exists j3 ∈ {1, . . . , r} \ {j1, j2} such that

ηk =

⌊

tj1m

λj1

⌋

=

⌊

tj2m

λj2

⌋

=

⌊

tj3m

λj3

⌋

and tj3 < λj3.

By continuing this process, we obtain distinct elements j1, j2, . . . , jn such that

ηk =

⌊

tj1m

λj1

⌋

= · · · =
⌊

tjnm

λjn

⌋

and tji < λji for each i = 1, . . . , n.

Finally, from (4), we conclude that

λ0−1
∑

k=r

ηk =

r
∑

i=1

λi−1
∑

s=1

⌊

sm

λi

⌋

=

r
∑

i=1

(m− 1)(λi − 1)− 1 + (m, λi)

2

=
(m− 1)(λ0 − r)− r +

∑r
i=1(m, λi)

2
.

�

Theorem 3.2. Let m ≥ 2 and r ≥ 2 be integers such that p ∤ m. Let X be the algebraic
curve defined by the affine equation

(7) X : ym =

r
∏

i=1

(x− αi)
λi, λi ∈ N, and 1 ≤ λi < m,

where α1, . . . , αr are pairwise distinct elements of K. Define λ0 :=
∑r

i=1 λi and suppose
that (m, λ0) = 1. Then the Weierstrass semigroup at the only place at infinity Q∞ ∈ PK(X )

is given by the disjoint union

H(Q∞) = 〈m, λ0〉 ∪·
λ0−1
⋃

·
k=r

Bk,

where Bk = {mk − k′λ0 : k
′ = 1, . . . , ηk} and ηk are defined as in Lemma 3.1. In partic-

ular,

(8) H(Q∞) = 〈m, λ0, mk − λ0ηk : k = r, . . . , λ0 − 1〉.

Proof. Clearly the result holds if r = λ0, therefore we can assume that r < λ0. We start by
computing some principal divisors in K(X ). Let Pαi

∈ PK(x) be the place corresponding
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to αi ∈ K. For k ∈ {r, . . . , λ0−1}, let s1, . . . , sr be positive integers such that 1 ≤ si ≤ λi

and
∑r

i=1 si = k. Then

(x− αi)K(X ) =
m

(m, λi)

∑

Q|Pαi
Q∈PK(X)

Q−mQ∞, (y)K(X ) =
r
∑

i=1

λi

(m, λi)

∑

Q|Pαi
Q∈PK(X)

Q− λ0Q∞,

and
(∏r

i=1(x− αi)
si

yρs1,...,sr

)

K(X )

=
r
∑

i=1

sim− λiρs1,...,sr
(m, λi)

∑

Q|Pαi
Q∈PK(X)

Q− (mk − λ0ρs1,...,sr)Q∞.

By the definition of ηk, we have that 0 < mk − λ0ηk ∈ H(Q∞) for r ≤ k < λ0 and
therefore

(9) 〈m, λ0〉 ∪
λ0−1
⋃

k=r

Bk ⊆ H(Q∞).

Now, we prove that the union given in (9) is disjoint. For k ∈ {r, . . . , λ0 − 1} and
k′ ∈ {1, . . . , ηk}, an element of Bk can be written as

mk − k′λ0 = mλ0 − (λ0 − k)m− k′λ0.

Therefore, from Proposition 2.3, Bk ∩ 〈m, λ0〉 = ∅. On the other hand, we have that
Bk1 ∩ Bk2 = ∅ for k1 6= k2. In fact, if mk1 − λ0k

′
1 = mk2 − λ0k

′
2 for r ≤ k1, k2 < λ0,

1 ≤ k′
1 ≤ ηk1 , and 1 ≤ k′

2 ≤ ηk2, then m(k1 − k2) = λ0(k
′
1 − k′

2). Since (m, λ0) = 1 and
2− λ0 ≤ k1 − k2 ≤ λ0 − 2, we conclude that k1 = k2.
Finally, we prove that equality holds in (9). Since

g(X ) =
(m− 1)(r − 1) + r −∑r

i=1(m, λi)

2
and g〈m,λ0〉 =

(m− 1)(λ0 − 1)

2
,

from Lemma 3.1 we obtain that

#

(

λ0−1
⋃

·
k=r

Bk

)

=

λ0−1
∑

k=r

ηk =
(m− 1)(λ0 − r)− r +

∑r
i=1(m, λi)

2
= # (H(Q∞) \ 〈m, λ0〉)

and the result follows. �

In general, we have that a minimal system of generators of a numerical semigroup H
has cardinality at most the multiplicity of the semigroup, that is, eH ≤ mH , see [14,
Proposition 2.10]. Since m ∈ H(Q∞), eH(Q∞) ≤ mH(Q∞) ≤ m. However, in general, it is
difficult to obtain a minimal system of generators to H(Q∞) from the system of generators
given in (8).
For example, for the curve y5 = x(x − 1)2 defined over Fq with 5 ∤ q, the system

of generators for the semigroup H(Q∞) provided by Theorem 3.2 is given by H(Q∞) =
〈3, 4, 5〉 and therefore is a minimal system of generators. However, this does not happen in
general. In fact, if ηk = ηk+1 for some k, then we can remove the element m(k+1)−λ0ηk+1

of the system of generators given in (8) since m(k + 1)− λ0ηk+1 = mk − λ0ηk +m. More
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generally, define λ := max1≤i≤r λi. If λ = 1 then H(Q∞) = 〈m, λ0〉 and eH(Q∞) = 2. If
λ > 1, then for i ∈ {⌊m/λ⌋, . . . , m−⌈m/λ⌉} define ki := 0 if there is no k ∈ {r, . . . , λ0−1}
such that ηk = i, and ki := min{k : r ≤ k < λ0, ηk = i} otherwise. Thus, for each i such
that ki 6= 0 and k such that ηk = i, we can write mk − λ0ηk = mki − λ0ηki +m(k − ki).
Therefore, by removing the element mk−λ0ηk from the system of generators given in (8)
we obtain that

H(Q∞) =
〈

m, λ0, mki − λ0ηki : i =
⌊m

λ

⌋

, . . . , m−
⌈m

λ

⌉

and ki 6= 0
〉

and eH(Q∞) ≤ m−
⌈

m
λ

⌉

−
⌊

m
λ

⌋

+ 3 ≤ m.

Example 3.3 (Plane model of the GGS curve). The GGS curve is the first generaliza-
tion of the GK curve, which is the first example of a maximal curve not covered by the
Hermitian curve, see [4]. The GGS curve is an Fq2n-maximal curve for n ≥ 3 an odd
integer, and it is described by the following plane model:

yq
n+1 = (xq + x)h(x)q+1, where h(x) =

q
∑

i=0

(−1)i+1xi(q−1).

This curve only has one place at infinity Q∞. In order to calculate the Weierstrass
semigroup H(Q∞), note that h(x) is a separable polynomial of degree q(q − 1). Using
our standard notation as in Theorem 3.2, we have that m = qn + 1, r = q2, λ0 = q3,
λ1 = · · · = λq = 1, and λq+1 = · · · = λq2 = q + 1. From the characterization of the
multiset S = {{ηk : r ≤ k ≤ λ0 − 1}} given in Lemma 3.1, we have that

S∗ =

{

(β + 1)(qn + 1)

q + 1
: 0 ≤ β ≤ q − 1

}

.

Furthermore, since λ1 = · · · = λq = 1 and λq+1 = · · · = λq2 = q + 1, we have mS(a) =
q2 − q for each a ∈ S∗. Thus, since ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 is a non-decreasing sequence,
we obtain that

ηr = ηr+1 = . . . = ηr+q2−q−1 = qn+1
q+1

ηr+q2−q = ηr+q2−q+1 = . . . = ηr+2(q2−q)−1 = 2(qn+1)
q+1

...

ηr+β(q2−q) = ηr+β(q2−q)+1 = . . . = ηr+(β+1)(q2−q)−1 = (β+1)(qn+1)
q+1

...

ηr+(q−1)(q2−q) = ηr+(q−1)(q2−q)+1 = . . . = ηr+q(q2−q)−1 = q(qn+1)
q+1

.

Therefore,

ηr+β(q2−q)+i =
(β + 1)(qn + 1)

q + 1
for 0 ≤ β ≤ q − 1 and 0 ≤ i ≤ q2 − q − 1.

Moreover, since

m(r + β(q2 − q))− λ0ηr+β(q2−q) = (q − β)
q(qn + 1)

q + 1
for 0 ≤ β ≤ q − 1,
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it follows from Theorem 3.2 that

H(Q∞) =

〈

qn + 1, q3,
q(qn + 1)

q + 1

〉

.

As expected, this description of H(Q∞) matches the result given in [6, Corollary 3.5].

Let n ≥ 3 be an odd integer, m be a divisor of qn + 1, and d be a divisor of q + 1 such
that (m, d(q − 1)) = 1. In [9, Theorem 3.1], the authors study the Fq2n-maximal curve
defined by the affine equation

Yd,m : ym = xd(xd − 1)

(

xd(q−1) − 1

xd − 1

)q+1

.

This curve is a subcover of the second generalization of the GK curve given by Beelen
and Montanucci [2] and has only one place at infinity Q∞. In the following result, using
Theorem 3.2, we compute the Weierstrass semigroup H(Q∞).

Proposition 3.4. Let n ≥ 3 be an odd integer, m be a divisor of qn+1, and d be a divisor
of q + 1 such that (m, d(q − 1)) = 1. Consider the curve

Yd,m : ym = xd(xd − 1)

(

xd(q−1) − 1

xd − 1

)q+1

.

Then the Weierstrass semigroup at the only place at infinity Q∞ is given by

H(Q∞) =

〈

m, λ0, mkβ − λ0

⌊

(β + 1)m

q + 1

⌋

: β = 0, . . . , q − 1

〉

,

where λ0 = dq(q − 1) and kβ = d(q − 1)(β + 1) + 1 +
⌊

βd
q+1

⌋

− βd.

Proof. Using our standard notation, we have that r = d(q−1)+1, λ0 = dq(q−1), λ1 = d,
λ2 = · · · = λd+1 = 1, and λd+2 = · · · = λd(q−1)+1 = q + 1. From the characterization of
S = {{ηk : r ≤ k ≤ λ0 − 1}} given in Lemma 3.1, we obtain that

S∗ =

{⌊

(β + 1)m

q + 1

⌋

: 0 ≤ β ≤ q − 1

}

.

Now, define δβ :=
⌈

(β+1)d
q+1

⌉

−
⌊

(β+1)d
q+1

⌋

for 1 ≤ β ≤ q−1. Since λ1 = d, λ2 = · · · = λd+1 = 1,

and λd+2 = · · · = λd(q−1)+1 = q + 1, we have

mS

(⌊

(β + 1)m

q + 1

⌋)

=

{

d(q − 2), if δβ = 1,
d(q − 2) + 1, if δβ = 0,

or, equivalently,

(10) mS

(⌊

(β + 1)m

q + 1

⌋)

= d(q − 2) + 1− δβ.
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In order to calculate the semigroup H(Q∞), let kβ,i := r + β(d(q − 2) + 1)−∑β−1
j=0 δj + i

for 0 ≤ β ≤ q− 1 and 0 ≤ i ≤ d(q− 2)− δβ . From (10) and since ηr ≤ ηr−1 ≤ · · · ≤ ηλ0−1

is a non-decreasing sequence, we obtain that

ηr = ηr+1 = . . . = ηr+d(q−2)−δ0 =
⌊

m
q+1

⌋

ηr+d(q−2)+1−δ0 = ηr+d(q−2)+2−δ0 = . . . = ηr+2(d(q−2)+1)−1−δ0−δ1 =
⌊

2m
q+1

⌋

...

ηkβ,0
= ηkβ,1

= . . . = ηkβ,d(q−2)−δβ
=

⌊

(β+1)m
q+1

⌋

...

ηkq−1,0 = ηkq−1,1 = . . . = ηkq−1,d(q−2)−δq−1
=

⌊

qm
q+1

⌋

.

Therefore ηkβ,i
=
⌊

(β+1)m
q+1

⌋

for 0 ≤ β ≤ q − 1 and 0 ≤ i ≤ d(q − 2)− δβ. From Theorem

3.2, we conclude that

H(Q∞) =

〈

m, λ0, mkβ,0 − λ0

⌊

(β + 1)m

q + 1

⌋

: β = 0, . . . , q − 1

〉

.

Now the proposition follows from the fact that β−∑β−1
j=0 δj =

⌊

βd
q+1

⌋

for 0 ≤ β ≤ q−1. �

4. The Frobenius number FH(Q∞) and the Multiplicity mH(Q∞)

With the explicit description of the Weierstrass semigroup H(Q∞) given in Theorem
3.2, in this section we study the Frobenius number FH(Q∞), the multiplicity mH(Q∞), and
the relationship between them.
Henceforth, to simplify the notation, we define

(11) ηs :=

{

0, if 0 ≤ s < r,
m− 1, if λ0 ≤ s,

and ǫk := mk − λ0(ηk + 1) for k ∈ N0.

Thus, from Theorem 3.2, we obtain that

(12) H(Q∞) = 〈ǫk + λ0 : k = 1, r, . . . , λ0〉.
We start by noticing that not all the elements ǫr−1, . . . , ǫλ0−1 defined in (11) are neces-

sarily positive, however the following result states that the largest of them is equal to the
Frobenius number FH(Q∞). Moreover, we explicitly describe the gap set G(Q∞).

Proposition 4.1. Using the same notation as in Theorem 3.2, we have that

FH(Q∞) = max{ǫr−1, . . . , ǫλ0−1}
and

G(Q∞) =

{

ma− bλ0 : 1 ≤ a ≤ λ0 − 1, ηa + 1 ≤ b ≤
⌊

am

λ0

⌋}

.
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Proof. From Theorem 3.2, we have that

G(Q∞) = N \
(

〈m, λ0〉 ∪·
λ0−1
⋃

·
k=r

Bk

)

= (N \ 〈m, λ0〉) \
(

λ0−1
⋃

·
k=r

Bk

)

,

where Bk = {mλ0 − (λ0 − k)m − k′λ0 : k
′ = 1, . . . , ηk}. Moreover, from Proposition 2.3,

we know that the elements of N \ 〈m, λ0〉 are of the form mλ0 − am− bλ0, where a and b
are positive integers. Therefore,

G(Q∞) = {mλ0 − am− bλ0 : (a, b) ∈ ∆} ∩ N,

where ∆ = {(a, b) ∈ N2 : ηλ0−a + 1 ≤ b}, and
FH(Q∞) = max

(a,b)∈∆
{mλ0 − am− bλ0}.

By the definition of the set ∆, max(a,b)∈∆{mλ0 − am − bλ0} is attained at a point in
∆ of the form (k, ηλ0−k + 1) for some k ∈ {1, . . . , λ0 − r + 1}, see Figure 1. Thus,
FH(Q∞) = max{ǫr−1, . . . , ǫλ0−1}. Moreover,

G(Q∞) = {mλ0 − am− bλ0 : (a, b) ∈ ∆} ∩ N

= {m(λ0 − a)− bλ0 : 1 ≤ a ≤ λ0 − 1, ηλ0−a + 1 ≤ b} ∩ N

=

{

ma− bλ0 : 1 ≤ a ≤ λ0 − 1, ηa + 1 ≤ b ≤
⌊

am

λ0

⌋}

.

�

1 2 3 λ0−r λ0−r+1

ηλ0−1+1

ηr−1+1

ηλ0−2+1

ηλ0−3+1

ηr+1

...

· · ·

Figure 1. Description of the set ∆
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Now, we provide sufficient conditions to determine whether the semigroup H(Q∞) is
symmetric. For this, we need a remark and a lemma.

Remark 4.2. Due to the characterization of the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 given
in Lemma 3.1, we can see that, for s ∈ N0, ηs+ηr+λ0−1−s = m or ηs+ηr+λ0−1−s = m−1.
In fact, if 0 ≤ s ≤ r − 1 or λ0 ≤ s the assertion is clear. Let k ∈ {r, . . . , λ0 − 1} and
n ∈ N be such that

ηk−1 < ηk = ηk+1 = · · · = ηk+n−1 < ηk+n.

From Lemma 3.1, there exist exactly n distinct elements j1, . . . , jn ∈ {1, . . . , r} and posi-
tive integers sj1, . . . , sjn such that 1 ≤ sji < λji and

ηk =

⌊

sj1m

λj1

⌋

=

⌊

sj2m

λj2

⌋

= · · · =
⌊

sjnm

λjn

⌋

.

Without loss of generality, we can assume that
⌈

sj1m

λj1

⌉

≤
⌈

sj2m

λj2

⌉

≤ · · · ≤
⌈

sjnm

λjn

⌉

and therefore
⌊

(λjn − sjn)m

λjn

⌋

≤
⌊

(λjn−1 − sjn−1)m

λjn−1

⌋

≤ · · · ≤
⌊

(λj1 − sj1)m

λj1

⌋

.

This leads to

ηr+λ0−1−(k+i) =

⌊

(λji+1
− sji+1

)m

λji+1

⌋

for i = 0, . . . , n− 1

and, consequently,

ηk+i + ηr+λ0−1−(k+i) =

⌊

sji+1
m

λji+1

⌋

+

⌊

(λji+1
− sji+1

)m

λji+1

⌋

= m−
(⌈

sji+1
m

λji+1

⌉

−
⌊

sji+1
m

λji+1

⌋)

for i = 0, . . . , n−1. In particular, if (m, λj) = 1 for each j, we obtain that ηs+ηr+λ0−1−s =
m− 1 for s ∈ N0, and if λj divides m for each j, we obtain that ηs + ηr+λ0−1−s = m for
s = r, . . . , λ0 − 1.

Lemma 4.3. For k ∈ N0, the following statements hold:

i) If ηk + ηr+λ0−1−k = m, then ǫk + ǫr+λ0−1−k = ǫr−1 − λ0 and ǫr−1 > ǫk.
ii) If ηk + ηr+λ0−1−k = m − 1, then ǫk + ǫr+λ0−1−k = ǫr−1, and ǫr−1 > ǫk if and only if

0 < ǫr+λ0−1−k.

iii) ǫk < 0 if and only if ηk =
⌊

km
λ0

⌋

.

Proof. i) It is enough to note that

ǫr+λ0−1−k = m(r + λ0 − 1− k)− λ0(ηr+λ0−1−k + 1)

= m(r + λ0 − 1− k)− λ0 (m− ηk + 1)

= m(r − 1)− λ0 −mk + λ0ηk

= ǫr−1 − ǫk − λ0.
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Therefore, ǫr−1 − ǫk = ǫr+λ0−1−k + λ0 > 0.
ii) Similar to item i).
iii) Since mk = λ0ηk+(mk−λ0ηk) and 0 ≤ mk−λ0ηk, we conclude that ηk = ⌊km/λ0⌋

if and only if mk − λ0ηk < λ0. �

Theorem 4.4. With the same notation as in Theorem 3.2,

FH(Q∞) = ǫr−1 and H(Q∞) is symmetric ⇔ λj | m for each j = 1, . . . , r.

Proof. Suppose that H(Q∞) is symmetric and FH(Q∞) = ǫr−1. From (3) we obtain that

FH(Q∞) = m(r − 1)− λ0 = m(r − 1)−
r
∑

j=1

(m, λj).

This implies that λj divides m for each j = 1, . . . , r.
Conversely, assume that λj divides m for each j = 1, . . . , r. From Remark 4.2 we have

that ηk+ηr+λ0−1−k = m for k = r, . . . , λ0−1, and from item i) of Lemma 4.3, ǫr−1 > ǫk for
k = r, . . . , λ0− 1. Therefore, from Proposition 4.1, FH(Q∞) = max{ǫr−1, . . . , ǫλ0−1} = ǫr−1

and

2g(X )− 1 = m(r − 1)−
r
∑

i=j

(m, λj) = m(r − 1)− λ0 = ǫr−1 = FH(Q∞).

�

Example 4.5. From Example 3.3, we know that the Weierstrass semigroup at the only
place at infinity of the GGS curve is given by H(Q∞) = 〈qn + 1, q3, q(qn + 1)/(q + 1)〉.
Therefore, we can determine if H(Q∞) is symmetric and we can calculate the Frobenius
number FH(Q∞). However, due to Theorem 4.4, it is possible to know this without com-
puting the semigroup H(Q∞) explicitly. In fact, since q + 1 divides qn + 1, H(Q∞) is
symmetric and

FH(Q∞) = (qn + 1)(q2 − 1)− q3 = qn+2 − qn − q3 + q2 − 1.

Next, we improve Proposition 4.1 to compute the Frobenius number FH(Q∞) and estab-
lish a relationship between FH(Q∞) and the multiplicity mH(Q∞).

Proposition 4.6. Using the same notation as in Theorem 3.2, the following statements
hold:

i) FH(Q∞) = ǫr−1 if and only if ηs < ⌊sm/λ0⌋ for each s ∈ {r, . . . , λ0 − 1} such that
ηs + ηr+λ0−1−s = m− 1.

ii) FH(Q∞) = maxr−1≤k<λ0

{

ǫk : ηk =
⌊

(k+1−r)m
λ0

⌋}

.

iii) If (m, λj) = 1 for each j = 1, . . . , r, then mH(Q∞) = min{m,m(r − 1)− FH(Q∞)}.
iv) If λj dividesm for each j = 1, . . . , r, then mH(Q∞) = min {m, λ0, ǫr−1 −maxr≤k<λ0 ǫk}.

Proof. i) It follows from Lemma 4.3 and the fact that ηs ≤ ⌊sm/λ0⌋ for all s ∈ N0.
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ii) It is enough to note that, from Lemma 4.3, we can rewrite the Frobenius number
FH(Q∞) as

FH(Q∞) = max
r≤k<λ0

{ǫr−1, ǫk : ǫr+λ0−1−k < 0, ηk + ηr+λ0−1−k = m− 1}

= max
r≤k<λ0

{

ǫr−1, ǫk : ηr+λ0−1−k =

⌊

(r + λ0 − 1− k)m

λ0

⌋

, ηk + ηr+λ0−1−k = m− 1

}

= max
r≤k<λ0

{

ǫr−1, ǫk : ηk =

⌊

(k + 1− r)m

λ0

⌋}

= max
r−1≤k<λ0

{

ǫk : ηk =

⌊

(k + 1− r)m

λ0

⌋}

.

iii) From (12) and Lemma 4.3, we obtain that

mH(Q∞) = min

{

m, λ0, λ0 + min
r≤k<λ0

ǫk

}

= min

{

m, λ0, λ0 + min
r≤k<λ0

{ǫr−1 − ǫr+λ0−1−k}
}

= min

{

m, λ0, λ0 + ǫr−1 − max
r≤k<λ0

ǫr+λ0−1−k

}

= min

{

m, λ0, λ0 + ǫr−1 − max
r≤k<λ0

ǫk

}

= min
{

m,m(r − 1)− FH(Q∞)

}

.

iv) Similar to the proof of item iii). �

Next, we observe that for the curve X defined in (7), the elements of the set {ǫk + λ0 :
k = 0, . . . , λ0 − 1} ⊆ H(Q∞) form a complete set of representatives for the congruence
classes of Z modulo λ0 and

λ0−1
∑

k=0

⌊

ǫk + λ0

λ0

⌋

= g(X ).

Therefore, from Proposition 2.1, the Apéry set of λ0 in the Weierstrass semigroup H(Q∞)
is given by

Ap(H(Q∞), λ0) = {ǫk + λ0 : k = 0, . . . , λ0 − 1} .
We use this description of the Apéry set Ap(H(Q∞), λ0) to characterize the symmetric
Weierstrass semigroups H(Q∞) when (m, λj) = 1 for each j = 1, . . . , r.

Theorem 4.7. Suppose that (m, λj) = 1 for j = 1, . . . , r. Then the followings statements
are equivalent:

i) H(Q∞) = 〈m, r〉.
ii) λ1 = λ2 = · · · = λr.

If in addition r < m, then all these statements are equivalent to the following:

iii) H(Q∞) is symmetric.
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Proof. Clearly the result holds if r = λ0. Suppose that r < λ0.
i) ⇒ ii) : We start by proving that r divides λ0. In fact, since λ0, mr− λ0 ∈ H(Q∞) =

〈m, r〉, there exist α, α′, τ, τ ′ ∈ N0, where τ, τ
′ ≤ m−1 and τ 6= 0, such that λ0 = αm+τr

and mr − λ0 = α′m+ τ ′r. Therefore m(r − α − α′) = r(τ + τ ′). Since H(Q∞) = 〈m, r〉,
(m, r) = 1 and therefore m divides τ + τ ′, where 1 ≤ τ + τ ′ ≤ 2m− 2. This implies that
τ + τ ′ = m and α = −α′. It follows that α = α′ = 0 and λ0 = τr.
Now, let λ := max1≤i≤r λi and note that τr = λ0 =

∑r
i=1 λi ≤ λr, therefore τ ≤ λ. In

the following, we prove that τ = λ, which implies that λ1 = λ2 = · · · = λr.
For β ∈ {1, . . . , τ − 1} and i ∈ {0, . . . , r − 1} we have that

ǫβr+i + λ0 = mr − (r − i)m− (τηrβ+i −mβ)r ∈ H(Q∞) = 〈m, r〉.
Therefore, from Proposition 2.3, it follows that

(13) ηrβ+i ≤
⌊

βm

τ

⌋

for 1 ≤ β ≤ τ − 1 and 0 ≤ i ≤ r − 1.

For β = 1 in (13) we obtain that
⌊

m

λ

⌋

= ηr ≤ ηr+i ≤
⌊

m

τ

⌋

for 0 ≤ i ≤ r − 1,

and for β = τ − 1 and i = r − 1 in (13),

m−
⌈

m

λ

⌉

=

⌊

(λ− 1)m

λ

⌋

= ηλ0−1 = ηr(τ−1)+r−1 ≤
⌊

(τ − 1)m

τ

⌋

= m−
⌈

m

τ

⌉

.

Since (m, λ) = (m, τ) = 1, then
⌊

m
λ

⌋

=
⌊

m
τ

⌋

and therefore ηr+i =
⌊

m
λ

⌋

for 0 ≤ i ≤ r − 1.
Thus, from the characterization of the sequence ηr ≤ ηr+1 ≤ · · · ≤ ηλ0−1 given in (5), we
have that

ηr =

⌊

m

λ1

⌋

=

⌊

m

λ2

⌋

= · · · =
⌊

m

λr

⌋

= η2r−1

and therefore η2r =
⌊

2m
λ

⌋

. Moreover, from Remark 4.2, ηλ0−1−i = m−1−ηr+i =
⌊ (λ−1)m

λ

⌋

for 0 ≤ i ≤ r − 1 and hence ηλ0−r−1 =
⌊ (λ−2)m

λ

⌋

.
For β = 2 in (13) we have that

⌊

2m

λ

⌋

= η2r ≤ η2r+i ≤
⌊

2m

τ

⌋

for 0 ≤ i ≤ r − 1,

and for β = τ − 2 and i = r − 1 in (13),

m−
⌈

2m

λ

⌉

=

⌊

(λ− 2)m

λ

⌋

= ηλ0−r−1 = ηr(τ−2)+r−1 ≤
⌊

(τ − 2)m

τ

⌋

= m−
⌈

2m

τ

⌉

.

Similarly to the previous case, we deduce that
⌊

2m
λ

⌋

=
⌊

2m
τ

⌋

, η2r+i =
⌊

2m
λ

⌋

and ηλ0−r−1−i =
⌊ (λ−2)m

λ

⌋

for 0 ≤ i ≤ r − 1. This implies that η3r =
⌊

3m
λ

⌋

and ηλ0−2r−1 =
⌊ (λ−3)m

λ

⌋

.
By continuing this process, we obtain that

ηrβ+i =

⌊

βm

λ

⌋

for 1 ≤ β ≤ τ − 1 and 0 ≤ i ≤ r − 1.



ON KUMMER EXTENSIONS WITH ONE PLACE AT INFINITY 17

In particular, for β = τ − 1 and i = r − 1 we have that
⌊

(τ − 1)m

λ

⌋

= ηr(τ−1)+r−1 = ηrτ−1 = ηλ0−1 =

⌊

(λ− 1)m

λ

⌋

.

This implies that τ = λ.
ii) ⇒ i) : Suppose that λ1 = λ2 = · · · = λr. Then λ0 = rλr and ηβr+i =

⌊

βm
λr

⌋

for
1 ≤ β ≤ λr − 1 and 0 ≤ i ≤ r − 1. On the other hand, from Theorem 3.2,

H(Q∞) =

〈

m, rλr, r

(

βm− λr

⌊

βm

λr

⌋)

: β = 1, . . . , λr − 1

〉

=

〈

m, rλr, rλr

{

βm

λr

}

: β = 1, . . . , λr − 1

〉

.

Since (m, λr) = 1, there exists β ′ ∈ {1, . . . , λr − 1} such that
{

β′m
λr

}

= 1
λr

and therefore

H(Q∞) = 〈m, r〉.
Now, suppose that r < m.
i) ⇒ iii) : It is clear.
iii) ⇒ i) : We are going to prove that (m, r) = 1. We start by noting two important

facts. First, note that

(14) (ǫk + λ0) ≡ 0 mod m if and only if 0 ≤ k ≤ r − 1.

Second, since r < m and (m, λj) = 1 for each j, then H(Q∞) is symmetric if and only if
mH(Q∞) = r. In fact, for this case we have that g(X ) = (m − 1)(r − 1)/2. Furthermore,
from item iii) of Proposition 4.6, mH(Q∞) = min{m,m(r − 1) − FH(Q∞)}. If H(Q∞) is
symmetric, then FH(Q∞) = 2g(X )− 1 = m(r − 1)− r and

mH(Q∞) = min{m,m(r − 1)− FH(Q∞)} = min{m, r} = r.

Conversely, if mH(Q∞) = r then m(r−1)−FH(Q∞) = r and therefore FH(Q∞) = 2g(X )−1.
This implies that H(Q∞) is symmetric.
Let σ be the permutation of the set {0, . . . , λ0 − 1} such that

Ap(H(Q∞), λ0) = {0 = ǫσ(0) + λ0 < ǫσ(1) + λ0 < · · · < ǫσ(λ0−1) + λ0}.
Since (m, λj) = 1 for j = 1, . . . , r and H(Q∞) is symmetric, then FH(Q∞) = ǫσ(λ0−1) =
m(r − 1)− r. Thus, from Proposition 2.2, we have that

(15) ǫσ(i) + ǫσ(λ0−1−i) = m(r − 1)− λ0 − r for i = 0, . . . , λ0 − 1.

On the other hand, from Proposition 4.3, we know that

(16) ǫσ(i) + ǫr+λ0−1−σ(i) = m(r − 1)− λ0 for i = 0, . . . , λ0 − 1.

Let λ > 0 and 0 ≤ r′ < r be integers such that λ0 = λr + r′, and i1 ∈ {0, . . . , λ0 − 1} be
such that σ(λ0 − 1− i1) = r − 1. Then, from (15),

ǫσ(i1) = m(r − 1)− λ0 − r − ǫσ(λ0−1−i1) = m(r − 1)− λ0 − r − ǫr−1 = −r.

If (ǫσ(i1) + λ0) ≡ 0 mod m, then m divides λ0 − r and therefore λ0 = ms + r for some
integer s. Since (m, λ0) = 1, we conclude that 1 = (m, λ0) = (m,ms + r) = (m, r).
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Otherwise, from (14), σ(i1) ≥ r and therefore there exists i2 ∈ {0, . . . , λ0 − 1} such that
σ(λ0 − 1− i2) = r + λ0 − 1− σ(i1). From (15) and (16), we have that

ǫσ(i2) = m(r−1)−λ0−r−ǫσ(λ0−1−i2) = m(r−1)−λ0−r−ǫr+λ0−1−σ(i1) = ǫσ(i1)−r = −2r.

If (ǫσ(i2) + λ0) ≡ 0 mod m, then m divides λ0 − 2r and therefore (m, r) = 1. Otherwise,
σ(i2) ≥ r and therefore there exists i3 ∈ {0, . . . , λ0 − 1} such that σ(λ0 − 1 − i3) =
r + λ0 − 1− σ(i2) and

ǫσ(i3) = m(r−1)−λ0−r−ǫσ(λ0−1−i3) = m(r−1)−λ0−r−ǫr+λ0−1−σ(i2) = ǫσ(i2)−r = −3r.

By continuing this process, we have that (m, r) = 1 or we obtain a sequence i1, . . . , iλ
such that

σ(ij) ≥ r and ǫσ(ij ) = −jr for 1 ≤ j ≤ λ.

If the latter happens, then 0 < ǫσ(iλ) + λ0 = λ0 − λr = r′ < r, a contradiction because
mH(Q∞) = r. Therefore, (m, r) = 1. Finally, since 〈m, r〉 ⊆ H(Q∞) and g(X ) = (m −
1)(r − 1)/2, we conclude that H(Q∞) = 〈m, r〉. �

5. Maximal Castle curves

In this section, as an application of the results obtained, we characterize certain classes
of Fq2-maximal Castle curves of type (X , Q∞) (that is, Fq2-maximal curves X such that
#X (Fq2) = q2mH(Q∞)+1 and H(Q∞) is symmetric), where X is the curve defined by the
equation ym = f(x), f(x) ∈ Fq2 [x] and (m, degf) = 1, and Q∞ is the only place at infinity
of the curve X . Some examples of Fq2-maximal Castle curves of this type are presented
below:

• The Hermitian curve

yq+1 = xq + x.

• The curve over Fq2 defined by the affine equation

yq+1 = a−1(xq/p + xq/p2 + · · ·+ xp + x),

where p = Char(Fq) and a ∈ Fq2 is such that aq + a = 0 and a 6= 0.

Note that, in all cases, the places corresponding to the roots of the polynomial f(x) are
totally ramified in the extension Fq2(x, y)/Fq2(x), the multiplicities of the roots of f(x)
are equal and m = q + 1. We will show that, under certain conditions, all Fq2-maximal
Castle curves of type (X , Q∞) have these characteristics.

Lemma 5.1. Let X be the algebraic curve given in Theorem 3.2 and let Q∞ be its only
place at infinity. Suppose that X is defined over Fq2, (m, λi) = 1 for i = 1, . . . , r, (X , Q∞)
is a Castle curve, and r < m. Then

X is Fq2-maximal if and only if m = q + 1.

Proof. From the assumptions, we obtain that g(X ) = (m− 1)(r− 1)/2. Since (X , Q∞) is
a Castle curve, H(Q∞) is symmetric and therefore FH(Q∞) = 2g(X )− 1 = mr −m − r.
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Moreover, from iii) of Proposition 4.6, mH(Q∞) = min{m, r} = r. Therefore, X is Fq2-
maximal if and only if

#X (Fq2) = q2r + 1 = q2 + 1 + q(m− 1)(r − 1).

Thus, the result follows. �

Lemma 5.2. Let X be the algebraic curve given in Theorem 3.2 and let Q∞ be its only
place at infinity. Suppose that X is defined over Fq2, m = q+1, r < q+1, (q+1, λi) = 1
for i = 1, . . . , r, and X is Fq2-maximal. The following statements are equivalent:

i) H(Q∞) is symmetric.
ii) #X (Fq2) = q2mH(Q∞) + 1.
iii) λ1 = · · · = λr.

Proof. Note that from the hypotheses we have that g(X ) = q(r − 1)/2 and therefore
#X (Fq2) = q2 + 1 + 2g(X )q = q2r + 1.
i) ⇔ ii) : It is enough to note that

H(Q∞) is symmetric ⇔ FH(Q∞) = qr − q − 1

⇔ mH(Q∞) = r (from Proposition 4.6)

⇔ #X (Fq2) = q2mH(Q∞) + 1.

i) ⇔ iii) : This follows directly from Theorem 4.7. �

We summarize these results in the following theorem.

Theorem 5.3. Let X be the algebraic curve defined in Theorem 3.2 and let Q∞ be its
only place at infinity. Suppose that X is defined over Fq2, (m, λi) = 1 for i = 1, . . . , r,
and r < m. Then the following statements are equivalent:

i) (X , Q∞) is a Fq2-maximal Castle curve.
ii) (X , Q∞) is a Castle curve and m = q + 1.
iii) X is Fq2-maximal, H(Q∞) is symmetric, and m = q + 1.
iv) X is Fq2-maximal, #X (Fq2) = q2mH(Q∞) + 1, and m = q + 1.
v) X is Fq2-maximal, λ1 = · · · = λr, and m = q + 1.

Finally, we note that for the case when λi dividesm for each i = 1, . . . , r, the Weierstrass
semigroup H(Q∞) is symmetric, see Theorem 4.4. Therefore, by assuming that X is Fq2-
maximal, we conclude that

(X , Q∞) is Fq2-maximal Castle curve if and only if #X (Fq2) = q2mH(Q∞) + 1.

6. Acknowledgment

I would like to thank Professors Luciane Quoos and Rohit Gupta, as well as the anony-
mous referees for their valuable comments and suggestions that improved the presentation
of this paper.



20 ERIK A. R. MENDOZA

References

[1] M. Abdón, H. Borges, and L. Quoos. Weierstrass points on Kummer extensions. Adv. Geom.,
19(3):323–333, 2019.

[2] P. Beelen and M. Montanucci. A new family of maximal curves. J. Lond. Math. Soc. (2), 98(3):573–
592, 2018.

[3] A. S. Castellanos, A. M. Masuda, and L. Quoos. One- and two-point codes over Kummer extensions.
IEEE Trans. Inform. Theory, 62(9):4867–4872, 2016.
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