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OPTIMAL PLANE CURVES OF DEGREE q − 1 OVER A FINITE

FIELD

WALTEIR DE PAULA FERREIRA AND PIETRO SPEZIALI

Abstract. Let q ≥ 5 be a prime power. In this note, we prove that if a plane curve
X of degree q − 1 defined over Fq without Fq-linear components attains the Sziklai
upper bound (d− 1)q + 1 = (q − 1)2 for the number of its Fq-rational points, then X

is projectively equivalent over Fq to the curve C(α,β,γ) : αX
q−1 + βY q−1 + γZq−1 = 0

for some α, β, γ ∈ F∗

q such that α + β + γ = 0. This completes the classification of
curves that are extremal with respect to the Sziklai bound. Also, since the Sziklai
bound is equal to the Stöhr-Voloch’s bound for plane curves of degree q− 1, our main
result classifies the Fq-Frobenius extremal classical plane curves of degree q − 1.

1. Introduction

Let X be a (projective, geometrically irreducible, algebraic) curve defined over a finite
field Fq where q = ph for some prime p and some positive integer h. It is a classical
problem to count the number Nq(X ) of Fq-rational points of X . However, since this
problem is rather hard to solve, it is often desirable to find good upper bounds for
Nq(X ) depending on some invariants of the curve X . For instance, the famous Hasse-
Weil upper bound states that Nq(X ) ≤ 1+q+2g

√
q where g is the genus of X . Note that

the same bound holds for any curve defined over Fq and genus g. Once we have a bound,
it is a natural question to see whether such a bound is sharp or not, and then, it is also
natural to try and classify the optimal curves, that is, the curves attaining said bound.
In the context of the Hasse-Weil bound, such optimal curves do exist and are called
maximal curves. Maximal curves may exist when q = n2 is a square, and it is known
that the genus of an Fq-maximal curve is upper bounded by (n − 1)(n − 2)/2. Up to
birational equivalence, there is exactly one Fq-maximal curve of genus (n− 1)(n− 2)/2:
the Hermitian curve Hn given by the homogeneous equation

Hn : Y nZ + Y Zn = Xn+1.
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2 WALTEIR DE PAULA FERREIRA AND PIETRO SPEZIALI

It is a classical and yet unsolved problem to find the spectrum of the genera of Fq-
maximal curves; see [1].

Now, let X be a plane curve of degree d ≥ 2 without Fq-linear components. In [19],
Sziklai conjectured the following result: Nq(X ) ≤ (d − 1)q + 1. The unique exception
to Sziklai’s conjecture was found in [9, Section 3] and it is given by the curve over F4

with homogeneous equation

X4 + Y 4 + Z4 +X2Y 2 + Y 2Z2 + Z2X2 +X2Y Z +XY 2Z +XY Z2 = 0.

The Sziklai bound was later proved by Homma and Kim in a sequence of three
papers [9, 13, 14]. We are interested in curves attaining the Sziklai bound. Let X be a
nonsingular plane curve that is optimal with respect to the Sziklai upper bound; then
[13, Section 5] its degree d must belong to the set {2,√q+1, q− 1, q, q+1, q+2}. This
means that the spectrum of the degrees of optimal Sziklai curves is pretty small, hence,
it seems feasible to classify, up to projective equivalence, the curves attaining the Sziklai
bound. So far, this is known in the cases d = 2,

√
q + 1, q, q + 1 or q + 2; see [8, Section

5.1]), [7, Theorem 8]), [15, Main Theorem], [16, Theorem 1.3], [20] and [10]. For the
case d = q − 1, a family of optimal curves is given by the homogeneous equation

C(α,β,γ) : αX
q−1 + βY q−1 + γZq−1 = 0

with α, β, γ ∈ F∗
q and α + β + γ = 0. Recently, Homma [12] has stated the following

question:

Question 1.1. Are there curves of degree q − 1 that attain the Sziklai’s upper bound
such that are not projectively equivalent over Fq to a curve of type C(α,β,γ)?

In the same paper, he gives a positive solution to this problem for q = 4, since in this
case, the Hermitian cubic attains Sziklai’s bound but is not projectively equivalent to
any C(α,β,γ).

In this paper, we give a negative answer to Question 1.1 for q ≥ 5, thus completing
the classification of optimal Sziklai curves; see Theorem 4.4.

This paper is organized as follows.
In Section 2, we give the necessary background, as well as, a brief survey of the

existing literature on the Sziklai bound and related topics.
In Section 3, we will give several technical results that are necessary to prove our

classification of curves of degree q − 1 that are optimal with respect to the Sziklai
bound.

Section 4 is devoted to the proof of Theorem 4.4, which is the main result of our paper.
Here, we remark that while our technique applies to all q ≥ 8, the cases q = 5, 7 need
to be dealt with by using two different approaches, which are of independent interest.
The former needs the knowledge of L-polynomial of curves of genus 3 with small defect
[17], the latter is based on the classification on (36, 6)-arcs in P2(F7) [3].

Finally, in Section 5, we give a brief discussion regarding topics that are directly
linked to (or are possible applications of) our results. More in detail, we show as our
main result is related to the Fq-Frobenius classical plane curves of degree q−1 attaining
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the Stöhr-Voloch upper bound. Further, curves attaining the Sziklai upper bound are
related to nonsingular hypersurfaces with many Fq-rational points in even-dimensional
projective spaces; see [4, 21].

2. Background and preliminary results

2.1. Plane Curves. Our notation and terminology are standard. For definitions and
basic properties of plane curves, see [6, Chapter 1-5]. In the projective plane P2(Fq), a
plane curve C in P2(Fq) of homogeneous equation F (X,Y,Z) = 0, where F ∈ Fq[X,Y,Z],
is denoted by C = v(F ) and consists of all points (x : y : z) ∈ P2(Fq) such that

F (x, y, z) = 0. We regard C as a curve over a fixed algebraic closure K := Fq. By
doing so, the points in (x : y : z) ∈ P2(Fq) such that F (x, y, z) = 0 are called Fq-rational
points (or simply, rational points) of C and C(Fq) := P2(Fq)∩C. A plane curve C = v(F )
in P2 := P2(K), where F ∈ K[X,Y,Z], is said to be defined over Fq if there is λ ∈ K∗

such that λ ·F ∈ Fq[X,Y,Z]. A point P = (x : y : z) of a plane curve C in P2 is singular
if

∂F

∂X
(x, y, z) =

∂F

∂Y
(x, y, z) =

∂F

∂Z
(x, y, z) = 0.

Otherwise, P is a nonsingular (or a simple) point. The degree of C, denoted by deg(C), is
deg(F ). A component of C is a curve X of homogeneous equation G = 0 such that G|F .
A curve C is said to be absolutely irreducible if F is irreducible over K. A projectivity
ϕA : P2 → P2 is given as follows:

ϕA(x : y : z) = A ·





x
y
z





where A ∈ GL3(K). Two curves C and X are said projectively equivalent over Fq,
denoted by C ≃proj X , if there is a projectivity ϕA : P2 → P2 with A ∈ GL3(Fq) such
that ϕA(C) = X . The q-Frobenius map Ψq : P2 → P2 is defined by Ψq(x : y : z) :=

(xq : yq : zq). The dual projective space P̌2 = P̌2(K) is the space of all line in P2 and
P̌2(Fq) we mean the set of lines defined over Fq of P̌2. For a point P ∈ P2(Fq), define

P̌ (Fq) := {l ∈ P̌2(Fq) | P ∈ l}.
The proof of the next result can be found in [6, section 4.5].

Theorem 2.1 (Nother’s “AF + BG” Theorem). Let F = v(F ) and G = v(G) be two
plane curves defined over Fq with no common components. If F ∩ G = {P1, ..., Ps}
and the multiplicity of F and G at each point Pi is equal to 1, then for all plane curve
X = v(H) defined over Fq with F ∩ G ⊆ X there are A,B ∈ Fq[X,Y,Z] such that
H = AF +BG.

Note that Theorem 2.1 gives a method to find all plane curves passing through a
given set of points of P2(Fq).
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2.2. Arcs of P2(Fq) and Codes. The following brief account of the theory of plane
arcs and their relationship to linear codes is based on [2, Chapter 10 and 17], to which
we refer the reader for further details. In the projective plane P2(Fq), a (k, n)-arc K is a
set of k points such that each line contains at most n point of K and there is a line that
contains exactly n points of K. A (k, 2)-arc is simply called an arc. Let K ⊆ P2(Fq)

be a (k, n)-arc, for 0 ≤ i ≤ q + 1, define Ai(K) := {l ∈ P̌2(Fq) | #(l ∩ K) = i},
ai(K) := #Ai(K) and k0(K) := min{i | ai 6= 0}. When there is no possibility of
confusion we will denote it simply by Ai, ai and k0.

A linear subspace C of Fn
q of dimension k is called an [n, k]q-code. The elements of a

linear code C are called codewords. The weight of a codeword x = (x1, ..., xn) ∈ C ⊆ Fn
q

is the number of nonzero coordinates in x, denoted by wt(x). The minimum distance of
C is min{wt(x)|x ∈ C, x 6= 0}. If the minimum distance of C is d, then we write that C is
an [n, k, d]q-code. A generator matrix G of an [n, k, d]q-code C is a matrix with k rows
and n columns whose rows form a basis of C. The code C is recovered from G by taking
all linear combinations of rows. If C contains ci codewords of weight i, for i = 1, ..., n,
then the weight enumerator is defined by

WC(z) := c0 + c1z + c2z
2 + · · ·+ cnz

n ∈ Z[z].

Let C be a linear [n, 3, d]q-code described by a generator matrix G. We assume that
there is no 0 column in G. We can then consider the columns of G as generators of points
in P2(Fq). A linear [n, 3, d]q-code C is called projective if there is a generator matrix
whose columns generate different points in P2(Fq). For a projective [n, 3, d]q-code C with
a generator matrix G, the n points in P2(Fq) corresponding to columns of G form an
(n, n−d)-arc in P2(Fq). For each i in 0, . . . , n−d, the number ai of lines in Ai is related
to the coefficients ci of the weight enumerator as follows: (q − 1) · (a0, · · · , an−d) =
(cn, · · · , cd).

2.3. Stöhr-Voloch Theory. In [18], Stöhr and Voloch gave a geometric method to
obtain upper bounds for the number of rational points of a curve of Pn. Here, we give
the necessary background on a particular case of the Stöhr-Voloch theorem that we will
need in Section 4.

Let C a plane curve defined over Fq and 0 = ǫ0 < ǫ1 = 1 < ǫ2 the order sequence of C.
Let P ∈ C. If C is nonsingular, then the hermitian P -invariants are j0(P ) = 0, j1(P ) = 1
and j2(P ) = I(P,TP (C)∩C) where TP (C) is the tangent line to C at P and I(P,TP (C)∩C)
is the intersection multiplicity of TP (C) and C at P . Since C is defined over Fq, then
there is a smallest integer ν ∈ {1, ǫ2} such that

det





xq0 xq1 xq2
x0 x1 x2

D
(ν)
ζ x0 D

(ν)
ζ x1 D

(ν)
ζ x2



 6≡ 0
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whereD
(k)
ζ is the k-th Hasse derivative with respect to a separating variable ζ ofK(C)|K,

and x0, x1, x2 are the coordinate functions on C ⊆ P2. The number ν is called the q-
Frobenius order of C, and such a curve is called q-Frobenius classical if ν = 1. The
following is a slight rewording of [18, Theorem 0.1].

Theorem 2.2. Let C be an irreducible plane curve of degree d defined over a finite field
Fq. If C is q-Frobenius classical, then

Nq(C) ≤
1

2
d(d+ q − 1).

A refined version of this theorem can be obtained if one can gather sufficient infor-
mation on the number and the weight of Fq-rational inflection points.

Theorem 2.3. Let C ⊆ P2 be an irreducible nonsingular algebraic curve of genus g and
degree d defined over Fq. If ν is the q-Frobenius order of C, then

2 · Nq(C) ≤ ν(2g − 2) + (q + 2)d−
∑

P∈C
A(P )

where A(P ) = j2(P )− ν − 1 if P ∈ C(Fq) and A(P ) = 0 otherwise.

2.4. Sziklai’s upper bound and optimal curves. Let Cd(Fq) be the set of plane
curves of degree d ≥ 2 defined over Fq without Fq-linear components. For C ∈ Cd(Fq),
let Nq(C) := |C(Fq)|. In [19], Sziklai conjectured the bound Nq(C) ≤ (d − 1)q + 1.
Actually, Sziklai’s conjecture fails for curves of degree 4 over F4, as the plane curve with
equation

X4 + Y 4 + Z4 +X2Y 2 + Y 2Z2 + Z2X2 +X2Y Z +XY 2Z +XY Z2 = 0(1)

has 14 points over F4 (see [9, section 3]), while Sziklai’s bound is equal to 13. Later on,
in a sequence of three papers [9, 13, 14], Homma and Kim proved the modified Sziklai’s
Conjecture:

Theorem 2.4 (Sziklai’s upper bound). If C ∈ Cd(Fq), then

Nq(C) ≤ (d− 1)q + 1,(2)

except for the curve over F4 which is projectively equivalent to curve defined by (1).

Remark 2.5. Let C ∈ Cq(Fq) with (d, q) 6= (4, 4). If Nq(C) = (q − 1)q + 1, then C is
absolutely irreducible and any rational point of C is nonsingular, see [13, section 2].

In [13, section 5], Homma and Kim observe that the possible degrees d of a nonsingular
curve with (d− 1)q + 1 rational points are q + 2, q + 1, q, q − 1,

√
q + 1 and 2. Also, for

each degree d in the list, there is a nonsingular curve of degree d attaining the bound.
For d 6= q−1, the complete classification of such optimal curves is known; we summarize
these results in the following Theorem.

Theorem 2.6. Let C ∈ Cd(Fq) a nonsingular curve with Nq(C) = (d− 1)q + 1.

(i) If d = 2, then C ≃proj v(X
2 + Y Z) over Fq ([8, Section 5.1]).
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(ii) If d =
√
q + 1, then C ≃proj v(X

√
q+1 + Y

√
q+1 + Z

√
q+1) over Fq when q > 4 is

a square ([7]).
(iii) If d = q + 2, then C is projectively equivalent over Fq to the curve of type

v(Y (Y qZ − Y Zq) + Z(ZqX − ZXq) + (aX + bY + cZ)(XqY − XY q)) where
t3 − (ctq + bt+ a) is irreducible over Fq ([20] and [10]).

(iv) If d = q + 1, then C is projectively equivalent over Fq to the curve

Cq+1 := v(Xq+1 −X2Zq−1 + Y qZ − Y Zq)

when q ≥ 5 or q = 2. If q = 4, then C is projectively equivalent over F4 to either
C5 or the curve

v(µG(X,Y,Z) +XY Z(µ2(X2 + Y 2 + Z2) +XY + Y Z + ZX))

where G(X,Y,Z) = X4Y +XY 4+Y 4Z+Y Z4+Z4X+ZX4 and µ2+µ+1 = 0.
Moreover, those two curves are not projectively equivalent to each other over F4.
If q = 3, then C is projectively equivalent over F4 either to C4 or to the curve

v(X3Y −XY 3 + Y 3Z − Y Z3 + Z3X − ZX3 +XY Z(X + Y − Z)).

Moreover, those two curves are not projectively equivalent to each other over F3

([16]) .
(v) If d = q, then C ≃proj v(X

q −XZq−1 + Y q−1Z − Zq) over Fq ([15]).

For d = q − 1, as was mentioned by Sziklai in [19], the curve

C(α,β,γ) := v(αXq−1 + βY q−1 + γZq−1)

with α, β, γ ∈ F∗
q and α+β+γ = 0 has (q−1)2 rational points. This curve is nonsingular

and the set of its Fq-rational points is

C(α,β,γ)(Fq) = P2(Fq)\{X = 0} ∪ {Y = 0} ∪ {Z = 0}.
Recently, Homma [12], has studied the number of projective equivalence classes over Fq

in this family of curves. More precisely, he proves the following Theorem.

Theorem 2.7. [12, Theorem 1.3] The number νq of projective equivalence classes over
Fq in the family of curves {C(α,β,γ) | α, β, γ ∈ F∗

q, α+ β + γ = 0} is as follows:

(i) Suppose that the characteristic of Fq is neither 2 or 3.
(1) If q ≡ 2 mod 3, then νq = (q + 1)/6.
(2) If q ≡ 1 mod 3, then νq = (q + 5)/6.

(ii) Suppose that q is a power of 3. Then νq = (q + 3)/6.
(iii) Suppose that q is a power of 2:

(1) If q ≡ 2 mod 3, then νq = (q − 2)/6.
(2) If q ≡ 1 mod 3, then νq = (q + 2)/6.

In the same paper, the curves of degree 3 over F4 are classified.

Theorem 2.8. [12, Theorem 3.1] Let C be a nonsingular plane curve of degree 3 over
F4. If N4(C) = 9, then C is either

(i) the Hermitian cubic H3 given by v(X3 + Y 3 + Z3) or
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(ii) projectively equivalent to the curve Cα given by v(X3 + αY 3 + α2Z3) where
F4 = {0, 1, α, α2}.

Remark 2.9. It can be shown that the Hermitian cubic H3 and the curve Cα are bi-
rationally equivalent over F4. Also, they are projectively equivalent over F26 (see, [12,
section 4]).

3. Preliminary results

In this section, we give several technical results that are necessary to prove our main
result Theorem 4.4. First of all, not that, by Theorem 2.8, we may assume q ≥ 5. We
begin by proving the following Proposition.

Proposition 3.1. [12, Proposition 2.1] Let C be a (possibly reducible) plane curve over
Fq of degree q − 1. Then C ∈ {C(α,β,γ) | α, β, γ ∈ F∗

q, α+ β + γ = 0} if and only if

C(Fq) = P2(Fq)\(v(X) ∪ v(Y ) ∪ v(Z)).

Fix a curve X ∈ Cq−1(Fq) with Nq(X ) = (q − 1)2. Let Z(X ) := P2(Fq)\X (Fq).
By Proposition 3.1, if Z(X ) = (v(X) ∪ v(Y ) ∪ v(Z))(Fq) then X = C(α,β,γ) for some

α, β, γ ∈ F×
q such that α+β+γ = 0. Since the general projective linear group PGL(2, q)

3-transitively on the set of lines of P2(Fq) and #Z(X ) = 3q, if there are three lines

l1, l2, l3 ∈ P̌2(Fq) such that Z(X ) = (l1 ∪ l2 ∪ l3)(Fq), then l1, l2, l3 are not concurrent
and we can choose coordinates X,Y,Z of P2 such that l1 = v(X), l2 = v(Y ) e l3 = v(Z).
This means that, in order to prove our main result, it is enough to show the existence
of such three lines. We start by proving the following lemma.

Lemma 3.2. The set X (Fq) ⊆ P2(Fq) is a ((q − 1)2, q − 1)-arc.

Proof. Since deg(X ) = q − 1, then #(l ∩ X (Fq)) ≤ q − 1 for every line l ∈ P̌2(Fq). Let

t := max{#(l ∩ X (Fq)) | l ∈ P̌2(Fq)} ≤ q − 1. If P ∈ X (Fq) then each line in P̌ (Fq)

contains at most t points of X (Fq). Since #P̌ (Fq) = q+1 then 1+(q+1)(t−1) ≥ (q−1)2.
Hence,

q − 1 ≥ t ≥ q(q − 2)

q + 1
+ 1 = q − 2 +

3

q + 1
> q − 2.

This implies that t = q − 1. Therefore, X (Fq) is a ((q − 1)2, q − 1)-arc in P2(Fq). �

For 0 ≤ i ≤ q + 1, recall the definition of

Ai = {l ∈ P̌2(Fq) | #(l ∩ X (Fq)) = i} and ai = #Ai.

Since deg(X ) = q− 1, then aq = aq+1 = 0. A line l ∈ P̌2(Fq) is called an i-line if l ∈ Ai.
A point P ∈ P(Fq) is said to be of type ir11 ...i

rt
t (i1 > · · · > it and r1, ..., rt ≥ 0) if the

number of ij-lines through P is rj for j = 1, ..., t. Also, as X (Fq) is a ((q−1)2, q−1)-arc,
we may use the following result:

Lemma 3.3. [8, Lemma 12.1.1] With the same notation as above, we have the following
equalities.
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(i)

q−1
∑

i=0

ai = q2 + q + 1.

(ii)

q−1
∑

i=1

iai = (q + 1)(q − 1)2.

(iii)

q−1
∑

i=2

i(i− 1)ai = q(q − 2)(q − 1)2.

Lemma 3.4. Let P ∈ P2(Fq) be a point of type ir11 ...i
rt
t . Then r1 + · · · + rt = q + 1.

Moreover,

(i) If P ∈ X , then ij ≥ 1 for all j = 1, ..., t and 1 +
∑

rj(ij − 1) = (q − 1)2.
(ii) If P /∈ X then

∑

rjij = (q − 1)2.

Proof. Since the Fq-lines through P cover the whole plane P2(Fq) and Nq(X ) = (q−1)2,
the proof is straightforward. �

Corollary 3.5. Let i and j be (not necessarily distinct) non-negative integers. Suppose
that there are different Fq-lines l1, l2 with l1 ∈ Ai and l2 ∈ Aj. If P = l1 ∩ l2 ∈ X (Fq),
then i+ j ≥ q.

Proof. Suppose that P is of type ir11 ...i
rt
t . By Lemma 3.4 item (i), we have

(q − 1)2 = 1 +
∑

rj(ij − 1)

≤ 1 + (i− 1) + (j − 1) + (q − 1)(q − 2)

= i+ j − 1 + q2 − 3q + 2

= i+ j − q + (q − 1)2.

Therefore, i+ j ≥ q. �

Definition 1. For i = 0, . . . , q − 1 we define ψi : P
2(Fq) → {0, 1, ..., q + 1} as

ψi(P ) := #(P̌ (Fq) ∩ Ai).

Lemma 3.6. If P ∈ X (Fq), then ψq−1(P ) ≥ 3. In particular, aq−1 ≥ 3(q − 1). Also, if
ψq−1(P ) = 3, then P is of type (q − 1)3(q − 2)q−2.

Proof. Let rP = ψq−1(P ). By Lemma 3.4 item (i), if P is of type ir11 ...i
rt
t then

(q − 1)2 = 1 +
∑

rj(ij − 1)

≤ 1 + rP (q − 2) + (q + 1− rP )(q − 3)

= 1 + qrP − 2rP + q2 − 3q + q − 3− qrP + 3rP

= rP + (q − 1)2 − 3,
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hence, rP ≥ 3. We get 3(q − 1)2 lines in Aq−1. However, each line was counted at most
(q − 1) times. This implies aq−1 ≥ 3(q − 1). If ψq−1(P ) = 3, let sP = ψq−2(P ), then

(q − 1)2 = 1 +
∑

rj(ij − 1)

≤ 1 + 3(q − 2) + sP (q − 3) + (q − 2− sP )(q − 4)

= 3q − 5 + qsP − 3sP + q2 − 4q − 2q + 8− qsP + 4sP

= sP + (q − 1)2 + 2− q,

hence, sP ≥ q − 2. This means that the other lines in P̌ (Fq) are in Aq−2. Therefore, P
is of type (q − 1)3(q − 2)q−2. �

Loosely speaking, in order to prove our result, we need that there exists a point
Q0 ∈ Z(X ) such that ψq−1(Q0) is big enough. In order to do so, we give the following
proposition, which is inspired by [13, Proposition 3.1 and Proposition 3.2].

Proposition 3.7. Fix a point Q0 ∈ Z(X ) and l∞ ∈ P̌2(Fq)\Q̌0(Fq). Suppose there

are lines l1, ..., lt ∈ Q̌0(Fq) (2 ≤ t ≤ q − 1) such that li(Fq)\({Q0} ∪ l∞) ⊆ X (Fq).

For a line l ∈ Q̌0(Fq) other than these t lines, if #(l\l∞) ∩ X (Fq) ≥ q − t, then
l(Fq)\({Q0} ∪ l∞(Fq)) ⊆ X (Fq).

Proof. Choose coordinates X,Y,Z of P2 such that l1 = v(X), l2 = v(Y ) and l∞ = v(Z),
whence Q0 = (0 : 0 : 1). Let G0 = Zq−1 − Xq−1 − Y q−1, G1 = XY ∈ Fq[X,Y,Z].
Note that v(G0) and v(G1) are plane curves with no common components. A direct
computation shows that #(v(G0)∩v(G1)) = 2(q−1). Also, since li(Fq)\({Q0}∪ l∞) ⊆
X (Fq) for i = 1, 2 then v(G0) ∩ v(G1) ⊆ X (Fq). Let F be a homogeneous equation for
X over Fq, by Nother’s “AF + BG” Theorem 2.1, we can write

F (X,Y,Z) = a00(Z
q−1−Xq−1−Y q−1)+XY (gq−3(X,Y )+gq−4(X,Y )Z+ · · ·+g0Zq−3)

where gν ∈ Fq[X,Y,Z] is homogeneous of degree ν and a00 ∈ F∗
q. In general, any line

L ∈ Q̌0(Fq)\(l1 ∪ l2) is defined by an equation of the form Y −µX = 0 for some µ ∈ F∗
q.

So

L(Fq)\(Q0 ∪ l∞(Fq)) = {(1 : µ : β) | β ∈ F∗
q}.

Since a00(β
q−1 − 1− µq−1) = −a00 when β, µ ∈ F×

q , then

(3) F (1, µ, β) = (µ(gq−3(1, µ) − a00) + µqq−4(1, µ)β + · · · + µg0β
q−3.

In particular, if l2+µ = v(Y − aµX) with µ = 1, ..., t − 2, we must have aµ 6= 0. Let

B =









...
1 β β2 · · · βq−3

...









β∈F∗

q\{1}

.
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Since l2+µ(Fq)\({Q0} ∪ l∞) ⊆ X (Fq), by equation (3), then

B ·











aµgq−3(1, aµ)− a00
aµgq−4(1, aµ)

...
aµg0











=











0
0
...
0











.

Since B is a Vandermonde matrix, we have det(B) 6= 0. This implies that

gq−4(1, aµ) = · · · = g0(1, aµ) = 0.

If ν < t− 2, since gν(1, y) has t− 2 roots {a1, ..., at−2} but its degree is less than t− 2,
then gν(1, y) ≡ 0 as a polynomial in y. So

F (1, y, z) = a00(z
q−1−yq−1)+(ygq−3(1, y)−a00)+yqq−4(1, y)z+ · · ·+ygt−2(1, y)z

q−t−1.

Let l = v(Y − µX), where µ ∈ F∗
q, and {(1, µ, βi) | 1 ≤ i ≤ q− t} a set of chosen points

of (l\l∞)(Fq) ∩ X . So µ 6= 0 and βi 6= 0 for i = 1, ..., q − t. Hence,








...

1 βi β2i · · · βq−t−1
i

...









i=1,...,q−t











µgq−3(1, v) − a00
µgq−4(1, v)

...
µgt−2(1, v)











=











0
0
...
0











.

This implies that µgq−3(1, µ) − a00 = µgq−4(1, µ) = µgt−2(1, µ) = 0. So F (1, µ, β) = 0
for any β ∈ F∗

q. Therefore, l(Fq)\({Q0} ∪ l∞(Fq)) ⊆ X (Fq).
�

Corollary 3.8. Suppose there is a point Q ∈ Z(X ) such that r = ψq−1(Q) ≥ 2. If these
r lines are l1, ..., lr then {(li(Fq)\{Q}) ∩ Z(X ) | i = 1, ..., r} is contained in a line.

Proof. Let Qi = (li(Fq)\{Q})∩Z(X ) with i = 1, ..., r. Since r ≥ 2, we can consider the

line l∞ := Q1Q2. Since li ∈ Aq−1, then #(li\l∞) ∩ X (Fq) ≥ (q + 1) − 3 = q − 2 for
i = 3, ..., r. By Proposition 3.7, we have li\(l∞ ∪ {Q}) ⊆ X (Fq). Therefore,

{(li(Fq)\{Q}) ∩ Z(X ) | i = 1, ..., r} ⊆ l∞.

�

We now prove some interesting Corollaries to Proposition 3.7. They can be thought
of as partial negative answers to Question 1 when assuming stronger conditions on the
structure of Z(X ).

Corollary 3.9. If there are two lines l1∞, l
2
∞ ∈ P̌2(Fq) such that (l1∞ ∪ l2∞)(Fq) ⊆ Z(X ),

then a0 = 3.

Proof. Let Z∗(X ) := Z(X )\(l1∞ ∪ l2∞) and Q ∈ l1∞ ∩ l2∞. Since #Z(X ) = 3q, we have
#Z∗(X ) = q − 1. Since #Q̌(Fq)\{l1∞, l2∞} = q − 1 and deg(X ) = q − 1, then each line

l ∈ Q̌(Fq)\{l1∞, l2∞} contains exactly one point of Z∗(X ). By Corollary 3.8, Z∗(X ) is
contained in a line. Therefore, a0 = 3. �
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Corollary 3.10. Let q ≥ 8. If Q ∈ Z(X ) is a point such that r = ψq−1(Q) ≥ 4, then
r = q − 1. In particular, a0 = 3.

Proof. Since r ≥ 4, by Lemma 3.7 and Corollary 3.8, the lines in Q̌(Fq)\Aq−1 have at
most q − r points of X (Fq). Then

q2 − 2q + 1 = (q − 1)2 ≤ r(q − 1) + (q + 1− r)(q − r)

= qr − r + q2 + q − qr − qr − r + r2

= q2 + q − qr + r(r − 2).

Hence q(r − 3) ≤ r(r − 2)− 1. Since q ≥ 8, we must have r ≥ 7. So

q ≤ r(r − 2)− 1

r − 3
=

(r + 1)(r − 3) + 2

r − 3
= r + 1 +

2

r − 3
.

Since r ≤ (q − 1), this implies that r = q − 1. Therefore, Q is of type (q − 1)q−102 and,
by Corollary 3.9, a0 = 3. �

Corollary 3.11. Let q ≥ 7. If there is a line l∞1 ∈ P̌2(Fq) such that l∞1 (Fq) ⊆ Z(X ),
then a0 = 3.

Proof. By Lemma 3.6, aq−1 ≥ 3(q − 1). Since q ≥ 7, if ψq−1(Q) ≤ 2 for every point
Q ∈ l∞1 then aq−1 ≤ 2(q+1) < 3(q−1), a contradiction. Hence, there is a point Q ∈ l∞1
such that r = ψq−1(Q) ≥ 3. Also, by Lemma 3.7 and Corollary 3.8, the other lines have
at most q − r points of X (Fq). This implies that

q2 − 2q + 1 = (q − 1)2 ≤ 0 + r(q − 1) + (q − r)(q − r)

= qr − r + q2 − 2qr + r2

= q2 − qr + r(r − 1).

Hence q(r − 2) ≤ r(r − 1)− 1. Since q ≥ 7, we must have r ≥ 6. So

q ≤ r(r − 1)− 1

r − 2
=

(r + 1)(r − 2) + 1

r − 2
= r + 1 +

1

r − 2
.

Since r ≤ q − 1, this implies that r = q − 1. Therefore, Q is of type (q − 1)q−102. Then
the result follows from Corollary 3.9. �

Let k0 = min{i | ai 6= 0}. By the previous Corollary, in order to prove our main
result for q ≥ 7, it is enough to show that k0 = 0. We start by giving an upper bound
for k0.

Lemma 3.12. We have that k0 ≤ q − 4.

Proof. Suppose that k0 ≥ q − 3. Hence, by Lemma 3.3, we have

(1) aq−3 + aq−2 + aq−1 = q2 + q + 1;
(2) (q − 3)aq−3 + (q − 2)aq−2 + (q − 1)aq−1 = (q + 1)(q − 1)2;
(3) (q − 3)(q − 4)aq−3 + (q − 2)(q − 3)aq−2 + (q − 1)(q − 2)aq−1 = q(q − 2)(q − 1)2.
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A direct computation shows that the system above implies that 2aq−3 = 3(q2 − 3q+2),
aq−2 = −2(q2 − 5q + 4) and 2aq−1 = 3(q2 − 3q + 4). Since q ≥ 5, then

aq−2 = −2(q2 − 5q + 4) < 0,

a contradiction. Therefore, k0 ≤ q − 4. �

We now prove a lower bound for k0 whenever k0 6= 0. We start with the following
lemma:

Lemma 3.13.
∑q−1

i=k0
(i− k0)(i− q + 2)ai = 3(q − 1)2 − 3k0. In particular,

(q − k0 − 1)aq−1 ≥ 3(q − 1)2 − 3k0.

Proof. First, note that

(i− k0)(i − q + 2) = i(i− 1) + i(3− q) + k0(q − 2− i)

= i(i− 1) + i(3− q)− ik0 + k0(q − 2)

= i(i− 1) + i(3− q − k0) + k0(q − 2).

By Lemma 3.3, we have

q−1
∑

i=k0

(i− k0)(i − q + 2)ai =

q−1
∑

i=k0

i(i− 1)ai + (3− q − k0)

q−1
∑

i=k0

iai + k0(q − 2)

q−1
∑

i=k0

ai

= q(q − 2)(q − 1)2 + (3− q − k0)(q + 1)(q − 1)2+

+ k0(q − 2)(q2 + q + 1)

= 3(q − 1)2 − 3k0.

Moreover, if i = q − 1 then (i− k0)(i− q + 2) = (q − k0 − 1) and if k0 ≤ i ≤ q − 2 then
(i − k0)(i − q + 2) ≤ 0. Also, by Lemma 3.12, k0 ≤ q − 4. Hence, 3(q − 1)3 − 3k0 ≥ 0.
Therefore, (q − k0 − 1)aq−1 ≥ 3(q − 1)2 − 3k0. �

Proposition 3.14. Let q ≥ 7. If k0 6= 0, then k0 ≥ 2.

Proof. Suppose that k0 = 1. Let l1 ∈ A1. Also, consider P0 = l1 ∩ X (Fq) and

l1 ∩ Z(X ) = {Q1, ..., Qq}.
By Corollary 3.5, P0 is of type (q − 1)q11. If ri := ψq−1(Qi) for i = 1, ..., q then

ri(q − 1) + 1 ≤ Nq(X ) = (q − 1)2

Hence, ri ≤ q − 2. If ri ≥ 3, by Lemma 3.7 and Corollary 3.8, the lines in Q̌i(Fq)\Aq−1

have at most q − ri points in X (Fq). On the other hand, we have

q2 − 2q + 1 = (q − 1)2 ≤ 1 + ri(q − 1) + (q − ri)(q − ri)

= 1 + riq − ri + q2 − 2qri + r2i

= q2 + 1− qri + ri(ri − 1),
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hence, q(ri − 2) ≤ (ri − 1)ri. Since q ≥ 7, we must have ri ≥ 6. So

q ≤ (ri − 1)ri
(ri − 2)

=
(ri + 1)(ri − 2) + 2

ri − 2
= ri + 1 +

2

ri − 2
.

This implies that ri ≥ q − 1, a contradiction. Therefore ri ≤ 2 for i = 1, ..., q, hence,
aq−1 ≤ q + 2q = 3q. By Lemma 3.13, (q − 2)aq−1 ≥ 3(q − 1)2 − 3 = 3q(q − 2). So
aq−1 = 3q. By Lemma 3.13, we have

q−1
∑

i=1

(i− 1)(i− q + 2)ai = 3q(q − 2).

Since (q − 2)aq−1 = 3q(q − 2), this implies that a2 = · · · = aq−3 = 0. By Lemma 3.3,
we have

(1) a1 + aq−2 + 3q = q2 + q + 1,
(2) a1 + (q − 2)aq−2 + 3q(q − 1) = (q + 1)(q − 1)2.

A direct computation shows that the system above implies that (q − 3)a1 = 3(q − 1)
and (q − 3)aq−2 = q(q2 − 5q + 4). Note that

a1 =
3(q − 1)

q − 3
= 3 +

6

q − 3

Since q ≥ 7 then (q − 3) ∤ 6, but a1 is a integer, a contradiction. Therefore, k0 ≥ 2. �

4. Characterization of optimal Sziklai curves of degree q − 1

In this section, we provide the characterization of optimal Sziklai curves of degree
q − 1. First, we deal with the cases q = 5, 7, as they need some ad hoc techniques.

Proposition 4.1. If X ∈ C4(F5) and N5(X ) = 16, then there exist α, γ, β ∈ F∗
5 with

α+ β + γ = 0 such that X ≃proj C(α,β,γ) over F5.

Proof. By Lemma 3.12, we have k0 ≤ 1. Suppose that k0 = 1. Let l1 ∈ A1 with
l1 ∩ X (Fq) = {P0}. By Corollary 3.5, P0 is of type 4511. In this case, l1 is the tangent
line to X at P0. Since deg(X ) = 4, then the divisor

l1 · X :=
∑

I(P, l1 ∩ X )P = 2P0 + P1 + P2

for some points P1, P2 ∈ l1 ∩ X , where I(P, l1 ∩ X ) is the intersection multiplicity of l1
and X at P . Since the divisor l1 ·X is defined over Fq, applying the 5-Frobenius map Ψ5,
we have P1 + P2 + 2P0 = Ψ5(P1) + Ψ5(P2) + 2P0, which implies that P1, P2 ∈ P2(F25).
If P1 = P2 then P1 = P2 = P0 and P0 is a inflexion point. On the other hand, by
Stohr-Voloch’s Theorem 2.3, we have

32 = 2Nq(X ) ≤ 32−
∑

P∈X
A(P ).

This implies that 0 = A(P0) = j2(P0) − 2, hence, I(P0, l1 ∩ X ) = j2(P0) = 2, a contra-
diction. So P1 6= P2 and P1, P2 ∈ P2(F25)\P2(F5). By Lemma 3.3, we have
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(i) a1 + a2 + a3 + a4 = 31;
(ii) a1 + 2a2 + 3a3 + 4a4 = 96;
(iii) 2a2 + 6a3 + 12a4 = 240.

A direct computation shows that the system above implies that a1 = 21 − a4, a2 =
3(a4 − 15) and a3 = 55 − 3a4. Since a1, a2, a3 ≥ 0, then 15 ≤ a4 ≤ 18. Hence a1 ≥ 3.
Follows from the above that a1 ≥ 3 implies that N25(X ) ≥ 16+3∗2 = 22. On the other

hand, let L(t) =
∏6

i=1(1− ωit) the L-polynomial of X into linear factors in some finite
extension of Q. By [6, Theorem 9.10], we have

Nqn(X ) = qn + 1−
2g
∑

i=1

ωn
i .

Since 16 = N5(X ) = 5 + 1 + 3 · 4− 2 = 5 + 3 · 4− 1. As mentioned in [17, fact 3.3], the
curve X has zeta function of type [4, 4, 2], this means that

ω1 + ω1 = −4, ω2 + ω2 = −4 and ω3 + ω3 = −2.

Hence,
∑6

i=1 ω
2
i = 36 − 2(|ω1|2 + |ω2|2 + |ω3|2). By [6, Theorem 9.16], |ωi|2 = 5. This

implies that

22 ≤ N25(X ) = 26−
6

∑

i=1

ω2
i = 26− (36− 30) = 20,

a contradiction. Then k0 = 0.
Suppose that a1 6= 0. Let l0 ∈ A0 and l1 ∈ A1. By Corollary 3.5, we have

Q = l0 ∩ l1 ∈ Z(X ).

If rQ = ψ4(Q), by Lemma 3.4, we have 16 ≤ 0 + 1 + 4r + 3(4 − r) = 13 + r, hence,
r ≥ 3. This means that Q is of type 43311101. On the other hand, since ψ4(Q) ≥ 3, by
Proposition 3.7, we must have ψ3(Q) = 0, a contradiction. So a1 = 0. By Lemma 3.3,
we have

(1) a0 + a2 + a3 + a4 = 31;
(2) 2a2 + 3a3 + 4a4 = 96;
(3) 2a2 + 6a3 + 12a4 = 240.

A direct computation shows that the system above implies that 3a0 = 21 − a4, a2 =
2(a4 − 12) and 3a3 = 144 − 8a4. If a0 = 1, then a2 = 12 and a3 = 0. Let l2 ∈ A2 and
P0 ∈ l2 ∩X (F5). If r = ψ4(P0), by Lemma 3.4, we have 16 ≤ 2+ 3r+2(5− r) = 12+ r.
Since 2 + 3r ≤ 16, this implies that r = 4. Hence, ψ2(P0) = 1, ψ3(P0) = 1 and
ψ4(P0) = 4, a contradiction. Therefore, a0 ≥ 2 and the result follows Corollary 3.9. �

Proposition 4.2. If X ∈ C6(F7) and N7(X ) = 36, then there exist α, γ, β ∈ F∗
7 with

α+ β + γ = 0 such that X ≃proj C(α,β,γ) over F7.

Proof. First, recall the definition of k0 = min{i | ai 6= 0}. Also, by Proposition 3.14
and Corollary 3.11, it is enough to prove that k0 ≤ 1.

By Lemma 3.2, we have that X (F7) ⊆ P2(F7) is a (36, 6)-arc. Up to projective
equivalence, there are exactly 194 (36, 6)-arcs in P2(F7), see [3, Remark 1]. The full
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list can be found online at http://mars39.lomo.jp/opu/36 3 30.txt, where the points of
such arcs are arranged as a generator matrix for a [36, 3, 30]7-code together with the
weight enumerator. Recall that, by the relation between projective [n, 3, d]q-codes and
(n, n− d)-arcs in P2(Fq), we have

6 · (a0, a1, a2, a3, a4, a5, a6) = (c36, c35, c34, c33, c32, c31, c30).

By Lemma 3.12, k0 ≤ 3. Hence, from our initial observation, it is enough to prove
that the condition k0 ∈ {2, 3} leads to a contradiction, equivalently, the exactly six
(36, 6)-arcs of the [36, 3, 30]7-codes such that the weight of a codeword is at most 34 is
not projectively equivalent to X (F7).

Suppose that k0 = 3. Since there is only one [36, 3, 30]7-code such that the maximal
weight of a codeword is exactly 33, then there is only one (36, 6)-arc with k0 = 3, up to
projective equivalence. So we can choose coordinates X,Y,Z of P2 such that

X (F7) = {(1 : 1 : 3), (1 : 1 : 5), (1 : 2 : 3), (1 : 2 : 5), (1 : 2 : 6), (1 : 3 : 3),

(1 : 3 : 4), (1 : 3 : 5), (1 : 3 : 6), (1 : 3 : 0), (1 : 4 : 2), (1 : 4 : 4),

(1 : 4 : 5), (1 : 4 : 6), (1 : 4 : 0), (1 : 5 : 2), (1 : 5 : 3), (1 : 5 : 4),

(1 : 5 : 6), (1 : 5 : 0), (1 : 6 : 1), (1 : 6 : 3), (1 : 6 : 4), (1 : 6 : 5),

(1 : 6 : 0), (1 : 0 : 1), (1 : 0 : 2), (1 : 0 : 4), (1 : 0 : 6), (1 : 0 : 0),

(0 : 1 : 3), (0 : 1 : 4), (0 : 1 : 5), (0 : 1 : 6), (0 : 1 : 0), (0 : 0 : 1)}.

Let

G = Y Z(Z − 3Y )(Z − 4Y )(Z − 5Y )(Z − 6Y ) ∈ F7[X,Y,Z]

H = X(X + Y − Z)(2X + Y − Z)(X + 2Y − 2Z) ∈ F7[X,Y,Z]

A direct computation shows that #(v(G)∩v(H)) = 24 and v(G)∩v(H) ⊆ X (F7). Let
F ∈ F7[X,Y,Z] be a homogeneous equation for X over F7, by Noether’s “AF + BG”
Theorem 2.1, we have

F = G+ (α1X
2 + α2Y

2 + α3Z
2 + α4XY + α5XZ + α6Y Z) ·H

http://mars39.lomo.jp/opu/36_3_30.txt
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for some α1, ..., α6 ∈ F7. Since 0 = F (1, 0, 0) = 2α1,

0 = F (1, 5, 4) = G(1, 5, 4) + (52α2 + 42α3 + 5α4 + 4α54 + 20α6)H(1, 5, 4)

= 4(4α2 + 2α3 + 5α4 + 4α5 + 6α6),

0 = F (1, 4, 0) = G(1, 4, 0) + (42α2 + 4α4)H(1, 4, 0)

= 4(2α2 + 4α4),

0 = F (1, 0, 6) = G(1, 0, 6) + (62α3 + 6α5)H(1, 0, 6)

= 4(α3 + 6α5),

0 = F (1, 2, 5) = G(1, 2, 5) + (22α2 + 52α3 + 2α4 + 5α5 + 10α6)H(1, 2, 5)

= 4(4α2 + 4α3 + 2α4 + 5α5 + 3α6),

0 = F (1, 6, 4) = G(1, 6, 4) + (62α2 + 42α3 + 6α4 + 4α5 + 24α6Y Z)H(1, 6, 4)

= 4(α2 + 2α3 + 6α4 + 4α5 + 3α6Y Z),

It is easy to check that this implies that α1 = · · · = α6 = 0. Therefore, F = G and X
has F7-linear components, a contradiction.

Suppose that k0 = 2. Since there are five [36, 3, 30]7-codes such that the maximal
weight of a codeword is exactly 34, then there are five (36, 6)-arc with k0 = 2, up to
projective equivalence. For instance, we can choose coordinates X,Y,Z of P2 such that

X (F7) = {(1 : 1 : 4), (1 : 1 : 5), (1 : 1 : 6), (1 : 1 : 0), (1 : 2 : 2), (1 : 2 : 4),

(1 : 2 : 6), (1 : 2 : 0), (1 : 3 : 2), (1 : 3 : 3), (1 : 3 : 4), (1 : 3 : 5),

(1 : 4 : 2), (1 : 4 : 3), (1 : 4 : 5), (1 : 4 : 6), (1 : 5 : 3), (1 : 5 : 5),

(1 : 5 : 6), (1 : 5 : 0), (1 : 6 : 1), (1 : 6 : 2), (1 : 6 : 4), (1 : 6 : 6),

(1 : 6 : 0), (1 : 0 : 2), (1 : 0 : 3), (1 : 0 : 4), (1 : 0 : 5), (1 : 0 : 0),

(0 : 1 : 3), (0 : 1 : 4), (0 : 1 : 5), (0 : 1 : 6), (0 : 1 : 0), (0 : 0 : 1)}.
Let Q0 = (1 : 5 : 2) ∈ Z(X ). A direct computation shows that

Q̌0(F7) ∩ A5 = {x+ 3y + 6z, x+ 4y} and Q̌0(F7) ∩ A6 = {y + z, 4x+ 3y + z, x+ 3z}.
Since ψ6(Q0) = 3, by Corollary 3.8 and Proposition 3.7, we must have ψ5(Q0) = 0, a
contradiction.

The other four (36, 6)-arc with k0 = 2 can be dealt with by using a similar argument.
In each of these cases, we have a contradiction. Therefore, none of these (36, 6)-arcs
can be equal to X (F7), and our assertion follows. �

Remark 4.3. As a byproduct of Proposition 4.2, we have that, of the 194 nonequivalent
(36, 6)-arcs in P2(F7), only one is obtained as the set of rational points of an irreducible
plane curve of degree 6.

We are now in a position to prove our main result.

Theorem 4.4. Let X ∈ Cq−1(Fq). If Nq(X ) = (q − 1)2 and q ≥ 5, then there exist
α, γ, β ∈ F∗

q with α+ β + γ = 0 such that X ≃proj C(α,β,γ) over Fq.
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Proof. Let k0 = min{i | ai 6= 0}. If q ≥ 8, then by Proposition 3.14 and Corollary
3.10, it is enough to prove that either k0 ≤ 1 or there is a point Q ∈ Z(X ) such that
ψq−1(Q) ≥ 4.

By way of contradiction, assume that k0 ≥ 2 and rQ := #Q̌(Fq)∩Aq−1 ≤ 3 for every
point Q ∈ Z(X ). Since #Z(X ) = 3q, the latter hypothesis implies that 2aq−1 ≤ 9q.

Now, assume that q ≥ 11. If for every point P ∈ X (Fq) we have ψq−1(P ) ≥ 5, then
aq−1 ≥ 5(q − 1) > 9q/2, a contradiction. Let P0 ∈ X (Fq) such that r0 = ψq−1(P ) ≤ 4.
By Lemma 3.6, we have that r0 ∈ {3, 4}. We distinguish two cases, namely r0 = 3 or
r0 = 4.

If r0 = 3, then by Lemma 3.6, P0 is of type (q − 1)3(q − 2)q−2. Let l ∈ P̌ (Fq) ∩Aq−2

and Q ∈ l ∩ Z(X ). If rQ := ψq−1(Q) = 3, by Lemma 3.7 and Corollary 3.8, then
l ∈ Aq−1, a contradiction. So there are at least 3(q − 2) points in Z(X ) such that
rQ ≤ 2. Therefore, 2aq−1 ≤ 2(3(q − 2)) + 3 ∗ 6. So aq−1 ≤ 3(q − 2) + 9 = 3(q + 1). By
Lemma 3.12, k0 ≤ q − 4 and, by Lemma 3.13, we have

3(q − 1)2 − 3k0
q − k0 − 1

≤ aq−1 ≤ 3(q + 1).

This implies that 3q(k0 − 2)+ 6 = 3(q− 1)2 − 3k0 − (q− k0 − 1)(3q+3) ≤ 0. Therefore,
k0 ≤ 2− 2/q < 2, a contradiction.

Now, suppose that r0 = 4. Let s = ψq−2(P ). We have

(q − 1)2 ≤ 1 + 4(q − 2) + s(q − 3) + (q − 3− s)(q − 4)

= 4q − 7 + sq − 3s+ q2 − 3q − sq − 4q + 12 + 4s

= (q − 1)2 + 4 + s− q.

This implies that s ≥ q − 4, hence P is of type (q − 1)4(q − 2)q−4(q − 5)1. As in the
previous case, there are at least 3(q − 4) points in Z(X ) such that the image by ψq−1

is less than or equal to 2. Therefore, 2aq−1 ≤ 2(3(q − 4)) + 3 · 12, hence, aq−1 ≤
3(q− 4)+18 = 3(q+2). Since q ≥ 11, there is point P ∈ X (Fq) such that ψq−1(P ) = 3,
otherwise, aq−1 ≥ 4(q − 1) > 3(q + 2). Again, this implies that k0 < 2, a contradiction.

We are then left with the cases q = 5, 7, 8, 9. As the cases q = 5, 7 have already been
dealt with in Propositions 4.1 and 4.2 respectively, we only need to consider the cases
q = 8, 9. We proceed with a careful case-by-case analysis.

For q = 9, by Lemma 3.13, we have

3(64 − k0)

8− k0
≤ a8 ≤ 40.(4)

By Lemma 3.12, we have k0 ≤ 5, and then 37k0 − 128 = 3(64 − k0) − 40(8 − k0) ≤ 0.
This in turn implies k0 ∈ {2, 3}.

Now, we prove that the condition k0 = 2 leads to a contradiction for q = 9. If
k0 = 2, by the inequality (4), a8 ≥ 31. Let l2 ∈ A2 with l2 ∩ X (F9) = {P0, P1} and
l2 ∩ Z(X ) = {P2, ..., P9}. Let rj := ψ8(Pj) for j = 0, 1, 2, ..., 9. By Lemma 3.4, if
j ∈ {0, 1}, then 64 ≤ 2 + 7rj + 6(9 − rj) = 56 + rj. Since 2 + 7rj ≤ 64, this implies
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that rj = 8 for j = 0, 1. If rj = 3 for some j ∈ {2, ..., 9}, follows from Lemma 3.4 and

Proposition 3.7 that the other lines in Q̌j(Fq) contain at most 6 points of X (F9), hence,
64 ≤ 2 + 3 · 8 + 6 · 6 = 62, a contradiction. Then rj ≤ 2 when j = 2, ..., 9. This implies
that a8 ≤ 2 · 8+8 · 2 = 32. If rP = ψ8(P ) ≥ 4 for every point P ∈ X (Fq)\{P1, P2}, then

a8 ≥
8 · 2 + 4((q − 1)2 − 2)

q − 1
= 33,

a contradiction. Then there is a point P ∈ X (Fq) such that rP = 3. Again, this implies
that a8 ≤ 3(q + 1) = 30, a contradiction.

We now prove that the condition k0 = 3 leads to a contradiction for q = 9. If
k0 = 3, by inequality (4), a8 ≥ 37. Let l3 ∈ A3 with l3 ∩ X (F9) = {P0, P1, P2} and
l3 ∩ Z(X ) = {P3, ..., P9}. Let rj := ψ8(Pj) where i = 0, 1, 2, ..., 9. By Lemma 3.4 if
j ∈ {0, 1, 2}, then 64 ≤ 3+7rj+6(9−rj) = 57+rj . Since 3+7rj ≤ 64, this implies that
rj ∈ {7, 8} for j = 0, 1, 2. If rj = 3 for some j ∈ {3, ..., 9}, it follows from Lemma 3.4

and Proposition 3.7 that the other lines in Q̌j(Fq) contain at most 6 points of X (F9),
hence, 64 ≤ 3 + 3 · 8 + 6 · 6 = 63, a contradiction. Then rj ≤ 2 when j = 3, ..., 9. This
implies that a8 ≤ 3 · 8 + 7 · 2 = 38. If rP = ψ8(P ) ≥ 5 for every point P ∈ X (Fq),
then a8 ≥ 5(q − 1) = 40, a contradiction. There is then a point P ∈ X (Fq) such that
ψ8(P ) ≤ 4. Again, this implies that a8 ≤ 3(q + 2) = 33, a contradiction.

For q = 8, by Lemma 3.13, we have

3(49 − k0)

7− k0
≤ a7 ≤ 36(5)

By Lemma 3.12, we know that k0 ≤ 4. Then 3(11k0−35) = 3(49−k0)−36(7−k0) ≤ 0.
Hence, k0 ∈ {2, 3}.

We are then left with the case q = 8. As in the previous case, we prove that the
condition k0 = 2 leads to a contradiction. If k0 = 2, by the inequality (5), a7 ≥ 29. Let
l2 ∈ A2 with l2∩X (F8) = {P0, P1} and l2∩Z(X ) = {P2, ..., P8}. Let rj := ψ7(Pj) where
j = 0, 1, 2, ..., 8. By Lemma 3.4 if j ∈ {0, 1}, then 49 ≤ 2 + 6rj + 5(8 − rj) = 42 + rj .
Since 2 + 6rj ≤ 49, then rj = 7 for i = 0, 1. If rj = 3 for some j = 2, ..., 8, by Lemma

3.4 and Proposition 3.7, the other lines in Q̌j(Fq) contain at most 5 points of X (F8).
We thus obtain that 49 ≤ 2 + 3 · 7 + 5 · 5 = 48, a contradiction. Hence, rj ≤ 2 when
j = 2, ..., 8. Therefore a7 ≤ 2 · 7 + 7 · 2 = 28, a contradiction.

Finally, we prove that the condition k0 = 3 leads to a contradiction for q = 8. If
k0 = 3, by the inequality (5), a7 ≥ 35. Let l3 ∈ A3 with l3 ∩ X (F8) = {P0, P1, P2} and
l2 ∩ Z(X ) = {P3, ..., P8}. Let rj := ψ7(Pj) where i = 0, 1, 2, ..., 8. By Lemma 3.4, if
j ∈ {0, 1, 2} then 49 ≤ 3 + 6rj + 5(8 − rj) = 43 + rj . Since 3 + 6rj ≤ (q − 1)2 = 49,
then rj ∈ {6, 7} for i = 0, 1, 2. If rj = 3 for some j = 2, ..., 8, by Lemma 3.4 and

Proposition 3.7 the other lines in Q̌j(Fq) contain at most 5 points of X (F8), then 49 ≤
3+3·7+5·5 = 49. This means that the other 5 lines in Q̌j are in A5. By Lemma 3.13, we
have −2a4−2a5+4a7 = 138. This implies that 4a7 ≥ 138+2a5 ≥ 138+10 = 148, hence
a7 ≥ 37, a contradiction. So rj ≤ 2 when j = 2, . . . , 8. Therefore, a7 ≤ 3 · 7+6 · 2 = 33,
a contradiction. The proof of our theorem is then completed.
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5. Final remarks

5.1. On Fq-Frobenius classical curves with many points. Let C ⊆ P2 be an
irreducible nonsingular algebraic curve of degree d defined over Fq. If C is q-Frobenius
classical, by Theorem 2.2, we have

(6) Nq(C) ≤
d(d+ q − 1)

2
.

Note that if d = q− 1 then d(d+ q− 1)/2 = (q− 1)2. This means that the Stöhr-Voloch
upper bound for a nonsingular q-Frobenius classical plane curve of degree q− 1 is equal
to Sziklai’s upper bound. Also, by the proof of our main result, it is inferred that the
curves attaining the Sziklai bound are q-Frobenius classical and have no Fq-rational
point of inflection. In other words, Theorem 4.4 classifies the Fq-Frobenius classical
curves of degree q − 1 attaining the Stöhr-Voloch upper bound (6) up to projective
equivalence.

5.2. On hypersurfaces with many rational points. In [11], Homma and Kim gave
an upper bound for the number Nq(X ) of Fq-rational points of a nonsingular hypersur-
face X defined over Fq in an odd-dimensional projective space Pn, namely

(7) Nq(X ) ≤ θq (m) ((d− 1)qm + 1),

where m = (n − 1)/2 and θq(m) := |Pm(Fq)| = qm + · · · + q + 1. In [11, Theorem 1.1],
they also characterized, up to projective equivalence, the hypersurfaces attaining the
bound (7).

In the same paper, they also conjectured the following for the even-dimensional case:
if X ⊆ Pn is a nonsingular hypersurface defined over Fq of degree d with n even, then

(8) Nq(X ) ≤ Θd,q
n := θq (m− 1) ((d− 1)qm + 1)

where m = n/2.
This conjecture was then proved by Datta in the case n = 4 [4], and by Tironi

[21] in the general case. Here, surprisingly, a link with curves that are optimal with
respect to the Sziklai bound appears when considering hypersurfaces attaining (8). In
fact, let X be a hypersurface in P4 attaining the bound (8); then by [4, Theorem 4.8]
there exists a point P ∈ X (Fq) such that X ∩ TP (X ) is a cone, with center at P , over
a plane curve C of degree d defined over Fq without Fq-linear components and Nq(C)
attains the Sziklai bound. Also, by [21, Theorem 1], this curve must be nonsingular.
For n ≥ 6, we have an analogous result; by [21, Theorem 2] the bound (8) is attained
by a nonsingular hypersurface X ⊆ Pn defined over Fq of degree d with n ≥ 6 even
only if there exists a point P ∈ X (Fq) such that X ∩ TP (X ) is a cone, with center
at P , over a nonsingular hypersurface Y ⊆ Pn−2 of degree d defined over Fq without

Fq-linear components and Nq(Y) = Θd,q
n−2. Therefore, the extremal hypersurfaces in

even dimension can be characterized inductively starting with the ones in P4, which in
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turn can be constructed from optimal Sziklai curves. This gives a possible application
of Theorem 4.4.

It should be noted, however, that it is still unknown whether all hypersurfaces with a
point P such that is a cone, with center at P , over a nonsingular hypersurface Y ⊆ Pn−2

of degree d defined over Fq without Fq-linear components and Nq(Y) = Θd,q
n−2 attains

the bound (8).
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