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RATIONAL POINTS OF LATTICE IDEALS ON A TORIC

VARIETY AND TORIC CODES

MESUT ŞAHİN

Abstract. We show that the number of rational points of a subgroup inside
a toric variety over a finite field defined by a homogeneous lattice ideal can
be computed via Smith normal form of the matrix whose columns constitute
a basis of the lattice. This generalizes and yields a concise toric geometric
proof of the same fact proven purely algebraically by Lopez and Villarreal
for the case of a projective space and a standard homogeneous lattice ideal
of dimension one. We also prove a Nullstellensatz type theorem over a finite
field establishing a one to one correspondence between subgroups of the dense
split torus and certain homogeneous lattice ideals. As application, we compute
the main parameters of generalized toric codes on subgroups of the torus of
Hirzebruch surfaces, generalizing the existing literature.

1. Introduction

Let Σ be a complete simplicial fan with rays generated by the lattice vectors
v1, . . . ,vr ∈ Zn. Each cone σ ∈ Σ defines an affine toric variety Uσ over a field K

whose ring of regular functions is the semigroup ring K[σ̌∩Zn]. Gluing these affine
pieces in a standard way, we obtain the split toric variety XΣ as an abstract variety
over K. The Cox ring S = K[x1, . . . , xr ] of XΣ is graded naturally by the group

ClXΣ, i.e. we have the decomposition S =
⊕

α∈ClXΣ

Sα, where Sα is the K-vector

space spanned by the monomials of degree α.
By a celebrated result due to Cox in [6], K-rational points of a toric variety X :=

XΣ over an algebraic closure K of K, is identified with the orbits in the Geometric
Invariant Theory quotient [K

r \ V (B)]/G, see Section 2 for details. It follows that
the K-rational points X(K) of X can have representatives with coordinates in K.
Thus, we can study K-rational points of a subvariety ofX cut out by a ClXΣ-graded
(or simply homogeneous) ideal J using this correspondence:

VX(K)(J) = {[P ] ∈ [Kr \ V (B)]/G : F (P ) = 0, for any homogeneous F ∈ J}.

Our main motivation comes from immediate applications to error-correcting
codes defined on toric varieties over a finite field K = Fq. In this regard, we
assume that the class group ClXΣ is free throughout, which does not harm the
generality, as the codes on a singular toric variety survive when the singularity is
resolved and smooth complete toric varieties have a torsion-free class group, by [7,
Proposition 4.2.5].
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For any α and any subset Y = {[P1], . . . , [PN ]} consisting of some Fq-rational
points of X , we have the following evaluation map for K = Fq:

(1.1) evY : Sα → KN , F 7→ (F (P1), . . . , F (PN )) .

The image Cα,Y = evY (Sα) is a linear code, called a generalized toric code. The
three basic parameters of Cα,Y are block-length which is N , the dimension which
is K = dimFq

(Cα,Y ), and the minimum distance δ = δ(Cα,Y ) which is the minimum
of the numbers of nonzero components of nonzero vectors in Cα,Y .

When Y = TX(Fq) is the Fq-rational points of the maximal torus of X we get
the classical toric code examined for the first time by Hansen in [12] and studied
further in e.g. [16, 26, 3, 27, 18, 5] showcasing some champion codes. Although
the block-length of Cα,Y equals N = (q− 1)n in this classical case, its computation
depends on the way Y is presented in the general case. For instance, if Y = YQ is
parameterised by the monomials whose power is a column of an integer matrix Q,
then some algorithms are given for computing the length N = |Y |, see [25, 1]. The
vanishing ideal I(Y ) ⊂ S of Y , which is generated by homogeneous polynomials
vanishing on Y , is relevant in the computation of the other parameters as well.
Namely, the kernel of evY is just the subspace Iα(Y ) := I(Y ) ∩ Sα, and hence the
dimension K = dimFq

(Cα,Y ) is the value HY (α) := dimFq
Sα − dimFq

Iα(Y ) of the
multigraded Hilbert function HY of Y , see [29]. The minimum distance function
of I(Y ) is introduced and is related to the minimum distance of Cα,Y in [21] for
the case of the projective space X = Pn. The ideal I(YQ) is a lattice ideal IL for a
unique lattice L ⊆ Zr of rank n as shown in [25, 8, 1]. Moreover, every subgroup
of TX(Fq) is not only of the form YQ but also is the common zeroes VX(Fq)(IL) of
binomials generating a lattice ideal IL, see [28, Section 3].

The present paper aims mainly to develop methods for computing parameters
of generalized toric codes Cα,Y from subgroups Y = VX(Fq)(IL) of TX . Before we
state our main results, we need to introduce a little more notation.

Let B be an r × n matrix whose columns constitute a basis for L; let A and C
be unimodular matrices of sizes r and n, respectively, so that

D = ABC = [d1e1| · · · |dnen]

is the Smith-Normal form of B, where e1, . . . , en ∈ Zr . These di’s are known as the
invariant factors having the property that di divides di+1 for each i ∈ [n − 1] :=
{1, . . . , n − 1} and that the order of the torsion part T (Zr/L) of the group Zr/L
is d1 · · · dn, by the fundamental structure theorem for finitely generated abelian
groups, see [14, pp. 187—188].

We first observe in Proposition 3.3 that the common solutions VX(K)(IL) of
polynomials in IL lie in the torus TX , for any field K.

Then, we count characters to see the number of K-rational points is finite:
|VX(K)(IL)| ≤ d1 · · · dn. Furthermore, it meets this upper bound if and only if
K has all the di-th roots of unity, for every i ∈ [n], see Theorem 3.7.

Let Y be a subgroup of TX(Fq). Then, I(Y ) = IL for a unique lattice L with
(q − 1)Lβ ⊆ L ⊆ Lβ, see Lemma 4.2. Moreover, the number of Fq-rational points
in Y is given in Theorem 4.4 by

|Y | = |VX(Fq)(IL)| = |Lβ/L| = d1 · · · dn.

Therefore, the length of the code Cα(Y ) will be d1 · · · dn.
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Furthermore, we observe that the set VX(Fq)(IL) of Fq-rational points coincide

with the set of Fq-rational points VX(IL) := VX(Fq)
(IL) in Lemma 5.1 for lattices

with (q − 1)Lβ ⊆ L ⊆ Lβ. As a consequence, we also prove a Nullstellensatz
type result over the finite field Fq saying that I(VX(IL)) = IL establishing a 1 − 1
correspondence between the subgroups VX(IL) and the lattice ideals IL, where
(q − 1)Lβ ⊆ L ⊆ Lβ, see Theorem 5.2. This result will eliminate the need for an
algorithm to compute the vanishing ideal of the subgroup VX(IL), which will save
time in search of codes with good parameters. In literature, Nullstellensatz type
results over finite fields have been obtained (see [10] for a nice survey) and used
effectively for computing the basic parameters of evaluation codes on subvarieties
of affine and projective spaces, see [15, Theorems 3.12, 3.13] and [25, Corollary 4.4].

If IL is a homogeneous ideal of dimension d = r − n, then its degree is just
the constant Hilbert polynomial, which is computed to be deg(IL) = |Lβ/L| =
d1 · · · dn, in Theorem 6.3, generalizing the nice result [19, Theorem 3.13]. This will
be nothing but the mixed volume of the Newton polytopes of binomials generating
IL by Corollary 6.5. It is worth to mention [24, Theorem 4.6] also generalizing [19,
Theorem 3.13] and giving a nice formula for the degree of IL, when X is an affine
space and L is an arbitrary lattice, see also [30, Theorem 9.4.2].

Finally, we uncover the structure and give two descriptions for the points of the
subgroup cut out by the lattice ideal IL. More precisely, we have

VX(K)(IL) = 〈[P1]〉 × · · · × 〈[Pn]〉,
for the point [Pi] = [ηai1

i : · · · : ηair

i ], where ηi is a primitive di-th root of unity in
K, for each i ∈ [n]. In addition,

VX(Fq)(IL) = YQ = {[tq1 : · · · : tqr ]|t ∈ (F∗
q)

s}
is parameterized by the columns of the matrix Q = [q1q2 · · ·qr], whose i-th row is
(q − 1)/di times the i-th row of the matrix A, see Theorem 7.1.

As application, we compute the main parameters of generalized toric codes on
subgroups of the torus of Hirzebruch surfaces, generalizing the existing literature,
see Theorem 8.4. The parameterization above is especially useful in computing the
minimum distance.

2. preliminaries

In this section we fix our notation and recall standard facts from toric geometry
relying on the most recent wonderful book [7], although there are other well known
excellent books.

Let Σ be a complete simplicial fan with rays generated by the lattice vectors
v1, . . . ,vr ∈ Rn. The fan gives the following short exact sequence:

(2.1) P : 0 // Zn φ
// Zr β

// Zd // 0 ,

where φ denotes the matrix [v1 · · ·vr]
T and d = r−n is the rank of the class group

ClX of X := XΣ. Denote by Lβ the key sublattice of Zr which is isomorphic to
Zn via φ, whose basis is given by the columns u1, . . . ,un of φ.

The homogeneous coordinate ring K[x1, . . . , xr] of the toric variety X over K

is graded naturally by the columns of the matrix β via deg(xj) = βj , for each
j ∈ [r]. A polynomial whose monomials xa1

1 · · ·xar
r have the same degree α =

a1β1 + · · · + arβr is called β-graded, Lβ-homogeneous or just homogeneous when
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there is no harm of confusion. We are interested in sublattices L of Lβ and the
Lβ-homogeneous lattice ideals they define in the Cox ring K[x1, . . . , xr] of X(K):

IL = 〈xm
+ − xm

− |m = m+ −m− ∈ L〉.
Applying Hom(−,K∗

) functor to P we get the following dual short exact se-

quence since K
∗
is divisible:

(2.2) P∗ : 1 // G
i
// (K

∗
)r

π
// (K

∗
)n // 1 ,

where π : P 7→ (xu1(P ), . . . ,xun(P )) is expressed using the notation

xa(P ) = pa1
1 · · · par

r for P = (p1, . . . , pr) ∈ (K∗)r and for a = (a1, . . . , ar) ∈ Zr.

Notice also that the algebraic group G = ker(π) is the zero locus in (K
∗
)r of the

toric (prime lattice) ideal ILβ
:

V (ILβ
) ∩ (K

∗
)r : = {P ∈ (K

∗
)r | (xm

+ − xm
−

)(P ) = 0 for allm ∈ Lβ}
= {P ∈ (K

∗
)r | xm(P ) = 1 for allm ∈ Lβ},

where V (J) denotes the usual affine subvariety of K
r
cut out by the ideal J .

As proved by Cox in [6], when K is an algebraic closure of K, the toric variety

X over K, is isomorphic to the geometric quotient [K
r \ V (B)]/G, where B is the

monomial ideal in K[x1, . . . , xr] generated by the monomials

xσ̂ = Πρi /∈σ xi corresponding to cones σ ∈ Σ.

Hence, K-rational points X(K) are orbits [P ] := G ·P , for P ∈ Kr \V (B). By (2.2),

we have TX = (K
∗
)r/G and since the toric variety is split we have TX(K) ∼= (K∗)n.

By resolving the singularity, if needed, we may assume without loss of generality
that there is at least one smooth cone σ ∈ Σ. Hence, the first n rows of the matrix
φ in (2.1) are v1 = e1, . . . ,vn = en. Thus, the map π in (2.2) becomes

π(x1, . . . , xr) = (x1x
u1−e1 , . . . , xnx

un−en).

Hence, given (t1, . . . , tn) ∈ (K
∗
)n, solving xix

un−en = ti, we get

xi = tix
ui−ei = tix

−un+1,i

n+1 · · ·x−ur,i
r , for all i ∈ [n].

As a result, the set π−1(t1, . . . , tn) consists of the points

(t1λ
−un+1,1

1 · · ·λ−ur,1

d , . . . , tnλ
−un+1,n

1 · · ·λ−ur,n

d , λ1, . . . , λd)(2.3)

for (λ1, . . . , λd) = (xn+1, . . . , xr) ∈ (K
∗
)d, yielding the parameterization:

G = {(λ−un+1,1

1 · · ·λ−ur,1

d , . . . , λ
−un+1,n

1 · · ·λ−ur,n

d , λ1, . . . , λd) : λi ∈ K
∗}.

When (t1, . . . , tn) ∈ (K∗)n, there is a point P = (t1, . . . , tn, 1 . . . , 1) ∈ (K∗)r

with π(P ) = (t1, . . . , tn). Therefore, points of TX(K) = (K∗)
r
/G have repre-

sentatives with components from K∗. Furthermore, equivalence of two points
(x1, . . . , xr), (x

′
1, . . . , x

′
r) ∈ (K∗)

r
with respect to the action of G and that of G(K)

are the same. This is because, when G · (x1, . . . , xr) = G · (x′1, . . . , x′r), there is a

point (g1, . . . , gr) ∈ G ⊂ (K
∗
)r with xi = gix

′
i for all i ∈ [r]. In particular, we have

xn+i = λix
′
n+i forcing λi = xn+i/x

′
n+i ∈ K, for all i ∈ [d].

For an Lβ-graded ideal J , we introduce the subvariety of the toric variety X
defined by J as follows

VX(J) = {[P ] ∈ X(K) : F (P ) = 0, for any homogeneous F ∈ J}.
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Its K-rational points form the subset

VX(K)(J) = {[P ] ∈ X(K) : F (P ) = 0, for any homogeneous F ∈ J}.
Therefore, any point [P ] ∈ VX(K)(J) is an equivalence class G ·P of a point P from

V (J) \ V (B) ⊆ Kr \ V (B), for the subgroup G ⊂ (K
∗
)r.

As the elements of the algebraic torus (K
∗
)r in P∗ are already identified with the

characters ρ : Zr → K
∗
and TX(K) = (K∗)r/G, we take the approach to investigate

characters ρ : Zr → K∗ in order to compute the number of K-rational points of the
lattice ideal IL on the toric variety X .

3. Subgroups defined by lattice ideals over any field

In this section, we study subgroups of the torus TX defined by lattice ideals IL
inside K[x1, . . . , xr ], which is an Lβ-graded ring via deg(xi) = βi, where βi is the
i-th column of the matrix β in (2.1) and L is a sublattice of Lβ.

First of all, rankLβ = n since Lβ is isomorphic to Zn via the map φ in the
sequenceP in (2.1). On the other hand, it is well-known that dim J = r−height(J),
where dim J is the Krull dimension of the quotient ring K[x1, . . . , xr]/J . So, we
have

rankL = n = height(IL) ⇐⇒ dim IL = d = r − n.

As the vanishing ideals of subgroups of the torus TX are Lβ-homogeneous lattice
ideals of Krull-dimension d by [28, Proposition 2.6], and IL is Lβ-homogeneous if
and only if L ⊆ Lβ by [28, Proposition 2.3], we focus on lattices L satisfying L ⊆ Lβ

and rankL = n.

Lemma 3.1. Let L ⊆ Lβ and rankL = n. Then, ℓLβ ⊆ L for the order ℓ = |Lβ/L|.
Proof. Since Lβ/L is a finite group of order ℓ, we have ℓ(m + L) = L, for every
m ∈ Lβ. This means that ℓm ∈ L for all m ∈ Lβ. �

Lemma 3.2. L ⊆ L′ if and only if IL ⊆ IL′ .

Proof. (⇒:) If L ⊆ L′, then every m ∈ L lies in L′. Therefore, every binomial

generator xm
+ − xm

−

of IL lies in IL′ . So, IL ⊆ IL′ .

(⇐:) Assume that IL ⊆ IL′ and m ∈ L. Then, the binomial xm
+ − xm

−

of IL lies
in IL′ . It follows from [19, Lemma 3.2] that m ∈ L′. �

Proposition 3.3. Let L ⊆ Lβ and rankL = n. Then, VX(K)(IL) is a subgroup of
TX(K).

Proof. By Lemma 3.1, we have ℓLβ ⊆ L ⊆ Lβ for the order ℓ = |Lβ/L|. As
smaller lattices correspond to smaller lattice ideals by Lemma 3.2, it follows that
IℓLβ

⊆ IL ⊆ ILβ
. Thus, we have the inclusions below:

{[1]} = VX(K)(ILβ
) ⊆ VX(K)(IL) ⊆ VX(K)(IℓLβ

),

where [1] denotes the orbit of the point (1, . . . , 1) ∈ Kr \V (B). So as to prove that
VX(K)(IL) is a subset of the torus TX(K), it suffices to reveal that VX(K)(IℓLβ

) ⊆
TX(K). Given any point [P ] ∈ VX(K)(IℓLβ

), we have P ∈ V (IℓLβ
) \ V (B). By

definition, P ∈ V (IℓLβ
) exactly when xℓm+

(P ) = xℓm−

(P ) for all m = m+−m− ∈
Lβ. Since x

ℓm+

(P ) = xℓm−

(P ) is equivalent to xm
+

(P ℓ) = xm
−

(P ℓ), it follows that
P ∈ V (IℓLβ

) if and only if P ℓ ∈ V (ILβ
). As B is a monomial ideal, P /∈ V (B) if and

only if P ℓ /∈ V (B). Thus, P ∈ V (IℓLβ
)\V (B) implies that P ℓ ∈ V (ILβ

)\V (B) = G.
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As G lies in the torus (K
∗
)r, we have P ∈ (K∗)

r
yielding [P ] ∈ TX(K). Hence,

VX(K)(IL) ⊆ TX(K).
If [P ], [Q] ∈ VX(K)(IL), then we have the following:

xm
+

(P ·Q−1) = xm
+

(P )xm
+

(Q)−1 = xm
−

(P )xm
−

(Q)−1 = xm
−

(P ·Q−1).

Thus, [P ] · [Q]−1 lies in VX(K)(IL) demonstrating that it is indeed a subgroup. �

Remark 3.4. It is easy to see that VX(IL)∩TX is a subgroup of TX , when we only
have L ⊆ Lβ, see also [28, Corollary 2.4]. But, if rankL < n, then VX(IL) need
not lie inside the torus TX, see [28, Example 3.6].

For any m = m+ − m− ∈ L, the binomial xm
+ − xm

− ∈ IL, hence we have

xm
+

(P ) = xm
−

(P ) for a point [P ] ∈ VX(K)(IL). If we further assume that L ⊆ Lβ

and rankL = n, then xm(P ) = 1 as VX(K)(IL) ⊆ TX(K). Therefore, a point
[P ] ∈ VX(K)(IL), defines a character χP : Lβ/L→ K∗ via

χP (m+ L) := xm(P ) = pm1
1 · · · pmr

r ,

for all m = (m1, . . . ,mr) ∈ L under these circumstances.

Lemma 3.5. Let L ⊆ Lβ and rankL = n. Then the groups VX(K)(IL) and
Hom(Lβ/L,K

∗) are isomorphic.

Proof. Let ψ : VX(K)(IL) → Hom(Lβ/L,K
∗) be defined by [P ] → χP .

• The map ψ is well-defined, for if g ∈ G = V (ILβ
) ∩ (K

∗
)r, then χgP = χP ,

since for all m ∈ Lβ, we have

xm(gP ) = gmxm(P ) = xm(P ).

• ψ is a homomorphism, since χP ·P ′ = χP · χP ′ .
• It is injective, as χP (m + L) = xm(P ) = 1, for all m ∈ Lβ , implies that
P ∈ G that is [P ] = [1].

• It is surjective, as we prove now. Let {u1, . . . ,un} be the Z-basis for the
lattice Lβ. For a given χ : Lβ/L→ K∗, let ti = χ(ui + L) for each i ∈ [n].
Since P∗ is exact and we can choose (λ1, . . . , λn) ∈ (K∗)d in (2.3), there is
a point P ∈ (K∗)r such that π(P ) = (xu1(P ), . . . ,xun(P )) = (t1, . . . , tn).
Every element m ∈ Lβ is written as m = c1u1 + · · · + cnun for some
(c1, . . . , cn) ∈ Zn. Thus, we have

χ(m+ L) = tc11 · · · tcnn = (xu1(P ))c1 · · · (xun(P ))cn = χP (m + L).

If m ∈ L, then it follows that xm(P ) = χ(m+L) = 1 for all m ∈ L and so
[P ] ∈ VX(IL). Hence, we have χ = χP .

These complete the proof. �

Lemma 3.6. Let L ⊆ Lβ and rankL = n. If di is an invariant factor of the
group Lβ/L and Ci := {c ∈ K∗ : cdi = 1} is the group of di-th roots of unity lying
inside K, for each i ∈ [n], then the groups Hom(Lβ/L,K

∗) and C1 × · · · × Cn are
isomorphic.

Proof. Let {m1, . . . ,mn} be a Z-basis for the lattice Lβ such that

{d1m1, . . . , dnmn}
is a Z-basis of L.
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We regard elements in Hom(Lβ/L,K
∗) as (partial) characters ρ : Lβ → K∗

whose restriction to L is the identity 1L. So, we have ρ(mi)
di = ρ(dimi) = 1,

for each i ∈ [n]. Since ρ is determined by the values ρ(m1), . . . , ρ(mn), the map
Θ : Hom(Lβ/L,K

∗) → C1 × · · · × Cn, defined by Θ(ρ) = (ρ(m1), . . . , ρ(mn)) is
well-defined.

• Θ is a homomorphism as Θ(ρ · ρ′) = Θ(ρ) ·Θ(ρ′).
• It is injective, since Θ(ρ) = (ρ(m1), . . . , ρ(mn)) = (1, . . . , 1) =⇒ ρ = 1Lβ

.
• Θ is surjective as we demonstrate below.

Every choice of (c1, . . . , cn) ∈ C1 × · · · × Cn determines an element

ρ : Lβ → K∗ via ρ(k1m1 + · · ·+ knmn) = ck1
1 · · · ckn

n .

Furthermore, if m = k1m1 + · · · + knmn ∈ L then di divides ki for all i
and thus ρ(m) = 1, as ck1

1 = · · · = ckn
n = 1. Hence, ρ ∈ Hom(Lβ/L,K

∗).

Thus, Θ is the required isomorphism, completing the proof. �

Theorem 3.7. Let L ⊆ Lβ and rankL = n. If di is an invariant factor of
the group Lβ/L and Ci := {c ∈ K∗ : cdi = 1} is the group of di-th roots of
unity lying inside K, for each i ∈ [n], then VX(K)(IL) ∼= C1 × · · · × Cn, and thus
the number of K-rational points |VX(K)(IL)| is |C1| · · · |Cn| ≤ d1 · · · dn. Moreover,
|VX(K)(IL)| = d1 · · · dn ⇐⇒ K has all the di-th roots of unity, for every i ∈ [n].

Proof. It follows from Lemma 3.5 that VX(K)(IL) ∼= Hom(Lβ/L,K
∗). We also have

Hom(Lβ/L,K
∗) ∼= C1×· · ·×Cn by Lemma 3.6, whence VX(K)(IL) ∼= C1×· · ·×Cn.

Since |Ci| ≤ di in general, we have |VX(IL)| = |C1| · · · |Cn| ≤ d1 · · · dn.
The second part follows, since |Ci| = di ⇐⇒ K has all the di-th roots of unity,

for every i ∈ [n]. �

4. Subgroups defined by lattice ideals over a finite field

In this section, we compute the number of Fq-rational points of a subgroup of
the algebraic group TX , where X is a toric variety over the finite field Fq. By the
virtue of Theorem 3.7, this amounts to computing the order of the cyclic subgroup
Ci of di-th roots of unity lying inside the cyclic group F∗

q of order q − 1.

Theorem 4.1. If L ⊆ Lβ and rankL = n, then the number of Fq-rational points
is given by |VX(Fq)(IL)| = (d1, q − 1) · · · (dn, q − 1), where (di, q − 1) is the greatest
common divisor of q − 1 with the invariant factor di.

Proof. Fix i ∈ [n]. Recall that Ci = {c ∈ K∗ : cdi = 1} is a cyclic subgroup of F∗
q

of order |Ci|, and so |Ci| divides q − 1. The order |Ci| of a generator of Ci divides
di, as well. Hence, |Ci| divides (di, q− 1). On the other hand, as (di, q− 1) divides
q− 1, there is a cyclic subgroup of F∗

q of order (di, q− 1), which is clearly contained
in Ci, since (di, q − 1) divides di. Therefore, |Ci| = (di, q − 1).

The proof now follows directly from Theorem 3.7. �

Before going further, let us single out lattices corresponding to subgroups of TX .

Lemma 4.2. If Y is a subgroup of TX(Fq) then I(Y ) = IL for a unique lattice
L with (q − 1)Lβ ⊆ L ⊆ Lβ. Therefore, subgroups of TX(Fq) are of the form
VX(Fq)(IL) for lattices with (q − 1)Lβ ⊆ L ⊆ Lβ.
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Proof. By [28, Theorem 2.9] I(Y ) = IL for a unique lattice L with L ⊆ Lβ. Since
Y ⊆ TX(Fq) implies I(TX(Fq)) ⊆ I(Y ) and we have I(TX(Fq)) = I(q−1)Lβ

by [28,
Corollary 4.14 (ii)], the first claim follows from Lemma 3.2.

If Y is a subgroup of TX(Fq), then Y = VX(Fq)(I(Y )) by [28, Lemma 2.8] which is
nothing but VX(Fq)(IL) by above for a unique lattice L with (q−1)Lβ ⊆ L ⊆ Lβ . �

Therefore, in order the compute the order of a subgroup of the torus TX(Fq) of
X , it is enough to focus on lattices with (q − 1)Lβ ⊆ L ⊆ Lβ.

Lemma 4.3. Let L ⊆ Lβ and rankL = n. Then, (q − 1)Lβ ⊆ L if and only if
exp(Lβ/L) = dn divides q− 1. Recall that the exponent exp(H) of a finite group H
is the least common multiple of the orders of all elements in H.

Proof. Recall that Lβ has a basis {m1, . . . ,mn} such that {d1m1, . . . , dnmn} is a
basis of L, where di’s are the invariant factors of Lβ/L. By the structure theorem
for finite abelian groups Lβ/L and Zd1 ⊕ · · ·⊕Zdn

are isomorphic. Since di divides
di+1 for each i ∈ [n− 1], the exponent of Lβ/L is dn.

Therefore, if (q − 1)Lβ ⊆ L, then (q − 1)mi ∈ L. Since {d1m1, . . . , dnmn} is
a basis of L, it follows immediately that di divides q − 1, for every i ∈ [n]. Thus,
exp(Lβ/L) divides q − 1. Conversely, if the exponent divides q − 1, then each di
divides q− 1, and hence (q− 1)mi ∈ L yielding to the inclusion (q− 1)Lβ ⊆ L. �

We are now ready to prove the main result of the section yielding to an efficient
method to count the number of Fq-rational points of the subgroup VX(IL) of TX
using a basis of L.

Theorem 4.4. If (q − 1)Lβ ⊆ L ⊆ Lβ, then the number of Fq-rational points is
given by |VX(Fq)(IL)| = |Lβ/L| = d1 · · · dn.
Proof. By Lemma 4.3, it follows that di divides q − 1, and hence (di, q − 1) = di,
for every i ∈ [n]. Therefore, |VX(Fq)(IL)| = d1 · · · dn, by Theorem 4.1. �

Remark 4.5. Theorem 4.4 follows also from Lemma 3.5 together with a more
general fact which is communicated in private to us by Laurence Barker: given a
finite group A and a finite field Fq, Hom(A,F∗

q) is isomorphic to A if and only if
exp(A) divides q − 1. The proof provided by Barker is as follows.

The usual dual of A, sometimes called the Pontryagin dual, is defined to be
A∗ = Hom(A,Q/Z). The group Q/Z, is isomorphic to the torsion subgroup of C∗.
So A∗ can be identified with the group of irreducible complex characters of A.

The standard result that A is non-canonically isomorphic to A∗ is plain when A
is cyclic. It is easy to see that (A1 × A2)

∗ ∼= A∗
1 × A∗

2. So the general case follows
by decomposing A as a direct product of cyclic groups.

Viewing finite cyclic groups as embedded in each other wherever possible, then
Q/Z is the union of all those groups, in other words, the colimit of the diagram
of embeddings. In particular, A∗ can be identified with Hom(A,C) for any cyclic
group C that is sufficiently large in the sense where C′ ≤ C provided |C′| divides
|C|. The exact criterion for C to be sufficiently large is that every homomorphism
A→ Q/Z has image contained in the subgroup isomorphic to C. That is equivalent
to saying that the exponent of A divides |C|. Taking C = F∗

q completes the proof.

Corollary 4.6. If (q − 1)Lβ ⊆ L ⊆ Lβ, then |VX(Fq)(IL)| = | det ML|, where ML is
the matrix with entries bij ∈ Z such that the j-th basis element of L is written as
b1ju1 + · · ·+ bnjun in terms of the basis {u1, . . . ,un} of Lβ.
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Proof. By Theorem 4.4, we have |VX(Fq)(IL)| = |Lβ/L|. Recall that the map φ of
(2.1) is an isomorphism between Zn and Lβ. If Λ is the sublattice of Zn which is
isomorphic to L under φ, then the order |Lβ/L| = |Zn/Λ|. Let ML := {b1, . . . ,bn}
be a subset of Zn constituting a Z-basis for the lattice Λ. By abusing the notation,
let us denote by ML the matrix whose columns are the elements of the set ML.

It is known that the volume of the fundamental domain Π(ML) of ML is | det ML|,
where

Π(ML) :=
{

n
∑

i=1

λibi : 0 ≤ λi < 1
}

.

It is also known that | det ML| is the number |Π(ML) ∩ Zn| of lattice points inside
Π(ML) as well as the index [Zn : Λ] = |Zn/Λ|.

Altogether, we have |VX(Fq)(IL)| = |Lβ/L| = |Zn/Λ| = | det ML|. �

Corollary 4.7. If {c1u1, . . . , cnun} constitute a basis for L, for positive integers
ci dividing q − 1, then |VX(Fq)(IL)| = c1 · · · cn.
Proof. Since {u1, . . . ,un} ⊂ Zr form a basis of Lβ and φ(ei) = ui, we observe that
φ(ciei) = ciui, for all i ∈ [n]. So, ML = {c1e1, . . . , cnen} is a basis for the lattice
Λ that appeared in the proof of Corollary 4.6 and | det(ML)| = c1 · · · cn. Therefore,
it follows that ℓ = |Lβ/L| = c1 · · · cn and that VX(Fq)(IL) has c1 · · · cn elements by
Corollary 4.6. �

If (q − 1)Lβ ⊆ L ⊆ Lβ, then obviously ℓ = |Lβ/L| is coprime to p = char(Fq).
On the other hand, whenever ℓ = |Lβ/L| is not divisible by a prime p, there are
finite fields of characteristic p verifying this condition as we demonstrate next.

Proposition 4.8. Let L ⊆ Lβ and rankL = n. If ℓ = |Lβ/L| is not divisible by
a prime p, then there is a finite field Fq of characteristic p such that exp(Lβ/L)
divides q − 1. Thus, we have (q − 1)Lβ ⊆ L ⊆ Lβ in this case.

Proof. Let Fq be the splitting field of xℓ − 1 over Fp. As p does not divide ℓ, xℓ − 1
and its derivative ℓxℓ−1 have no roots in common. So, roots of xℓ−1 are all distinct.
It is easy to see that they form a cyclic subgroup of F∗

q of order ℓ. Thus, ℓ divides
q − 1 whence so does exp(Lβ/L).

The second part follows from Lemma 4.3. �

We close the section with an interesting example illustrating the results.

Example 4.9. Consider the Hirzebruch surface X = H2 whose fan in R2 have
rays generated by

v1 = (1, 0),v2 = (0, 1),v3 = (−1, 2), and v4 = (0,−1).

The exact sequence in (2.1) becomes:

P : 0 // Z2 φ
// Z4 β

// Z2 // 0 ,

where

φ =

[

1 0 −1 0
0 1 2 −1

]T

and β =

[

1 −2 1 0
0 1 0 1

]

.

Thus, the class group is A = Z2 grading the Cox ring S = Fq[x1, x2, x3, x4] of X
via

degA(x1) = degA(x3) = (1, 0), degA(x2) = (−2, 1), degA(x4) = (0, 1).
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0

0

1 2 3 4−1−2−3

1

2

3

−1

−2

Figure 1. The fan for the Hirzebruch surface.

Clearly, a Z-basis of Lβ is given by u1 = (1, 0,−1, 0) and u2 = (0, 1, 2,−1).
Consider the lattice L spanned over Z by 3u1 and 5u2. Since B = {3e1, 5e2}

is a basis for the lattice Λ that appeared in the proof of Corollary 4.6 we have
ℓ = |Lβ/L| = detB = 15 and so 15Lβ ⊂ L ⊂ Lβ by Lemma 3.1. Hence, if 15
divides q − 1, which is the case for instance when q = 16 or q = 31, then the
subgroup VX(Fq)(IL) has 15 members of TX over the finite field Fq.

5. Finite Nullstellensatz for lattice ideals

In this section, we prove a Nullstellensatz type result over Fq establishing a one-
to-one correspondence between the subgroups VX(Fq)(IL) and lattice ideals IL, such
that (q − 1)Lβ ⊆ L ⊆ Lβ .

Lemma 5.1. If (q− 1)Lβ ⊆ L ⊆ Lβ, then the subgroups VX(K)(IL) and VX(Fq)(IL)
are the same, for any field K which is an extension of Fq.

Proof. Since F∗
q ⊂ K∗, we have the inclusion VX(Fq)(IL) ⊆ VX(K)(IL). By Theorem

4.4, |VX(Fq)(IL)| = d1 · · · dn, and so F∗
q has all the di-th roots of unity. Thus, K∗ has

all the di-th roots of unity and hence |VX(K)(IL)| = d1 · · · dn as well, by Theorem
3.7. Having the same orders, VX(K)(IL) = VX(Fq)(IL) for any field K which is an
extension of Fq. �

It is now time to demonstrate that the necessary condition suggested by the
Lemma 4.2 for a lattice to correspond to a vanishing ideal of a subgroup is indeed
sufficient.

Theorem 5.2. If (q − 1)Lβ ⊆ L ⊆ Lβ, then I(VX(K)(IL)) = IL, for any field K

which is an extension of Fq.

Proof. By the same reason in the proof of [28, Theorem 5.1(iii)], we have the
following minimal primary decomposition for the vanishing ideal of VX(K)(IL) in
S = Fq[x1, . . . , xr]:

I(VX(K)(IL)) =
⋂

[P ]∈VX(K)(IL)

I([P ]).

Suppose now that p ⊂ S is a minimal prime of the radical ideal IL ⊆ I(VX(K)(IL)).
Then, as p ⊇ IL, we have VX(Fq)

(p) ⊆ VX(Fq)
(IL). As VX(Fq)

(p) cannot be

empty over the algebraically closed field Fq, it has a point [P ] ∈ VX(Fq)
(IL).
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Since VX(Fq)
(IL) = VX(K)(IL) = VX(Fq)(IL), by Lemma 5.1, [P ] ∈ VX(K)(IL) as

well. Therefore, [P ] ∈ VX(K)(p) so that p ⊆ I(VX(K)(p)) ⊆ I([P ]) ⊂ S. So,
height(p) ≤ height(I([P ])) = n. Since we also have p ⊇ IL, it follows that
height(p) ≥ height(IL) = n. Thus, height(p) = height(I([P ])) = n and these primes
must coincide: p = I([P ]). Therefore, the two ideals IL ⊆ I(VX(K)(IL)) having the
same minimal primary decomposition must coincide: IL = I(VX(K)(IL)). �

Recall that subgroups of TX(Fq) are of the form YQ = {[tq1 : · · · : tqr ]|t ∈ (F∗
q)

s}
for a matrix Q = [q1q2 · · ·qr] ∈ Ms×r(Z) by [28, Theorem 3.2 and Corollary 3.7].
In [2], a handier description of the lattice of the ideal I(YQ) is given, in terms of
Q and β, under a condition on the lattice L = QLβ = {Qm|m ∈ Lβ}. Before
stating this result, let us remind that L : (q − 1) = {m ∈ Zs|(q − 1)m ∈ L} and
that the lattice LQ ⊆ Zr is the kernel of the multiplication map defined by Q, i.e.
LQ = {z ∈ Zr : Qz = 0}.
Theorem 5.3 ([2]). Let L = (LQ ∩ Lβ) + (q − 1)Lβ. Then IL ⊆ I(YQ). The
equality holds if and only if L = L : (q − 1).

If LQ ⊆ Lβ, then ILQ
is an Lβ-homogeneous toric ideal whose zero locus inside

the torus is denoted VQ := VX(Fq)(ILQ
)∩TX . The following consequence of Theorem

5.3 ensures that VQ coincides with the subgroup YQ if the condition L = L : (q− 1)
holds, following [25, Proposition 4.3] and [25, Corollary 4.4].

Theorem 5.4 ([2]). If LQ ⊆ Lβ and L = LQ+(q−1)Lβ, then we have the following

(1) VQ = VX(Fq)(IL),
(2) VQ = YQ, if the condition L = L : (q − 1) holds,
(3) I(VX(Fq)(IL)) = IL, if the condition L = L : (q − 1) holds.

Using Theorem 5.2, we are now able to prove that VQ coincides with the subgroup
YQ if and only if the condition L = L : (q − 1) holds.

Corollary 5.5. If L = (LQ ∩ Lβ) + (q − 1)Lβ, then YQ = VX(Fq)(IL) if and only
if L : (q − 1) = L.
Proof. If L : (q − 1) = L then by Theorem 5.3 we have I(YQ) = IL implying that
YQ = VX(Fq)(I(YQ)) = VX(Fq)(IL). For the converse it suffices to note that the
lattice L = (LQ ∩ Lβ) + (q − 1)Lβ satisfies the condition (q − 1)Lβ ⊆ L ⊆ Lβ of
Theorem 5.2, and hence I(YQ) = I(VX(Fq)(IL)) = IL. Applying Theorem 5.3 again,
we get L : (q − 1) = L. �

We close this section by sharing a procedure for computing the vanishing ideal
of VX(Fq)(IL) ∩ TX for lattices L ⊆ Lβ not satisfying the condition (q − 1)Lβ ⊂ L.

Corollary 5.6. If L ⊆ Lβ, then the vanishing ideal of VX(Fq)(IL) ∩ TX is IL′ , for
the lattice L′ = L+ (q − 1)Lβ. Moreover, the order of VX(Fq)(IL) ∩ TX is |Lβ/L

′|.
Proof. If L′ = L+(q− 1)Lβ, then IL′ = IL+ I(q−1)Lβ

. Since I(TX(Fq)) = I(q−1)Lβ

it follows that we have

VX(Fq)(IL′) = VX(Fq)(IL) ∩ VX(Fq)(I(q−1)Lβ
) = VX(Fq)(IL) ∩ TX .

As (q − 1)Lβ ⊂ L′ ⊂ Lβ, Theorem 5.2 implies that IL′ = I(VX(Fq)(IL′)). Hence,
the B-saturated ideal corresponding to Y = VX(Fq)(IL) ∩ TX is I(Y ) = IL′ . The
second claim follows directly from Theorem 4.4. �
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6. Degree of a lattice ideal

In this section, we assume that the n-dimensional toric variety X is smooth
and projective. Let S be the Cox ring of X and M an S-graded module. Denote
by HM (α) the multigraded Hilbert function of M , that is, HM (α) = dimK(Mα).
Maclagan and Smith proved in [20, Proposition 2.10] that there is a polynomial
PM (t1, . . . , td) ∈ Q[t1, . . . , td] called the multigraded Hilbert polynomial of M such
that PM (α) = HM (α) for a non-empty subset of Nβ. They also showed that for a
multigraded ideal I, the Hilbert polynomials of S/I and that of S/(I : B∞) are the
same, where (I : B∞) is the B-saturation of I, see [20, Lemma 2.13]. Therefore,
if I is the B-saturated ideal corresponding to a finite set of points then its Hilbert
polynomial is constant and equal to the cardinality of VX(I), see [20, Example
4.12]. Inspired from these, we make the following

Definition 6.1. Let I be the B-saturated homogeneous ideal corresponding to a
finite set of points. The degree of I is the constant Hilbert polynomial PS/I .

Lemma 6.2. If IL is an Lβ−homogeneous ideal, then its (multigraded) Hilbert
function defined by HIL(α) := dimK(Sα/IL) is independent of the field K.

Proof. Recall that the vector space Sα is spanned by the monomials

xa = xa1
1 · · ·xar

r with deg(xa) =

r
∑

j=1

ajβj = α.

By [22, Theorem 7.3], the quotient ring S/IL is isomorphic to the semigroup ring
of the semigroup Nr/ ∼L, where a1 ∼L a2 ⇐⇒ a1 − a2 ∈ L. Since IL is
Lβ−homogeneous, we have L ⊆ Lβ. Therefore, a1 − a2 ∈ L implies a1 − a2 ∈ Lβ,
i.e. if xa1 + IL = xa2 + IL in S/IL, then deg(xa1) = deg(xa2) meaning that
xa1 + IL = xa2 + IL in Sα/IL. Hence, HIL(α) = dimK(Sα/IL) is the number of
equivalence classes xa + IL of monomials xa of degree α ∈ Nβ , which is also the
number of equivalence classes of vectors a ∈ Nr with respect to the equivalence
relation ∼L such that

∑r
j=1 ajβj = α. This number is independent of the field,

completing the proof. �

Theorem 6.3. If IL is an Lβ−homogeneous ideal of dimension d = r − n, then
its degree is deg(IL) = |Lβ/L| = d1 · · · dn, where di’s are the invariant factors of
Lβ/L.

Proof. By Lemma 6.2, the multigraded Hilbert polynomial of IL is independent of
the field. Under the hypothesis rankL = n and L ⊆ Lβ, so by Proposition 4.8
there is a finite field Fq such that (q − 1)Lβ ⊆ L ⊆ Lβ. Thus, the number of
Fq-rational points is |VX(IL)(Fq)| = d1 · · · dn by Theorem 4.4. On the other hand,
the B-saturated ideal corresponding to VX(IL) is I(VX(IL)) = IL by Theorem 5.2.
Thus, the Hilbert polynomial of IL will be d1 · · · dn, which is the degree of IL. �

The following reveals that Theorem 6.3 generalizes the main result of the nice
paper [19] by Lopez and Villarreal. X is the projective space Pn in this case. The
matrix β = [1 · · · 1], Lβ = Z{e1 − er, . . . , er−1 − er} and hence an ideal is Lβ−
homogeneous with respect to the standard grading: deg(xi) = 1, for each i ∈ [r],
where r = n+ 1.
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Corollary 6.4. [19, Theorem 3.13] If IL is an Lβ− homogeneous ideal of dimension
1, then its degree is deg(IL) = |T (Zr/L)|, where T (Zr/L) is the torsion part of the
group Zr/L.

Proof. It is well known from the fundamental structure theorem for finitely gener-
ated abelian groups that the order of the torsion part T (Zr/L) of the group Zr/L
is d1 · · · dn, where di’s are the invariant factors of the matrix whose columns span
the lattice L, see [14, pp. 187—188]. So, Theorem 6.3 completes the proof. �

If an ideal I = 〈F1, . . . , Fn〉 is a complete intersection generated in semi-ample de-
grees α1, . . . , αn, then its Hilbert Polynomial is the Bernstein—Kushnirenko bound,
which is the mixed volume n!V (Pα1 , . . . , Pαn

) of the Newton polytopes Pα1 , . . . , Pαn

by the proof of [29, Theorem 3.16]. The following reveals the same is true in the
special case that I = IL is a lattice ideal, without the assumption that the degrees
α1, . . . , αn are semi-ample.

Corollary 6.5. Assume that {d1m1, . . . , dnmn} is a basis of the lattice L such
that {m1, . . . ,mn} is a basis of Lβ. If Pi is the Newton polytope of the bino-

mial Fi = xdim
+
i − xdim

−

i , for i ∈ [n], then the degree of IL is the mixed volume
n!V (P1, . . . , Pn).

Proof. By Proposition 4.8, there is a finite field K = Fq containing all the di-th
roots of unity, for each i ∈ [n]. We know that VX(IL)(K) lies inside the torus
TX(K) by Proposition 3.3. So, localizing to the torus does not change the order of
VX(IL)(K). This amounts to passing to the Laurent polynomial ring

K[x∓] = K[x1, . . . , xr]x1···xr
= K[x1, . . . , xr, x

−1
1 , . . . , x−1

r ].

By [9, Theorem 2.1], the ideal K[x∓] · IL is a local complete intersection generated
by the Laurent polynomials xd1m1 − 1, . . . ,xdnmn − 1 forming a regular sequence,
even if IL is not the (global) complete intersection ideal

〈xd1m
+
1 − xd1m

−

1 , . . . ,xdnm
+
n − xdnm

−

n 〉.
Letting ti := xmi be the local variables for the torus TX(K) ∼= (K∗)n, we get the

system td1
1 = · · · = tdn

n = 1 having d1 · · · dn solutions as K has all the di-th roots
of unity, for each i ∈ [n]. Thus, |VX(IL)(K)| meets the Bernstein-–Kushnirenko
bound n!V (Pα1 , . . . , Pαn

) = d1 · · · dn by [13] as Pi are just line segments, see also
[4, 17]. Hence, Theorem 6.3 completes the proof. �

Example 6.6. We revisit Example 4.9. Consider the fan in R2 with rays generated
by v1 = (1, 0), v2 = (0, 1), v3 = (−1, 2), and v4 = (0,−1). Then the corresponding
toric variety is the Hirzebruch surface X = H2. Recall that a Z-basis of Lβ is given
by u1 = (1, 0,−1, 0) and u2 = (0, 1, 2,−1). Consider the lattice L spanned over Z

by 3u1 and 5u2. Then, clearly 15Lβ ⊂ L ⊂ Lβ. So, the degree of IL is just the
order |Lβ/L| = 15.

If p is a prime number other than 3 or 5, then by Proposition 4.8 there is a
finite field Fq whose characteristic is p for which (q − 1)Lβ ⊂ L ⊂ Lβ is satisfied
and thus IL = I(VX(Fq)(IL)) is the B-saturated ideal of VX(Fq)(IL), by Theorem
5.2 over the field Fq, where B = 〈x1x2, x2x3, x3x4, x4x1〉. This is the case for
instance with p = 2, and thus, VX(Fq)(IL) has 15 = deg(IL) members of TX over
F16. Similarly, IL is the B-saturated ideal of VX(Fq)(IL) over the finite field Fq of
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characteristic p = 11, with q = 112 = 121 elements, as 15 divides 120. VX(Fq)(IL)
has 15 = deg(IL) members of TX over F121.

However, if q = p = 11 then IL is not the B-saturated ideal of VX(Fq)(IL) as 15
does not divide 10. Over the field F11, we have to replace L by L′ = L+(q−1)Lβ so
as to obtain the correct lattice whose ideal IL′ is the B-saturated vanishing ideal of
VX(Fq)(IL), by Corollary 5.6. A basis for the lattice L′ is given by u1 and 5u2, since
u1 = −3(3u1) + 10u1 ∈ L′. The Smith-normal form of the matrix with columns
u1 and 5u2 is [e1|5e2], where ei is a standard basis vector of Z4. Thus, VX(Fq)(IL)
has 5 = deg(IL′) members of TX over the finite field F11.

7. Parameterization of the subgroup cut out by a lattice ideal

In this section, we describe the points of the subgroup VX(K)(IL) of the torus
TX defined by the lattice ideal IL.

Let B be an r × n matrix whose columns constitute a basis for L ⊆ Lβ; let A
and C be unimodular matrices of sizes r and n, respectively, so that

D = ABC = [d1e1| · · · |dnen]
is the Smith-Normal form of B, where e1, . . . , en ∈ Zr. Recall that di divides di+1,
for all i ∈ [n− 1]. If A−1 = [m1| · · · |mr] is the inverse of A, then its columns span
Zr. Thus, the columns {d1m1, . . . , dnmn} of A−1D = BC provide us with another
basis of the lattice L such that {m1, . . . ,mn} is a basis of Lβ . Since rankL = n,
we have VX(K)(IL) ⊆ TX by Proposition 3.3.

Theorem 7.1. Let L ⊆ Lβ be a lattice of rank n. Then, the following hold:

(i) If [Pi] = [ηai1

i : · · · : ηair

i ], where ηi is a generator for the cyclic subgroup of
di-th roots of unity in K, for all i ∈ [n], and aij’s are the entries of A, then

VX(IL)(K) = 〈[P1]〉 × · · · × 〈[Pn]〉.
(ii) If di divides q − 1, for all i ∈ [n], and Q is the matrix whose i-th row is

[ai1(q− 1)/di| . . . |air(q− 1)/di] which is (q− 1)/di times the i-th row of the
matrix A, then VX(IL)(Fq) = YQ.

Proof. The algebraic isomorphism induced by the change of basis map Zr → Zr

defined via multiplication by the matrix A = [a1| · · · |ar] is as follows:
(7.1) ΦA : (K∗)

r → (K∗)
r
, ΦA(y1, . . . , yr) = (ya1 , . . . ,yar).

with the following inverse isomorphism:

(7.2) Φ−1
A : (K∗)

r → (K∗)
r
, Φ−1

A (x1, . . . , xr) = (xm1 , . . . ,xmr ).

Recall that G is the subgroup V (ILβ
) ∩ (K

∗
)r and thus (x1, . . . , xr) ∈ G if and

only if xm1 = · · · = xmn = 1. Therefore, if (y1, . . . , yr) = Φ−1
A (x1, . . . , xr), then it

follows that (x1, . . . , xr) ∈ G if and only if y1 = · · · = yn = 1. Thus, the group
G′ := Φ−1

A (G) is described by

G′ = {(1, . . . , 1, yn+1, . . . , yr) : yi ∈ (K∗)
r}.

On the other hand, since a basis for L is given by the set {d1m1, . . . , dnmn}, we
similarly have the following:

(x1, . . . , xr) ∈ V (IL) ∩ (K∗)
r ⇐⇒ xd1m1 = · · · = xdnmn = 1.
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Finally, as the elements [x1 : · · · : xr ] ∈ TX(K) are orbits G · (x1, . . . , xr), it follows
that

[x1 : · · · : xr] ∈ TX(K) ⇐⇒ [y1 : · · · : yn : 1 : · · · : 1] ∈ (K∗)
r
/G′.

Thus, Φ−1
A induces an isomorphism between TX(K) and the torus (K∗)r/G′ identi-

fying the subgroup VX(IL)(K) of TX(K) with the following subgroup:

GL := {[y1 : · · · : yn : 1 : · · · : 1] ∈ (K∗)
r
/G′ : yd1

1 = · · · = ydn
n = 1}.

If Ci = {yi ∈ K∗ : ydi

i = 1}, for all i ∈ [n], then, GL is isomorphic to C1×· · ·×Cn,
via

[y1 : · · · : yn : 1 : · · · : 1] → (y1, . . . , yn).

If Ci is the cyclic subgroup of K∗ generated by ηi, then the elements of GL are
of the form

[y1 : · · · : yn : 1 : · · · : 1] = [ηk1
1 : · · · : ηkn

n : 1 : · · · : 1],

which bijectively correspond to the n-tuples (k1, . . . , kn) with 0 ≤ ki ≤ |Ci| − 1.
Let [P ] = [x1 : · · · : xr] be a point with xi = yai = ya1i

1 · · · yari
r . Then, we have

[P ] ∈ VX(IL)(K) ⇐⇒ Φ−1
A (P ) ∈ GL.

Therefore, [P ] ∈ VX(IL)(K) ⇐⇒ there is an n-tuple (k1, . . . , kn) with 0 ≤ ki ≤
|Ci| − 1 such that

[P ] = [ηa11k1
1 · · · ηan1kn

n : · · · : ηa1rk1
1 · · · ηanrkn

n ](7.3)

= [ηa11
1 : · · · : ηa1r

1 ]k1 · · · [ηan1
n : · · · : ηanr

n ]kn = [P1]
k1 · · · [Pn]

kn .

This proves the first part (i):

VX(IL)(K) = 〈[P1]〉 × · · · × 〈[Pn]〉.

When K = Fq and di divides q − 1, Ci becomes the cyclic subgroup of F∗
q = 〈η〉

of order di, generated by ηi = ηq−1/di , for all i ∈ [n]. Letting ti = ηki for all i ∈ [n],
we observe that the point in (7.3) becomes

[P ] = [ηa11k1(q−1)/d1 · · · ηan1kn(q−1)/dn : · · · : ηa1rk1(q−1)/d1 · · · ηanrkn(q−1)/dn ]

= [t
a11(q−1)/d1

1 · · · tan1(q−1)/dn
n : · · · : ta1r(q−1)/d1

1 · · · tanr(q−1)/dn
n ].

If Q is the matrix whose i-th row is [ai1(q− 1)/di| . . . |air(q− 1)/di], then it follows
that [P ] ∈ VX(IL)(Fq) implies [P ] ∈ YQ.

In order to prove the converse inclusion, take [P ] ∈ YQ. Then, there are ti ∈ F∗
q

such that

[P ] = [t
a11(q−1)/d1

1 · · · tan1(q−1)/dn
n : · · · : ta1r(q−1)/d1

1 · · · tanr(q−1)/dn
n ].

Since F∗
q = 〈η〉, we have ℓi between 0 and q − 2 for which ti = ηℓi , for all i ∈ [n].

Then, there is a unique ki between 0 and di− 1 such that ℓi ≡ ki modulo di. Thus,

t
(q−1)/di

i = ηℓi(q−1)/di = ηki(q−1)/di , yielding [P ] ∈ VX(IL)(Fq). �

Corollary 7.2. If VX(IL)(Fq) is a cyclic subgroup, then VX(IL)(Fq) = YQ for a
row matrix Q = [an1(q − 1)/dn| . . . |anr(q − 1)/dn] which is (q − 1)/dn times the
n-th row of the matrix A.
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Proof. By Theorem 4.4, VX(IL)(Fq) has d1 · · · dn elements. Since it is cyclic,
d1 = · · · = dn−1 = 1 and |VX(IL)(Fq)| = dn. By Theorem 7.1, it follows that
VX(IL)(Fq) = Y ′

Q, where Q
′ is the matrix whose i-th row is (q − 1)/di times the

i-th row of the matrix A. When di = 1, the following point

[P ] = [t
a11(q−1)/d1

1 · · · tan1(q−1)/dn
n : · · · : ta1r(q−1)/d1

1 · · · tanr(q−1)/dn
n ]

of Y ′
Q becomes

[P ] = [tan1(q−1)/dn
n : · · · : tanr(q−1)/dn

n ]

due to the fact that t
aij(q−1)/di

i = 1, for all i ∈ [n − 1] and j ∈ [r]. Thus, [P ] is a
point of YQ. As the converse is also true, the claim follows. �

Remark 7.3. Although a parameterization YQ of the subgroup VX(Fq)(IL) ∩ TX is
given in [28, Proposition 3.4], the size of the matrix Q for which VX(Fq)(IL)∩TX =
YQ was always r × r, even if the subgroup is cyclic. This is in contrast with the
matrices provided in Theorem 7.1 and Corollary 7.2 that are more natural and
succinct.

We illustrate the main result of this section working with K = R and K = C.

Example 7.4. We revisit the example 4.9 by considering the Hirzebruch surface
X = H2 over K = R or K = C this time. Consider the lattice L spanned by the
columns of the matrix B = [2u1 3u2]. Then the Smith-Normal form D of B is
given by

D = ABC =









0 0 1 1
0 0 3 4
0 1 0 1
1 0 1 2

















2 0
0 3

−2 6
0 −3









[

1 −3
1 −2

]

=









1 0
0 6
0 0
0 0









.

The cyclic subgroup C1 of the 1-st roots of unity is trivial over R or C. But, the
cyclic subgroup C2 of the 6-th roots of unity are as follows respectively over R or C.

C2 = {c ∈ R∗ : c6 = 1} = {−1, 1},
C2 = {c ∈ C∗ : c6 = 1} = 〈η2〉 = 〈(1 + i

√
3)/2〉

= {1, (1 + i
√
3)/2, (−1 + i

√
3)/2,−1, (−1− i

√
3)/2, (1− i

√
3)/2}.

It follows from Theorem 3.7 that |VX(K)(IL)| = |C1| · |C2| which is 2 and 6 over R

and C respectively. Indeed,

VX(K)(IL) = {[x1 : x2 : x3 : x4] ∈ X(K) : x21 = x23 and x34 = (x2x
2
3)

3}.

Since G = {[λ1 : λ2 : λ1 : λ21λ2] : λ1, λ2 ∈ C∗}, we have

VX(R)(IL) = {[x1 : x2 : x1 : x21x2], [x1 : x2 : −x1 : x21x2] : x3, x4 ∈ R∗},
= {[1 : 1 : 1 : 1], [1 : 1 : −1 : 1]} and

VX(C)(IL) = {[1 : 1 : ±1 : 1], [1 : 1 : ±1 : η22 ], [1 : 1 : ±1 : η42 ]}.

Notice that VX(C)(IL) = 〈[P1]〉×〈[P2]〉, where [P1] = [η01 : η01 : η11 : η11 ] = [1 : 1 : 1 : 1]

and [P2] = [η02 : η02 : η32 : η42 ] = [1 : 1 : −1 : η42 ], as stated in Theorem 7.1. The
isomorphism between the groups VX(K)(IL) and C1 × C2 is not clear at this stage.
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By following the steps in the proof of Theorem 7.1, we shall now make this more
precise. It is easy to see that

A−1 = [m1 m2 m3 m4] =









2 −1 0 1
3 −1 1 0
4 −1 0 0

−3 1 0 0









.

Therefore, the map Φ−1
A : (K∗)4 → (K∗)4 is given by

(7.4) Φ−1
A (x1, x2, x3, x4) = (x21x

3
2x

4
3x

−3
4 , x−1

1 x−1
2 x−1

3 x4, x2, x1) = (y1, y2, y3, y4).

Hence, we have

Φ−1
A (VX(K)(IL)) = GL(K) = {[y1 : y2 : 1 : 1] ∈ X(K) : y11 = 1 and y62 = 1},

which is canonically isomorphic to C1 × C2. Clearly,

Φ−1
A (1, 1,±1, ηj2) = (1,±ηj2, 1, 1), for all j = 0, 2, 4.

Thus, we have

Φ−1
A (VX(C)(IL)) = GL(C) = {[1 : ±1 : 1 : 1], [1 : ±η22 : 1 : 1], , [1 : ±η42 : 1 : 1]}.

Similarly, we have Φ−1
A (VX(R)(IL)) = GL(R) = {[1 : 1 : 1 : 1], [1 : −1 : 1 : 1]}.

8. Evaluation codes on subgroups of the torus TX(Fq)

In this section, we apply the main results of the paper to compute basic parame-
ters of toric codes on subgroups Y = VX(Fq)(IL) of the torus TX(Fq), where a basis
for L is given by {c1u1, . . . , cnun} for positive integers ci dividing q − 1.

We first recall the evaluation code defined on a subset Y = {[P1], . . . , [PN ]} of
TX(Fq). Let Nβ be the subsemigroup of Nn generated (not necessarily minimally)

by β1, . . . , βr. Recall that the Cox ring S =
⊕

α∈Nβ

Sα of X is multigraded by Nβ via

deg(xi) = βi for i = 1, . . . , r. For any multidegree α ∈ Nβ, we have the following
evaluation map

(8.1) evY : Sα → FN
q , F 7→ (F (P1), . . . , F (PN )) .

The image Cα,Y = evY (Sα) is a linear code, called the generalized toric code. The
three basic parameters of Cα,Y are block-length which is N , the dimension which
is K = dimFq

(Cα,Y ), and the minimum distance δ = δ(Cα,Y ) which is the minimum
of the numbers of nonzero components of nonzero vectors in Cα,Y .

It is clear that the kernel of the linear map evY equals the homogeneous piece
I(Y )α of the vanishing ideal I(Y ) in degree α. Therefore, the code Cα,Y is isomor-
phic to the K-vector space Sα/I(Y )α. Thus, the dimension of Cα,Y is the multi-
graded Hilbert functionHY (α) := dimFq

Sα−dimFq
I(Y )α of I(Y ). As Cα,Y is a sub-

space of FN
q , we haveHY (α) ≤ N . When we have the equalityK = HY (α) = N , the

code becomes trivial, i.e. δ = δ(Cα,Y ) = 1, by the Singleton bound δ ≤ N + 1−K.
A related algebraic notion useful to eliminate these trivial codes is the so-called
multigraded regularity defined by

reg(Y ) := {α ∈ Nβ : HY (α) = |Y |} ⊆ Nd.



18 MESUT ŞAHİN

The values of the Hilbert functionHY (α) can also be used to detect (monomially)
equivalent codes. Indeed, by [29, Proposition 4.3], the codes Cα,Y and Cα′,Y are
equivalent if HY (α) = HY (α

′) and α− α′ ∈ Nβ.
The first application of our results is that the length of the code Cα,Y is given

by N = |Y | = c1 · · · cn, due to Corollary 4.7, where Y = VX(Fq)(IL) for the lattice
L with a basis given by {c1u1, . . . , cnun} for positive integers ci dividing q − 1.

In order to compute the dimension and minimum distance of the code Cα,Y , we
need to determine a minimal generating set for the vanishing ideal I(Y ). We apply
our Theorem 5.2 together with a characterization of complete intersection lattice
ideals given by Morales and Thoma [23] using the following concept.

Definition 8.1. Let A be a matrix whose entries are all integers. A is called mixed
if there is a positive and a negative entry in every column. If no square submatrix
of A is mixed, it is called dominating.

Theorem 8.2. [23, Theorem 3.9] Let L ⊆ Zr be a lattice with the property that
L∩Nr = 0. Then, IL is complete intersection ⇐⇒ L has a basis m1, . . . ,mk such
that the matrix [m1 · · ·mk] is mixed dominating. In the affirmative case, we have

IL = 〈xm
+
1 − x

m
−

1 , . . . , xm
+
k − x

m
−

k 〉. ✷

Applying our Theorem 5.2 to Y = VX(Fq)(IL) we immediately obtain the equality
of the ideals I(Y ) = IL. Using then Theorem 8.2, one can confirm when I(Y ) = IL
is a complete intersection by looking at a basis of the lattice L. The rest of the
section discusses an instance where everything works very well.

Let X = Hℓ be the Hirzebruch surface whose fan have primitive ray generators
given by v1 = (1, 0), v2 = (0, 1), v3 = (−1, ℓ), and v4 = (0,−1), for any positive
integer ℓ. The exact sequence in (2.1) becomes

P : 0 // Z2 φ
// Z4 β

// Cl(Hℓ) // 0 ,

for φ = [u1 u2] with u1 = (1, 0,−1, 0), u2 = (0, 1, ℓ,−1) and β =

[

1 0 1 ℓ
0 1 0 1

]

with Lβ = 〈u1,u2〉. The dual sequence in (2.2) over K = Fq becomes

P∗ : 1 // G
i
// (K∗)4

π
// (K∗)2 // 1

where π : t 7→ (t1t
−1
3 , t2t

ℓ
3t

−1
4 ) and

G = Ker(π) = {(t1, t2, t1, tℓ1t2) | t1, t2 ∈ K∗} ∼= (K∗)2.

Hence, K-rational points of the torus is TX(K) ∼= (K∗)2 ∼= (K∗)4/G whereas Fq-
rational points is TX(Fq) ∼= (F∗

q)
2 ∼= (F∗

q)
4/G.

The Cox ring S = Fq[x1, x2, x3, x4] is Z
2-graded via

deg(x1) = deg(x3) = (1, 0), deg(x2) = (0, 1), deg(x4) = (ℓ, 1).

Proposition 8.3. Let X be the Hirzebruch surface Hℓ. If {c1u1, c2u2} constitute
a basis for L, and Y = VX(Fq)(IL) then I(Y ) is a complete intersection generated

minimally by xc13 −xc11 and xc24 −xc22 xℓc23 . Furthermore, (c1+c2ℓ, c2)+N2 ⊆ reg(Y ).

Proof. By Theorem 5.2, we get I(Y ) = IL. Since the columns of ML constitute a
basis of L, where

ML = [c1u1 c2u2] =

[

c1 0 −c1 0
0 c2 ℓc2 −c2

]T
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and ML is mixed dominating, it follows from Theorem 8.2 that

I(Y ) = 〈xc13 − xc11 , x
c2
4 − xc22 x

ℓc2
3 〉.

There is a geometrically significant subsemigroup K contained in the semigroup
Nβ = N2 whose elements are semiample degrees corresponding to the classes of
numerically effective line bundles on X , which is given by

K =
⋂

σ∈Σ

Nσ̌ = N(1, 0) + N(ℓ, 1),

where Nσ̌ is the semigroup generated by βi corresponding to rays ρi /∈ σ, for details
see [7, Theorem 6.3.12]. Thus, the degrees c1(1, 0) and c2(ℓ, 1) of the generators
are semiample. Therefore, (c1 + c2ℓ, c2) + N2 ⊆ reg(Y ) by [29, Theorem 3.16]. �

It is now time to the compute the other main parameters of the toric code
Cα,Y , where α = (c, d) ∈ Nβ. Hansen computed these parameters for the case
Y = TX(Fq), c < q − 1 and d = b, where b is to be defined below, see [12]. More
recently, the conditions c < q − 1 and d = b is relaxed in [1] again for the torus
Y = TX(Fq).

Theorem 8.4. Let {c1u1, c2u2} be a basis for L with c1 and c2 dividing q− 1, and
Y = VX(Fq)(IL) be the subgroup of the torus TX of the Hirzebruch surface X = Hℓ

over K = Fq satisfying c1 ≤ ℓc2. If α = (c, d) ∈ Nβ = N2, then the dimension K of
the toric code Cα,Y is given by































(b+ 1)[c+ 1− bℓ/2], if c < c1 and b ≤ c2 − 1

c2[c+ 1− (c2 − 1)ℓ/2] if c < c1 and c2 − 1 < b

c1(b
′ + 1) + (b− b′)[c+ 1− ℓ(b+ b′ + 1)/2], if c ≥ c1 and b′ ≤ b < c2 − 1

c1(b
′ + 1) + (c2 − 1− b′)[c+ 1− ℓ(c2 + b′)/2], if c ≥ c1 and b′ < c2 − 1 ≤ b

c1c2, if c ≥ c1 and b′ ≥ c2 − 1,

and the minimum distance equals

δ(Cα,Y ) =































c2[c1 − c], if c < c1 and b ≤ c2 − 1

c2[c1 − c], if c < c1 and c2 − 1 < b

c2 − b′, if c ≥ c1 and b′ ≤ b < c2 − 1

c2 − b′, if c ≥ c1 and b′ < c2 − 1 ≤ b

1, if c ≥ c1 and b′ ≥ c2 − 1.

where b is the greatest non-negative integer with c− bℓ ≥ 0 and d− b ≥ 0, and when
c ≥ c1, b

′ is the greatest non-negative integer with c− b′ℓ ≥ c1 − 1 and d− b′ ≥ 0.

Proof. We start by giving a parameterization which will be crucial especially in
computing the minimum distance below. So, we first see that

Q =

[

(q − 1)/c1 0 0 0
0 0 0 (q − 1)/c2

]

parameterizes the subgroup Y = VX(Fq)(IL). Let η1 = η(q−1)/c1 and η2 = η(q−1)/c2

where η is a generator for the cyclic group K∗. Then, YQ consists of the following



20 MESUT ŞAHİN

c1c2 points Pi,j = [ηi1 : 1 : 1 : ηj2] ∈ TX , for i ∈ [c1] and j ∈ [c2]. Since these points
satisfy the equations:

xc11 − xc13 = 0 and xc24 − xc22 x
ℓc2
3 = 0

it follows that they belong to Y , yielding YQ ⊆ Y . By Corollary 4.7, |Y | = c1c2
forcing the equality YQ = Y .

Let us find a K−basis Bα := {xa | deg(xa) = βa = α} for the vector space Sα

for any α = (c, d) ∈ Nβ = N2. Since b is the greatest non-negative integer with
α = (c, d) = b(ℓ, 1) + (a, a′) for some non-negative integers a = c − bℓ ≥ 0 and
a′ = d − b ≥ 0, we have 0 ≤ a4 ≤ b if deg(xa) = βa = α. For a fixed 0 ≤ a4 ≤ b,
and fixed 0 ≤ a1 ≤ c − ℓa4 the powers a2 = d − a4 and a3 = c − ℓa4 − a1 in
xa = xa1

1 x
a2
2 x

a3
3 x

a4
4 are fixed too. So,

Bα = {xa1

1 x
d−a4

2 xc−ℓa4−a1

3 xa4

4 | 0 ≤ a4 ≤ b and 0 ≤ a1 ≤ c− ℓa4}.
Let us define the following two key numbers:

µ1 := min{c, c1 − 1} and µ2 := min{b, c2 − 1}.
Since xc11 = xc13 and xc24 = xc22 x

ℓc2
3 in the ring S/I(Y ), a basis for Sα/Iα(Y ) is

B̄α = {xa1
1 x

d−a4
2 xc−ℓa4−a1

3 xa4
4 | 0 ≤ a4 ≤ µ2 and 0 ≤ a1 ≤ min{c− ℓa4, µ1}}.

It is clear that S(c,d) = xd−b
2 S(c,b). Since x2 = 1 on Y , the images evY (S(c,d)) and

evY (S(c,b)) of the evaluation maps defined on S(c,d) and S(c,b) are the same code
C(c,b),Y when d > b. Hence, if ⌊c/ℓ⌋ < d, we have b = min{⌊c/ℓ⌋, d} = ⌊c/ℓ⌋, and
thus the codes C(c,d),Y and C(c,b),Y are the same whose dimensions are

dimFq
Cα,Y = HY (α) = |B̄(c,b)|, for α = (c, d) with b = min{⌊c/ℓ⌋, d} = ⌊c/ℓ⌋.

Therefore, it suffices to study codes Cα,Y , where α = (c, d) with d ≤ ⌊c/ℓ⌋. Thus,
we assume from now on that

(8.2) d ≤ ⌊c/ℓ⌋ so that b = min{⌊c/ℓ⌋, d} = d.

The dimension.
Case I: Let c = a+ bℓ < c1. Then, µ1 = c and thus we have

dimFq
Cα,Y = |B̄α| =

µ2
∑

a4=0

(c− ℓa4 + 1)(8.3)

= (µ2 + 1)(c+ 1)− µ2(µ2 + 1)ℓ/2 = (µ2 + 1)[c+ 1− µ2ℓ/2].

If b ≤ c2 − 1, then µ2 = b and thus, we have

dimFq
Cα,Y = (b+ 1)[c+ 1− bℓ/2].

It is worth to notice that this dimension is the number of monomials in

B̄α = {xa1
1 x

d−a4
2 xc−ℓa4−a1

3 xa4
4 | 0 ≤ a4 ≤ b and 0 ≤ a1 ≤ c− ℓa4}

or equivalently the number of lattice points inside the polygon depicted in Figure
2 which is defined by the inequalities 0 ≤ a4 ≤ b and 0 ≤ a1 ≤ c− ℓa4.

If c2 − 1 < b, then µ2 = c2 − 1 and hence, we have

dimFq
Cα,Y = c2[c+ 1− (c2 − 1)ℓ/2].

As before, this dimension is the number of monomials in

B̄α = {xa1
1 x

d−a4
2 xc−ℓa4−a1

3 xa4
4 | 0 ≤ a4 ≤ c2 − 1 and 0 ≤ a1 ≤ c− ℓa4}
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c2-1

c1-1

a1 + ℓa4 = c
c/ℓ

b = d

c0 c− ℓb

Figure 2. Case I with
b ≤ c2 − 1

c2-1

c1-1

a1 + ℓa4 = c
c/ℓ

b = d

c0 c− ℓb

Figure 3. Case I with
b > c2 − 1

or equivalently the number of lattice points inside the polygon depicted in Figure
3 which is defined by the inequalities 0 ≤ a4 ≤ c2 − 1 and 0 ≤ a1 ≤ c− ℓa4.

Case II: Let c ≥ c1. Then µ1 = c1−1. Recall that b′ is the greatest non-negative
integer with the property c− b′ℓ ≥ c1 − 1 and d− b′ ≥ 0. In fact, if a ≥ c1 − 1, then
c− ℓb = a ≥ c1 − 1, and thus b′ = b. Otherwise,

b′ = ⌊(c− c1 + 1)/ℓ⌋ = b− ⌈(c1 − 1− a)/ℓ⌉.

Case II(i): b′ ≥ c2 − 1.

c2-1

c1-1

a1 + ℓa4 = c

c/ℓ

b′

c0 c-ℓb′

Figure 4. Case II (i)

If b′ ≥ c2 − 1, then µ2 = c2 − 1 as b ≥ b′. So, for every choice of a4 satisfying
0 ≤ a4 ≤ c2 − 1 ≤ b′ we have c − ℓa4 ≥ c1 − 1, and hence 0 ≤ a1 ≤ c1 − 1. Thus,
we have

dimFq
Cα,Y = |B̄α| = c1c2 = N,(8.4)
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which is also the number of lattice points in the rectangle depicted in Figure 4 and
described by the inequalities 0 ≤ a1 ≤ c1 − 1 and 0 ≤ a4 ≤ c2 − 1. Since the
dimension reaches its maximum value, the code Cα,Y is trivial, that is, δ(Cα,Y ) = 1.

Case II(ii): b′ < c2 − 1.
By the definition of b′, we have the following two cases

min{c− ℓa4, c1 − 1} =

{

c1 − 1 if 0 ≤ a4 ≤ b′

c− ℓa4 if b′ < a4 ≤ µ2.

So, if 0 ≤ a4 ≤ b′ then 0 ≤ a1 ≤ c1− 1 but if a4 > b′ then 0 ≤ a1 ≤ c− ℓa4, yielding
the description of B̄α to be the disjoint union of the following two sets

B̄α(1) = {xa1
1 x

d−a4
2 xc−ℓa4−a1

3 xa4
4 | 0 ≤ a4 ≤ b′ and 0 ≤ a1 ≤ c1 − 1} and(8.5)

B̄α(2) = {xa1
1 x

d−a4
2 xc−ℓa4−a1

3 xa4
4 | b′ + 1 ≤ a4 ≤ µ2 and 0 ≤ a1 ≤ c− ℓa4}.(8.6)

Notice that |B̄α(1)| is the number of lattice points in the rectangle in Figure 5 and
|B̄α(2)| is the number of lattice points in the trapezoid in Figure 5. Therefore, we
have

dimFq
Cα,Y = |B̄α| = c1(b

′ + 1) +

µ2
∑

a4=b′+1

(c− ℓa4 + 1)(8.7)

= c1(b
′ + 1) + (µ2 − b′)[c+ 1− (µ2 + b′ + 1)ℓ/2].

c2-1

c1-1

a1 + ℓa4 = c

c/ℓ

µ2

b′ + 1

b′

c0 c-ℓb′

Figure 5. Case II (ii)

If b < c2 − 1, then µ1 = c1 − 1 and µ2 = b in (8.7), yielding the formula

dimFq
Cα,Y = c1(b

′ + 1) + (b− b′)[c+ 1− (b+ b′ + 1)ℓ/2].

If b′ < c2− 1 ≤ b, then µ1 = c1− 1 and µ2 = c2− 1 in (8.7), yielding the formula

dimFq
Cα,Y = c1(b

′ + 1) + (c2 − 1− b′)[c+ 1− (c2 + b′)ℓ/2].

The minimum distance.
Let us compute the minimum distance now. Recall that Y = VX(Fq)(IL) consists

of the following points Pi,j = [ηi1 : 1 : 1 : ηj2] ∈ TX , for i ∈ [c1] and j ∈ [c2].
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For a given F ∈ Sα we set J = {j ∈ [c2] : x4 − ηj2x2x
ℓ
3 divides F}. Then, we

first prove that the number of zeroes of F in Y satisfies

|VX(F ) ∩ Y | ≤ c1|J |+ (c2 − |J |) degx1
F.(8.8)

It is clear that F (Pi,j) = 0 whenever j ∈ J and there are c1|J | many such points in

Y . Moreover, the polynomial f(x1) := F (x1, 1, 1, η
j
2) ∈ K[x1] \ {0} if j /∈ J . Thus,

it can have at most degx1
F := deg(f) many zeroes for each j /∈ J . So, we can have

at most (c2 − |J |) degx1
F many such roots. Therefore, altogether F can have at

most c1|J |+ (c2 − |J |) degx1
F zeroes in Y .

Case I: Let c < c1.
Since degx1

F ≤ c− ℓ|J | in this case, it follows from (8.8) that

|VX(F ) ∩ Y | ≤ c1|J |+ (c2 − |J |)(c− ℓ|J |)
≤ c2c+ |J |(c1 − ℓc2 − c+ ℓ|J |).

Since 0 ≤ |J | ≤ ⌊c/ℓ⌋ and c1 ≤ ℓc2 , we have

|VX(F ) ∩ Y | ≤ c2c+ |J |(c1 − ℓc2 − c+ ℓ|J |) ≤ c2c.(8.9)

Therefore, F can have at most c2c many zeroes in Y . On the other hand, the
following polynomial

F = xd2

c
∏

i=1

(x1 − ηi1x3) ∈ Sα

vanishes exactly at the c2c points Pi,j = [ηi1 : 1 : 1 : ηj2] ∈ Y , where 1 ≤ i ≤ c and
1 ≤ j ≤ c2. Thus, there is a codeword evα,Y (F ) with weight c1c2 − c2c. Hence,

δ(Cα,Y ) = c1c2 − c2c = c2(c1 − c).

Case II: Let c ≥ c1. Then, we elaborate more on the upper bound given in
(8.8) depending on whether |J | ≤ b′ or |J | > b′.

Suppose that 0 ≤ |J | ≤ b′. Since degx1
F ≤ c1 − 1, it follows from (8.8) that

|VX(F ) ∩ Y | ≤ c1|J |+ (c2 − |J |)(c1 − 1) = c2(c1 − 1) + |J |.
Since 0 ≤ |J | ≤ b′, we have

|VX(F ) ∩ Y | ≤ c2(c1 − 1) + b′.(8.10)

Suppose now that |J | > b′. In this case, we write |J | = b′ + k for some positive
integer k. Then, c − ℓ(b′ + 1) < c1 − 1 or equivalently c − ℓ(b′ + 1) ≤ c1 − 2, by
definition of b′, which will be crucial below. Hence,

c− ℓ|J | = c− ℓ(b′ + 1)− ℓ(|J | − b′ − 1) ≤ c1 − 2− ℓ(k − 1).

Since degx1
F ≤ c− ℓ|J | ≤ c1 − 2− ℓ(k − 1), it follows from (8.8) that

|VX(F ) ∩ Y | ≤ c1|J |+ (c2 − |J |)(c− ℓ|J | − c1 + 1 + c1 − 1)

≤ c1c2 − c2 + (c2 − |J |)(c− ℓ|J | − c1 + 1) + |J |
≤ c2(c1 − 1) + (c2 − |J |)(−1− ℓ(k − 1)) + |J |.

Since b′ − |J | = −k, c2 − |J | ≥ 1 and ℓ ≥ 1 the difference

b′ − [|J |+ (c2 − |J |)(−1− ℓ(k − 1))] = (b′ − |J |) + (c2 − |J |)(1 + ℓ(k − 1)) ≥ 0

and thus we have that

|VX(F ) ∩ Y | ≤ (c1 − 1)c2 + b′.(8.11)
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Then, by (8.10) and (8.11), F can have at most (c1 − 1)c2 + b′ many zeroes in
Y . On the other hand, the following polynomial

F = x
c−ℓb′−(c1−1)
3 xd−b′

2

c1−1
∏

i=1

(x1 − ηi1x3)

b′
∏

j=1

(x4 − ηj2x2x
ℓ
3)

vanishes exactly at c1b
′ + (c2 − b′)(c1 − 1) = c2(c1 − 1) + b′, and thus there is a

codeword with weight c2 − b′. This shows that δ(Cα,Y ) = c2 − b′. �

Remark 8.5. Let (c, d) = (a+ ℓb, a′ + b). If a ≥ c1 − 1, then c− ℓb = a ≥ c1 − 1.
So, b′ = b. Since b′ = b < c2 − 1, then by (8.7) above HY (α) = |B̄α| = c1(b + 1).
It follows that the codes Cα′,Y with a > c1 − 1 are all equivalent to the code Cα,Y
with a = c1 − 1, by [29, Proposition 4.3]. Furthermore, as the codes with a′ > 0 are
equivalent to those with a′ = 0 by the explanations above (8.2), and the codes with
b′ ≥ c2−1 are trivial, it suffices to consider codes corresponding to (c, d) = (a+ℓb, b)
where a ≤ c1 − 1 and b′ < c2 − 1.

The following makes the points of Remark 8.5 more precise as the extra condition
ℓ ≥ c1 bounds b by c2 − 1 and reduces the number of non-equivalent codes to c1c2.

Corollary 8.6. Let {c1u1, c2u2} be a basis for L, and Y = VX(IL)(Fq) be the
subgroup of the torus TX of the Hirzebruch surface Hℓ over K = Fq for which c1
and c2 divides q − 1. If α = (c, d) = (a + ℓb, d) and ℓ ≥ c1, then the parameters of
the toric code Cα,Y are N = c1c2,

K = a+ 1 and δ = c2(c1 − a), if c < c1
K = c1b+ 1 + a and δ = c2 − b+ 1, if a < c1 − 1 < c
K = c1(b + 1) and δ = c2 − b, if a = c1 − 1 < c.

Furthermore, (c1 − 1 + ℓ(c2 − 1), c2 − 1) + N2 = reg(Y ).

Proof. Let ℓ ≥ c1. We may suppose that a ≤ c1 − 1 by the virtue of Remark 8.5.
Since a ≤ c1−1, it follows that b′ = b if a = c1−1 and b′ = b−1 if a = c−ℓb < c1−1
as c− ℓ(b− 1) = c− ℓb+ ℓ ≥ c1− 1. So, if b ≥ c2, then b

′ ≥ c2− 1 and thus the code
is trivial by (8.4). Thus, non-equivalent codes occur only for α = a(1, 0) + b(ℓ, 1)
where 0 ≤ a ≤ c1 − 1 and 0 ≤ b ≤ c2 − 1.

Case I: If c = a + ℓb < c1 ≤ ℓ, then 0 ≤ a < ℓ(1 − b) implying that b = 0.
Hence, dimK Cα,Y = HY (a, 0) = a + 1 and δ(Cα,Y ) = c2(c1 − a) by Theorem 8.4,
since c = a.

Case II: Let c ≥ c1. We appeal to Theorem 8.4 again.
If a = c1 − 1, then b′ = b and dimK Cα,Y = HY (α) = c1(b+ 1). Furthermore, we

have δ(Cα,Y ) = c2 − b′ = c2 − b.
If a < c1−1, then b′ = b−1 and dimK Cα,Y = HY (α) = c1b+c+1−ℓb = c1b+1+a.

Moreover, we have δ(Cα,Y ) = c2 − b′ = c2 − b + 1.
The final claim follows easily, since the there values a+1, c1b+1+a and c1(b+1)

ofK above are strictly smaller than c1c2 whenever 0 ≤ a < c1−1 and 0 ≤ b < c2−1,
and K = HY ((c1 − 1 + ℓ(c2 − 1), c2 − 1)) = c1c2 as a = c1 − 1 and b = c2 − 1. �

We finish the paper with a toy example illustrating the theory we developed.

Example 8.7. Let X = H3 over F7. Let c1 = 3, c2 = 3. Then the parameters
of the code are given in Table 1. According to Markus Grassl’s Code Tables [11] a
best-possible code with N = 9 has K + δ = 9 or K + δ = 10 (MDS codes). This



RATIONAL POINTS OF LATTICE IDEALS ON A TORIC VARIETY AND TORIC CODES 25

example provides us with a best possible code whose parameters are [9, 7, 2] together
with an MDS code [9, 8, 2].

Table 1: Parameters of Toric Codes on X = H3.

(a, b) α [N,K, δ]
(0, 0) (0, 0) [9, 1, 9]
(1, 0) (1, 0) [9, 2, 6]
(2, 0) (2, 0) [9, 3, 3]
(0, 1) (3, 1) [9, 4, 3]
(1, 1) (4, 1) [9, 5, 3]
(2, 1) (5, 1) [9, 6, 2]
(0, 2) (6, 2) [9, 7, 2]
(1, 2) (7, 2) [9, 8, 2]
(2, 2) (8, 2) [9, 9, 1]
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