
ar
X

iv
:2

20
9.

06
65

8v
1 

 [
m

at
h.

N
T

] 
 1

4 
Se

p 
20

22

THE NUMBER OF RATIONAL POINTS OF A CLASS OF

SUPERELLIPTIC CURVES

JOSÉ ALVES OLIVEIRA, DANIELA OLIVEIRA, AND F. E. BROCHERO MARTÍNEZ

Abstract. In this paper, we study the number of Fqn -rational points on
the affine curve Xd,a,b given by the equation

yd = axTr(x) + b,

where Tr denote the trace function from Fqn to Fq and d is a positive inte-
ger. In particular, we present bounds for the number of Fq-rational points
on Xd,a,b and, for the cases where d satisfies a natural condition, explicit
formulas for the number of rational points are obtained. Particularly, a
complete characterization is given for the case d = 2. As a consequence of
our results, we compute the number of elements α in Fqn such that α and
Tr(α) are quadratic residues in Fqn .

1. Introduction

Let Fqn be a finite field with qn elements, where q = ps and p is an odd
prime. Throughout the paper, Tr(x) denotes the trace function from Fqn into
Fq. The study of the number and existence of special elements in finite fields
dates back to the 1980s. The famous Primitive Normal Basis Theorem was
firstly proved by Lenstra and Schoof [11] in 1987.
More recently, sophisticated techniques have been created and employed

in different problems regarding elements that satisfy special conditions (for
example, see [1, 2, 3, 9]). The condition of having a fixed trace often appears
in such articles because of its practical applications.
A problem that naturally arises is to find the number of elements α ∈ Fqn

such that α and Tr(α) are both quadratic residues in Fqn. This problem is
easily solved in the case where n is even, since any element of Fq is a quadratic
residue in Fqn, so that, in particular, Tr(α) does so. The problem gets more
interesting for the case where n is odd. Heuristically, qn/4 elements in Fqn must
satisfy these two conditions, but there is no result in the literature addressing
this problem. In both cases, such number of special elements is closely related
to the number of Fqn-rational points on the affine curve y2 = xTr(x) (see the
proof of Theorem 2.6). In this paper, we study a broader class of affine curves
given by

Xd,a,b : y
d = axTr(x) + b,

where a, b ∈ Fqn and d is a positive integer. The curve Xd,a,b belongs to a
wide family of curves called superelliptic curves, whose points are given by the
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solutions of the equation
yd = f(x). (1)

There are few results in the literature regarding general superelliptic curves.
For example, in [8] the authors give the distribution of points on smooth su-
perelliptic curves over a finite field, when their degree goes to infinity. In [10]
the authors describe the fluctuation in the number of points on a hyperelliptic
curve, which is the especial class of superelliptic curves with d = 2.
In general, it is hard to compute the number of rational points on superellip-

tic curves, but this can be done in some cases, namely, for those that arise by
choosing a suitable polynomial f in (1). For example, if f(x) = −xm + b, the
curve is the well-known Fermat curve, for which explicit formulas and bounds
for the number of points are known ([13, 16]). The curve defined by Equa-
tion (1) over Fqn with f(x) = xq − x + b is known as Artin-Schreier curve.
These special superellipic curves have also been well studied [4, 5, 15].
While these particular cases are well studied, a study of the number of

rational points on Xd,a,b has not been provided. Our goal in this paper is to
study the number of rational points on this curve, providing bounds for the
number of rational points and explicit formulas for cases where Xd,a,b satisfy
certain conditions.
In order to do that, we use the fact that the map x 7→ xTr(x) is a qua-

dratic form over Fqn. Along the paper, we employ some classical results on
quadratic forms over finite fields to provide an expression for the number of
rational points on Xd,a,b in terms of Gauss sums (Proposition 4.5). Using this
expression, we employ results on Gauss sums in order to obtain bounds for the
number of rational points and, for suitable conditions on d, provide explicit
formulas for this number. As a consequence of our results, we compute the
number of elements α in Fqn such that both α and Tr(α) are quadratic residues
in Fqn (Theorem 2.6).
The paper is organized as follows. In Section 2, we present some remarks,

comments and statements of our main results. Section 3 provides preliminary
results on quadratic forms and Gauss sums that are used along the paper. In
Section 4, we provide an expression for the number of rational points on the
curve Xd,a,b in terms of Gauss sums. Bounds and explicit formulas for the
number of rational points are presented in Section 5. In Section 6, we focus
on the case Tr(b/a) 6= 0.

2. Main results

In this section, we present our main results, along with a few comments.
We observe that the curves Xd,a,b(Fqn) and Xgcd(d,qn−1),a,b(Fqn) have the same
number of Fqn-rational points. Therefore, we may assume without loss of
generality that d divides qn − 1.
In [14], the authors give an improvement of the Hasse-Weil bound for curves

with high genus. The curve Xd,a,b does not satisfy the conditions imposed in
[14], but as a high genus curve, it is expected to it to be a curve whose number
of points is far from Hasse-Weil’s bound. Indeed, it turns out that Hasse-Weil
can be significantly improved for Xd,a,b. In Theorem 2.2, we provide sharp
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bounds for the number of rational points on such curves. In order to present
this result, we introduce some notation. For a divisor d of qn−1, χd denotes a
multiplicative character of F∗

qn with order d. As usual, Xd,a,b(Fqn) denotes the
set of Fqn-rational points on Xd,a,b.

Definition 2.1. Let v = gcd
(

d, q
n−1
q−1

)

, D = d
v
, B = Tr

(

b
a

)

and

τ =

{

1, if p ≡ 1 (mod 4);

i, if p ≡ 3 (mod 4).

Now we are able to present bounds for the number of Fqn-rational points on
the curve Xd,a,b

Theorem 2.2. The number of rational points on the curve Xd,a,b satisfies the
following relations:

|Xd,a,b(Fqn)| − qn + (−1)sqn−1
d−1
∑

ℓ=1

χℓ
d(b) =: Nd,a,b,n, (2)

where

|Nd,a,b,n| ≤











( d
D
− 1)(q − 1)q

n
2
−1, if D is odd and B = 0;

(q − 1)( d
D
q

n−1

2 + ( d
D
− 1)q

n
2
−1), if D is even and B = 0.

(d− 1)(q
n
2 + q

n−1

2 ) if B 6= 0.

We recall that the Hasse-Weil bound applied for Xd,a,b implies that

||Xd,a,b(Fqn)| − qn| ≤ 2gq
n
2 ,

where the genus g can be computed via Riemann-Hurwitz’s formula [7] and
equals, at a minimum, the number

1
2
(d− 1)(qn−1 − 1)− d+ 1.

Note that Theorem 2.2 implies that

||Xd,a,b(Fqn)| − qn| ≤ (d− 1)qn−1 + (q − 1)(dq
n−1

2 + (d− 1)q
n
2
−1),

which represents a significant improvement of Hasse-Weil’s bound.
From now on, our main goal is to provide explicit formulas for the value N =

Nd,a,b,n defined in Theorem 2.2. In particular, the results obtained here include
curves whose number of points attain the bounds provided in Theorem 2.2.
Our starting point is the case d = 2, for which we present a simple expression
for the number of affine rational points, that is given in the next theorem.

Theorem 2.3. The number of rational points on the curve X2,a,b(Fqn) is

(1) If B = 0

| X2,a,b(Fqn) |= qn + qn−1χ2(b) +N1τ
nsχ2(−a)(q − 1),

where

N1 =

{

q
n−2

2 , if n is even;

τ sq
n−1

2 , if n is odd.
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(2) If B 6= 0

| X2,a,b(Fqn) |= qn + qn−1χ2(b)−N2τ
ns,

where

N2 =

{

q
n−2

2 [χ2(−a)τ 2sq + χ2(−aB)], if n is even;

q
n−1

2 τ s(χ2(−a) + χ2(−aB)), if n is odd.

This result allows us to compute the number of rational points in specific
curves, as in the following examples.

Example 2.4. For the curve

X2,−1,0 : y
2 = −xTr(x),

it follows that B = 0. Therefore, Theorem 2.3 provides the number of rational
points for a pair (q, n):

q n=2 n=3 n=4 n=5 n=6
3 7 33 87 225 711
5 29 145 645 3225 15725
7 43 385 2443 16513 117355
9 89 801 6633 59697 532089
11 111 1441 14751 159841 1770351
25 649 16225 391225 9780625 254281250

Example 2.5. For the curve

X2,−1,0 : y
2 = −xTr(x) + 1,

it follows that B = Tr(−1) = −n. Therefore, Theorem 2.3 provides the number
of rational points for a pair (q, n):

q n=2 n=3 n=4 n=5 n=6
3 10 42 96 385 954
5 34 150 720 3850 18600
7 64 378 2688 19306 134162
9 80 882 7200 65448 591138
11 122 1452 15840 175692 1931402
25 625 16200 405600 10171250 253890000

One can check some values obtained in these two examples by using a com-
puter program such as SageMath. For instance, in the case q = 25 and n = 6
using a program in SageMath, spent 37h 34min. Nevertheless, the run time of
the algorithm grows as qn increases, making the computation unfeasible even
for small values of qn (such as qn > e20).
Back to the problem presented at the introduction, Theorem 2.3 is a key

tool to compute the number of a special type of elements of Fqn, as we see in
the proof of the following result.
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Theorem 2.6. Let n be an odd positive integer. Then the number of elements
α ∈ Fqn such that α and Tr(α) are both quadratic residues in Fqn is

qn + qn−1 + τ s(n−1)(q − 1)q
n−1

2 + 2

4
.

In order to compute N , we present the following important definition, that
is a generalization of a constant used by Wolfmann in [16] in the study of
diagonal equations.

Definition 2.7. For m a divisor of qn − 1, a ∈ F∗
qn and ǫ ∈ {1,−1}, we set

θm(a, ǫ) =

{

m− 1, if χm(a) = ǫ;

−1, otherwise.

The following definition, that was introduced in the study of diagonal equa-
tions [13], will be useful in our results.

Definition 2.8. Let r be a positive integer. An integer d > 2 is (p, r)-
admissible if d | (pr + 1) and there exists no r′ < r such that d | (pr′ + 1).

If d > 2 is (p, r)-admissible, then 2r is the multiplicative order of p module
d. Since d divides qn − 1 and q = ps, the condition of (p, r)-admissibility on d
implies that 2r divides ns and, in particular, that ns is an even number.

Definition 2.9. If d is a divisor of qn − 1 and is (p, r)-admissible we define

ε = (−1)
ns
2r and u =

pr + 1

d
.

We present now one of our main results, which provides a formula for the
number of rational points on Xd,a,b in the case where B = 0 and some suitable
conditions are required.

Theorem 2.10. Let d > 2 be an integer, a, b ∈ Fqn such that B = 0 and
N = Nd,a,b,n defined as in Equation (2). The following holds:

(1) If v is (p, r)-admissible and D is odd, then

N =











0, if v = 1;

τ snχ2(a)(q − 1)q
n−2

2 , if v = 2;

εθv(−a, εu)(q − 1)q
n−2

2 , if v > 2.

(2) If 2v is (p, r)-admissible and D is even.
(a) If v = 1 then

N = (−1)sτ (n+1)sχ2(a)(q − 1)q
n−1

2 .

(b) If v = 2 then

N =
[

(−1)sτ s
√
qεu

D
2
+1(χ4(−a) + χ4(a)) + τnsχ2(a)

]

(q − 1)q
n−2

2 .

(c) If v > 2 then

N = ε
[

(−1)sτ s
√
qχ2v(−a)ε

uD
2 [1 + θv(−a, 1)] + θv(−a, 1)

]

(q − 1)q
n−2

2 .
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By employing this result, we can obtain a simple expression for the number
of rational points in the case where a, b and d satisfy some restrictions.

Corollary 2.11. If d > 2 is a (p, r)-admissible divisor of qn−1
q−1

and ns/2r is

even, then

Nd,−1,0,n = (d− 1)(q − 1)q
n−2

2 .

Results similar to Theorem 2.10 can be obtained for the case B 6= 0, as we
will see in Section 6.

3. Preliminary results

In this section, we provide some definitions and results that will be useful in
the paper. Along the text, ψ and ψ̃ denote the canonicals additive characters
of Fqn and Fq, respectively, i.e.,

ψ(x) = exp
(

2πiTrFqn/Fp(x)

p

)

and ψ̃(x) = exp
(

2πiTrFq/Fp (x)

p

)

.

We use χqn−1 to denote a fixed primitive multiplicative character of F∗
qn and,

for m a divisor of qn − 1, χm denotes the multiplicative character of order m

defined by χm = χ
(qn−1)/m
qn−1 . The restriction of χm to F∗

q is a multiplicative
character of F∗

q of order M = m
gcd(m,(qn−1)/(q−1))

and it will be denoted by ηM .

Definition 3.1. For multiplicative characters χ of F∗
qn and η of F∗

q, the Gauss
sum of χ and η are the sums

Gn(χ) =
∑

x∈F∗

qn

χ(x)ψ(x) and G1(η) =
∑

x∈F∗

q

η(x)ψ̃(x),

respectively.

We present now some techinical results that are used to compute the number
of rational points on Xd,a,b. Most of them are well-known and can be easily
found in the literature.

Lemma 3.2 ([12, Theorem 5.4]). Let χ be a multiplicative character of Fqn.
Then

∑

c∈Fqn

χ(c) =

{

0, if χ is nontrivial;

qn, if χ is trivial.

Lemma 3.3. [12, Theorem 5.4] For u ∈ Fqn, we have that

1

qn

∑

c∈Fqn

ψ(uc) =

{

0, if u 6= 0;

1, if u = 0.

Lemma 3.4 ([12, Equation 5.4, p. 189]). Let d be a divisor of qn − 1. If
c ∈ Fqn, then

d−1
∑

j=0

χj
d(c) =











1, if c = 0;

d, if c is a d-power in F∗
qn ;

0, otherwise.
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Lemma 3.5. [12, Theorems 5.11 and 5.12] Let χ0 denote the trivial multi-
plicative character of F∗

qn. If χ 6= χ0 is a multiplicative character of F∗
qn, then

(1) Gn(χ0) = −1;
(2) |Gn(χ)| = qn/2;
(3) Gn(χ)Gn(χ) = χ(−1)qn.

A Gauss sum is said to be pure if some positive integer power of it is real.
The following result present necessary and sufficient conditions for a Gauss
sum to be pure.

Theorem 3.6. [6, Theorem 1] Given a divisor d > 2 of qn − 1 and a multi-
plicative character χd of F∗

qn with order d, the following are equivalents:

• there exists r such that d | (pr + 1);

• Gn(χ
j
d) is pure for all j ∈ Z;

• there exists a positive integer r such that d | (pr + 1), 2r | ns and

Gn(χ
j
d) = −(−1)ns(uj+1)/2rqn/2

for all j 6≡ 0 (mod d), where u = pr+1
d

.

Theorem 3.7. [12, Theorem 5.15] Let χ2 be the quadratic character of F∗
qn.

Then
Gn(χ2) = −(−1)snτ snqn/2.

Corollary 3.8. Let χ2 be the quadratic character of F∗
qn. If ns is even, then

Gn(χ2) = −(−1)ns(u+1)/2qn/2,

where u = p+1
2
.

3.1. Quadratic forms. In order to determine the number of rational points
on Xd,a,b we associate this curve to the quadratic form Tr(xTr(x)). From this
quadratic form, we provide its associate matrix and the dimension of its radical.
In order to do that, we recall the following definitions.

Definition 3.9. For a quadratic form Φ : Fqn → Fq, the symmetric bilinear
form ϕ : Fqn × Fqn → Fq associated to Φ is

ϕ(α, β) =
1

2
(Φ(α + β)− Φ(α)− Φ(β)) .

The radical of the symmetric bilinear form Φ : Fqn → Fq is the set

rad(Φ) = {α ∈ Fqn : ϕ(α, β) = 0 for all β ∈ Fqn}.
If rad(Φ) = {0}, then Φ is said to be non-degenerate.

Let B = {v1, . . . , v} be a basis of Fqn over Fq. The n × n matrix A = (aij)
defined by

aij =

{

Φ(vi), if i = j
1
2
(Φ(vi + vj)− Φ(vi)− Φ(vj)), if i 6= j.

is the associated matrix of the quadratic form Φ in the basis B. In particular,
the dimension of rad(Φ) is equal to n− rank(A).
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Let Φ : Fm
q → Fq and Ψ : Fn

q → Fq be quadratic forms where m ≥ n. Let
U and V be associated matrix of Φ and Ψ, respectively. We say that Φ is
equivalent to Ψ if there exists M ∈ GLm(Fq) such that

MTUM =

(

V 0
0 0

)

∈Mm(Fq),

where GLm(Fq) denotes the set of m × m invertible matrices over Fq and
Mm(Fq) denotes the set of m×m matrices over Fq. Furthermore, Ψ is called
a reduced form of Φ if rad(Ψ) = {0}.
The following theorem, which associate quadratic forms and characters sums,

will be useful for our results and can be obtained from Theorems 6.26 and 6.27
of [12] by a straightforward computation.

Lemma 3.10. Let U be an n × n non null symmetric matrix over Fq and
l = rank(U). Then there exists M ∈ GLn(Fq) such that V = MUMT is a
diagonal matrix, i.e. V = diag(a1, a2, . . . , al, 0, . . . , 0) where ai ∈ F∗

q for all
i = 1, . . . , l. For the quadratic form

F : Fn
q → Fq, F (X) = XUXT X = (x1, . . . , xn) ∈ Fn

q ,

it follows that
∑

X∈Fn
q

ψ̃
(

F (X)
)

= (−1)l(s+1)τ lsη2(δ)q
n−l/2,

where δ = a1 · · · al.
We note that η2(δ) independs of the system of coordinates chosen.

4. The number of rational points on the curve Xd,a,b

For a ∈ F∗
qn, b ∈ Fqn we compute the number of Fqn-rational points on the

curve Xd,a,b by using well-known properties of character sums. For that, we
have the following lemma.

Lemma 4.1. Let a ∈ F∗
qn , b ∈ Fqn and d an integer that divides qn − 1. The

number of affine rational points on the curve Xd,a,b over Fqn is

| Xd,a,b(Fqn) |= qn +
1

qn

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
∑

c∈F∗

qn

ψ(cb)χd
ℓ(−c)

∑

x∈Fqn

ψ
(

caxTr(x)
)

.

Proof. It follows from Lemma 3.3 that

| Xd,a,b(Fqn) | =
1

qn

∑

c∈Fqn

∑

x,y∈Fqn

ψ
(

c(axTr(x) + b− yd)
)

= qn +
1

qn

∑

c∈F∗

qn

ψ(cb)
∑

x∈Fqn

ψ
(

caxTr(x)
)

∑

y∈Fqn

ψ(−cyd).
(3)

Now, let yd = z and using Lemma 3.4 we obtain

| Xd,a,b(Fqn) |= qn+
1

qn

∑

c∈F∗

qn

ψ(cb)
∑

x∈Fqn

ψ
(

caxTr(x)
)

∑

z∈Fqn

ψ(−cz)
[

1 + · · ·+ χd−1
d (z)

]

.
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Making the change of variable w = −cz and using Lemma 3.3 we have that

| Xd,a,b(Fqn) |= qn+
1

qn

∑

c∈F∗

qn

d−1
∑

ℓ=1

ψ(cb)χd
ℓ(−c)

∑

x∈Fqn

ψ
(

caxTr(x)
)

∑

w∈Fqn

ψ(w)χℓ
d(w).

Therefore

| Xd,a,b(Fqn) |= qn +
1

qn

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
∑

c∈F∗

qn

ψ(cb)χd
ℓ(−c)

∑

x∈Fqn

ψ
(

caxTr(x)
)

. (4)

�

In order to compute the value of the right-hand side sum of Equation (4),
we will use the fact that Tr(caxTr(x)) defines a quadratic form from Fqn into
Fq. For now on, let Qc(x) be a quadratic form of Fqn over Fq defined by
Qc(x) = Tr(cxTr(x)) and letBc(x, y) be the bilinear symmetric form associated
to Qc.

Proposition 4.2. For c ∈ F∗
qn, we have that

dimFq

(

rad(Qc)
)

=

{

n− 1 if c ∈ F∗
q;

n− 2 if c ∈ Fqn \ Fq.

Proof. The dimension of the radical of the quadratic form Qc is given by the
dimension of the radical of the bilinear form Bc(x, y), i.e., the dimension of
the subspace generated by the elements x ∈ Fqn such that Bc(x, y) = 0 for all
y ∈ Fqn. We observe that

Bc(x, y) = Tr(c(x+ y)Tr(x+ y))− Tr(cxTr(x))− Tr(cyTr(y))

= Tr(cxTr(y) + cyTr(x))

= Tr(y)Tr(cx) + Tr(x)Tr(cy)

= Tr(y(Tr(cx) + cTr(x))).

(5)

Then, Bc(x, y) = 0 for all y ∈ Fqn if and only if Tr(cx)+cTr(x) = 0. Therefore,
are interested in computing the dimension of

V = {x ∈ Fqn : Tr(cx) + cTr(x) = 0}.
We split the proof into two cases:

• For c ∈ F∗
q, Tr(cx) + cTr(x) = cTr(x) + cTr(x) = 2cTr(x), that implies

|V | = |{x ∈ Fqn : Tr(x) = 0}| = qn−1

and then dim(V ) = n− 1.

• For c ∈ Fqn \Fq, if x ∈ Fqn is such that Tr(x) 6= 0, then Tr(cx)
Tr(x)

∈ Fq and
Tr(cx)
Tr(x)

6= −c. Therefore for any element x ∈ V we have that Tr(x) = 0. It

follows that Tr(cx) = −cTr(x) = 0, then V = V1∩V2, where V1 = {x ∈
Fqn | Tr(x) = 0} and V2 = {x ∈ Fqn | Tr(cx) = 0}. Since c ∈ Fqn \ Fq

and V1 6= V2, it is direct of the fact dim(V1) = dim(V2) = n−1 to verify
that dim(V ) = n− 2.
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This completes the proof of our assertion.
�

Proposition 4.3. Let H be the symmetric matrix associated to Qc and let δ
be as defined in Lemma 3.10 for some basis of Fqn over Fq. Then

η2(δ) =

{

η2(c), if c ∈ F∗
q ;

η2(−1), if c ∈ Fqn \ Fq.

Proof. Since η2(δ) does not depend on the basis, we set a basis α0, α1, . . . , αn−1

of Fqn over Fq such that

• α0 = n−1 and Tr(αi) = 0 for all 1 ≤ i ≤ n− 1 if gcd(n, q) = 1;
• Tr(α0) = 1, α1 = 1 and Tr(α0αi) = Tr(αi) = 0 for all 2 ≤ i ≤ n− 1 in
the case when gcd(q, n) 6= 1.

For 0 ≤ i ≤ n−1, let xi, yi ∈ Fq such that y =
∑n−1

j=0 yjαj and x =
∑n−1

j=0 xjαj

and let us denote X = (x0, . . . , xn−1) and Y = (y0, . . . , yn−1). We recall that
Qc(x) = XHXT and

Bc(X, Y ) = (X + Y )H(X + Y )T −XHXT − Y HY T

= XHY T + Y HXT

= Y HTXT + Y HXT

= Y (2H)XT .

(6)

Therefore, we can determine δ from Bc(x, y) by computing the determinant
of the reduced matrix associated to 2H . In order to do this, we observe that
Tr(x) = x0 and

Tr(cx) =















x0c0 +
∑

1≤i,j≤n−1

xicjβi,j, if p ∤ n

x0(c1 + c0β0,0) + c0x1 +
∑

2≤i,j≤n−1

xicjβi,j, if p | n,

where βi,j = Tr(αiαj). We obtain expressions for Tr(y) and Tr(cy) by a similar
process. Therefore, it follows from (5) that

Bc(x, y) = Tr(y)Tr(cx) + Tr(cy)Tr(x)

=















2x0y0c0 +
∑

1≤i,j≤n−1

cjβi,j(y0xi + x0yi), if p ∤ n;

2x0y0(c1 + c0β0,0) + c0x1y0 + c0x0y1 +
∑

2≤i,j≤n−1

cjβi,j(y0xi + x0yi), if p | n.
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We obtain

2H =



























2c0

n−1
∑

j=1

β1,jcj · · ·
n−1
∑

j=1

βn−1,jcj

n−1
∑

j=1

β1,jcj 0 · · · 0

...
...

. . .
...

n−1
∑

j=1

βn−1,jcj 0 · · · 0



























in the case when p ∤ n and

2H =































2(c1 + c0β0,0) c0

n−1
∑

j=2

β2,jcj · · ·
n−1
∑

j=2

βn−1,jcj

c0 0 0 · · · 0
n−1
∑

j=2

β2,jcj 0 0 · · · 0

...
...

...
. . .

...
n−1
∑

j=1

βn−1,jcj 0 0 · · · 0































in the case when p | n.
In order to compute the reduced form of 2H , we observe that

• In the case when c ∈ Fq then c0 = c and c1 = c2 = · · · = cn−1 = 0 if
p ∤ n and c1 = c and c0 = c2 = · · · = cn−1 = 0 if p | n. Therefore the
associated reduced matrix is (2c).

• In the case when c ∈ Fqn \ Fq, then Proposition 4.2 implies that either

there exists k ∈ {1, . . . , n − 1} such that
∑n−1

j=1 βk,jcj 6= 0 if p ∤ n and

c0 6= 0 or there exists k ∈ {2, . . . , n − 1} such that
∑n−1

j=2 βk,jcj 6= 0

if p | n. Then straightforward manipulations of the lines and columns
shows that 2H reduces to a matrix of the form

(

u v
v 0

)

,

where v 6= 0.

In sum, we have that the quadratic character of the determinant δ of the
reduced matrix of H is given by

η2(δ) =

{

η2(c), if c ∈ F∗
q;

η2(−1), if c ∈ Fqn \ Fq.

This completes the proof. �

Combining Lemma 3.10 and Proposition 4.2 and 4.3, we have the following
result.



12 JOSÉ ALVES OLIVEIRA, DANIELA OLIVEIRA, AND F. E. BROCHERO MARTÍNEZ

Theorem 4.4. For c ∈ F∗
qn, we have

∑

x∈Fqn

ψ(cxTr(x)) =

{

(−1)s+1η2(c)τ
sqn−1/2, if c ∈ F∗

q ;

qn−1, if c ∈ Fqn \ Fq.

Theorem 4.4 allows us to express the number of rational points in terms of
Gauss sums.

Proposition 4.5. Let v,D and B be as in Definition 2.1. Then

| Xd,a,b(Fqn) |= qn +
d−1
∑

ℓ=1

χℓ
d(b)q

n−1 +N,

where N = Nd,a,b,n is given below.

(1) If D is odd and B = 0, then

N = −q − 1

q

v−1
∑

j=1

Gn(χ
jD
d )χjD

d (−a).

(2) If D is odd and B 6= 0, then

N =
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
[

(−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1

(

ηD−2ℓ
2D

)

− χℓ
d(−aB)G1

(

η−2ℓ
2D

)

]

.

(3) If D is even and B = 0, then

N =
q − 1

q



(−1)s+1τ s
√
q

v−1
∑

j=0

Gn(χ
jD+D

2

d )χ
jD+D

2

d (−a)−
v−1
∑

j=1

Gn(χ
jD
d )χjD

d (−a)



 .

(4) If D is even and B 6= 0, then

N =
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
[

(−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1

(

η
D
2
−ℓ

D

)

− χℓ
d(−aB)G1

(

η−ℓ
D

)

]

.

Proof. By Lemma 4.1 and Theorem 4.4, we have that |Xd,a,b(Fqn)| is equal to

qn+
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)





∑

ca∈Fqn\Fq

ψ(cb)χd
ℓ(−c) +

∑

ca∈F∗

q

ψ(cb)χd
ℓ(−c)

(

(−1)s+1η2(ac)τ
s√q

)



 .

That can be reewritten as

qn+
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)





∑

ca∈F∗

qn

ψ(cb)χd
ℓ(−c) +

∑

ca∈F∗

q

ψ(cb)χd
ℓ(−c)

(

(−1)s+1η2(ac)τ
s√q − 1

)



 .

(7)
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Let T =
d−1
∑

ℓ=1

Gn(χ
ℓ
d)
∑

ca∈F∗

qn

ψ(cb)χd
ℓ(−c). By Lemma 3.3, if b = 0, then

T = 0. Otherwise, Lemma 3.5 entails that

T =
d−1
∑

ℓ=1

χℓ
d(−b)Gn(χ

ℓ
d)Gn(χd

ℓ) =
d−1
∑

ℓ=1

χℓ
d(b)q

n. (8)

Now, we compute Sℓ =
∑

z∈F∗

q

ψ
(

z b
a

)

χd
ℓ
(

−z
a

)(

(−1)s+1η2(z)τ
s√q − 1

)

.

Assume that D is odd. We recall that ηD is the restriction of χd to F∗
q and

that η2D is such that η22D = ηD. Using this notation,

Sℓ = (−1)s+1χℓ
d(−a)τ s

√
q
∑

z∈F∗

q

ψ
(

z b
a

)

ηD−2ℓ
2D (z)− χℓ

d(−a)
∑

z∈F∗

q

ψ
(

z b
a

)

η−2ℓ
2D (z)

= (−1)s+1χℓ
d(−a)τ s

√
q
∑

z∈F∗

q

ψ̃(zB)ηD−2ℓ
2D (z)− χℓ

d(−a)
∑

z∈F∗

q

ψ̃(zB)η−2ℓ
2D (z).

We split the proof into two cases.

• If B = 0, then it follows from Lemma 3.3 that

Sℓ =

{

0, if D ∤ ℓ;

−χℓ
d(−a)(q − 1), if D | ℓ.

• If B 6= 0, then

Sℓ = (−1)s+1χℓ
d(−a)τ s

√
qηD−2ℓ

2D (B−1)G1

(

ηD−2ℓ
2D

)

− χℓ
d(−a)η−2ℓ

2D (B−1)G1

(

η−2ℓ
2D

)

= (−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1

(

ηD−2ℓ
2D

)

− χℓ
d(−aB)G1

(

η−2ℓ
2D

)

.

Our statement follows from the values of Sℓ found and Equations (7) and (8).
The case where D is even is obtained similarly.

�

5. Bounds and explict formulas for the number of rational

points on Xd,a,b

5.1. Proof of Theorem 2.2. The result follows by a direct employment of
Proposition 4.5 and Lemma 3.5. Let us consider the case when D is odd.

• If B = 0, by Proposition 4.5 we have

|Nd,a,b,n| =
1

q

∣

∣

∣

∣

∣

−(q − 1)

v−1
∑

j=1

Gn(χ
jD
d )χjD

d (−a)
∣

∣

∣

∣

∣

≤ (q − 1)

q

v−1
∑

j=1

|Gn(χ
jD
d )|

= (q − 1)qn/2−1

(

d

D
− 1

)

.
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• If B 6= 0, then

|Nd,a,b,n| =
1

q

∣

∣

∣

∣

∣

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
[

(−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1(η

D−2ℓ
2D )− χℓ

d(−aB)G1(η
−2ℓ
2D )

]

∣

∣

∣

∣

∣

≤ 1

q

d−1
∑

ℓ=1

|Gn(χ
ℓ
d)|
[√
q|G1(η

D−2ℓ
2D )|+ |G1(η

−2ℓ
2D )|

]

≤ (d− 1)(qn/2 + q(n−1)/2).

Those inequalities along with Proposition 4.5 assures us the result in the cases
when D is odd. The case where D is even is obtained similarly. �

5.2. Proof of Theorem 2.3. We have that

D =
2

v
=

{

1, if n is even;

2, if n is odd.

To compute | X2,a,b | we need to determine N in Proposition 4.5. In the case
when n is even we have D = 1, therefore

(1) If B = 0, then

N =
1

q
(−(q − 1)Gn(χ2)χ2(−a))

= q
n−2

2 (q − 1)(−1)ns+2τnsχ2(−a)
= q

n−2

2 (q − 1)τnsχ2(−a).

(2) If B 6= 0:

N =
1

q

(

Gn(χ2)
[

(−1)s+1χ2(−aB)χ2(B)τ s
√
qG1

(

η2
)

− χ2(−aB)G1

(

η22
)

])

= (−1)ns+1τnsq
n−2

2

[

(−1)s+1χ2(−a)τ 2s(−1)s+1q + χ2(−aB)
]

= −τnsq n−2

2

[

χ2(−a)τ 2sq + χ2(−aB)
]

.

In the case when n odd, we have that D is even, then

(1) If B = 0:

N =
q − 1

q

(

(−1)s+1τ s
√
qGn(χ2)χ2(−a)

)

=
q − 1

q
(−1)s+1τ s(−1)ns−1τnsq

n+1

2 χ2(−a)

= τ (n+1)s(q − 1)χ2(−a)q
n−1

2 .



THE NUMBER OF RATIONAL POINTS OF A CLASS OF SUPERELLIPTIC CURVES15

(2) If B 6= 0:

N =
1

q
Gn(χ2)

[

(−1)s+1χ2(−aB)χ2(B)τ s
√
qG1

(

η02
)

− χ2(−aB)G1

(

η2
)

]

= (−1)ns−1τnsq
n−2

2

[

(−1)s+1χ2(−a)τ s
√
q(−1)− χ2(−aB)(−1)s−1τ s

√
q
]

= −τ s(n+1)q
n−1

2

[

χ2(−a) + χ2(−aB)
]

.

Combined with Proposition 4.5, the theorem follows. �

5.3. Proof of Theorem 2.6. Let M be the number of elements α ∈ Fqn

such that both α and Tr(α) are quadratic residues in Fqn . Let Λ2 be the set
of quadratic residues in F∗

qn and Λ = F∗
qn\Λ2. We recall that, for x ∈ Fqn ,

χ2(x) = 1 if and only if x ∈ Λ2. Then we have that

[

1 + χ2(x)
][

1 + χ2(Tr(x))
]

=



















0, if either x ∈ Λ or Tr(x) ∈ Λ;

1, if x = 0;

2, if x ∈ Λ2 and Tr(x) = 0;

4, if x ∈ Λ2 and Tr(x) ∈ Λ2.

Therefore, Schur’s orthogonality relations (Lemmas 3.3 and 3.4) imply that

M = 1
2
+ 1

4

∑

x∈Fqn

[

1+χ2(x)
][

1+χ2(Tr(x))
]

+ 1
4q

∑

x∈Fqn

[

1+χ2(x)
]

∑

c∈Fq

ψ̃(cTr(x)).

(9)
We note that Lemma 3.2 implies that
∑

x∈Fqn

[

1 + χ2(x)
][

1 + χ2(Tr(x))
]

=
∑

x∈Fqn

[

1 + χ2(Tr(x)) + χ2(xTr(x))
]

. (10)

Since n is odd, χ2 is also the multiplicative character of order 2 over Fq. Since
Tr(x) is a linear transformation over Fqn whose image is Fq, each element in
Fq has q

n−1 elements in its preimage. Therefore,
∑

x∈Fqn

χ2(Tr(x)) = qn−1
∑

y∈Fq

χ2(y) = 0. (11)

We note that

|X2,1,0(Fqn)| =
∑

x∈Fqn

[

1 + χ2(xTr(x))
]

= qn +
∑

x∈Fqn

χ2(xTr(x)). (12)

From (10), (11) and (12), it follows that
∑

x∈Fqn

[

1 + χ2(x)
][

1 + χ2(Tr(x))
]

= |X2,1,0(Fqn)|. (13)

For the last sum in (9), Lemma 3.3 implies that
∑

x∈Fqn

[

1 + χ2(x)
]

∑

c∈Fq

ψ̃(cTr(x)) = qn−1 · q +
∑

c∈Fq

∑

x∈Fqn

χ2(x)ψ̃(cTr(x)). (14)
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The map x 7→ Tr(x)) is a linear map over Fq so that cTr(x) = Tr(cx) for all

c ∈ Fq and then ψ̃(cTr(x) = ψ̃(Tr(cx)) = ψ(cx). Therefore, by setting z = cx,
we obtain that

∑

c∈Fq

∑

x∈Fqn

χ2(x)ψ̃(cTr(x)) =
∑

c∈Fq

χ2(c)
∑

z∈Fqn

χ2(z)ψ(z)

= Gn(χ2)
∑

c∈Fq

χ2(c)

= 0,

(15)

where the last equality follows by Lemma 3.2. In sum, Equations (9), (13),
(14) and (15) imply that

M =
|X2,1,0(Fqn)|+ qn−1 + 2

4
.

Now our result follows by Theorem 2.3. �

5.4. Proof of Theorem 2.10.

(1) Assume that v is (p, r)-admissible and D is odd. Proposition 4.5 states
that

N = −q − 1

q

v−1
∑

j=1

Gn(χ
jD
d )χjD

d (−a).

We recall that χD
d has order d

D
= v. If v = 1, then N = 0. If v = 2,

then Theorem 3.7 entails that

N = −(q − 1)(−τ snq n−2

2 χ2(−1)χ2(a))

= (q − 1)τ snq
n−2

2 χ2(a),

since χ2(−1) = τ 2ns = 1. If v > 2, then Theorem 3.6 implies that

N = −q − 1

q
(−ε)q n

2

v−1
∑

j=1

(

εuDχD
d (−a)

)j

= q
n−2

2 (q − 1)εθv(−a, εuD).

(2) Let us assume that 2v is (p, r)-admissible and D is even. By Proposi-
tion 4.5 we have

N =
q − 1

q

(

(−1)s+1τ s
√
q

v−1
∑

j=0

Gn(χ
jD+D

2

d )χ
jD+D

2

d (−a)−
v−1
∑

j=1

Gn(χ
jD
d )χjD

d (−a)
)

.
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If v = 1, d = D and it follows that

N =
q − 1

q

(

(−1)s+1τ s
√
qGn(χ

d
2

d )χ
d
2

d (−a)
)

=
q − 1

q
(−1)s+1τ s

√
qGn(χ2)χ2(−a)

= (−1)ns+s(q − 1)q
n−1

2 τ s(n+1)χ2(a)

= (−1)s(q − 1)q
n−1

2 τ s(n+1)χ2(a).

If v = 2, we have d = 2D. By hypotheses, 4 is (p, r)-admissible, and
u = pr+1

d
= pr+1

4·D/2
. Then

N =
q − 1

q

(

(−1)s+1τ s
√
q(Gn(χ

d
4

d )χ
d
4

d (−a) +Gn(χ
3d
4

d )χ
3d
4

d (−a))−Gn(χ
d
2

d )χ
d
2

d (−a)
)

=
q − 1

q

(

(−1)s+1τ s
√
q(Gn(χ4)χ4(−a) +Gn(χ4)χ4(−a))−Gn(χ2)χ2(−a)

)

=
q − 1

q

(

(−1)s+1τ s
√
q(−εuD

2
+1q

n
2 χ4(−a) + χ4(−1)(−εuD

2
+1q

n
2 )χ4(−a)) + (−1)snτnsq

n
2 χ2(−a)

)

= q
n−2

2 (q − 1)
(

(−1)sτ s
√
qεu

D
2
+1(χ4(−a) + χ4(a)) + τnsχ2(a)

)

.

If v > 2, then Theorem 3.6 implies that

N =
q − 1

q



(−1)s+1τ sq
n+1

2 χ2v(−a)(−ε1+
uD
2 )

v−1
∑

j=0

(

ε2uχv(−a)
)j − q

n
2 (−ε)

v−1
∑

j=1

(

εuDχv(−a)
)j





=
q − 1

q

(

(−1)sτ sq
n+1

2 χ2v(−a)ε1+
uD
2 [1 + θv(−a, 1)] + q

n
2 εθv(−a, 1)

)

= (q − 1)q
n−2

2 ε
[

(−1)sτ s
√
qχ2v(−a)ε

uD
2 [1 + θv(−a, 1)] + θv(−a, 1)

]

.

�

6. The case Tr(b/a) 6= 0

Definition 6.1. If D is (p, r0)-admissible, we define

ε0 = (−1)
s

2r0 , and u0 =

{

pr0+1
2D

, if D is odd;

pr0+1
D

, if D is even.

Theorem 6.2. Let a, b ∈ Fqn such that B 6= 0. If d is (p, r)-admissible, D is
odd and (p, r0)-admissible, then

N = N1q
n
2 +N2q

n−1

2 +N3q
n−2

2 ,

where

• N1 = (−1)s+1εε1+u0D
0 τ sχ2(B)θd(−aB, εu);

• N2 = εε0 (−θd(−aB, εu) + θv(−aB, εu)) ;
• N3 = −εθv(−aB, εu);
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Proof. By hypotheses d is (p, r)-admissible and D is odd. By Proposition 4.5,

N =
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
[

(−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1

(

ηD−2ℓ
2D

)

−χℓ
d(−aB)G1

(

η−2ℓ
2D

)

]

.

Since D is (p, r0)-admissible and pr0 + 1 is even, it follows that 2D divides
pr0 + 1. Therefore, Theorem 3.6 and Corollary 3.8 imply that

N = −q n−2

2

d−1
∑

ℓ=1

εuℓ+1χℓ
d(−aB)

[

(−1)sτ sχ2(B)ε
u0(2ℓ+D)+1
0 q + ε2u0ℓ+1

0

√
q
]

+ R

= −q n−1

2 εε0

(

(−1)sτ sχ2(B)εu0D
0

√
q + 1

)

d−1
∑

ℓ=1

(

χd(−aB)εuε2u0

0

)ℓ
+R

= −q n−1

2 εε0

(

(−1)sτ sχ2(B)εu0D
0

√
q + 1

)

θd(−aB, εu) +R,

where R is the sum of the terms in the case when the multiplicative caracter
is trivial, i.e.,

R =
1

q



q
n
2

d/D−1
∑

j=1

εujD+1χjD
d (−aB)

[

− 1 +
√
qε2u0jD+1

0

]





= −q n−2

2 ε

d/D−1
∑

j=1

[

(

εuDχD
d (−aB)

)j − ε0
(

εuDε2u0D
0 χD

d (−aB)
)j√

q
]

= q
n−2

2 ε(−1 + ε0
√
q)θv(−aB, εu).

Rearranging the terms, we obtain the expression

N = N1q
n
2 +N2q

n−1

2 +N3q
n−2

2 ,

proving the statement. �

Theorem 6.3. Assume that B 6= 0 and d > 2. We denote α1 = θd(−aB, εuεu0

0 )
and α2 = θv(−aB, 1). If d is (p, r)-admissible, D is even and (p, r0)-admissible,
then

N = N1q
n
2 +N2q

n−1

2 +N3q
n−2

2 ,

where

• N1 = (−1)sεε0τ
sχ2(B)

[

− ε
u0

D
2

0 α1 + εu
D
2 χ2v(−aB)(1 + α2)

]

,

• N2 = εε0
(

α2 − α1

)

− (−1)sεu
D
2
+1τ sχ2v(−aB)χ2(B)(1 + α2),

• N3 = −εα2,

Proof. By hypotheses d is (p, r)-admissible and D is even. By Proposition 4.5,

N =
1

q

d−1
∑

ℓ=1

Gn(χ
ℓ
d)
[

(−1)s+1χℓ
d(−aB)χ2(B)τ s

√
qG1(η

D
2
−ℓ

D )−χℓ
d(−aB)G1(η

−ℓ
D )
]

.
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Therefore, since D is (p, r0) admissible

N = −q n−2

2

d−1
∑

ℓ=1

εuℓ+1χℓ
d(−aB)

[

− (−1)s+1τ sχ2(B)ε
u0(ℓ+

D
2
)+1

0 q + εu0ℓ+1
0

√
q
]

+R

= −q n−1

2 εε0

(

(−1)sτ sχ2(B)ε
u0

D
2

0

√
q + 1

)

d−1
∑

ℓ=1

(

χd(−aB)εuεu0

0

)ℓ
+R,

= −q n−1

2 εε0

(

(−1)sτ sχ2(B)ε
u0

D
2

0

√
q + 1

)

θd(−aB, εuεu0

0 ) +R,

where R = R1 +R2,

R1 = −q
n−2
2

d/D−1
∑

j=0

ε
u
(

D
2 (2j+1)

)

+1
χ

D
2 (2j+1)

d (−aB)(−1)s+1
[

− χ2(B)
√
qτ s + τ sχ2(B)ε

u0

(

D
2
(2j+1)+D

2

)

+1

0 q
]

= (−1)sq
n−1
2 εu

D
2
+1τ sχ2v(−aB)χ2(B)

d/D−1
∑

j=0

(

εuDχv(−aB)
)j
(−1 +

√
qε

u0Dj+u0D+1
0 )

= (−1)sq
n−1
2 εu

D
2
+1τ sχ2v(−aB)χ2(B)

d/D−1
∑

j=0

[

−
(

εuDχv(−aB)
)j

+
(

εuDεu0D
0 χv(−aB)

)j
εu0D+1
0

√
q
]

= (−1)sq
n−1
2 εu

D
2
+1τ sχ2v(−aB)χ2(B)

[

− (1 + θv(−aB, εuD)) + (1 + θv(−aB, εuDεu0D
0 ))εu0D+1

0

√
q
]

= (−1)sq
n−1
2 εu

D
2
+1τ sχ2v(−aB)χ2(B)(1 + θv(−aB, 1))(ε

uD
2

0

√
q − 1)

and

R2 = −q n−2

2

d/D−1
∑

j=1

εujD+1χjD
d (−aB)

[

1−√
qεu0jD+1

0

]

= −q n−2

2 ε

d/D−1
∑

j=1

[

(

εuDχv(−aB)
)j − ε0

(

εuDεu0D
0 χv(−aB)

)j√
q
]

= −q n−2

2 ε
[

θv(−aB, 1)− ε0θv(−aB, 1)
√
q
]

= −q n−2

2 εθv(−aB, 1)(1− ε0
√
q).

Altogether, we have shown that

N = N1q
n
2 +N2q

n−1

2 +N3q
n−2

2 ,

proving the statement. �
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